
Supporting Software Development Process Using Evolution Analysis : a Brief
Survey

Samaneh Bayat
Department of Computing Science,

University of Alberta, Edmonton, Canada
samaneh@ualberta.ca

Abstract

During development process, software systems constantly evolve to meet the system’s functional and non-functional re-
quirements. Analyzing the series of changes made during software development processes helps extracting best practices to
consistently maintain, evolve, test and improve software systems. This paper presents a brief survey on software evolution
analysis methods. This study classifies the methods to two classes, model-differencing and code-differencing, based on their
approach to the change finding problem. The methods also differ in their abstraction level, way of representing results, compu-
tation time, or mining changes affecting clients of a framework. In addition,this paper discusses the progress of research in this
area ranging from old to recent. The discussed methods are comparedbased on their change-finding power and their advantages
to each other are shown.

1 Introduction

Analysis of changes made to a software system dur-
ing the development process has several important results.
A system’s current maturity level is obtained by a list of
changes that evolve elementary versions of a software to the
final step. Identifying these changes helps software engi-
neers to analyze the current state of software systems in or-
der to understand design level evolution of a system. It also
gives hints on extracting good design practices by identify-
ing changes that were eventually reversed in the develop-
ment process. In some cases, the reasons of system failure
can be found by analyzing the history of changes. In addi-
tion, identifying changes that a system has gone through and
representing them in logical rules can help finding inconsis-
tent changes, resulting to patterns of consistent system evo-
lution. Moreover, automatically extracting the changes is
in favor of creating testing plans that are coherent with the
changes and helps automation of maintenance process [3].
For all the above reasons, finding the change chain in soft-
ware development process is valuable in software engineer-
ing research progress. Several approaches have been used
to find the differences between two versions of a system.
This paper is a brief survey on the fundamental concepts of
some of these approaches.

The programming paradigm has evolved from procedu-
ral programming to the object oriented (OO) programming,
during computing history. One can say that programming in

low level of abstraction in the past has now reached a higher
level of abstraction. As it is expected, research on different
aspects of programming, including program differencing al-
gorithms, have concentrated on the higher levels of abstrac-
tion. Different sections provided in this paper make this
change in concentration more clear, by representing major
researches done in this field in the order of published years.
In Section 3, we discuss some old approaches to program
differencing. This discussion is mainly presented to show
the elementary ideas on program differencing and can be
considered as a basis to newer approaches.

In Section 4, recent approaches to this problem are dis-
cussed. The presented approaches are concerned with ob-
ject oriented programming. The OO software develop-
ment process usually begins by abstracting the software into
models and developing the models to an executable soft-
ware. This executable software can be a result of executable
models or codes. Design, structure, and hence coding of the
program evolve in each stage of the development process in
order to produce a program with a desirable quality. An-
alyzing the evolution of software development process can
be done using the system’s modeling components or cod-
ing elements. In this paper, we focus on the methods that
use model differencing and the methods that are concerned
about code changes in Section 4.1 and 4.2, respectively.

In model driven approaches, one major part of the meth-
ods is finding corresponding elements in two versions of the
model. Since software models have a large set of model el-

1

ements, the computation time for these approaches is high.
Section 4.1.3, presents an idea to improve the time complex-
ity of these methods. Finally, a brief discussion is provided
in Section 5 which compares the recent methods.

2 Terminology

In this section, we present a brief explanation of some
technical words used in this paper related to software devel-
opment process. As evident in this survey, the terminology
used in this field is basically general computing science ter-
minology. However, a few basic concepts that are essential
to begin reading in this field are described in this section.

• Object oriented programming In OO programming,
the system is described as a collection ofobjects that
interact with each other to bring a special behavior to
the whole system. Objects are instances ofclasses
which are reusable encapsulations of data and behav-
ior.

• Procedural programming In contrast with the OO
programming, functionality of methods in the proce-
dural programming is the basic concern. Variables
mainly hold data to help the methods implement a cer-
tain functionality.

• Software modelA formal language or a visualization
used to describe a system is called model. Models are
abstractions of the software which make the design and
evaluation of software behavior easier.

• UML Unified Modeling Language (UML) is a stan-
dard general-purpose modeling language to model
softwares and software development processes. UML
can be used as a set of UML diagrams or UML meta-
model (a model to describe the UML itself).

• Code refactoring Code Refactoring is a process of
modifying some parts of a code. In this process, the
external behavior of the system does not change. It is
done to improve some quality metrics, such as code
readability or maintainability.

3 Program differencing algorithms: In earli-
est decades

This section provides a view of the earliest attempts to
solve the problem of program differencing. Comparing pro-
grams were initially seen as comparing texts, while changes
made to a program are due to improvements to program
behavior or changes in system’s objectives. In 1990, S.
Horwitz [5] introduces a technique to classify the program
changes into semantic and textual differences. Generally,

it is undecidable to find exact semantic changes, so Hor-
witz estimates a set of semantic changes. She identifies a
semantic change in two general cases; First case: a seman-
tic change happens when a new version of program (called
New) introduces a new component that is not present in the
old version (calledOld). Second case: a semantic change
happens when sequence of values produced at a component
in New is different with sequence of values produced at its
corresponding component atOld.

In this approach, programs are represented as graphs in-
stead of pure text to make it easier to find equivalent com-
ponents. These graphs are augmented versions of program
flow graph and are called Program Representation Graphs
(PRGs). In order to find semantic changes, a definition
for equivalent behavior of program components is provided
which is mainly based on the sequence of values produced
in each component. To compare program changes, a par-
titioner puts components with equivalent behavior in the
same partitions. Then, the changes to equivalent partitions
are investigated. If a change is just a change in names, it
will be classified in textual category, else a sequence of se-
mantic changes is recognized regarding the program flow
and will be tagged on various parts of the code.

The program definition used in the Horwitz’s method,
as a changing software, is a reduced definition of procedu-
ral programs. It contains only scalar variables, assignment
statements, output statements, conditionals, and loops. Al-
though representation of semantic changes in this method is
too basic and simple, it is a good description of low level
changes. However, this research is a basic step towards the
distinguishing semantic and textual differences.

4 Program differencing algorithms: Recent
approaches

This section discusses several recent approaches to the
software differencing problem. All of these approaches fo-
cus on object oriented programs. The approaches are sep-
arately represented regarding their concentration on model
or code elements of the program.

4.1 Model differencing

Models are abstractions of a system’s behavior and im-
plementation. It is easier to use models to find changes,
because dealing with code details makes the differencing
algorithms more complex. Models can be represented by
meta-model structures or by diagrams. UML is a standard
language that can provide both of these representations for
a system. Diagrams make understanding of the software
changes easier by visualization, while meta-models help
finding more conceptual relationships between entities.

2

In this section, we study two UML-based approaches to
analyze history of changes in a software system. Section
4.1.1 explains about finding differences between UML di-
agrams with respect to different categories of changes, as
a representative of changes in the program. Section 4.1.2
elaborates the idea of using UML meta-model to detect the
changes in two consecutive designs of the program. In ad-
dition, Section 4.1.3 provides a method to decrease compu-
tation time of the discussed methods.

4.1.1 Diagram differencing

Ohstet al., 2003, [8], presented a method that finds changes
of a software’s UML diagrams and visualizes these changes.
Here, we concentrate on their approach to finding changes
while pointing to a few visualizing ideas.

Ohstet al. compared two versions of a UML diagram
by considering their physical (diagram layout) and mental
(software’s entities) models separately. They categorized
data that is in a UML file into two categories: layout data
and model data, similar to what is described in the UML
specification [1]. Layout data holds information that are
actually irrelevant to semantic and textual representation of
UML’s content, for example size and position of nodes in
the diagram are not considered in design differencing but
are needed to visualize changes in the diagram. In contrast,
model data contains all other information that are relevant
to semantics of the diagram. This categorization makes it
easier to concentrate on logical structure of the UML.

Logical structure of a UML diagram can be better rep-
resented by graphs rather than files, because graphs keep
diagrams away from low level ordering of entities. So, Ohst
et al. created an object structure graph. In this object graph,
every class component is shown by an object. And the re-
lationships between classes are shown by labeled (kind of
relationship) edges.

The method uses a differencing operator to traverse the
object graphs of two versions of UML, simultaneously. This
operator finds the corresponding objects in two different
versions and detects their changes. Result of this operation
is a unified graph that illustrates the changes. Each object in
the unified graph shows the unchanged parts and gives in-
formation about changed parts of two corresponding objects
in two object graphs. It is good to know that the layout data
is ignored in creating the unified graph. In another phase,
the UML graph is traversed again to find the layout changes.
In this way, their method finds diagram’s semantic changes
and layout changes, independently.

Related to finding differences between two diagram ver-
sions, Ohstet al. have classified the changes that can be
made or seen in a UML diagram into the two following
classes and have used these definitions in traversing object
graphs.

• Intra-node differences: Modifications to inner parts of
a node of diagram, for example, changing names or
removing an attribute from a class.

• Graph structure differences: Modifications of structure
of the representing graph, for example, shifting, creat-
ing, or removing nodes.

Both of the above classes can contain physical or men-
tal models of the diagram. Intra-node differences can con-
tain changes in states of a state chart (physical), as well
as modifications in attributes of a class (mental). Graph
structure differences include shifting classes across thedia-
gram (physical), as well as changes in relationships between
classes (mental).

In general, this work presented a practical example of
finding semantical changes in a software model while visu-
alizing the changes in the diagram.

4.1.2 Design differencing

Since models are the best representatives for design facts of
a software system, analyzing models helps to have a precise
picture of structure evolution at the design level.

Xing et al., 2005, [11] presentedUMLDiff, an algorithm
that detects structural changes between designs of two ver-
sions of a program. Their approach is based on a UML
meta-model of the system. Inputs to theUMLDiff are class
models (instances of the meta-model) corresponding to two
code versions of a software system. This class models are
obtained by reverse engineering the code versions. The
output of this algorithm is a change tree that shows the
changes such as additions, removals, moves, renamings,
and changes to relationships between design elements.

The change tree is produced by traversing class models,
represented as directed graphs, and identifying correspond-
ing entities. The corresponding entities in two class models
are the conceptually equivalent design elements and are de-
tected by two similarity heuristics. These heuristics, based
on object oriented design semantics, find entities that are the
same even after they are renamed. One of these heuristics
uses the number of common adjacent character pairs to find
lexical similarities. The other one uses several structural
facts of the entities to compute a similarity value. Then,
these two heuristics are combined to measure similarity for
pairs of entities. Two entities are considered the same if
their similarity value is above a predefined threshold that
determines the level of accepted risk in finding correspond-
ing entities.

Finally, changes such as renamings, moves, and changes
in types are recognized by considering changes in similar
entities. This is done by applying several routines such as
searching for moves, using the structural heuristic to find

3

renamings, and comparing entities with each other. Show-
ing the changes in a tree structure helps users of the method
find changes in logical positions which makes analysis of
changes easier.

4.1.3 Improving computation time

Most model-differencing methods are based on searching
and pairing similar elements which inherently have time
complexity ofO(n2), wheren is the number of elements
in the model. Since software models are usually large,
this time complexity is not desirable. Treudeet al., 2007,
[10] introduced a method to reduce the time complexity to
O(n log(n)). In this section, their methodology is briefly
described.

To find similar model elements Treudeet al. used a
high-dimensional balanced search tree. The properties of
this search tree is motivated by disc-oriented search trees
that are applied in information retrieval systems [4]. The
main advantage of these trees is that they arrange similar
elements to be next to each other.

In their method, in order to be able to use the search tree,
elements of the model are represented by numerical vectors.
Indices of the vectors show model element characteristics.
Vectors contain a metrical and a lexical part. Metrical in-
dices represent concepts of software metrics such as num-
ber of abstract methods, private or protected attributes, and
class or instance attributes. Similarly, lexical indices are
used to represent lexical characteristics of elements.

After all, these vectors are located in search tree such that
similar nodes be next to each other by assistance of a hash-
ing idea. In this approach, similarity is computed by vec-
tor’s Euclidean distance which is small if indices are nearly
the same. A threshold value is used to define the similarity
acceptance risk. Having similar nodes next to each other
reduces the time complexity of matching pairs of elements
toO(n log(n)).

4.2 Code differencing

Another approach to extract evolutionary history of a
software system is to analyze code element changes. This
can be done in different levels of abstraction. Finding re-
naming of variables and methods, or the sequence of val-
ues that has been produced in a code element are in low
levels of abstraction. An example of this approach was
presented in Section 3. Considering object oriented pro-
gramming paradigm, a higher level of abstraction can be
gained by looking at renaming of classes and packages, or
changes in relationships among classes. Another high level
approach is finding usage changes. This approach is mostly
concerned with frameworks and the effect of their evolution
on their clients. Section 4.2.1 explains this approach more
precisely.

In any level of abstraction, changes are found as a huge
set of rules, each one describing an individual code ele-
ment. Giving an enormous set of changes to programmers
does not help them to find out what has happened till now
and what is to be done next. Instead, researches suggest
grouping these changes. Different approaches to categorize
these changes have been followed till now. Kimet al. [7]
have found the following categorizations in their recent re-
searches:

(i) Based on physical locations (files and directories).

(ii) Based on logical locations (packages, classes, meth-
ods): An example of this categorization isUMLDiff.

(iii) Based on structural dependencies.

(iv) Based on similarity of names.

Research done by Kimet al. uses structural dependen-
cies to group changes. As an improvement to this approach,
they identify systematic changes which is discussed in Sec-
tion 4.2.2.

4.2.1 Framework usage changes

Schaferet al., 2008, [9] suggested to find changes made
in the way framework instantiations use the framework in-
stead of looking for changes made to the framework code.
They showed that this approach is an improvement to other
approaches that compare two versions of the framework be-
cause their method finds conceptual usage changes in addi-
tion to changes caused by refactorings. Examples of these
conceptual changes are modifications to assigning respon-
sibilities to building blocks of the framework, which is not
clearly understood by effects of refactoring. Also, a prob-
lem resists in approaches that find framework changes made
by refactorings. This problem arises because of maintain-
ing backward compatibility in frameworks. Existence of old
version elements that are not removed in benefit of back-
ward compatibility prevents detecting refactoring while a
usage change has occurred.

Schaferet al. have used association rule mining tech-
nique [2] to find rules of usage changes. This technique,
given a set of transactions - consisting of a set of facts -
finds more likely rules that associate a set of facts to an-
other. In the Schaferet al.’s algorithm, facts show frame-
work usages such as method calls and inheritances and they
are extracted from each instantiation code. Transactions can
be simply union of these facts for each instantiation class.
But, Schaferet al. showed that this way of creating trans-
actions causes several problems such as ambiguity in ex-
tracting final rules. So, they suggested grouping facts that
are in a class declaration separate from those in a field or

4

method declaration. In addition, they suggested partition-
ing facts in each of these groups based on 5 change pat-
terns. These change patterns are recognized by the changes
in inheritances, overridings, calls and accesses, and instanti-
ations. Also, they showed that combining these two sugges-
tions helps finding more rules by disambiguating. Finally,
transactions are given to the association rule mining algo-
rithm and rules of changes are extracted so. Explaining this
machine learning technique is out of the scope of this sur-
vey.

They show that their approach finds conceptual changes
and does not have difficulty in finding changes even in pres-
ence of outdated and deprecated code elements.

4.2.2 Systematic code changes

Kim et al., 2009, [7] introducedLSDiff a tool that uses
structural dependencies to find systematic code changes.
Structural dependencies are found in code behaviors such as
field accesses and overridings.LSDiff uses code elements
and their structural dependencies to make an abstraction out
of a program. Then, it uses this abstraction to identify sys-
tematic changes. These changes are found by considering
consistent changes to code elements that are structurally
similar. LSDiff employs logic rules (conjunctive logic liter-
als) and logic facts to show these changes and to infer more
structural changes. Each rule is a human readable repre-
sentation of a group of changes that are structurally similar.
Grouping changes together helps creating a big picture of
change patterns and finding the reasons for the changes.

This approach also helps finding anomalies in changes
made to programs. It is a result of the fact that excep-
tions to logic rules are indicators of exceptions in systematic
changes. This assists programmers to avoid inconsistencies
in the evolving software system, which is one of the main
goals of software differencing.

5 Discussion of the algorithms

In the following subsections, we discuss the results of
applying the described algorithms to real case studies. What
is presented here is the results obtained by the authors of the
described papers joint together.

5.1 ComparingLSDiff and UMLDiff

Kim et al. in their previous work onLSDiff [6], 2007,
prepared a case study to show their matching power. This
earlier version ofLSDiff is conceptually the same as the re-
cent one so they are the same in the way that was discussed
in this survey. In the case study, they analyzed the match-
ing power of their algorithm andUMLDiff by having the
number of found matches (M) and the number of correct

matches (E), whereE is manually determined by looking
at the case study. Then,precision is defined as percentage of
found matches that are correct (|M∩E|

|M |). The study showed
that UMLDiff ’s precision was2% higher. Instead,LSD-
iff found 761 correct matches thatUMLDiff missed while
number of missed matches byLSDiff were 199.

In addition, grouping structural changes into logic rules
causes the result set ofLSDiff to be77% smaller than size
of UMLDiff ’s result set. As mentioned in Section 4.2.2, it
was one of main goals of Kimet al. research and has a great
value to users of the tool.

The aforementioned case study also showed that most of
the missed matches byUMLDiff were those changes that in-
volved both renaming and moving refactoring. While many
of the matches thatLSDiff missed were the changes that in-
volved very low similarity in names. These show the weak-
nesses of these two algorithms.

This section showed thatLSDiff finds more structural
changes thanUMLDiff, while UMLDiff is more precise in
results. An obvious advantage ofLSDiff over UMLDiff is
reducing result set size [6].

5.2 ComparingLSDiff and mining framework us-
age changes method

Both LSDiff and mining framework usage changes
method (abbreviated to FRAM) consider creating and us-
ing logical rules in their algorithms.LSDiff uses first or-
der logic with variables, while FRAM uses association rules
which are propositional logic rules without variables. The
main difference between their logical approach is taking or
not taking the advantage of having variables into account.
Variables can be used to retain logical references to code
elements [7].

In addition, FRAM approach uses a predefined set of rule
patterns that are dictated by association rule mining algo-
rithm. This may limit discovery of some changes in contrast
with using first order logic [7].

As Kim et al. claim, logical rules found byLSDiff are
more expressive than FRAM’s rules, and they can infer a
broader class of changes [7]. However, FRAM is more use-
ful for understanding the changes that must be made to the
framework’s clients. In this point of view,LSDiff cannot be
easily compared with FRAM, because their environment of
study is not exactly the same.

6 Conclusion

This survey presented several methods that successfully
touch the problem of analyzing the changes made to a soft-
ware system during its development process. This anal-
ysis helps understanding the evolutionary behavior of the

5

software development process. In addition, it can help ex-
tracting patterns of evolution, plans for future development,
maintenance, and testing.

This paper described basic concepts of the methods by
order of their published years. This arrangement showed the
progress of approaches in this research area and the change
in trends. The earliest approaches are representations of
basic ideas of the solutions to methods. While newest ap-
proaches use matured logical ideas and describe high level
changes.

In the recent approaches, two classes of methods, model
differencing and code differencing, were identified and dis-
cussed seperately. In the described model differencing
methods, an earlier research touches the problem of find-
ing differences between two visualized diagrams. While a
newer approach looks for design level changes by taking
advantage of a meta-model for the software. In this class of
approaches, another research has been described that tries
to reduce the time complexity of existing approaches by ap-
plying search trees and hashing concepts in matching model
elements. In code differencing approach, two major re-
search attempts have been discussed. One of them focuses
on frameworks and finds software changes by studying the
effects of changes to the clients of the framework. The
other one, finds systematic changes by grouping structural
changes.

A brief discussion on matching power of 3 most interest-
ing and comparable methods,UMLDiff, LSDiff, and FRAM,
showed thatLSDiff finds a broader class of changes than
both UMLDiff and FRAM. While the precision of found
matches was slightly better inUMLDiff thanLSDiff, num-
ber of missed matches were noticeably more inUMLD-
iff thanLSDiff. Moreover,LSDiff produces a smaller and
more understandable result set thanUMLDiff. Although
LSDiff is claimed to introduce changes more expressively
than FRAM, their study bed is not completely comparable
because FRAM concentrates on changes forced to clients
while LSDiff focuses on changes made to the framework
itself.

References

[1] OMG. Unified Modeling Language Specification.
OMG, March 2003. Version 1.5 formal/03-03-01.

[2] Rakesh Agrawal, Tomasz Imieliński, and Arun
Swami. Mining association rules between sets of
items in large databases. InSIGMOD ’93: Proceed-
ings of the 1993 ACM SIGMOD international confer-
ence on Management of data, pages 207–216, New
York, NY, USA, 1993. ACM.

[3] P. Benedusi, A. Cmitile, and U. De Carlini. Post-
maintenance testing based on path change analysis.

In Software Maintenance, 1988., Proceedings of the
Conference on, pages 352–361, Oct. 1988.

[4] A. Henrich, H. W. Six, and P. Widmayer. The lsd tree:
spatial access to multidimensional and non-point ob-
jects. InVLDB ’89: Proceedings of the 15th inter-
national conference on Very large data bases, pages
45–53, San Francisco, CA, USA, 1989. Morgan Kauf-
mann Publishers Inc.

[5] Susan Horwitz. Identifying the semantic and textual
differences between two versions of a program. In
PLDI ’90: Proceedings of the ACM SIGPLAN 1990
conference on Programming language design and im-
plementation, pages 234–245, New York, NY, USA,
1990. ACM.

[6] M. Kim, D. Notkin, and D. Grossman. Automatic in-
ference of structural changes for matching across pro-
gram versions. InSoftware Engineering, 2007. ICSE
2007. 29th International Conference on, pages 333–
343, May 2007.

[7] Miryung Kim and David Notkin. Discovering and rep-
resenting systematic code changes. InICSE ’09: Pro-
ceedings of the 2009 IEEE 31st International Confer-
ence on Software Engineering, pages 309–319, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

[8] Dirk Ohst, Michael Welle, and Udo Kelter. Dif-
ferences between versions of uml diagrams. In
ESEC/FSE-11: Proceedings of the 9th European soft-
ware engineering conference held jointly with 11th
ACM SIGSOFT international symposium on Founda-
tions of software engineering, pages 227–236, New
York, NY, USA, 2003. ACM.

[9] Thorsten Scḧafer, Jan Jonas, and Mira Mezini. Mining
framework usage changes from instantiation code. In
ICSE ’08: Proceedings of the 30th international con-
ference on Software engineering, pages 471–480, New
York, NY, USA, 2008. ACM.

[10] Christoph Treude, Stefan Berlik, Sven Wenzel, and
Udo Kelter. Difference computation of large models.
In ESEC-FSE ’07: Proceedings of the the 6th joint
meeting of the European software engineering confer-
ence and the ACM SIGSOFT symposium on The foun-
dations of software engineering, pages 295–304, New
York, NY, USA, 2007. ACM.

[11] Zhenchang Xing and Eleni Stroulia. Umldiff: an al-
gorithm for object-oriented design differencing. In
ASE ’05: Proceedings of the 20th IEEE/ACM inter-
national Conference on Automated software engineer-
ing, pages 54–65, New York, NY, USA, 2005. ACM.

6

