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Abstract

One important goal in microarray data analysis is to learn a predictor using a patient’s

microarray data to predict some important characteristics of that patient. The high dimen-

sionality of data makes learning such classifiers very challenging. We tried to use prior

biological knowledge to tackle the challenges. Our colleagues have produced clusters of

genes with a common function, called “PBT”s, for mouse and human. We hoped we could

use each cluster as a single feature. This is most effective if each PBT is “coherent”. They

expect all PBTs to be coherent; but while mouse PBTs are coherent, human PBTs are not.

In this thesis we propose a method, called MkCoh, to improve the coherency of each

PBT by removing and flipping some genes. We expected the predictors based on the

revised PBTs to be more accurate than the ones based on either the original PBTs, or on the

original gene expression values. However, our experimental results did not demonstrate

this; we explored some possible reasons.
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Introduction
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1.1 Overview

One application of microarray data is the prediction task. In this thesis our goal is to learn

a predictor that can predict some important characteristics of a patient based on the data

from his/her microarray. The large number of genes and the small number of samples

make building such classifiers very challenging. But each microarray feature is based on a

gene, which has many known properties that could be used as prior knowledge. Chapter 2

reviews some approaches have been applied to microarray data analysis. Some of them are

only based on the data, while others use prior biological knowledge to get better results.

The known properties of genes have motivated biologists to use prior knowledge to

form clusters of (dozens to hundreds) genes with a common function. Our colleagues, the

members of the Alberta Transplant Applied Genomics Centre (ATAGC1), produced such

clusters called “PBT”s (pathogenesis-based transcript sets) [37, 31]. They have provided

38 human PBTs and 21 mouse PBTs where each PBT is a cluster of genes with a common

function, and some PBTs overlap.

Our colleagues initially characterized mouse PBTs as “herd movements” in mouse

transplant data — that is, the genes in each mouse PBT have similar expression patterns,

or in other words they are highly correlated. They then created human PBTs, many by ho-

mology with the mouse PBTs. They expected to see the same “herd movements” in those

human PBTs as well. However, our empirical studies showed this assumption was not

always true: many pairs of genes in human PBTs had negligible, or negative, correlations.

In this thesis, we propose a method, called MkCoh, for efficiently modifying each given

PBT, by removing some genes and “flipping” some others, in order to improve the pair-

wise correlation of the genes in that PBT. Chapter 3 describes MkCoh algorithm and shows

the results of applying this algorithm on PBTs.

1http://www.atagc.med.ualberta.ca/

2



Our plan, all along, was to use PBTs (and revised PBTs) to reduce the dimensionality

of data. We hoped we could use each cluster (rather than each gene) as a single feature,

because when a gene set is coherent, we can view all the genes in that set as a single entity

by collapsing the expression values of all the genes into a simple summary statistic (e.g.,

the arithmetic mean). We expected that the predictors based on these revised PBTs should

be more accurate than the ones based on either the original PBTs, or on the original gene

expression values. Unfortunately, our experimental results based on some real biological

datasets did not show that. Chapter 4 presents these results and explores possible reasons

for this negative finding. Finally Chapter 5 draws conclusions and describes some future

works.

1.2 Introduction to Microarrays

Recent advances in microarray technology have made it one of the essential tools for

biologists, as it allows them to monitor expression levels of genes in a given organism; it

allows biologists to obtain a “global” view of the cell. Microarray technology allows them

to example tens of thousands of genes at the same time. The samples may correspond

to different time points, different experimental conditions, different organs, diseased or

healthy tissues, or different individuals.

Microarray technology has great potential to provide accurate medical diagnosis, by

helping to find better treatments and cure for many diseases2. Microarray data analysis

is an important research area in bioinformatics. Medical researchers anticipate microar-

ray data will provide medically relevant information. They analyze these data seeking

meaningful patterns in the gene expression levels because these patterns can increase their

understanding of normal and disease states, e.g., it can help them to determine the genes

2See Appendix A as an example.
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Figure 1.1: Cell, DNA, gene and protein [2].

involved in a disease. Machine learning and statistical techniques have been applied on

microarray data to address some of the class discovery or class prediction biomedical

problems such as predicting post-treatment outcome [34].

1.2.1 Biology Background

A cell is the fundamental unit of life as it contains all the structures and molecular con-

stituents needed for life. Almost every cell of the body contains a full set of genes. DNA

(deoxyribonucleic acid) carries the genetic information of a cell, in a set of one or more

molecules, called chromosomes. As shown in Figure 1.1, each such chromosome, consists

of thousands of genes that determine the hereditary traits of organisms. The genes do so

typically by specifying the structure of proteins, which are large complex molecules that

4



do essential work [12, 34]. The sequence of amino acids in a protein specifies the shape

and functions of that protein.

The term “Gene expression” describes the process by which information from a gene is

used in the synthesis of a functional gene product; these products are often proteins. There

is an intermediate between a gene and its corresponding protein that is called a messenger

RNA (mRNA), which is the cell’s template for creating that specific protein. To produce a

protein from DNA, DNA is first transcribed to mRNA, which is then translated to protein.

Each gene codes for a protein, but in any cell only some of these genes are expressed,

and it is this expressed subset that specifies the unique properties of each cell type [12].

Researchers evaluate the state of a cell based on what genes are expressed within it. A

microarray measures the level of activity of genes by measuring the amount of mRNA for

each gene.

A DNA-microarray is usually a small glass slide onto which the sequences from thou-

sands of different genes are attached at fixed locations. As shown in Figure 1.2, DNA

microarrays can be created by spotting a subsequence of every gene in a genome onto a

glass microscope slide.

1.2.2 Microarray Technology

Microarray measures the amounts of each specific mRNA to find the active genes. To

determine which genes are turned on and which are turned off in a given cell, a researcher

must first collect the messenger RNA molecules present in that cell. The researcher then

labels each mRNA molecule by attaching a fluorescent dye. Next, he places the labeled

mRNA onto a DNA microarry slide. The messenger RNA that was present in the cell

will then hybridize – or bind – to its complementary DNA on the microarray, leaving its

fluorescent tag. The researcher then uses a scanner to measure the fluorescent areas on

5



Figure 1.2: DNA microarrays can be created by spotting sequences from every gene in a
genome onto a glass microscope slide [3].

the microarray. A very active gene will produce many molecules of messenger RNA,

which hybridize to the DNA on the microarry and generate a very bright fluorescent area.

Genes that are somewhat active produce fewer mRNAs, which results in dimmer fluores-

cent spots. Finding no fluorescence means that none of the messenger molecules have

hybridized to the DNA, indicating that the gene is inactive [7].

Therefore, to obtain the raw microarray data, the microarray is then placed on a scan-

ner that uses a specific frequency of light from a laser. This produces an image from

the scanned array. To get information about gene expression levels, this image is ana-

lyzed; each spot on the array is identified, its intensity is measured and compared to the

background. To obtain the final gene expression matrix from spot quantitations, all the

quantities related to some gene have to be combined and the entire matrix has to be scaled

to make different arrays comparable. This process is called normalization [5, 12]. After

these steps, the microarray data is ready to be analyzed.
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Figure 1.3: A gene expression matrix.

1.3 Microarray Data Analysis

In microarray data, the data from one sample corresponds to an m× 1 vector of real num-

bers, where m is the number of genes, which is usually tens of thousands. The microarray

data for all of the samples can be viewed as a matrix of expression levels. When we have n

samples, that would be an n×m matrix of real numbers. Each row of the matrix contains

the expression levels of the m genes, and each column contains the expression levels of a

gene as it varies over the n samples. Figure 1.3 shows this matrix.

1.3.1 Challenges for Microarray Data Analysis

Medical researchers anticipate that microarray data will provide medically relevant in-

formation. Our colleagues have obtained microarray data from over a hundred samples

hoping to find meaningful patterns. But microarray datasets have special characteristics

that pose some challenges in their analysis.

Typical datasets have more samples than features (n > m), but a microarray dataset has

many more features than samples (m À n). The number of features (genes), |G| = m, in a

microarray is very large, in the order of tens of thousands; given the difficulty and financial

cost of collecting microarray samples, the number of samples, |P | = n, is typically much

smaller, usually less than a hundred. Such a dataset with the property of having a large
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number of features is called a high dimensional dataset. The high dimensionality of data

poses a challenge that given the small sample size, it is very difficult to find meaningful

patterns [30]. In particular, the high dimensionality of the feature (gene) space, and the fact

that many features are irrelevant or redundant, makes it challenging to analyze microarray

data. Dealing with noise, outliers and missing values are the other challenges of working

with microarray data. Also, there is still some limitations in microarray technology and

measuring gene expressions; [41, 25] address some of these problems.

The following subsections describe the main tasks in microarray data analysis.

1.3.2 Classification and Regression

Finding the relationship within genes and samples, or between them, is an important task

in microarray data analysis. In general, we can define classification as the process of

predicting the class label of an instance. This model can be learned by applying a learning

algorithm to a dataset, here the overall task includes two main steps: 1) learning a model

from a dataset with known class labels, and then 2) classification, which is predicting the

class of unlabeled data points. Figure 1.4 illustrates these two steps.

Biologists are interested in several classification tasks involving microarray data, which

can be divided into these main groups [12]:

1. Gene Classification: using the expression values of a set of genes belonging to

known classes, predict the class of a new gene, with known expression values.

2. Gene Interactions: it is known that the expression level of gene g is regulated by a

set of other genes, G. Using the expression values of the genes in the set G, predict

the expression value of g.

3. Sample Classification: using the expression values of a set of samples with known

8



Figure 1.4: Learning and Classification.

classes, predict the class of a new sample based on its expression values.

4. Time Series: gene expression levels change over time, as proteins regulate gene

transcription, due to a change in the state of a disease, or due to the effect of a certain

treatment. Given expression levels of genes from different time points {t1, ..., tn},

predict the time point for a new gene given its expression values.

In this thesis, we focus on the third task, i.e., sample (patient) classification. Sample

classification requires learning a classifier from the data for different samples (with known

classes) and their gene expression levels. Then, the learned model is used to predict the

class of a new sample, see Figure 1.4.

In biology, there are many categories of classification including [12]:

Cancer versus normal (Diagnosis): We have the expression values of a set of patients,

some of whom are known to have cancer and some of them do not. We use this data to

build a classifier in order to predict if a new patient has cancer or not.

Type of cancer (Diagnosis): We have the expression values of a set of patients, all of

whom have the same cancer but with different types. We build a classifier on this data in

order to predict the type of cancer for a new patient.

9



Figure 1.5: Overfitting [10].

Clinical outcome (Prognosis): We have the expression values of a set of patients, all

of whom have the same cancer but with different types. The patients will all undergo the

same treatment and after a certain amount of time they will be checked to determine if

they have responded to the treatment or not. The class label here is whether their cancer

recurred after a certain treatment or not. Therefore, the task here is to build a classifier in

order to predict if a patient responds to a certain treatment or not.

For each of these classification tasks, a set of microarray experiments, each correspond-

ing to mRNA from a different patient, is given. The mRNA is typically taken from the

same cell type from each patient. Since this is supervised learning, the class labels for

these patients are known as well. We use this data set (gene expression values of patients

and the class label for each patient) to produce a classifier that can be used to predict the

class of a new patient, given his or her gene expression values.

Overfitting

As we explained before, microarray data has high dimensions, with many more features

than samples. Overfitting often occurs when we are dealing with such data. It means

10



that as the number of features (for a fixed number of training instances) increases, the

prediction accuracy on training data increases, however the prediction accuracy on test

data decreases, see Figure 1.5. Using all of the features (genes), especially when they are

highly correlated with each other or when many of them are irrelevant, in order to build

the classifier for predicting the patient’s class, often leads to overfitting.

The best way to avoid over-fitting is to increase the number of training instances. But in

some datasets, such as microarray data, it is often not possible to have more than just a few

samples. Therefore we need to reduce the dimensionality of the data by finding the most

relevant subset of genes and removing the others. This process, called gene selection, will

be explained in Section 1.3.3.

Regression

For some biological experiments, we would like to learn a continuous valued function

based on gene expression patterns and then predict the value of the function for a new

sample. This process is called regression. Regression is similar to classification, in that

they both learn a model from the labeled data of different samples and then use the learned

model to predict the label of a new sample. But in regression tasks the labels (targets) are

real valued numbers, while in classification tasks, class labels are categorical or nominal.

1.3.3 Feature Selection

Feature selection, also known as feature reduction, is the technique commonly used in

machine learning to reduce the number of features in datasets. Most feature selection

algorithms select a subset of relevant features by removing most irrelevant and redundant

features from the data. We can find more meaningful patterns in data with a fewer number

of redundant features. In high dimensional datasets, feature selection can help us to reduce

11



the high dimensionality of data.

When feature selection is applied to microarray data, the technique, here called gene

selection, tries to detect informative genes in a DNA microarray experiment. By remov-

ing most irrelevant and redundant features from the microarray data, feature selection can

improve the performance of learning models and therefore increase the accuracy of pre-

diction.

1.3.4 Clustering

Clustering is the process of organizing objects into groups whose members are “similar”

in some way. Clustering can be considered as the most important unsupervised learning

problem; it is called unsupervised because it deals with finding a structure in a collection

of unlabeled data. A cluster is a collection of objects that are “similar” to each other and

are “dissimilar” to the objects belonging to other clusters.

It is often meaningful to cluster data with respect to features or samples. In microar-

ray data, we can cluster both genes and samples. Gene clustering treats the genes as the

objects and the samples as the features; it organizes genes in clusters based on their ex-

pression patterns. Sample clustering regards the samples as the objects and the genes as

the features; it partitions the samples into the homogeneous groups. There is another type

of microarray clustering that is called biclustering, which performs clustering on both

genes and samples at the same time. It finds a subset of genes that have similar pattern

under a specific subset of samples. Figure 1.6 shows these three types of microarray data

clustering.

12



Figure 1.6: Gene-based clustering, Sample-based clustering and Biclustering.

Similarity Measure

Choosing a similarity measure is a critical step in clustering that depends on what we want

to find or emphasize in the data. Two common similarity measures are:

1. Euclidean distance measures the “ordinary” distance between two points x =

{x1, x2, ..., xn} and y = {y1, y2, ..., yn}:

deuc(x, y) =

√√√√
n∑

i=1

(xi − yi)2, (1.1)

where n is the number of dimensions in the data vector.

2. Pearson Linear Correlation is much more common as the similarity measure in

microarray data clustering, because it compares the overall shape of expression pro-

files rather than the actual magnitudes, i.e., it considers genes similar when their

values are “up” and “down” together.

The correlation between two variables x and y is a number between -1 and +1 that

measures the degree of their association. A positive value for the correlation implies

13



a positive association (large values of x tend to be associated with large values of y

and small values of x tend to be associated with small values of y). A negative value

for the correlation implies a negative or inverse association (large values of x tend

to be associated with small values of y and vice versa). Figure 1.7 shows the scatter

plot of positively correlated, uncorrelated and negatively correlated variables.
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Figure 1.7: The scatter plot of (a) Strongly positively correlated variables, (b) Not corre-
lated variables, (c) Strongly negatively correlated variables.
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Microarray technology can simultaneously measure the expression levels of a large

number of genes for a particular sample. The huge amount of biological information

produced by these experiments has attracted many groups to analyze such data. Some ap-

proaches in microarray data analysis are only based on the data, i.e., they usually do not use

any prior biological information about the data. In fact these methods are applicable to any

high dimensional data. Section 2.1 reviews some of these approaches. Other approaches

use prior biological knowledge in microarray data analysis in order to improve the analysis

results and also enhance the biological interpretability of the results. Section 2.2 reviews

very briefly some of these methods.

2.1 “Large p, Small n” Problem

The main challenge of microarray data analysis is the high dimensionality of data. Any

statistical analysis of gene expression data has to face the “large p, small n” problem,

where p denotes the number of genes (features) and n denotes the number of instances

(experiments); it has to avoid overfitting to construct a classifier with a good generalization

ability. Most classical statistical approaches fail in such “large p, small n” problems, but

with the advent of various types of high dimensional data there has been a dramatic growth

in the development of statistical methodology in the analysis of such data.

Although there is no accurate grouping for these methods, we roughly divide them into

two groups:

1. Dimensionality reduction methods: methods that involve feature selection or ex-

traction ideas in order to reduce the feature space dimensionality. After this step,

the selected (or extracted) feature set can be used for learning the classification or

regression model.

16



2. Regularization-based methods: these methods take advantage of the data regularities

in learning the classification or regression model. In these methods, selecting or

extracting features is embedded in the learning process, i.e., they do not have a

separate feature selection (or extraction) step.

Kohavi et al. [28] find a similar grouping of feature selection algorithms, dividing these

algorithms into filter methods versus wrapper methods. The essential difference is that a

wrapper method makes use of the algorithm that will be used to build the final classifier,

while a filter method does not. In our grouping, the first group roughly corresponds to

filter methods, and the second group corresponds to wrapper methods.

2.1.1 Dimensionality Reduction Methods

One of the characteristics of high dimensional datasets is that, in many cases, not all the

features are “important” for understanding the underlying phenomena of interest. There-

fore, in many applications we need to use a dimensionality reduction technique to reduce

the dimensionality of the original data prior to any modeling of the data [18].

Feature selection and feature extraction are two main methods for reducing dimension-

ality. In feature selection, we are interested in finding k of the p dimensions (k < p) that

give us the most information and we discard the remaining (p− k) dimensions. In feature

extraction, we are interested in finding a new set of k dimensions that are the combination

of the original p dimensions [11].

Feature (gene) selection or extraction is also an important task in microarray data anal-

ysis, in order to reduce the dimensionality and to provide the most relevant set of features.
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Feature Selection

The broadly used gene selection algorithms on microarray data share a common work-

flow [46]:

1. A single-gene based discriminative score is selected.

2. Genes are ranked based on such a discriminative score.

3. Top scored genes are then selected for further investigation.

Several ranking methods have been proposed to rank the genes in terms of their classi-

fication performance. Golub et al. [19] first introduced a ranking criterion for each gene

in two-class classification. The criterion is defined as

ρj =

∣∣∣∣∣
(x

(1)
j − x

(2)
j )

σ
(1)
j + σ

(2)
j

∣∣∣∣∣ , (2.1)

where x
(k)
j and σ

(k)
j denote the mean and standard deviation of the gene expression levels

of gene j for all samples of class k.

Classical feature selection methods ranked each gene separately, but genes are well

known to interact with each other. Hence, recent feature selection methods do not rank the

genes independently; for example Xu et al. proposed a method that limits the correlation

of the selected feature set in order to avoid selecting redundant genes [46].

Feature Extraction

The feature extraction methods expand the data in a new lower dimensional space in order

to reduce the dimensionality of the data [39]. One of the best known and most widely

used feature extraction methods is Principal Components Analysis (PCA), which is a pro-

cedure that transforms a number of possibly correlated variables into a smaller number of
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uncorrelated variables. PCA performs a linear mapping of the data to a lower dimensional

space, selected to maximize the variance of the data in the low-dimensional representation.

Principal Components Analysis

Given a data set described by a set of numerical variables {X1, X2, ..., Xp}, the goal of

PCA is to describe this data set with a smaller set of new variables. These variables will

be linear combinations of the original variables, and are called the Principal Components.

Reducing the number of variables used to describe data will lead to some loss of informa-

tion; PCA minimizes this loss.

To clarify the main idea of PCA, let {X1, ..., Xp} be a set of real-valued random vari-

ables. We seek a derived variable Z1 = a11X1 + a21X2 + ... + ap1Xp such that var(Z1)
1

is maximized, where the ai1’s are real-valued coefficients. We limit a1 = (ai1) to have

unit Euclidean norm, ‖a1‖ = 1. The derived variable Z1, the largest principal component,

attempts to capture the common variation in the variables Xi. If Z1 is not enough to rep-

resent the original variables {X1, ..., Xp}, we then look for a second derived variable, Z2,

uncorrelated with the first one, with the largest remaining variance, and so on.

In microarray data if we represent the expression array by Xij = [xij], where i indexes

one of the p genes and j indexes one of the n instances, the largest sample principle

component z1j is defined to be the linear combination z1j =
∑p

i=1 ai1xij, ‖a1‖ = 1, that

has the largest instance variance.

Suppose that C = [cij] is the p× p covariance matrix of the genes whose ijth entry is

cij =
1

n− 1

n∑

h=1

(xih − xi)(xjh − xj), (2.2)

where xi and xj are the sample means for genes i and j. The largest eigenvector of C

1For a random variable X with expected value E(X) = µ, the variance of X is var(X) = E[(X−µ)2].
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defines the first principal component, the second largest eigenvector defines the second

principal component, and so on.

The proposed MkCoh algorithm, which will be explained in Chapter 3, is similar to

PCA, in that they both involve eigenvectors of the covariance matrix. However, MkCoh

deals only with the first eigenvector (corresponding to the largest eigenvalue), and also

discretizes this vector.

Gene Shaving

Cluster analysis is another important task in microarray data analysis. We described the

main idea of clustering in Section 1.3.4. Gene shaving [20] is a clustering method based

on PCA. It identifies subsets of genes with coherent2 expression patterns that vary as much

as possible across the samples. In other words, it extracts coherent clusters of genes where

the average gene of each cluster has a large variance.

To clarify the main idea of gene shaving, let X = [xij] be a p × n matrix of real-

valued measurements, where the rows are genes and the columns are samples, and Sk is

the indices of a cluster of k genes; the vector of n column averages of the expression values

for this cluster is:

xSk
=

(
1

k

∑
i∈Sk

xi1,
1

k

∑
i∈Sk

xi2, ...,
1

k

∑
i∈Sk

xin,

)
(2.3)

For each cluster of size k, gene shaving seeks a cluster Sk having the highest variance

of the column averages:

Sk = argmax
S

var{xS, |S| = k} (2.4)

This procedure generates a sequence of nested clusters Sk, in a top down manner, start-

ing with k = p, the total number of genes, and decreasing down to k = 1. At each stage
2A coherent set is a set with a high value of average pair-wise correlation; Definition 1 and 2 in Chapter 3

define the pair-wise correlation and coherence.
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it first computes the largest principal component of the current cluster of genes. Next,

it computes the inner product (essentially the correlation) of each gene with the leading

principal component, and discards (“shave off”) a fraction (usually 10%) of the genes hav-

ing the lowest (absolute) inner product. The process is repeated on the reduced cluster of

genes. Algorithm 1 shows the main steps in the gene shaving algorithm.

Algorithm 1 Gene shaving algorithm (M, X ∈ <p×n)

1. Start with the entire expression matrix X = [xij], each row centered to have zero
mean.
µi = 1

n

∑n
j=1 xi,j, xi := (xi − µi)

2. Compute the leading principal component of the rows of X .

3. Discard (”shave off”) the proportion α (typically α = 10%) of the genes having
smallest absolute inner-product with the leading principal component.

4. Repeat steps 2 and 3 until only one gene remains.

5. This produces a nested sequence of gene clusters Sp ⊃ Sk ⊃ Sk1 ⊃ Sk2 ⊃ ... ⊃ S1,
where Sk is a cluster of k genes and p > k > k1 > k2 > ... > 1. Then estimate the
optimal cluster size k̂ using the gap statistic.

6. Orthognalize each row of X with respect to xSk̂
, which is the average gene in Sk.

7. Repeat steps 1-6 with the orthognalized data, to find the second cluster. This process
is continued until a maximum of M clusters are found, where M is chosen a priori.

The first 5 steps give the first cluster of genes. The gap test estimates the optimal cluster

size k, by comparing the variances of each subset Sk in the shaving sequence to a similar

sequence obtained from randomized data. Step 6 of this process orthogonalizes3 the data

to encourage discovery of a different (uncorrelated) second cluster.

The main drawback of the gene shaving process is that it requires repeated computa-

tions of the largest principal component of a large set of variables, which make it computa-

3In order to orthognalize gene xi with respect to xSk̂
, we must subtract the projection of xi on to xSk̂

from xi; xnew
i = xold

i − <xold
i ,xS

k̂
>

<xS
k̂
,xS

k̂
>

xSk̂
[42].
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tionally expensive. Our MkCoh differs from gene shaving by considering highly-negative

correlations between genes; in particular, MkCoh considers both negative and positive

correlations between pairs of genes. By “flipping” the genes (Section 3.2), MkCoh can

include genes that have highly negative correlations to the other included genes.

2.1.2 Regularization-based Methods

Regularization is a way to control the complexity of the model in order to avoid overfitting.

There are different techniques to control the complexity. One famous method is to add a

penalty term to the error function in order to discourage the coefficients from reaching

large values. Therefore, in regularization-based methods, the total error function to be

minimized is:

E(w) = ED(w) + λJ(w) (2.5)

where the coefficient λ controls the relative importance of the data-dependant error ED(w)

and the regularization term J(w). For example the regularization term can take the fol-

lowing form,

J(w) =

p∑
j=1

‖wj‖q (2.6)

which is the Lq-norm of the parameter vector w (sum of the components, each to the power

of q) [13].

Lasso is a well-known regularization-based method, mainly applicable in regression

problems [21]. The error function used in Lasso is composed of squared error along with

a regularization term that penalizes L1-norm of coefficients of the linear model. For the

given training set X ∈ Rp×n and targets Y ∈ Rn, the formulation of Lasso is

E(w) =
n∑

i=1

(
yi − wT xi

)2
+ λ‖w‖1 (2.7)
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where ‖w‖1 = |w1|+ ... + |wp|.

A sufficiently large value of λ will make some of the coefficients wj equal to zero,

which leads to a sparse model. Because of this characteristic, Lasso is a commonly used

approach in high dimensional data analysis [44].

The SVM (Support Vector Machine) [40] algorithm is another regularization-based

method that penalizes the L2 norm of w. Equation (2.8) is the error function used in

classification SVM, which is composed of the hinge loss along with a regularization term

that penalizes L2-norm of coefficients of the linear model, ‖w‖2
2 = wT w = w2

1 + ... + w2
p.

E(w) =
n∑

i=1

[1− yif(xi)]+ + λ‖w‖2
2, (2.8)

where [a]+ = max{0, a} and f(x) = b + wT x is the linear model fitted by SVM. The

classification of a new instance x is made according to sign(f(x)).

SVM can be applied to both classification and regression problems. It has had many

successful applications in microarray data analysis [29, 14].

As will be explained in Chapter 4, we applied several learning algorithms to the selected

feature set to learn a predictor (model) that can predict some patient’s characteristics. We

usually achieved the best predictive performance by using Lasso or SVM.

2.2 Prior Biological Knowledge-based Methods

Some approaches use prior biological knowledge in microarray data analysis. Microar-

ray experiments produce long lists of genes that are differentially expressed between two

different situations. It is also known that the genes do not usually act alone in a biolog-

ical system; they participate in a cascade of networks [15]. In order to better understand
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the biology behind these data, it is relevant to include the available biological information

of the genes [17]. We anticipate that incorporating biological knowledge into microar-

ray data analysis will improve the results, as well as enhancing the interpretability of the

results [33, 23].

Microarray data analysis methods can take advantage of pathways as the prior biolog-

ical knowledge. Pathway information provides insights into the biological processes un-

derlying microarray data. Combination of microarray data and pathway information may

highlight the processes taking place in the cell and tissue and provide biological knowl-

edge on the gene expression data. Pathway databases contain information mainly based

on research performed with human and laboratory animals, moreover they are widely

available in databases through the internet. There are three main sources of pathway

and functional information, which can be either generic or species specific. The Gene

Ontology project (GO) (http://www.geneontology.org) classifies genes into a hierarchy,

placing gene products with similar functions together. The Kyoto Encyclopedia of Genes

and Genomes (KEGG) (http://www.genome.jp/kegg/) provides searchable pathways and

GenMAPP (http://www.genmapp.org) displays the gene expression on maps representing

pathways and groupings of the genes [17].

Rapaport et al. [36] review some methods that use prior knowledge of the gene net-

works. They conclude that including prior knowledge of a gene network for the analysis of

gene expression data leads to good classification performance and improved interpretabil-

ity of the analysis results. The rest of this Chapter reviews some methods in microarray

data analysis that use such prior biological knowledge.

One of the challenges in the medical research is to identify new prognostic markers that

are more directly related to disease and that can more accurately predict the risk of dis-

ease in individual patients. Many studies have been done in this area to identify markers

through analysis of gene expression profiles. Marker sets are usually selected by scoring
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each individual gene for how well its expression pattern can discriminate between different

classes of disease. But a more effective way for marker identification may be to combine

gene expression measurements over groups of genes that fall within common pathways.

Chuang et al. [16] applied prior protein-network-based knowledge to identify new mark-

ers in breast cancer. They identify markers not as individual genes but as subnetworks

extracted from protein interaction databases. To integrate the expression and network data

sets, they overlaid the expression values of each gene on its corresponding protein in the

network and searched for subnetworks whose activities across the patients were highly

discriminative of metastasis. This process involves several scoring and search steps. The

resulting subnetworks provide new hypotheses for pathways involved in tumor progres-

sion. They have also achieved higher accuracy in the classification of metastatic versus

non-metastatic tumors.

Gene clustering is another important task in microarray data analysis. Kennedy et al.

proposed a method of gene clustering using information from the Gene Ontology [27].

The method uses this information to build clusters and also to extract meaningful cluster

descriptions. The proposed methodology first reduces the number of genes coming from

the microarray experiments to dozens of genes. The output of this stage is interesting

from a statistical point of view, however it is difficult for biological interpretation. The

Gene Ontology has been used to assist in the interpretation of the output. The list of genes

is reclustered into groups of genes with similar biological functions. The broad goal of

this work is to improve the understanding of genes related to a specific form of childhood

cancer.

There are many articles concerned with clustering genes for gene function discovery

using microarray gene expression data. Because co-expressed genes are likely to have the

same biological function or be involved in the same biological process, clustering genes’

expression profiles could provide a means for gene function discovery. Most existing
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approaches ignore known functions of some genes, but some recent methods use a prior

biological knowledge of known gene functions in the process of clustering. To discover

new gene functions, they use biological pathways or gene functional annotation systems,

such as Gene Ontology or KEGG [23, 33].

Estimating a gene network is another important topic in the field of bioinformatics.

Several methodologies have been proposed for constructing a gene network based on gene

expression data. But microarray data do not contain enough information for constructing

gene networks accurately in many cases, therefore there are usually some drawbacks for

the gene network construction using only microarray data. Recent methods have applied

prior biological knowledge to get better results. Imoto et al. have proposed a statistical

method for estimating a gene network based on Bayesian networks from microarray gene

expression data together with biological knowledge [24].

In this thesis, we used clusters of genes with a common function, as prior biological

knowledge. Our colleagues produced such clusters of genes, called PBTs, for mouse and

human, which includes 38 human PBTs and 21 mouse PBTs. They expect the genes in

each PBT to be highly correlated; but while mouse PBTs are coherent, human PBTs were

not. Hence, we proposed a method, which will be explained in Chapter 3, to improve the

coherency of the genes in each PBT. We hoped we could use each cluster (rather than each

gene) as a single feature, because when a gene set is coherent, we can view all the genes

in that set as a single entity. We expected that the predictors based on the PBTs should

be more accurate than the ones based on the original gene expression values. Chapter 4

presents the results.

Over the last few years, many articles have been published dealing with high dimen-

sional data [18, 22]. In microarray data analysis, as an instance of high dimensional data,

some methods just use the data, but some others apply prior biological knowledge to im-

prove the results and enhance the interpretability of the results. However, generally high
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dimensional data and particularly microarray data analysis is still an active research area.
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Chapter 3

Making Gene Sets More Coherent
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3.1 The Coherence Task Problem

The prior knowledge of gene properties could help biologists to form clusters of genes with

a common function. As a possible approach, we used these clusters to reduce the dimen-

sionality of data. We hoped we could use each cluster (rather than each gene) as a single

feature. Our colleagues have produced such clusters of genes, called PBTs, for mouse

and human. They have produced 38 human PBTs and 21 mouse PBTs. Human PBTs

range in size from 3 to 1798 genes, with an average size of 318.42 ± 447.82. The size of

mouse PBTs range from 4 to 924 genes with an average size of 214.38 ± 243.78. Some

PBTs overlap, i.e., there are some genes included in more than one PBT. The medical

researchers initially characterized mouse PBTs as “herd movements” in mouse transplant

data, i.e., mouse PBTs are “coherent” or highly correlated. Given that many human PBTs

are constructed to resemble corresponding mouse PBTs, they expect to see the same co-

herence for human PBTs as well. In order to explain the problem more clearly, we need to

define the pair-wise correlation and coherence more accurately.

In general, we can characterize each patient by a vector of m gene expression values

(e.g., of a biopsy taken of that patient’s transplanted kidney), one for each gene in G; for

ATI data m = |G| = 54675 (as we are using Affymetrix GeneChip R© human Genome

U133 Plus 2.0 Array). The ATIGFR dataset includes n = |P | = 137 such patients. Here

P = {pi}i=1,...,n is a vector set of patients where pi ∈ <m and G = {gi}i=1,...,m is a vector

set of genes where gi ∈ <n.

We let ei,j = expression(pi, gj) ∈ < refer to the expression of the jth gene of the ith

patient, and for each gene gj , let µj = 1
|P |

∑
i ei,j refer to the average expression value for

that gene over all patients P .
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Definition 1. Pair-wise Pearson Correlation

For any two genes, we define the pair-wise correlation matrix (w.r.t. E = [ei,j]) as

corr( gj, gk ) =

∑
i(ei,j − µj)(ei,k − µk)√

(
∑

i(ei,j − µj))(
∑

i(ei,k − µk))
(3.1)

where the summations are over the patients pi ∈ P .

Definition 2. Coherence

We then define the “coherence” of any subset of genes F ⊂ G as the “average pair-wise

correlation”

coh( F ) =
1

|F |
∑

gj ,gk∈F

corr( gj, gk ) (3.2)

Notice this average is per gene (and not per gene-pair).

To test the coherence assumption in mouse and human data, we computed all
(

n
2

)
pair-

wise Pearson correlation values over each n-gene PBT. We say a PBT is coherent if es-

sentially all of the gene pair-wise correlation values will be large — near 1. We can also

allow some genes to be strongly negatively correlated — i.e., whenever gene gj goes up,

gene gk goes down, and vice versa. This would mean correlation (gj , gk) is close to −1.

Figure 3.1(a) is a histogram of the
(
332
2

)
pair-wise correlations of the 332 genes in the

mouse PBT, “mCAT”, and Figure 3.1(b) is a histogram of the pair-wise correlations of the

382 genes in the corresponding human “hCAT” PBT. We see that mCAT PBT is coherent,

but this is not the case for hCAT PBT. Most of the mCAT genes’ pair-wise correlations are

close to 1, but most of the hCAT genes’ pair-wise correlations are close to 0; i.e., unlike

mCAT genes, most pairs of genes in the human hCAT PBT are essentially uncorrelated,

and very few are either strongly positively correlated, or strongly negatively correlated.

mCat PBT is not the only coherent mouse PBT— most of the mouse PBTs are coherent;

the webpage [1, ATI/Mouse_ATI] presents histograms for all 21 mouse PBTs and the
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(a) (b)

Figure 3.1: Histogram of the pair-wise correlations of the genes in (a) mouse mCAT PBT
(332 genes), (b) corresponding human hCAT PBT (382 genes).

webpage [1, ATI/Mouse_Human_PBTs] presents histograms for all 38 human PBTs

and the 17 mouse PBTs (including ones that corresponds to some human PBTs). Fig-

ure 3.2 compares the histogram of coherence over all mouse PBTs versus the histogram

of coherence over all human PBTs. Figure 3.3 shows the histograms of the pair-wise

correlations of the high variance subsets of the genes1 in human and mouse data.

Considering all these issues, we can conclude that unlike the mouse PBTs, most human

PBTs are not coherent. This has motivated us to find ways to modify human PBTs to

be more coherent. To achieve this goal we proposed the MkCoh algorithm that will be

explained in Section 3.2. Section 3.3 describes the results of using MkCoh algortihm on

PBTs to make them more coherent.
1The high variance subset of the genes includes only those genes whose variance over the patients is

more than a threshold.
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Figure 3.2: Histogram of coherence (average pair-wise correlation) over all PBTs; the
lighter histogram is for mouse PBTs and the darker one is for human PBTs.

3.2 The MkCoh Algorithm

This section describes the MkCoh algorithm, which modifies a set of genes in a way to

produce a set that is more coherent. Basically this process involves “removing” the genes

that tend to be uncorrelated with many remaining genes, and “flipping” the genes that tend

to be negatively correlated.

In general, given a gene set F , with associated correlation values corr( ·, · ), we seek

a modified gene set, F(mc) with improved coherence; here F(mc) can differ from F by

(1) removing some genes and (2) “flipping” some other genes. We use “flipping” to change

a gene that is negatively correlated to one that is positively correlated — in particular,

flipping gene gj means replacing gj with g′j , where

expression(pi, g
′
j) := −expression(pi, gj)

32



(a) (b)

Figure 3.3: Histogram of the pair-wise correlations of the genes in (a) human high variance
subset (1292 genes), (b) mouse high variance subset (1050 genes).

over all patients pi, which in turn means

corr( g′j, gk ) := −corr( gj, gk )

Hence, if g1 is negatively correlated with g2, then g′1 is positively correlated with g2; if g1

was anticorrelated with all the other genes in a PBT, then we would increase the PBT’s

coherence by flipping that g1. Now imagine g2 is positively correlated with g7; here the

new g′2 would be negatively correlated; if g2 is positively correlated with most of the PBT’s

genes, we probably should not flip it. If g3 is on the cusp — with perhaps slightly more

genes positively correlated than negatively correlated — we may not want to flip it. Of

course, if we decide to flip g1, this may tip the balance for g3, encouraging us to flip g3 as

well. This in turn may have an effect of many other genes, suggesting that they be flipped

as well. Given all of these flips, we may then decide not to flip g1 after all. (Notice that

flipping two genes leaves their correlation the same: corr( g′j, g′k ) = corr( gj, gk ).)

It is therefore complicated to decide which genes to flip. Of course, this has been
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ignoring the issues of removing some genes from the PBT; this too can affect the flip/no-

flip decision.

We define the coherence task as the process of finding the most coherent subset of genes

(based on flipping or removing). Using our definition of “coherence” in Equation (3.2),

the most coherent subset is the subset of genes with the “maximum average pair-wise

correlation”. We can get this subset by removing some genes and flipping some other

genes. This process can be formalized as the following definition:

Definition 3. Coherence Task

Given an m × m matrix C = (cjk) where each cjk ∈ [−1, +1] is the correlation be-

tween two elements, compute the m-ary vector x = 〈x1, . . . , xm〉 ∈ {−1, 0, +1}m that

maximizes coherence (Equation (3.2)), which here corresponds to
(∑

jk

cjkxjxk

)
/

∑
j

|xj| (3.3)

Of course, xj = 0 means removing gene gj , and xj = −1 means flipping this gene. The

denominator is just a way to compute the cardinality of the surviving set of genes (whether

positive or negative). Recall this is “per gene”, rather than “per gene pair”.2

As xj ∈ {−1, 0, +1}, notice |xj| = x2
j . This means we can rewrite Equation (3.3) as

argmax
x∈{−1, 0, +1}n

xT Cx

xT x
. (3.4)

While this combinatorial problem is difficult to solve for discrete values of xj , its contin-

uous form is well known. That is, if we replace the constraint xj ∈ {−1, 0, +1} with

2This “average per-gene-pair” score 1
|F |2

∑
gj ,gk∈F corr( gj , gk ) — which uses

(∑
j |xj |

)2

in the de-
nominator — is not appropriate as it removes too many genes. Indeed, there is a degenerate way to
optimize it: just identify the largest single (j∗, k∗) = argmaxj,k |corr( gj , gk )|; then set bj∗ = 1 and
bk∗ = sign(corr( gj , gk )), and bi = 0 for all other i 6= j∗, k∗.
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xj ∈ [−1, +1], then the optimal x is simply the eigenvector with the largest eigenvalue.3

Given this vector of real valued x, the only remaining challenge is discretizing it: map-

ping each real value xj to {−1, 0, +1}. Here, we find two break-points α, β ∈ [−1, +1]

such that

xδ
j = discreteα,β( xj ) =




−1 if xj < α

0 if α < xj < β
+1 if β < xj

We compute the α, β values that produce the discrete vector xδ∗ = discreteα,β( x )

that optimizes Equation (3.4) over all α and β values. This can be done by first sorting

the elements of the initial x vector, and then considering all
(

m+2
2

)
possible positions for

α < β, and evaluating Equation (3.4) for each. Figure 3.4 shows the histogram of sorted

values of principle eigenvector for CECAT PBT; MkCoh algorithm has found α and β as

thresholds to discretize F values.

We call the resulting algorithm MkCoh: Given a correlation matrix CF over a set of

genes F , MkCoh(CF ) returns the xδ∗ vector described above, specifying which genes to

remove and which to flip, where xδ∗
j = 0 means remove gene gj , and xδ∗

j = −1 means

flip this gene. We will use the “(mc)” superscript to indicate the modified PBT; hence

“CECAT(mc) = MkCoh(CECAT)”.

The only other issue deals with the observation that there is a “bit” of freedom for each

eigenvector: that is, if x is an eigenvector, then so is −x. To simplify our explanations, we

define the eigenvector as one whose majority of elements are positive.

Given a gene set F including N genes, the following steps are required to get F (mc):

1. Calculate the N × N pair-wise correlation matrix C = [cjk] using Equation (3.1).

Here cjk is the correlation between gj and gk.
3The standard formulation, requiring xT x =

∑
j x2

j = 1, is sufficient to insure that xj ∈ [−1, +1]. Also,
as this C is a covariance matrix, we know it is positive semidefinite [40], which means its eigenvalues are
non-negative.
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Figure 3.4: Histogram of sorted values of principle eigenvector for CECAT PBT, with
optimal break-points α and β.

2. Find the first eigenvector of C, which is a real valued vector x = (x1, ..., xN) with

length N , xj ∈ [−1, +1]. Sort the values of x in ascending order.

3. Compute two break-points α, β ∈ [−1, +1] to produce the discrete vector xδ∗ =

discreteα,β( x ) that produces the smallest value of Equation (3.4) w.r.t. α and β.

4. To obtain F(mc) for all the genes g1≤i≤m, remove gi if xδ∗
i is 0, flip gi if xδ∗

i is -1 and

keep it if xδ∗
i is 1.

Algorithm 2 describes MkCoh algorithm in more details. Although, there is a more

efficient O(n2) algorithm, we show a simpler O(n3) version that is easier to understand. It

takes a correlation matrix CF over a set of genes F as the input and returns the xδ∗ vector

that specifies which genes to remove and which to flip.
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Algorithm 2 MkCoh Algorithm (CF )

x(1,...,N) ← argmaxu:||u||=1 uT Cu

x ← sort x in ascending order

x0 ← x1 − 1
xN+1 ← xN + 1

Vmax ← −∞
for i = 0 to N do

α ← (xi + xi+1)/2

for j = i to N do
β ← (xj + xj+1)/2

for k = 1 to N do

xδ
k =




−1 if xk < α

0 if α < xk < β
+1 if β < xk

end for
V = xδT

Cxδ

xδT
xδ

if V > Vmax then
Vmax ← V ;
xδ∗ ← xδ;

end if;
end for

end for
return xδ∗
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3.3 Making Gene Sets More Coherent

The difference between the coherence property of mouse PBTs and human PBTs, ex-

plained in Section 3.1, motivated us to propose the MkCoh algorithm, which addresses

the challenge of modifying each PBT to be more coherent. Section 3.2 defined this task

more precisely. This section applies MkCoh algorithm on PBTs and compares PBT with

PBT(mc) in terms of coherency.

We ran the MkCoh algorithm on all 38 PBTs, which produced more coherent gene sets

PBT(mc)s. Figure 3.5 presents the scatter plot of the average correlation of all 38 human

PBTs and PBT(mc)s; each (x,y) point shows one of the PBTs. It also includes the “x=y”

line to show how much PBTs’ average correlations are different from PBT(mc)s’ average

correlations. We see that, except for the 3 points that are on the “x=y” line, all the others

are above the line; therefore MkCoh algorithm has strictly increased the coherence for

almost all the sets. Figure 3.6(a) is the histogram of CECAT PBT and Figure 3.6(b) is

the histogram of CECAT(mc). Most of the histogram values of CECAT are around 0 (the

mean value is 0.08). We can see that the average correlation of CECAT(mc) has improved

notably (the mean value is 0.34). To get CECAT(mc), MkCoh algorithm removed 99 and

flipped 41 genes of CECAT PBT. The webpage [1, ATI] presents histograms for all 38

human PBTs and PBT(mc)s.

38



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Original PBTs’ Average Pair−wise Correlation

M
od

ifi
ed

 P
B

T
s’

 A
ve

ra
ge

 P
ai

r−
w

is
e 

C
or

re
la

tio
n 

Y=X

Figure 3.5: Scatter plot showing average correlations over the 38 original PBTs versus
the PBT(mc)s.

(a) (b)

Figure 3.6: Histogram of Pearson correlations for pair of genes in (a) CECAT,
(b) CECAT(mc).
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Chapter 4

Datasets and Results
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We used PBTs and PBT(mc)s as prior biological knowledge to reduce the dimensionality

of microarray data. We hoped we could use each cluster (rather than each gene) as a single

feature, because when a gene set is coherent, we can view all the genes in that set as a single

entity, by collapsing the expression values of all the genes into a simple summary statistic

(e.g., the arithmetic mean). This process will reduce the dimensionality of microarray data

from 50K to less than 50, while we hope we still keep the relevant information.

We saw in Chapter 3 that human PBTs are not coherent. However, applying MkCoh

algorithm on human PBTs improved their coherency — almost all the resulting PBT(mc)s

were more coherent than PBTs. Using coherent PBT(mc)s, we can collapse the expression

values of all the genes into a simple summary statistic and get 38 values for each patient.

We expected these 38 values to be a “concise” description of all the microarray data. But

that would be true only if PBTs include all the relevant information of microarray data for

the prediction task. Based on what medical researchers believed, we assumed that PBTs

include all the significant genes for the prediction task.

4.1 Feature Sets

To validate the quality of PBTs and PBT(mc)s, we used an objective measure: predictive

accuracy, on some biologically important tasks. We expected PBTs to be more effective

than all the microarray genes, and PBT(mc)s to be more effective than the original PBTs as

the features in the prediction task.

We explored ways to use PBTs and PBT(mc) to estimate several biological functions

and compared the prediction results of using this prior knowledge with the results that

used other possible sets of genes as the features. We sought ways to use the set of all 38

PBTs. One challenge here is finding a simple quantity to encode the expression values

of all genes within each PBT, for each patient p. As the gene expression values varied

41



considerably for the different genes, we used the arithmetic mean:

a(p, F ) =
1

|F |
∑
gj∈F

ei,j (4.1)

where epi,gj
= expression(pi, gj) is expression of gene gj for patient pi

1. We can then

identify each patient p with the 38 values {a(p, F )} over the PBTs {F1, . . . , F38}, and

attempt to build a regressor or classifier over these values.

Some medical researchers believed that we will remove the effects of significant genes

in a PBT by using arithmetic mean of its genes, therefore we used the union of all PBTs’

genes and also the union of all PBT(mc)s’ genes as two other possible feature sets.

To compare the results, we considered using all the microarray genes and also high vari-

ance subset of genes to estimate the objective function or predict the class labels. Also, we

applied K-means clustering algorithm to find 100 clusters using correlation as the distance

measure. We then averaged the value of genes in each cluster and used it as the feature

associated with that cluster.

We also used 27 other “clinical features” of each patient — including age, gender, etc.

Table 4.1 shows almost all the sets that we used as the features; we used these sets with

and without clinical features in classification or regression tasks.

To verify the effectiveness of PBTs and PBT(mc)s in a prediction task, we used sev-

eral datasets. Table 4.2 describes these datasets, which includes both classification and

regression tasks. We used Weka [9] software to apply SMO and Decision Tree Classifier

(J48) to the classification problems, and SMOreg and Decision Tree Regressor (M5P) to

the regression problems. We also applied Lasso to both of them. This project has been

1Note we also considered various other summary statistics, including log of geometric mean
1
|F |

∑
gj∈F log ei,j , average z-score 1

|F |
∑

gj∈F êi,j where êi,j = (ei,j − µgj)/σgj is the “z-score” and
average absolute z-score ẑ(p, F ) = 1

|F |
∑

gj∈F |êi,j | where the mean is µgj = 1
|P |

∑
p ei,j and the variance

is σ2
gj = 1

|P |
∑

p(ei,j − µgj)2; but the results were almost the same as the results of simple arithmetic mean.
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Table 4.1: The following sets with/ without clinical features have been used as features for
classification or regression tasks.

Feature Set Description

“PBTs’ AVG” Summary statistics from all of the PBTs

“PBT(mc)s’ AVG” Summary statistics from all of the PBT(mc)s
“PBTs’ genes” Union of all the genes in all 38 PBTs

“PBT(mc)s’ genes” Union of all the genes in all 38 PBT(mc)s
“IQR filtered genes” IQR filtered subset of genes
“IQR filtered PBTs” IQR filtered subset of PBTs’ genes

“IQR filtered PBT(mc)s” IQR filtered subset of PBT(mc)s’ genes
“All genes” All gene expression values in the microarray
“HighVar(HV) genes” High variance subset of the genes
“K-means clusters’ AVG” Summary statistics from 100 clusters found

by k-means algorithm

Table 4.2: Datasets

Dataset To Predict Task Size

ATILesion Lesion Values Regression 173× 54K
ATIGFR GFR Scores Regression 137× 54K

Reject/No Reject Classification
BREAD Relapse/ No Relapse Classification 132× 24K

Breast cancer (Van’t Veer et al., 2002) Relapse/ No Relapse Classification 95× 14K

done in collaboration with Nasimeh Asgarian2, therefore some results are available on her

webpage.

4.2 Results on ATILesion Dataset

We had two main versions of ATI datasets, ATILesion and ATIGFR. ATILesion includes

54K genes, and the values of the 12 lesions over 173 unique patients. Here, the goal is to

2http://cs.ualberta.ca/˜nasimeh/
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Table 4.3: The RMSE of Lasso in predicting Lesions using all PBTs’ genes and all
PBT(mc)s’ genes with and without clinical features, all the microarray genes and subset
of high variance genes with clinical features

Lesion Baseline PBTs PBT(mc)s PBTs PBT(mc)s All HV K-means
genes genes genes+ genes+ genes genes clusters’

Clinical Clinical AVG

g 0.66 0.59 0.58 0.60 0.59 0.56 0.55 0.64
cg 0.87 0.81 0.78 0.77 0.76 0.77 0.71 0.83
i 0.92 0.64 0.63 0.64 0.63 0.68 0.68 0.66
ci 0.92 0.74 0.75 0.72 0.73 0.67 0.61 0.68
t 0.91 0.72 0.72 0.71 0.71 0.70 0.69 0.77
ct 0.86 0.70 0.71 0.67 0.69 0.62 0.60 0.67
v 0.41 0.40 0.40 0.40 0.40 0.41 0.40 0.41
cv 0.94 0.94 0.93 0.90 0.90 0.91 0.84 0.94
ah 1.06 1.01 0.97 0.88 0.87 0.99 0.99 1.03

mm 0.87 0.80 0.78 0.77 0.77 0.83 0.78 0.80
ptc 0.90 0.79 0.81 0.81 0.82 0.79 0.81 0.86

ptcml 3.19 3.04 3.02 3.00 2.97 3.32 3.20 3.49

predict twelve histologic lesions3 called ’g’, ’cg’, ’i’, ’ci’, ’t’, ’ct’, ’v’, ’cv’, ’ah’, ’mm’,

’ptc’ and ’ptcml’. For each patient, each of the first eleven lesions has the value of {0, 1,

2, 3} and ’ptcml’ has the value of {0,1,2}. Table 4.3 shows the first part of our results on

the ATILesion dataset. It compares the RMSE4 of baseline5 with the RMSE of Lasso using

all PBTs’ genes and all PBT(mc)s’ genes with and without clinical data as the features in

predicting the lesions’ values; here the RMSEs are based on leave-one-out cross validation.

The bold numbers are the lowest RMSEs for each lesion.
3See Appendix A for more information about ATI dataset and also histologic lesions
4The RMSE (Root Mean Squared Error) measures the differences between predicted values by a model

and the true values. RMSE =
√

1
n

∑n
i=1(f(xi)− ti)2 where f(xi) is the predicted value by the model f

for sample case xi; ti is the true value for sample case xi and n is the total number of samples.
5For regression problems the baseline is predicting the average value of targets; and for classification

problems the baseline is predicting the majority of class labels.

44



Table 4.4 shows the next part of the results on the ATILesion dataset. It compares the

RMSE of Decision Tree (M5P) with the RMSE of SMOreg when they are using all PBTs’

genes, all PBT(mc)s’ genes, the arithmetic average of PBTs and the arithmetic average of

PBT(mc) as the features in predicting lesions’ values; here the RMSEs are based on 10-fold

cross validation. Table 4.5 shows our best results for each lesion by comparing the best

results of Tables 4.3 and 4.4. The accuracy of prediction was good for each of the lesions.

This table shows that Lasso regressor produced the best results.

For all the lesions, Figures 4.1 and 4.2 show the plot of true values versus the predicted

values for each patient.

Our medical researchers asked us to each of the lesion values as binary: for lesions ’g’,

’cg’, ’v’, ’cv’, ’mm’ and ’ptc’, distinguish the value of {0} versus the values of {1,2,3}
and for lesions ’i’, ’ci’, ’t’, ’ct’, ’ah’ and ’ptcml’, distinguish the values of {0,1} versus

the values of {2,3}. We achieved good predictive performance for most lesions using

Lasso on all the genes. The webpages [6, ATI/Lesions/Name/table.html] and

[6, ATI/Lesions/Names_Geo/TableGeo.html] show the results.
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Table 4.4: The RMSE values on lesion prediction using PBTs’ genes, PBT(mc)s’ genes,
PBTs’ AVG and PBT(mc)s’ AVG as the feature sets. The number between parentheses
shows the size of the feature set and the bold number is the lowest RMSE for that lesion.

Lesion Baseline Regressor PBTs’ genes PBT(mc)s’ PBTs’ AVG PBT(mc)s’
(7280) genes (5353) (38) AVG (38)

g 0.66 M5P 0.71 0.73 0.62 0.57
SMOreg 0.60 0.61 0.70 0.70

cg 0.87 M5P 0.89 0.94 0.87 0.86
SMOreg 0.79 0.81 0.95 0.94

i 0.92 M5P 0.77 0.74 0.68 0.68
SMOreg 0.68 0.69 0.68 0.66

ci 0.92 M5P 0.79 0.78 0.76 0.78
SMOreg 0.71 0.71 0.78 0.80

t 0.91 M5P 0.82 0.82 0.80 0.77
SMOreg 0.73 0.72 0.79 0.76

ct 0.86 M5P 0.75 0.73 0.73 0.73
SMOreg 0.69 0.68 0.73 0.76

v 0.41 M5P 0.49 0.48 0.46 0.47
SMOreg 0.46 0.45 0.45 0.45

cv 0.94 M5P 1.16 1.09 1.11 1.07
SMOreg 1.08 1.09 1.10 1.12

ah 1.06 M5P 1.27 1.14 1.05 1.03
SMOreg 0.97 0.98 1.05 1.02

mm 0.87 M5P 0.92 0.88 0.82 0.83
SMOreg 0.80 0.81 0.81 0.77

ptc 0.9 M5P 0.85 0.84 0.92 0.83
SMOreg 0.95 0.96 0.96 0.96

ptcml 3.19 M5P 3.77 3.59 3.63 3.62
SMOreg 3.44 3.30 3.48 3.32
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Table 4.5: The best results for each lesion
Lesion Baseline Lowest RMSE Feature set Regressor

g 0.66 0.55 HV genes Lasso
cg 0.87 0.71 HV genes Lasso

i 0.92 0.63 PBT(mc)s Lasso
ci 0.92 0.61 HV genes Lasso
t 0.91 0.69 HV genes Lasso
ct 0.86 0.60 HV genes Lasso
v 0.41 0.40 PBTs Lasso

PBT(mc)s Lasso
HV genes Lasso

cv 0.94 0.84 HV genes Lasso

ah 1.06 0.87 PBT(mc)s+Clinical Lasso
mm 0.87 0.77 PBTs+Clinical Lasso

PBT(mc)s+Clinical Lasso

PBT(mc)s AVG SMOreg
ptc 0.9 0.79 Allgenes Lasso

PBTs+Clinical Lasso

ptcml 3.19 2.97 PBT(mc)s+Clinical Lasso
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Figure 4.1: Plot of true values of some lesions versus the predicted values for each patient.
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Figure 4.2: Plot of true values of some lesions versus the predicted values for each patient.
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Statistical Analysis of Results

In many cases, the RMSE values in Table 4.3 are close to each other, which makes it

difficult to compare the classifiers based on the different feature sets. Therefore we ran two

statistical tests, paired t-test and Wilcoxon signed rank test, to determine if the differences

are statistically significant. For each lesion, we compare the squared error values of leave-

one-out cross validation of running Lasso on the seven feature sets : 1. All genes, 2. High

variance genes, 3. K-means clusters’ AVG, 4. PBT(mc)s, 5. PBT(mc)s+Clinical, 6. PBTs

and 7. PBTs+Clinical.

For each lesion, we compare every pair of feature sets and for each pair we determine

whether one of the sets performed significantly better than the other in terms of mean

squared error. Therefore, for each lesion, we will have a 7× 7 table whose (i, j)th element

determines whether the feature set Fi is better (+1), worse (-1) or not significantly different

(0) from feature set Fj . In this table, we are only dealing with the upper triangle – as the

(i, j)th entry is just the negative of the (j, i)th entry. A feature set is better than another if

the statistical test suggest that it is statistically better than the alternative set at the p ≤ 0.05

value. The feature sets are then sorted based on their scores. The score of feature set Fi in

lesion L is determined by

S(Fi, L) = total number of wins in L− total number of losses in L.

Table 4.6 shows the winners for all lesions. For each entry we show the score of the

corresponding feature set. An entry of N/A means that there is no winner for the corre-

sponding lesion, i.e. no feature set is better than any other set.

Using signed rank, in 5 out of 12 lesions there is no feature set that performs signifi-

cantly better than the other feature sets, and using paired t-test, in 9 out of 12 lesions there

is no significantly better feature set. Based on the results of the statistical tests, especially
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Table 4.6: Best feature sets
Lesion signed rank winner (S) t-test winner (S)

g All genes (1) N/A
cg N/A N/A
i PBTs (1) N/A
ci HV genes (2) HV genes (4)
t N/A N/A
ct HV genes (1) HV genes (1)
v N/A N/A
cv N/A N/A

ah PBT(mc)s+Clinical (5) PBT(mc)s+Clinical (2)
PBTs+Clinical (4) PBTs+Clinical (2)

mm PBTs+Clinical (1) N/A
ptc N/A N/A

ptcml PBT(mc)s (2) N/A

PBT(mc)s+Clinical (2)
PBTs (1)

PBTs+Clinical (1)

signed rank test, on the rest of the lesions, we conclude that using the clinical data helps to

improve the performance of the predictor. Feature sets which are based on using PBTs did

slightly better than the rest of feature sets, although this result is not comprehensive over

all lesions. Also, this results show that feature sets built by applying the MkCoh algorithm

did not perform significantly better than those that just use PBTs.

4.3 Other Explorations

To improve the results, medical researchers suggested that we use the subset of IQR6

filtered genes; they expected this subset to be more relevant than all the genes. In fact,

6IQR filter keeps only those genes that have fairly high variance.
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IQR, like HV, filters out the genes that do not change over all samples (e.g., house-keeping

genes). We used IQR filtered genes and we repeated all the previous experiments on this

subset of data, but we obtained similar results. The webpage [6, ATI/Lesions/IQR/

IQRTABLE.html] provides all the results for the IQR filtered genes.

We also tried to extend each PBT(mc) by adding the high variance genes that are highly

correlated with its genes, i.e., adding gi if

1

|PBT (mc)|
∑

g∈PBT (mc)

corr( gi, g ) ≥ T (4.2)

where T is a user-specified threshold and |PBT (mc)| is the number of genes in PBT(mc);

see [1, Results/Extending/]. We then used these extended PBT(mc)’s as the features

in learning the model. Unfortunately this did not improve the performance.

We next attempted to find collection of coherent gene sets from “scratch”. Here, we first

apply the MkCoh algorithm to 1050 high variance genes; this produced the first coherent

cluster of 791 genes. We then examined the 1050-791=259 genes removed, from which

we extracted a cluster of 82 coherent genes, and so on. [1, Results/Clusters/]

shows the resulting seven clusters. However, using these clusters as the feature sets, did

not improve the predictive performance noticeably.

We also used “KEGG Pathways” [26] as another source of prior biological knowledge.

KEGG pathways describe the relationships among genes in pathways, which are each se-

ries of biochemical reactions controlling a specific cellular activities such as cell division

or a programmed cell death. KEGG is a publicly available online database containing

many known molecular pathways for different organisms. Each KEGG pathway is rep-

resented as a directed graph: each node corresponds to a set of genes or gene products

having similar or related functions and the arcs are different interactions between them.
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Our approach, like most of the current methods that use KEGG pathways, ignores the

structure or relationships between the genes and simply uses the set of genes belonging to

the pathway as selected features [36, 17].

We used 202 sets of KEGG pathways with the average size of 54.92 ± 58.00. We

repeat all the previous process on these sets of genes. We applied MkCoh algorithm on

KEGG pathways to get KEGG(mc) producing the results, shown in Table 4.7 — they are

almost the same as PBTs’ and PBT(mc)s’ results, i.e., there is no difference in predictive

performance.

4.3.1 Results on Other Datasets

We applied the idea of using PBTs and PBT(mc)s as the features in prediction tasks on

other datasets as well. The next data set is the another version of ATI dataset, ATIGFR,

which includes 54K genes and 137 patients. In this dataset, our goal was to estimate the

following kidney functions (GFR scores 7):

Fnow: the GFR score of the kidney at the time of the biopsy

F6mo: the GFR score of the kidney 6 months after the biopsy

∆F = F6mo − Fnow: the difference between Fnow and F6mo

Table 4.8 shows the results on this dataset. We did not get any promising results on this

dataset. We even tried predicting Creatinine 8 values and using these values to compute

GFR scores, but no signal has been found in this dataset to predict GFR scores.

The next dataset, called BREAD (“Breast Cancer Relapse EArly Determinants”), in-

cludes 132 patients and 24K genes. Here the main goal is to identify the markers that
7GFR (Glomerular Filtration Rate) is accepted as the best test to measure the level of kidney function

and determine the stage of kidney disease [8].
8Creatinine is a chemical waste molecule that is generated from muscle metabolism [4].

53



Table 4.7: The RMSE values on lesion prediction using all the genes of KEGG and
KEGG(mc) and also arithmetic average of KEGG and KEGG(mc)

Lesion Regressor KEGG genes KEGG(mc) genes KEGG AVG KEGG(mc) AVG

g M5P 0.62 0.65 0.66 0.64
SMOreg 0.57 0.57 0.68 0.71

cg M5P 0.91 0.98 0.88 0.90
SMOreg 0.78 0.81 0.85 0.96

i M5P 0.83 0.80 0.73 0.70
SMOreg 0.68 0.66 0.77 0.67

ci M5P 0.77 0.80 0.78 0.83
SMOreg 0.69 0.70 0.82 0.96

t M5P 0.83 0.73 0.87 0.78
SMOreg 0.75 0.75 0.86 0.87

ct M5P 0.80 0.78 0.77 0.83
SMOreg 0.69 0.69 0.80 0.94

v M5P 0.49 0.49 0.49 0.50
SMOreg 0.44 0.45 0.47 0.44

cv M5P 1.14 1.10 1.12 1.13
SMOreg 1.09 1.10 1.25 1.29

ah M5P 1.16 1.13 1.13 1.05
SMOreg 0.98 1.04 1.02 1.14

mm M5P 0.94 0.90 0.89 0.90
SMOreg 0.79 0.81 0.88 0.98

ptc M5P 0.86 0.85 0.87 0.91
SMOreg 0.86 0.85 0.97 1.00

distinguish between breast cancers that do not relapse from those that relapse early despite

adjuvant therapy. Comparing the results of using PBTs, KEGG, PBT(mc)s and KEGG(mc)s,

the best percentage of correctly classified instances was 64.39%, based on SMO on all the

PBT(mc)s genes. But using the PBTs and KEGG pathways, PBT(mc)s and KEGG(mc)s did

not improve the results; other feature sets lead to a better prediction accuracy. You can

find more results on BREAD dataset in the webpage [6, Meetings/BREAD/].

54



Table 4.8: The RMSE of Lasso in prediction of GFR scores (Fnow, F6mo, ∆F ) using All-
Genes, PBTs’ AVG and PBT(mc)s’ AVG with/without Clinical data as the feature sets.

All Genes PBTs PBT(mc)s Clinical Fnow F6mo ∆F

+ 16.80 21.59 14.70
+ 14.58 21.53 15.4
+ + 14.96 21.67 15.43

+ 15.66 20.52 15.56
+ + 14.66 20.03 14.79

+ 16.11 20.51 15.65
+ + 14.59 20.12 14.86

We also used Public Breast Cancer [45] which includes 95 patients and 24K genes;

here we only used the subset of 14K genes that was tagged by gene names. This is a clas-

sification problem, predicting relapse versus no relapse. Table 4.9 shows the percentage

of correctly classified instances. The best known result for this dataset is about 73%, but

the best result we achieved was 69.47% using SMO on all PBT(mc)s genes.

Table 4.9: The percentage of correctly classified instances on PublicBreastCancer
dataset using PBT, PBT(mc)s, KEGG and KEGG(mc)

Regressor PBTs’ AVG PBT(mc)s’ AVG PBTs’ genes PBT(mc)s’ genes

SMO 63.15% 63.15% 67.36% 69.47%
J48 53.68% 58.94% 54.73% 64.21%

Regressor KEGG AVG KEGG(mc) AVG KEGG genes KEGG(mc) genes

SMO 58.04% 48.42% 66.31% 64.21%
J48 45.26% 56.84% 67.36% 64.21%
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Chapter 5

Concluding Remarks
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5.1 Conclusions

The prediction task is an important application of microarray data. In this thesis our goal

was to learn a predictor that can predict some important characteristics of a patient based

on the data from his/her microarray. We reviewed the challenges of microarray data anal-

ysis and summarized the approaches that have been applied to overcome these challenges.

Many approaches are only based on the data, but some of them use prior biological knowl-

edge as well.

Our colleagues used biological knowledge to produce clusters of genes, called PBTs,

for Mouse and Human. They have provided 38 Human PBTs and 21 Mouse PBTs where

each PBT is a cluster of genes with a common function, hence they expect the genes in

each PBT to be highly correlated. Our studies in Chapter 3 showed that, unlike Mouse

PBTs, Human PBTs are not coherent. We proposed a method, called MkCoh, to improve

the coherency of the genes in each PBT by removing or flipping some genes. The revised

PBTs, called PBT(mc), are more coherent than the original ones.

We applied several algorithms to learn a model that can predict some patient’s charac-

teristics, such as lesion values. We achieved good predictive performance using Lasso on

all the gene expression values, but we hoped using each PBT(mc) (rather than each gene)

as a single feature should improve our results, i.e., we anticipated the predictors based

on the PBT(mc) should be more accurate than ones based on either the original PBTs, or

on the original gene expression values. Unfortunately, the experimental results based on

some real biological datasets did not show that. To investigate possible reasons for this

negative finding, we tried to extend PBTs(mc) by adding the high variance genes that are

highly correlated with the genes inside each PBT. We also attempted to find coherent gene

clusters within the complete set of high variance genes. In addition, we used KEGG Path-

ways as another source of prior biological knowledge. However, none of these approaches
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improved the previous results.

5.2 Future Work

We tried many heuristics to use prior biological knowledge, in order to improve the results,

but there are still some possibilities we would like to try in the future.

• Based on what medical researchers believed, we assumed that all the genes in a

PBT should have a similar function (there should be just one “herd movement” in

each PBT), therefore we found a subset of highly correlated genes in each PBT and

we removed the other uncorrelated ones. However there might be more than one

cluster of genes in each PBT, and those uncorrelated genes that we removed might

be informative, i.e., being uncorrelated with other genes is not a good reason for a

gene to be removed. Hence, we should look for more than one cluster in each PBT.

• When we used KEGG pathways, we ignored the structure or relationships between

the genes, i.e., we only used the set of genes that belongs to the pathway as selected

features. However, the structure of networks may contain many useful information

for classification. Therefore, one possible approach is to take into account the struc-

ture of the networks in the feature set.
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Appendix A

ATI Dataset
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This appendix describes very briefly the challenges of kidney transplantation, how our

colleagues at Alberta Transplant Applied Genomic Center collected and processed mi-

croarray data for ATI dataset, and finally how they scored the lesions.

A.1 Challenges of Kidney Transplantation

The quality of the donor organ is an important factor in predicting the performance of the

transplanted organ. Unfortunately, it can be difficult to evaluate the quality of the organ at

the time of transplantation [32].

Currently, histopathology1 is the basis for assessing needle biopsies2 in clinical medicine,

but it is subjective. To determine whether a kidney transplant is being rejected, clinicians

typically use a combination of histopathologic features defined by an international con-

sensus, the Banff criteria [43]. Typically, a diagnosis of rejection is assigned based on

empirically derived rules for lesion scoring. Although histopathology diagnoses correlate

with treatment response and graft outcome, their accuracy has never been validated. Le-

sion grades are arbitrary and the agreement between two pathologists on lesion scoring is

10-50% and on diagnosis 45-70 % [38]. There are many other limitations [31] that affect

treatment and produce inaccurate results for clinical trials. Finding relationship between

histopathology and molecular phenotype, can improve the diagnoses using biopsies [38].

The assessment of gene expression in the donor organ can help researchers to determine

organ quality and predict transplantation performance. The transcriptome3 may provide a

comprehensive measurement of the individual kidney’s characteristics [32].

1Histopathology refers to the microscopic examination of a tissue in order to study the manifestations of
a disease.

2A biopsy is a medical test involving the removal of certain cells or tissues for examination.
3The transcriptome is the set of all messenger RNA (mRNA) molecules produced in one or a population

of cells.
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A.2 ATI Dataset Preprocessing

Our colleagues at Alberta Transplant Applied Genomic Center take implant biopsies just

before the end of the transplant surgery [32, 38]. The sample was immediately placed into

RNA-later4 for subsequent RNA extraction. Total RNA was isolated using the RNeasy

Mini Kit (QIAGEN, Valencia, CA), and amplified according to AffymetrixR R© protocol

(Santa Clara, CA). RNA yields were measured by UV absorbance. RNA labeling and

hybridization to the AffymetrixR R© GeneChip microarrays (human Hu133 plus 2.0) was

carried out according to the protocols included in the AffymetrixR R© GeneChip Expres-

sion Analysis.

To prepare the data for more analysis, the raw data of all individual sample chips pre-

processed using robust multi-chip averaging (RMA)5. After that other preprocessing steps,

such as IQR filtering, are applied on data to filter out genes with low variability across the

samples.

A.3 Lesion Scores

It is necessary to standardize the interpretation of allograft6 biopsy, in order to guide ther-

apy in transplant patients. A group of renal pathologists and transplant surgeons agreed

to develop a schema for international standardization of nomenclature and criteria for the

histologic diagnosis of renal allograft rejection, in 1991. In this schema, some rejection

4RNA-later is usually used for tissue storage. It stabilizes and protects cellular RNA. Therefore there is
no need to immediately process samples or to freeze them for later processing.

5RMA (robust multi-chip averaging) is a program to compute gene expression summary values for
Affymetrix Genechip. It consists of three steps: a background adjustment, quantile normalization and fi-
nally summarization.

6Allograft: The transplant of an organ or tissue from one individual to another of the same species with
a different genotype.
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indicators , such as Interstitial7 inflammation, regarded as the principal factors to score

lesions. Each lesion score has the value of {0, 1, 2, 3}; usually 0 means the kidney is

healthy and 1, 2, 3 indicate different levels of disease severity. More details are available

in [35, 43], Table A.3 provides a summary of scoring system and abbreviations of the

histopathologic lesions [35, 43].

7Interstitial fluid is a solution that surrounds the cells of multicellular animals.
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Table A.1: Scoring system and abbreviations of the histopathologic lesions [35, 43].

Lesion ABBR Score=0 Score=1 Score=2 Score=3

Interstitial inflam-
mation

i Interstitial mononuclear
inflammatory cells in 0-
9% of cortex

Interstitial mononuclear in-
flammatory cells in 10-25%
of cortex

Interstitial mononuclear in-
flammatory cells in 26-50%
of cortex

Interstitial mononuclear
inflammatory cells in
>50% of cortex

Tubulitis t No tubulitis 1-4 mononuclear inflam-
matory cells tubular cross-
section

5-10 mononuclear inflam-
matory cells tubular cross-
section

>10 mononuclear inflam-
matory cells tubular cross-
section

Intimal arteritis v No arteritis Subendothelial mononu-
clear inflammatory cells
involving <25% of luminal
area

Subendothelial mononu-
clear cells involving >25%
of luminal area, no necrosis

Transmural inflammation
and/or arterial fibrinoid
necrosis with mononuclear
cells

Glomerulitis g No glomerultiis Mononuclear cells in
<25% of glomeruli

Mononuclear cells in 26-
75% of glomeruli

Mononuclear cells in
>75% of glomeruli

Peritubular capil-
laritis

ptc Absent or <10% of cor-
tical peritubular capil-
laries with inflamma-
tory cells

3-4 luminal inflammatory
cells in =10% of cortical
peritubular capillaries

5-10 luminal inflammatory
cells in =10% of cortical
peritubular capillaries

>10 luminal inflammatory
cells in =10% of cortical
peritubular capillaries

C4d peritubular
capillary staining

C4d 0% of biopsy area that
has a linear, circumfer-
ential staining in per-
itubular capillaries

1-9% of biopsy area that
has a linear, circumferential
staining in peritubular cap-
illaries

10-50% of biopsy area that
has a linear, circumferential
staining in peritubular cap-
illaries

>50% of biopsy area that
has a linear, circumferen-
tial staining in peritubular
capillaries

Transplant
glomerulopathy

cg Double contours in
<10% of capillary
loops in most severely
affected glomerulus

Double contours in 10-25%
of capillary loops in most
severely affected glomeru-
lus

Double contours in 26-50%
of capillary loops in most
severely affected glomeru-
lus

Double contours in >50%
of capillary loops in
most severely affected
glomerulus

Mesangial matrix
increase

mm No mesangial matrix in-
crease

Present in 1-25% of non-
sclerotic glomeruli

Present in 26-50% of non-
sclerotic glomeruli

Present in >50% of non-
sclerotic glomeruli

Interstitial fibrosis ci Interstitial fibrosis in 0-
5% of cortex

Interstitial fibrosis in 6-
25% of cortex

Interstitial fibrosis in 26-
50% of cortex

Interstitial fibrosis in
>50% of cortex

Tubular atrophy ct No tubular atrophy Tubular atrophy in 1-25%
of cortical tubules

Tubular atrophy in 26-50%
of cortical tubules

Tubular atrophy in >50%
of cortical tubules

Arterial fibrous in-
timal thickening

cv No arterial fibrous inti-
mal thickening

Arterial fibrous intimal
thickening with 1-25%
luminal narrowing

Arterial fibrous intimal
thickening with 26-50%
luminal narrowing

Arterial fibrous intimal
thickening with >50%
luminal narrowing

Arteriolar hyali-
nosis membrane
multilayerin

ah No arteriolar hyalinosis Mild-moderate hyalinosis
in at least one arteriole

Moderate-severe hyalinosis
in more than one arteriole

Severe hyalinosis in many
arterioles

Peritubular capil-
lary basement

ptcml 1-2 basement mem-
brane layers in per-
itubular capillaries
assessed by electron
microscopy

3-4 basement membrane
layers in peritubular capil-
laries assessed by electron
microscopy

5-6 basement membrane
layers in peritubular capil-
laries assessed by electron
microscopy

>6 basement membrane
layers in peritubular capil-
laries assessed by electron
microscopy
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