Prediction of Cancer-Associated Skeletal Muscle Wasting Using Targeted Profiling of Urinary Metabolites

Roman Eisner*, Jianguo Xia, David Hau, Thomas Eastman, Cynthia Stretch, Sambasivarao Damaraju, Russell Greiner, David S. Wishart, and Vickie Baracos
*Contact: eisner@cs.ualberta.ca

Introduction
Cancer-associated skeletal muscle atrophy (cancer cachexia)

• Involuntary weight gains or losses are significant perturbations of precise metabolic, neuronal, and hormonal controls
• Associated with poor functional status, treatment toxicity and shorter life expectancy
• Muscle wasting may be an early or occult phenomenon that is difficult to detect against the background of overall body weight
• Muscle loss may occur independently of changes in fat mass
• Improved approaches to detecting the onset and evolution of muscle wasting would help manage wasting syndromes and facilitate early intervention
• Gold standards for measuring body fat and muscle over time:
 - Dual energy X-ray absorptiometry (DXA)
 - Computed Tomography (CT)
 - Magnetic Resonance Imaging (MRI).
 - These methods are expensive, their analysis may be time-consuming and labor-intensive, and they may expose the patients to radiation
• Recent developments in NMR-based metabolomics permit detection and quantification of dozens of metabolites from urine (metabolic profile)
• We use machine learning approaches to build a classifier that can predict muscle loss for novel patients, based on his/her metabolic profile

Data Set
• Study was reviewed and approved by the Alberta Cancer Board Research Ethics Board
• Patients:
 - 73% had lung (n=66) and 27% colorectal cancer (n=25)
 - Donated a spot urine sample
 - Body composition assessed by review of several CT images
 • Total skeletal muscle tissue cross-sectional area (cm²) at the 3rd lumbar vertebra using Slice-O-Matic software V4.3 (Tomovision, Montreal)
 • Muscle area at the CT image preceding the urine sample collection was used as a reference (baseline) to compute the percentage of muscle lost or gained by the next imaging time point
• Urine samples:
 • One-dimensional NMR spectra of urine samples were acquired
 • First increment of the standard NOESY pulse sequence on a four-channel Varian (Varian Inc., Palo Alto, CA) Inova-600 MHz NMR spectrometer with a triax-gradient 5-mm HCN probe
 • We use the targeting profiling approach, acquiring the concentrations of 63 metabolites, using Chenomx NMRSuite 4.6 (Chenomx Inc. Edmonton, Canada)

Prediction of Cancer Cachexia
• Goal:
 • Given a patient’s urine sample, predict whether the patient has cachexia

Sample Analysis:
• Metabolite concentrations were log-transformed to make distributions more Normal
• Common approach: just compute correlation between outcome (here, cachexia status of patients) with with each individual observed variable (metabolite concentration in urine samples)
• Instead we build a diagnostic tool to predict whether patients are cachexic based on metabolic profile (from urine samples)

Machine Learning:
• 1.) Train classifier from historical (labeled) data
• 2.) Use classifier to predict muscle loss of novel patient
• Evaluated:
 • Novel algorithm, Pathway-Informed Analysis (PIA)
 • PLS-DA (commonly used in metabolomics)
 • Other well known ML/Statistics approaches
• Pathway-Informed Analysis (PIA)
 • Computes P(anabolic | metabolic profile) and P(catabolic | metabolic profile)
 • Returns larger of the two (i.e. the most likely diagnosis)
 • Issue: How to efficiently model the relationships among the metabolites?
 • Use known metabolic pathways to model metabolite relationships:
 • Kyoto Encyclopedia of Genes and Genomes (KEGG) provides a database of metabolic pathways in humans
 • Include only metabolites appearing in metabolic profile and KEGG
 • Use these pathways to create the structure of the Guassian Markov Random Field (GMRF):
 • Nodes represent metabolites
 • Edges represent common reactions between metabolites
 • PIA performs better than other commonly used approaches
 • Permutation testing shows result is significantly better than random

<table>
<thead>
<tr>
<th>Classifier</th>
<th>5-fold Cross-validation Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathway-Informed</td>
<td>76.3 %</td>
</tr>
<tr>
<td>Full-dependence model</td>
<td>72.2 %</td>
</tr>
<tr>
<td>Support vector model</td>
<td>72.2 %</td>
</tr>
<tr>
<td>Naive Bayes model</td>
<td>71.1 %</td>
</tr>
<tr>
<td>PLS-DA</td>
<td>68.1 %</td>
</tr>
<tr>
<td>Two-supported Naive Bayes</td>
<td>62.4 %</td>
</tr>
<tr>
<td>Decision tree</td>
<td>50.7 %</td>
</tr>
<tr>
<td>Random permutation</td>
<td>48.9 %</td>
</tr>
</tbody>
</table>