
University of Alberta

USING SNP DATA TO PREDICT RADIATION TOXICITY FOR
PROSTATE CANCER PATIENTS

by

Farzaneh Mirzazadeh

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Farzaneh Mirzazadeh
Spring 2010

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only. Where the thesis is converted to, or otherwise made available in
digital form, the University of Alberta will advise potential users of the thesis of these

terms.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever

without the author’s prior written permission.

Examining Committee

Russell Greiner, Department of Computing Science

Rong-Cai Yang, Department of Agricultural, Food and Nutritional Science

Robert Holte, Department of Computing Science

To my loving parents.

Abstract

Radiotherapy is often used to treat prostate cancer. While using high dose of ra-

diation does kill cancer cells, it can cause toxicity in healthy tissues for some pa-

tients. It would be best to apply this treatment only to patients who are likely to be

immune from such toxicity. This requires a classifier that can predict, before treat-

ment, which patients are likely to exhibit severe toxicity. Here, we explore ways to

use certain genetic features, called Single Nucleotide Polymorphisms (SNPs), for

this task.

This thesis uses several machine learning methods for learning such classifiers

for predicting toxicity. This problem is challenging as there are a large number of

features (164, 273 SNPs) but only 82 samples. We explore an ensemble classifica-

tion method for this problem, called Mixture Using Variance (MUV), which first

learns several different base probabilistic classifiers, then for each query combines

the responses of the different base classifiers based on their respective variances.

The original MUV learns the individual classifiers using bootstrap sampling of

the training data; we modify this by considering different subsets of the features

for each classifier. We derive a new combination rule for base classifiers in the

proposed setting and obtain some new theoretical results. Based on characteristics

of our task, we propose an approach that involves first clustering the features before

selecting only a subset of features from each cluster for each base classifier.

Unfortunately, we were unable to predict radiation toxicity in prostate cancer

patients using just the SNP values. However, our further experimental results reveal

strong relation between correctness of a classifier in its prediction and the variance

of the response to the corresponding classification query, which show that the main

idea is promising.

Acknowledgements

First, I would like to sincerely thank my supervisor, Professor Russell Greiner, for

his invaluable guidance, support, enthusiasm and patience throughout the period of

this research. I am grateful to have the honor of working under his supervision.

I also gratefully acknowledge Professor Peter Hooper, from the department of

Mathematical and Statistical Sciences, for his insight and expertise in the domain

and the time he dedicated to our discussions. I thank Professors Robert Holte and

Rong-Cai Yang for a careful reading of the dissertation, and the helpful comments

that improved the thesis.

Next, I would like to thank my colleagues at AICML lab. I appreciate Nasimeh

Asgarian and Bret Hoehn for patiently answering my questions in the duration of

this thesis. I would like to thank Dr. Barnabas Poczos for his helpful comments and

support.

I am very grateful to Drs S. Damaraju, M. Parliament, and B. Sehrawat of the

Cross Cancer Institute, Edmonton, Alberta, for generously providing access to the

SNP data, initial analysis and patient clinical characteristics, for meeting with us

during the project, and for helping to guide the plan of work. Both their data and

their insights were essential and invaluable to help shape the thesis objectives.

Finally, I wish to sincerely thank my husband, for his patience and support in

the duration of this thesis.

Table of Contents

1 Introduction 1
1.1 The Problem . 3
1.2 Overview of Dissertation . 4

2 Biological Background 5
2.1 Single-nucleotide Polymorphisms 5
2.2 Prostate Cancer Toxicity . 8

3 Computational Background 10
3.1 Feature Selection . 10

3.1.1 Feature Ranking . 10
3.1.2 Feature Subset Selection 12

3.2 Classification Methods . 13
3.2.1 Support Vector Machines 14
3.2.2 Decision Trees . 16
3.2.3 Bayesian Networks . 17
3.2.4 Lasso . 19
3.2.5 Mixture Using Variance 20
3.2.6 Other Ensemble Methods 26

3.3 Clustering . 27

4 FMUV: A Variant of MUV Method 29
4.1 Theoretical Analysis . 30

4.1.1 FMUV: Feature Mixture Using Variance 30
4.1.2 Result 1: Computing Covariance of Naive Bayes Classifiers

with Overlapping Features 32
4.1.3 Result 2 : Asymptotic Normality of Response of MUV

Classifiers . 34
4.1.4 Estimating Query-based Bias for a Naive Bayes Classifier . 35

4.2 Feature Allocation Algorithm . 35
4.2.1 Feature Filtering . 36
4.2.2 Feature Clustering . 37
4.2.3 Feature Merging . 37
4.2.4 Complete Algorithm . 38

5 Experimental Results 39
5.1 Experiments on PCRT Dataset . 39

5.1.1 Further Information about PCRT Dataset 40
5.1.2 Data Preprocessing . 40
5.1.3 Results . 42
5.1.4 Summary of FMUV on PCRT data 44

5.2 Experiments on Benchmark Datasets 45

5.3 Variance of Naive Bayes Classifiers 46

6 Conclusions 53

Bibliography 56

A Details of Experimental Results 60
A.1 Decision Tree and Decision Table Experiments 60
A.2 Naive Bayes Experiments . 61
A.3 Simple Logistic Regressor . 61
A.4 SVM Experiments . 62
A.5 Lasso Experiments . 62
A.6 Principal Component Analysis . 63
A.7 Bagging . 64
A.8 Boosting . 64
A.9 SMUV Experiments . 64
A.10 FMUV Experiments . 65

A.10.1 Classifiers without Feature Overlap 65
A.10.2 Classifiers with Feature Overlap 66

A.11 Best Results on Benchmark Datasets 66

List of Tables

5.1 Best Results Achieved Using Well-known Classifiers 42
5.2 Confusion Matrix for Different Classifiers on PCRT Dataset 49
5.3 Classification Accuracy of MUV Algorithm on Benchmark datasets 50
5.4 Mean and standard deviation of variance of response to a query.

VF shows variances when prediction of a naive Bayes Classifier is
incorrect, VT shows variances when prediction is correct. We also
show p-values that this two sample t-test rejects the null hypothesis. 51

A.1 C4.5 Decision Tree Results . 61
A.2 Decision Table Results . 61
A.3 Naive Bayes Classifier Results . 61
A.4 Simple Logistic Regressor Used as a Classifier Results 62
A.5 SVM Results . 62
A.6 Lasso Test Accuracy Results . 63
A.7 Accuracy Results of PCA, followed by Different Classification Meth-

ods . 63
A.8 Bagging Results . 64
A.9 Boosting Results . 64
A.10 SMUV Results . 65
A.11 FMUV Test Accuracy Results without Replacement 66
A.12 FMUV Test Accuracy Results with Replacement 66

List of Figures

1.1 Learning and predicting phases in a classification procedure. 2

2.1 A Single Nucleotide Polymorphism (SNP) and two alleles. (Picture
taken from [SNP]) . 6

2.2 Alleles for a Locus Corresponding to a Flower Color. (Picture taken
from [All]) . 7

2.3 Parents with heterozygous alleles can have children with homozy-
gous major, homozygous minor, or heterozygous alleles. (Picture
taken from [zyg]) . 7

3.1 Separating Hyperplane in SVM. Positive samples are shown filled
in, while negative samples are empty. The width of margin is 2

‖w‖ . 15
3.2 A Well-known example of a decision tree. This tree shows the pos-

sibility of playing tennis in different weather conditions. (Picture
from [Mit97] adapted from [Qui86].) 18

3.3 An example of Bayesian network and its CPtables with constant
entries (from [AGH01]) . 18

3.4 (a) A Sample Naive Bayes Classifier. f1 to f4 are the features. (b)
A Sample TAN. f1 to f4 are the features. Tree structure can be seen
among the features. The Root of the feature tree, f1 ,is shown in Grey. 19

4.1 Two simple naive bayes classifiers with overlapping features 32
4.2 Subnetwork including only the common nodes. 33

5.1 Histogram of Correlation Between Class and Features 41
5.2 Prediction errors and error bars for different classifiers. 43
5.3 Comparison of variances and logarithm of variances of response of

a naive Bayes classifier, when classifier is correct versus when it is
incorrect in its prediction for Corral Data. 47

5.4 Comparison of variances and logarithm of variances of response of
a naive Bayes classifier, when classifier is correct versus when it is
incorrect in its prediction for Mofn-3-7-10 data. 48

5.5 Comparison of variances and logarithm of variances of response of
a naive Bayes classifier, when classifier is correct versus when it is
incorrect in its prediction for Vote data. 50

5.6 Comparison of variances and logarithm of variances of response of
a naive Bayes classifier, when classifier is correct versus when it is
incorrect in its prediction for Spect data. 51

5.7 Comparison of variances and logarithm of variances of response of
a naive Bayes classifier, when classifier is correct versus when it is
incorrect in its prediction for Chess data. 52

Chapter 1

Introduction

The phenomenal rate of production of biological data has made the use of com-

puters and computational methods essential in biological research [LGG01]. As a

result, bioinformatics as a multidisciplinary field dealing with the topic has turned

into a flourishing area of today’s research. Bioinformatics is the application of com-

putational methods in solving problems in the field of molecular biology [LGG01].

Computer scientists use data mining methods to extract the large amount of

information embedded in human DNA, protein sequences, etc. and use this knowl-

edge to solve some problems in biology or medicine. One type of problem is to

automatically predict some behavior of a patient based on past history of other

patients. For example, using machine learning methods, bioinformaticians try to

predict if a patient is at high risk for a cancer using his/her genes. This problem is

an instance of a classification problem.

Classification is a machine learning method that tries to use past experience

to predict some discrete property, like sickness versus healthiness of a new object

using a classifier. The property to be predicted is called the “class”. For each new

object, the goal is to predict the correct label for the class from the set of possible

choices.

Past experience is introduced by training data that includes a set of n objects

along with their class labels. Each object in a classification task is called a sam-

ple or a data point [Lus07]. Samples are typically defined by a set of properties.

Each property is called a “feature” or an “attribute”. Feature values can be discrete

or continuous. Each feature can correspond to some property of the samples like

1

Figure 1.1: Learning and predicting phases in a classification procedure.

weight, height, ethnicity or the value of one of the genes.

We use a learning algorithm to produce a classifier, which can then be used to

predict the label for new data based on past data. Therefor, classification is a two

phase procedure [Lus07]:

1. Learning the model from training data.

2. Predicting the label of a new sample based on the learned model.

Figure 1.1 shows an example of the process of classification for predicting toxicity

as a side effect of some treatment for different patients. In this example, each patient

is presented by a feature vector (SNP1, ..., SNP10). Possible values for each feature

are {aa, Aa, AA}. First, a classifier is learned on the labeled training data. Next,

in performance time, the label for a new patient is predicted based on its feature

values and the learned model.

The learning phase uses a training dataset of n samples and p features viewed

as an n × p matrix X . Each row corresponds to one sample, while each column

corresponds to one feature. An n× 1 vector y contains the class labels for X .

2

1.1 The Problem

The problem we are working on in this thesis is a classification problem. We are

dealing with prostate cancer patients. One major treatment for this disease is ra-

diation therapy (aka radiotherapy). Unfortunately, this method can cause severe

toxicity in some patients, but not all of them. Our goal is to predict whether a

prostate cancer patient will suffer from toxicity after radiation therapy or not. Sev-

eral researchers believe different reactions against radiotherapy may be related to

genetic differences between people (for example, see [DMD+06]). By this we mean

that even with almost same conditions of treatment like intensity of radiation and

the same clinical features like age, weight, etc., different people react differently

to radiation. In this thesis, we study the correctness of this belief using a relevant

dataset.

The dataset we received from our collaborators at Cross Cancer Institute (CCI) 1

contains genetic information of 82 prostate cancer patients along with their 70 clini-

cal features. The genetic information we use are Single Nucleotide Polymorphisms

(SNPs), which we discuss in Section 2.1. It consists of 164, 273 features. Each

feature can have one of the values in {AA,Aa, aa}. Class labels are binary and

show what really happened in the past for these patients after radiotherapy. Label

“1” means the patient experienced toxicity — i.e. suffered from extensive bleeding

after 90 days in at least one of these visits — , while “0” means he did not. These

class labels are generated manually by studying the recorded status of these patients

in several physician visits.

In typical classification problems, the number of samples n is much more than

the number of features p. However, in many classification problems that originate

from bioinfomatics the case is opposite: the number of features is much more than

the number of samples. In our case, the reason this happens is that genetic data usu-

ally comes in very large amounts. In contrast, it is very expensive to gather data of

a number of patients comparable with number of samples. Moreover, unfortunately

1Genotype and prostate cancer data were generated through independent grant funding (by Al-
berta Cancer Board) to Drs S. Damaraju and M. Parliament, University of Alberta and Cross Cancer
Institute, Edmonton.

3

many patients do not consent to releasing their personal data. In our problem, the

number of features is around 2000 times the number of samples. This “large p,

small n” problem, makes the classification task difficult [HTF01]. Different meth-

ods are proposed to reduce dimensionality of data by implicitly or explicitly using

a subset of features with a more tractable size. (See Section 3.1.)

1.2 Overview of Dissertation

In this dissertation we study different classification methods, and how well they

can solve our problem. The rest of this document continues as follows: Chapter 2

presents the biological background behind our topic. In this chapter, we explain the

biological meaning of SNPs and discuss prostate cancer toxicity issues.

The computational background of this thesis comes in Chapter 3, which re-

views some feature selection, classification and clustering methods. Section 3.2.5

discusses a classification method called MUV in detail. This method uses a pool of

classifiers for classification and is the major classifier that we explored in our thesis,

both theoretically and experimentally.

In Chapter 4, we present our new version of MUV called FMUV. This chapter

focuses on theoretical analysis of FMUV as well as the algorithm for assigning

different features to each of the classifiers in the FMUV pool. In Chapter 5, we

present our experimental results. We use different classifiers on our dataset and in

this chapter we report their performance. Moreover, we evaluate performance of

FMUV classifier and compare it with performance of original version of MUV on

benchmark datasets. Also, we perform some experiments to show the correctness

of the motivation behind MUV idea. Finally, our discussion and conclusion along

with suggestions for future improvements come in Chapter 6.

4

Chapter 2

Biological Background

A gene is the physical entity transmitted from parent to offspring in reproduction

that influences hereditary traits. From biochemical point of view, a gene corre-

sponds to a region along a molecule of DNA (Deoxyribonucleic Acid). DNA is the

genetic material in organisms. Genes can exist in different forms or states. For ex-

ample, a gene for hemoglobin may exist in different forms that result in hemoglobin

molecules that are more or less abnormal. These alternative forms of genes are

called alleles. A nucleotide is the basic building block of DNAs appearing in four

types: Adenine, Cytosine, Guanine, and Thymine denoted by letters A, C, G, and T

respectively [HC89].

People differ from each other genetically. Section 2.1 introduces the major

source of this difference. As a result of genetic differences, patients react differently

to some treatments. In particular, prostate cancer patients react differently to one of

their major treatments: radiotherapy. It can have genetic reasons. We discuss this

problem in Section 2.2.

2.1 Single-nucleotide Polymorphisms

Single-nucleotide Polymorphisms (SNPs, pronounced snips) are the most common

source of genetic diversity in members of different species. It occurs when two

alternative nucleotides are possible in a locus in members of species. A locus is

a specific location of a gene or DNA sequence on a chromosome. SNP variation

occurs when a single nucleotide, such as an A, is replaced by one of the other three

5

Figure 2.1: A Single Nucleotide Polymorphism (SNP) and two alleles. (Picture
taken from [SNP])

nucleotides C, G, or T. Figure 2.1 shows a SNP and its two alleles.

In the cells of most organisms that reproduce sexually, one chromosome is in-

herited from each of the parents and as a result chromosomes occur in pairs. The

two chromosomes of each pair contain genes that correspond to the same inherited

traits. Equivalently, for each genetic trait in an organism there are two responsible

genes. If both of these genes are the same, the organism is called “homozygous” for

that trait [HC89]. Otherwise, the organism is called “heterozygous” for that trait.

Figure 2.2 shows a locus for flower color gene along with two different alleles for

that locus corresponding to white and purple colors in a flower.

Normally, for each SNP with two alleles, one allele is more frequent than the

other in the members of species, which we call the major allele and denote with “A”.

The minor allele denoted by “a” is the allele with lower frequency in the members

of species. Each child inherits one chromosome from each of the parents, which

can be major or minor. However, looking at a child’s chromosomes, it is not possi-

ble to distinguish between chromosomes from each of the parents from the child’s

chromosome, i.e., mother=“A” and father=“a” is the same as mother=“a” and fa-

ther=“A”. So each SNP can have three possible values: “AA” major homozygous,

6

Figure 2.2: Alleles for a Locus Corresponding to a Flower Color. (Picture taken
from [All])

Figure 2.3: Parents with heterozygous alleles can have children with homozygous
major, homozygous minor, or heterozygous alleles. (Picture taken from [zyg])

“aa” minor homozygous, and “Aa” heterozygous. If there are only two alleles and

the frequency of alleles “A” and “a” in population are p and 1− p respectively, then

genotype frequencies of “AA”, “aa” and “Aa” will be p2, (1− p)2 and 2p(1− p) re-

spectively. Figure 2.3 shows different possible alleles for a child with parents with

a heterozygous trait in a fish population.

Sometimes the alleles appearing in different loci in genes are not independent-

i.e. some alleles are observed together more than expected. A combination of alle-

les at multiple loci that are transmitted together on the same chromosome is called

a “haplotype” [HC89]. Association of alleles of genes in different loci is called

7

“linkage disequilibrium”. To measure linkage disequilibrium a quantity D is de-

fined as the departure of the real haplotype frequency Pa,b(x, y) = P (SNPa =

x, SNPb = y) from the simple product of their individual component allele fre-

quencies Pa(x) = P (SNPa = x) and Pb(x) = P (SNPb = x) [HC89]:

D(x, y) = Pa,b(x, y)− Pa(x)Pb(y). (2.1)

If the alleles x and y are independently transmitted, their haplotype frequency

Pa,b(x, y) = Pa(x)Pb(y) and consequently D(x, y) = 0. Larger values of D(x, y)

correspond to stronger linkage between the alleles.

Knowing about this statistical association is helpful in many bioinformatics

studies like those that try to find markers for different phenotypes, classification,

etc. The reason is that it can help in reducing the dimension of the problem in hand.

Dimension reduction can be useful when working with SNPs because the number

of SNPs is large enough to make the problem difficult. There are some worldwide

efforts to find out and document such useful information. If the plan is to use bio-

logical background knowledge in a project dealing with finding biomarkers, these

sources are essential.

The “International HapMap Project” is a project that tries to identify linkage

disequilibrium in the human genome [Con]. This project is a “multi-country effort

to identify and catalog genetic similarities and differences in human beings. Using

the information in the HapMap, researchers will be able to find genes that affect

health, disease, and individual responses to medications and environmental factors.

The Project is a collaboration among scientists and funding agencies from Japan,

the United Kingdom, Canada, China, Nigeria, and the United States.” 1

2.2 Prostate Cancer Toxicity

Prostate cancer is one of the most common cancers in men. Particularly,it is the

most common cancer in Canadian men [MDD+09]. It occurs in the prostate, a

small gland in the male reproductive system. It usually grows slowly and can often

1http://hapmap.ncbi.nlm.nih.gov/thehapmap.html.en

8

be cured or managed successfully. Some treatment options are surgery, radiation

therapy, hormone therapy, and chemotherapy.

Radiotherapists use high energy waves to treat this cancer. The use of radiother-

apy to cure early prostate cancer can be internal, called “brachytherapy”, or exter-

nal called “external beam radiotherapy”. External radiation therapy uses a machine

outside the body to send radiation toward the cancer. Internal radiation therapy, on

the other hand, uses a sealed radioactive substance placed directly into or near the

cancer.

Three-dimensional conformal radiotherapy (3D-CRT) is an image guided method

for external beam radiotherapy. This process begins with the creation of three di-

mensional digital data sets of patient tumors. These data sets are then used to gen-

erate 3D computer images and to develop complex plans to deliver highly focused

radiation while sparing normal adjacent tissue. In 3D-CRT, different locations for

positioning the source of external radiation are used that all concentrate on the can-

cer cells. In this way, higher doses of radiation can be delivered to cancer cells

while the amount of radiation received by surrounding healthy tissues is not in-

creased. This technique should increase the rate of tumor control while decreasing

side effects. However, late rectal bleeding is a dose limiting complication of exter-

nal beam radiotherapy [JSZ+01].

Dose escalation is reported to improve biochemical freedom from relapse af-

ter 78 versus 70 Gray dose of radiation for localized prostate cancer [DMD+06].

The worry is that high-dose treatments should be limited by the radiation toxicity

capacity of the patient. Identifying people potentially at high risk of late radiation

toxicity can be very useful. Damarju et al. [DMD+06] also report from [PZS+02]

a decrease in risk of radiation-related rectal complications from 26% to 12% when

using 70 Gray instead of 78 Gray dose of radiation. They assume this different

reaction has genetic reasons and try to find association between it and some SNPs.

They also assume the genes related to “repair” mechanism in human beings should

be most related to toxicity and looks at SNPs on those genes. What we do in this

thesis is related to the work done in that paper. However, our problem is a classifi-

cation problem instead of association and we are using a different set of SNPs.

9

Chapter 3

Computational Background

In this chapter we explain some machine learning terms and methods that we use

frequently in the next chapters of this thesis. We discuss feature selection methods,

classification methods, and clustering. Since Section 3.2.5 is highly related to our

analysis and methods in Chapter 4, we explain it in detail.

3.1 Feature Selection

We use “feature selection” to mean constructing and selecting subsets of features

that are useful in building a good classifier [Guy03]. In past, many papers published

on feature selection (like [BL97, KJ97]) explore domains with no more than 40

features. However, now many bioinformatics and text categorization problems deal

with hundreds of thousands of features [Guy03]. Several methods are proposed for

solving this challenging problem. We review some of them here. We follow the

categorization used in [Guy03].

3.1.1 Feature Ranking

In this set of methods, a criterion is used to rank each single feature. Then a number

of features with highest rank are selected. Many algorithms use this method because

it is simple, scalable, has shown good empirical success [Guy03]. Sometimes the

number of features is so large that this method is the only practical initial phase.

However, with this method, it is possible that many relevant but correlated and

redundant features are selected, which is not desired. Two types of criteria often

10

used for feature selection are correlation-based and information-theoretic criteria.

Correlation-based Feature Selection

For two vectors X and Y , the Pearson correlation coefficient, Corr(X, Y) also

denoted by ρ is defined as below [Guy03]:

ρ(X, Y) = Corr(X, Y) =
Cov(X, Y)√
V ar(X)V ar(Y)

(3.1)

where the covarianceCov(X, Y) is defined asCov(X, Y) = E(XY)−E(X)E(Y)

and the variance V ar(X) is defined as V ar(X) = E(X2) − E2(X) . This coef-

ficient is also equal to the cosine between vectors X and Y after each has been

centered (its mean subtracted from each value). This correlation coefficient value is

in the interval [−1,+1] that attempts to quantify the linear dependencies between

variable and target.

Information Theoretic Feature Selection

“Mutual Information” is a quantity that measures the mutual dependence of the

two variables. The mutual information of two discrete random variables X and Y

denoted as MutualInfo(X, Y) is computed as below [Guy03]:

MutualInfo(X, Y) =
∑
x∈X

∑
y∈Y

PXY (x, y) log(
PXY (x, y)

PX(x)PY (y)
) (3.2)

where joint probability PXY (x, y) and marginal probabilities PX(x) and PY (y) are

estimated by frequencies using the dataset.

“Information Gain” is another information theoretic criterion. It is a measure of

the effectiveness of a feature in classifying a dataset that is equal to the expected

reduction in entropy caused by partitioning features according to this feature. More

precisely, the information gain, InfoGain(S, F) of a feature F relative to a collec-

tion of samples S, is defined as:

InfoGain(S, F) = Entropy(S)−
∑

v∈V alues(F)

P (v)Entropy(Sv) (3.3)

11

where V alues(F) is the set of all possible values for feature F , Pv is estimated

from data so that P (v) = |Sv |
|S| and Sv is the subset of S for which feature F has

value v and

Entropy(S) =
c∑
i=1

−Pi log(Pi).

Pi is the portion of S belonging to class i.

Information gain is the information provided about target function value given

the value of some feature F [Mit97].

Selection Using Single Variable Classifier

Finally, the idea of this method is simply to select features according to their in-

dividual predictive power using as criterion the performance (like error rate) of a

classifier built with a single variable [Guy03].

3.1.2 Feature Subset Selection

The motivation behind this method of feature selection is that a variable that is com-

pletely useless by itself can sometimes provide a significant performance improve-

ment when taken with others. Even two variables that are useless by themselves

can be useful together [Guy03], e.g. suppose we want to learn a classifier for binary

XOR operator. In this example, the best classifier built on each of the features has

50% accuracy, while a classifier built on both features can have 100% accuracy. By

feature subset selection, complementary useful features can be selected instead of

redundant useful features. We explore some methods below:

Wrapper and Embedded Methods

The wrapper methodology consists of using prediction performance of a classifier

to assess the relative usefulness of subsets of variables. In practice, a method for

searching the space of all possible features is needed. Exhaustive search is not

effective because the problem is known to be NP-hard. Seeking suboptimal sub-

sets of features, a wide range of search strategies can be used including best-first,

12

branch and bound, simulated annealing, and genetic algorithms. Some classifica-

tion methods like CART decision tree learning [BFOS84] have a built-in feature

selection mechanism inside. We call them “Embedded Feature Selection Methods”

after [Guy03]. These methods may be more efficient than wrapper methods in sev-

eral respects: (1) They make better use of available data by not needing to split

the training data into a training and validation set. (2) They reach a solution faster

as they do not need to retrain a classifier for every subset of features investigated

[Guy03].

Direct Objective Optimization

Many researchers have attempted to formalize an objective function for variable se-

lection and find algorithms to optimize it. Generally the objective function consists

of two terms:

1. the goodness of fit

2. the number of features

where the goal is to maximize the former and minimize the latter.

These methods also embed a feature selection procedure inside. Lasso is an

example of these methods [Tib96].

3.2 Classification Methods

In this section, we explain popular classification techniques that we use in our ex-

perimental study. Moreover, in Section 3.2.5 we describe a classification method

called Mixture Using Variance [LGW06] and the method of computing the vari-

ance of response of a classifier to a query [AGH01] in detail. All our analysis and

methods in Chapter 4 is related to this section.

One term that we use a lot in the rest of this chapter is overfitting. Overfitting

happens when a learned model classifies the training data accurately, but not the

test data. This usually means that the model is fitted too much to the small pertur-

bations in data, which is typically related to noise rather the general pattern of data

[HTF01].

13

In all methods below, we represent the training dataset with n samples and p

features as an n × p matrix X . Each row corresponds to one sample, while each

column corresponds to one feature. To refer to the ith sample, we use the notation

xi, a p× 1 vector defined as the transpose of ith row of matrix X . An n× 1 vector

y contains the class labels for X . Features are represented by {F1, ..., Fp}.

3.2.1 Support Vector Machines

Support vector machines [Bur98] are one of today’s most powerful classifiers. In

their simplest form, they can be used for linear classification. These classifiers try to

find a separating hyperplane with maximum margin between the classes. Moreover,

using kernel functions they can perform nonlinear classification as well.

Assume each data point xi ∈ <n is an n × 1 vector with binary class label

yi ∈ {−1, 1}. The points belonging to two classes are linearly separable then a

separating hyperplane can be presented as wTx + b = 0 where w is an n × 1

vector normal to the hyperplane and b is a scalar. Let d+ and d− be the shortest

distance from the separating hyperplane to the closest positive and negative samples

respectively. Our goal is to minimize d = d+ + d−, which is called the margin. If

we represent margin boundaries with equations

B1 = {x| wTx+ b = +1} (3.4)

B2 = {x| wTx+ b = −1} (3.5)

the margin would be equal to the distance between these parallel hyperplanes:

d =
2

‖w‖

Hence to maximize the margin, we need to minimize the Euclidean norm ‖w‖ or

an increasing function of it such as ‖w‖
2

2
= wTw

2
.

If the line is to be the separator of the members of two classes, any training point

xi with class value yi = +1 should have wTxi + b ≥ 1 and any training point with

yi = −1 should have wTxi + b ≤ −1, (see Figure 3.1).

In summary, the goal is to minimize

wTw

2
(3.6)

14

Figure 3.1: Separating Hyperplane in SVM. Positive samples are shown filled in,
while negative samples are empty. The width of margin is 2

‖w‖

subject to

∀i, yi(wTxi + b) ≥ 1

This constrained optimization problem can be solved using Lagrange multipli-

ers. The solution is the classifier we are seeking.

A version of SVM with soft margins addresses the case when samples are not

linearly separable. In this version, misclassification for some of the samples is

allowed. However, we change the optimization function so that it minimizes a linear

combination of misclassification and margin width simultaneously. The degree of

misclassification for each sample is defined as

ξi = 1− yi(wTxi + b) (3.7)

Here the goal is to minimize

wTw

2
+ C

∑
i

ξi (3.8)

subject to constraints

∀i, yi(wTxi + b) > 1

∀i, ξi ≥ 0

In Equation 3.8, C is a user-specified constant. Again the solution is the classifier

we are seeking.

15

3.2.2 Decision Trees

Decision trees are tree structures successfully used in solving classification and

regression problems. In a decision tree used for classification, features appear in

interior nodes and target class values appear in leaves. The edges leaving each node

are associated with feature values corresponding to that variable. A decision tree

classifies a data point by sorting it out through the tree from root to the appropriate

leaf node, then returning the class associated with that leaf [Mit97].

There are different machine learning methods for learning a decision tree from

data. Based on the algorithms used for training, the decision tree will have differ-

ent names like ID3, C4.5 and CART trees. These algorithms work by recursively

choosing the best feature among available features and putting it in the root of the

tree. Then by omitting this feature from available set, a new subset of features is

composed. For each value of the selected feature, a branch is added to this root and

the subset of samples with the corresponding feature value is selected for the next

step. Then, the process recursively continues for each subtree and the new subset

of features and samples.

All methods try to choose features that best split the set of data samples. Dif-

ferent algorithms use different criteria for this selection. ID3 and C4.5 use the

information gain criterion (See Section 3.1). Algorithm 1, adapted from [Mit97],

describes the ID3 learning. In this algorithm, trainingSamples is the set of all train-

ing samples, targetFeature is the class feature whose value is to be predicted, and

Features is the list of other features that maybe tested by the learned decision tree.

This algorithm returns a decision tree Root that correctly classifies the given train-

ingSamples.

Figure 3.2 shows a well known example of a decision tree. This tree classifies

the possibility of playing tennis in different weather conditions. In a decision tree

like this, an equivalent way of representing decision trees is by a set of rules. Each

path from root of the tree to a leaf corresponds to a rule. For example in Figure 3.2,

“If the outlook is rainy and the wind is weak, it is possible to play tennis” is a rule.

C4.5 is an improved version of ID3, proposed by the same author. C4.5 per-

forms a pruning procedure after creating the tree, which attempts to remove branches

16

Algorithm 1 Root = ID3(trainingSamples, targetFeature, Features)

Create a node for the tree. Call it Root
if all trainingSamples are positive then

Return the single-node tree Root, with label “+” .
else if all trainingSamples are negative then

Return the single-node tree Root, with label “-” .
else if Features = ∅ then

Return the single-node tree Root, with label = most common value of
targetFeature in trainingSamples

else
F← the feature in Features, that best classifies trainingSamples
The decision feature for Root← F
for each possible value, vi of F do

Add a new tree branch below Root, corresponding to the test F = vi.
Let Samplesvi be the subset of trainingSamples that have value vi for F
if Samplesvi = ∅ then

below this new branch add a leaf node, with label = most common value
of targetFeature in trainingSamples

else
below this new branch add the subtree:
ID3(Samplesvi , targetFeature, Features− {F})

end if
end for

end if
Return Root

that do not help in classification. This procedure makes the tree simpler and helps

to prevent overfitting. In addition, in C4.5 both continuous and discrete features can

be handled while ID3 can only handle discrete features. C4.5 allows missing values

and different cost functions for attributes as well.

3.2.3 Bayesian Networks

Bayesian networks (aka belief networks) [Pea88] are directed acyclic graphs (DAGs)

that allow efficient representation of the probability distribution over a finite set of

random variables or a set of parameters. Each node v in the graph represents a ran-

dom variable, and each directed edge e represents dependencies between the two

variables it connects. This dependency states that each variable Xv is independent

of all its nondescendants in the graph given the state of its set of parents Pa(Xv).

Probabilistic parameters are encoded in a set of tables called CPtables, one for each

17

Figure 3.2: A Well-known example of a decision tree. This tree shows the possibil-
ity of playing tennis in different weather conditions. (Picture from [Mit97] adapted
from [Qui86].)

variable, that represents local conditional distribution of a variable given its parents

[FGG+97]. Figure 3.3, adapted from [AGH01], shows an example of a Bayesian

network and its CPtables, where CPtable entries are constant.

Figure 3.3: An example of Bayesian network and its CPtables with constant entries
(from [AGH01])

There are many different methods proposed for learning a Bayesian network

from data. The objective is to induce a network that best describes the probability

distribution over the training data. As usual, there are different criteria for deter-

mining the best network. Usually this is a two-step procedure; first learning the

structure of the network, then learning the parameters for this structure.

After learning the network structure and CPtable entries, we can use the re-

sulting model for classification of new data. Given a set of features F1,..., Fn

18

and the corresponding valid feature values f1,..., fn a classification algorithm re-

turns the class label c that maximizes the posterior probability P (Class = c|F1 =

f1, ..., Fn = fn).

A special case of Bayesian networks is naive Bayes classifier. Naive Bayes

Classifiers use a two level DAG structure, with the class variable at the root and all

features in the next level (Figure 3.4(a)). Directed arcs are connected from class

feature to other features. This structure encodes a strong independence assumption

that all the features are independent given the value of the class. Although this

conditional independence assumption is unrealistic, naive Bayes classifier performs

surprisingly well.

Figure 3.4: (a) A Sample Naive Bayes Classifier. f1 to f4 are the features. (b)
A Sample TAN. f1 to f4 are the features. Tree structure can be seen among the
features. The Root of the feature tree, f1 ,is shown in Grey.

To relax this unrealistic assumption, other structures with some modifications

are proposed [FGG+97], such as Tree Augmented Naive Bayes (TAN). Like naive

Bayes,the TAN class variable has no parents. However, each feature has as par-

ents the class variable and at most one other feature. In TAN after omitting the

class variable and all of its edges, the remaining structure is a directed tree (Figure

3.4(b)).

3.2.4 Lasso

Lasso [Tib96] fits a linear model

ŷi = b0 + b1Xi1 + ...+ bpXip (3.9)

19

to data where b0 to bp are scalars.

The goal here is to minimize

n∑
i=1

(yi − ŷi)2 (3.10)

subject to
p∑
j=0

|bj| ≤ s

where s is a tuning parameter that can be found using cross-validation.

We can center data points by subtracting their means, so that they have zero

mean. Then instead of Equation 3.10 we can minimize:

n∑
i=1

(yi − ŷi)2 + λ

p∑
j=1

|bj| (3.11)

Lasso is originally proposed for regression where the yis can have any real

value. However, we use it for classification, where yi ∈ {−1,+1}. Any posi-

tive prediction for a sample is considered as “+1” and any negative prediction as

“-1”.

The solution to Lasso can be found using quadratic programming. However,

there is no analytic solution for it. Efron et al. [EHJT04] proposed an efficient

algorithm Least Angle Regression (LARS) to solve the problem. Algorithm 2,

presents the LARS algorithm (from [EHJT04]). This algorithms inputs feature vec-

tors X1, ..., Xp and target vector y and returns a linear model b.

3.2.5 Mixture Using Variance

Mixture using variance (MUV) is a query-specific ensemble classification method

[LGW06]. For each classification query (like P (Class = c1|F1 = f1, ..., Fn =

fn) which asks about the probability that the class is c1 given the feature vector

(f1, ..., fn)), each classifier provides its response µi along with the variance σ2
i

around this response. The variance is interpreted as a measure of uncertainty in the

classifier response. The final response of the ensemble classifier is a weighted sum

of these individual responses using weights in [0, 1] that are inversely proportional

20

Algorithm 2 b = LARS (X1, ...Xp, y)
for all j= 0:p do
bj ← 0.

end for
Find the predictor xj most correlated with y
Repeat

Repeat
Increase the coefficient bj in the direction of the sign of its correlation with y.
Take residuals r = y − ŷ.

Until some other predictor xk has as much correlation with r as xj has.
Repeat

Increase (bj, bk) in their joint least squares direction,
Until some other predictor xm has as much correlation with the residual r.

Until all predictors are in the model

to their respective variance around the response:

P (c|e) =
1∑

i
1

σ2
i (c|e)

∑
i

µi(c|e)
σ2
i (c|e)

(3.12)

where µi(c|e) is the response of the ith classifier to the query p(c|e) and σi(c|e) is

the variance of response of the ith classifier to this query. c is the class and e is the

evidence, which here means some valid assignment of feature values to features.

Although MUV can be used for combining any type of classifiers whose vari-

ance is computable, it is originally proposed for Bayesian networks and specifi-

cally Naive Bayes and Tree Augmented Naive Bayes (TAN) classifiers. When the

parameters of a network are assumed to be random variables, the randomness in

parameters induces randomness in the response of the network that is a function

of those parameters. Using the Delta method [BFH75], Van Allen et al. [AGH01]

computed the asymptotic variance the around response to a query of a Bayesian net-

work assuming the structure of network is correct and network parameters follow

independent Dirichlet distribution. We will discuss it later in this section. Here we

only focus on the main derivation of the MUV combination rule.

The original MUV learns the individual classifiers using bootstrap sampling of

the training data. The basic idea behind bootstrap sampling is to randomly draw

datasets with replacement from the training data, each sample the same size as

the original training set [HTF01]. To derive the combination rule for this version

21

of MUV, let µ = P (c|e) be the true value for a response to a query. Each base

classifier i responds to this query with a noisy version of µ called µi. The noise is

assumed to be normal with mean 0 and variance σ2
i :

µi = µ+ εi (3.13)

where

εi ∼ N(0, σ2
i).

The goal is to estimate µ using a linear combination of µis. Suppose we have a pool

of m classifiers. We estimate µ̂ as:

µ̂ =
m∑
i=1

αiµi (3.14)

subject to
m∑
i=1

αi = 1

We pick αis so that they minimize mean square classification error. This error is

computed as:

error(α) = E[(µ−
m∑
i=1

αiPi)
2] (3.15)

= E[(µ−
m∑
i=1

αi(µ+ εi))
2]

= E[(µ(1−
m∑
i=1

αi)−
m∑
i=1

αiεi)
2]

= E[(
m∑
i=1

αiεi)
2]

To minimize classification error we need to minimize E[(
∑m

i=1 αiεi)
2] subject to∑m

i=1 αi = 1. We solve this constraint optimization problem using Lagrange Mul-

tipliers. The Lagrangian function is

f(α) = error(α) + λ(1−
m∑
i=1

αi) (3.16)

We find the stationary points of this equation

22

∂f

∂λ
= 1−

m∑
i=1

αi = 0

and

∂f

∂αi
= E[2εi

m∑
j=1

αjεj]− λ

=
m∑
j=1

2αjE(εiεj)− λ = 0

In this method, we assume that the noise of different classifiers of the pool

are independent from each other. This important assumption implies that E[εiεj] =

E[εi]E[εj]. Since we assumed noise to have mean 0 we will haveE[εiεj] = E[εi]E[εj] =

0× 0 = 0, for i 6= j.

So we will have:

∂f

∂αi
=

m∑
j=1,j 6=i

2αjE[εi]E[εj] + 2αiE[ε2i]− λ

= 2αiE[ε2i]− λ = 0

The final solution is:

αi =
1
σi∑m
i=1

1
σ2
i

,

which is equal to the weights in the Expression 3.12.

Originally, each of classifiers in the MUV pool is trained using different data

samples. Here, we expect that a classifier that is learned from data samples that re-

semble the current query will be fairly certain of its response - i.e. will have a small

variance. By contrast, we expect this variance to be large from a classifier that was

based on instances that were different from the query. However, when the number

of samples is very small compared to the number of features, losing a portion of the

samples is not desirable. The reason is that the reduction can increase the chance

of overfitting and lead to less accurate classifiers. It can be more reasonable to use

the MUV combination rule when each classifier uses a different subset of features.

In this way each classifier will work with smaller number of features. A classifier

23

working with a more relevant subset of features should perform better than others.

Some of the assumptions above are not valid for this new problem. We study this

in Chapter 3.

Variance of a Bayesian Network

In this section, we explain the method of computing the asymptotic variance of a

Bayesian network used in [AGH01, ASGH08]. Later, Hooper et al. in [HAYGH09]

presented an improved approach for this problem.

At a high level, Van Allen et al. [AGH01] assume independent Dirichlet distri-

butions for the parameters of rows of CPtables in a Bayesian network. Then using

the fact that it is easy to compute both the variance of the components of a Dirichlet

random vector, and the covariance of two components in such a vector, they com-

pute the variances of parameters and covariances of parameters in the same row

of a CPtable. Independence of parameters of rows implies that the covariance of

parameters in different rows is zero. Then this paper computes the asymptotic vari-

ance of a query in terms of these computed variance and covariance values. For

this purpose it uses the Delta method that approximates the query function using

its first order Taylor expansion around a point and computes the variance of this

term instead. This term is linear in parameters of the network hence calculating its

variance in terms of variances and covariances of parameters is straightforward.

Now for the details, let v be a variable in a Bayesian network with k possible

values {x1, ..., xk}. Then each row of the CPtable corresponding to this variable

has k columns. Let Θ = 〈θv,x1|f , ..., θv,xk|f〉 be one such row where θv,xi|f is the

CPtable entry related to variable v having the value xi and its set of parents hav-

ing value equal to vector f . Van Allen et al. [AGH01] assume Dirichlet priors for

this row and show the posterior values of the these parameters a follow Dirichlet

distribution as well. Moreover, they assume different rows are independent. Then

they compute mean, variance, and covariances of components of Θ using the prop-

erties of Dirichlet distribution. Let the parameters of posterior distribution of Θ be

〈α1, ..., αk〉.

For each row of CPtable Θ ∼ Dir(α1, ..., αk) we can calculate the mean value

24

of each parameter and the covariance between parameters in a row using properties

of the Dirichlet distribution as below [BFH75]:

Suppose α0 =
∑k

i=1 αi, then:

E[θv,xi|f] =
αi
α0

= µv,xi|f (3.17)

V ar[θv,xi|f] =
αi(α0 − αi)
α2
0(α0 + 1)

=
µv,xi|f (1− µv,xi|f)

α0 + 1
(3.18)

Cov[θv,xi|f , θv,xj |f] = − αiαj
α2
0(α0 + 1)

= −
µv,xi|fµv,xi|f
α0 + 1

(3.19)

Let Θ be the set of all parameters of a network and q(Θ) be a query expressed

as a conditional probability of the form

q(Θ) = P (H = h|E = e,Θ) (3.20)

where H and E are subvectors of X and h and e are legal assignments to these

subvectors. The Taylor expansion for q(Θ) is

q(Θ) = q(µ) +D +R (3.21)

where

D =
∑
v∈V

∑
f∈Fv

∑
x∈Xv

q′v,x|f (θv,x|f − µv,x|f) (3.22)

is the first order Taylor expansion of q(θ) about q(µ) and R is the remainder. V is

the set of variables, Xv is the set of values of variables, and Fv is the set of parents

of variable v.

Van Allen et al. [AGH01] show that remainder R is asymptotically negligible

compared to D and as a result q(Θ) can be approximated using D + q(µ) . This

result is first used to prove that D is asymptotically normal. This normality follows

from asymptotic multivariate normality of components of Θ and the fact that D is

a linear function of components of θ. Second, it is used to approximate the variance

of q(Θ) with variance of D.

V ar(q(Θ)) ≈ V ar(D) =
∑
v∈V

∑
f∈Fv

∑
x∈Xv

∑
y∈Xv

q′v,x|fq
′
v,y|fCov(θv,x|f , θv,y|f) (3.23)

25

It should be noted that when the arguments of covariance Cov(., .) correspond to

parameters in different rows of a CPtable, the covariance is zero. In addition, when

arguments of covariance above are the same the value is equal to variance which is

calculated using Equation 3.18. Finally, if the arguments of covariance are different

but they correspond to parameters in the same row of a CPtable the covariance is

calculated in Equation 3.19. The first derivative q′v,x|f derived in [GGS97, Dar00]

is equal to

q′v,x|f =
P (H = h,Xv = x, Fv = f |E = e)

µv,x|f
−

P (H = h|E = e)P (Xv = x, Fv = f |E = e)

µv,x|f
(3.24)

We use a short notation for this equation:

q′v,x|f =
pv(h, x, f |e)− P (h|e)pv(x, f |e)

µv,x|f
(3.25)

After simplification, the variance of response of a Bayesian network to a query

is asymptotically equal to:

σ̂2[P (c|e)] =
∑
θD|f∈Θ

1

1 + α0

v̄c|e(D|f) (3.26)

where

v̄c|e(D|f) =
∑
v∈V

∑
f∈FV

1

µ̄v,x|f
[Pv(h, x, f |e)− P (h|e)Pv(x, f |e)]2−

[Pv(h, f |e)− P (c|e)Pv(f |e)]2

In our theoretical analysis in Section 4.1.2, we use a similar approach to the

method discussed in this section to compute the covariance of responses of two

naive Bayes classifiers. There the classifiers however, are formed differently.

3.2.6 Other Ensemble Methods

Here, we briefly introduce two other ensemble methods: bagging and boosting.

Bagging is an iterative ensemble classification method. In each iteration, it draws a

bootstrap sample Sm of the training data and learns a classifier on this data. Then, at

performance time, for each sample it predicts the class with majority vote [Bre96].

26

The idea behind boosting is to weight the predictions of the classifiers in the

pool with their error. Boosting performs multiple iteration. In each iteration, the

weight of one classifier is determined in a way that later classifiers focus on samples

that were misclassified by earlier classifiers [FS96].

3.3 Clustering

Clustering is an unsupervised method of organizing data. The goal is to group

data in a way that elements in the same group are as close as possible together

whereas elements on different groups are as far as possible from each other. As

usual different distance measures can be used for this purpose. Euclidean distance,

and correlation are some examples. Using the same assumptions and notations as

Section 3.2, the Euclidean distance between two datapoints xi and xj is defined as:

EuclideanDist(xi, xj) = (

p∑
k=1

(Xik −Xjk)
2)(1/2) (3.27)

Also, the correlation between them is defined as:

Corr(xi, xj) =
Cov(xi, xj)√
V ar(xi)V ar(xj)

(3.28)

In clustering algorithms we usually need to input a parameter like the number of

clusters or minimum permitted distance for clusters. The algorithm then identifies

the partition that optimizes a clustering criterion.

The output of clustering can be hard or soft (fuzzy). In hard clustering each data

point membership is binary, i.e. each cluster either include a data point or not and

each data point belongs in at most one cluster. In fuzzy clustering each data point

has a degree of membership to each cluster. Clustering algorithms can be divided

to hierarchical, partitional, probabilistic, and graph-theoretic approaches. Jain et al.

provide information about these methods [JMF99].

Later, in Section 4.2, in the feature clustering phase, we use k-means partitional

clustering that given the number of clusters, returns a hard clustering of data points.

We use clustering to group the similar features, and then only use one from each

27

cluster for classification. This attempts to prevent our classifiers from using too

many similar features, which might lead to overfitting.

28

Chapter 4

FMUV: A Variant of MUV Method

The original version of MUV discussed in Section 3.2.5 assumes each classifier

uses all features and a subset of samples, which is generated by bootstrap sampling.

Another approach is to use a pool of classifiers that each uses a different subset of

features but over the complete training data. For distinction, we call the former,

which deals with samples, SMUV and the latter, which deals with features, FMUV.

In SMUV, as we explained in Section 3.2.5, we assume that errors of different

classifiers are independent from each other. Moreover, SMUV implicitly assumes

that each classifier is unbiased. Neither of these assumptions is valid for FMUV.

We think the FMUV classifier with naive Bayes or TAN base classifiers is ap-

propriate for solving our problem because it uses many weak classifiers and merges

them to achieve a strong classifier. Naive Bayes assumes that the features it is us-

ing are independent. We try to satisfy this assumption by assigning uncorrelated

features to each classifier. Specifically, we expect FMUV to perform better than

SMUV in this problem, because FMUV uses all training data and so does not loose

any part of it. This is particularly helpful in our problem, because we have only

a few samples in our training data. Also it embeds an automatic feature selection

inside, which is greatly useful for our problem with this huge number of features. It

should be noted that biologically we know that some SNP are related to each other

using the notion of linkage disequilibrium. To embed this relation in our method,

we also have used TAN classifier as the base classifier in both FMUV and SMUV.

TAN also assumes a simple dependence between features.

In this chapter, we extract the combination rule for FMUV and explore some of

29

its theoretical properties. Moreover, we propose an algorithm for assigning features

to the classifiers in the pool of FMUV.

4.1 Theoretical Analysis

In this section we present our theoretical analysis.

4.1.1 FMUV: Feature Mixture Using Variance

Assume there exist n different features in a classification task, some of which are

really effective in the classification and some not. Let

µ = P (Class = c|F1 = f1, ..., Fn = fn) (4.1)

be the true probability of response to a query given all feature values.

We want to estimate µ using a pool of m classifiers. Suppose each of the clas-

sifiers in the pool is a naive Bayes classifier that uses a subset of these features.

Let fkCm be the mth feature used in the kth classifier. The query given to the kth

classifier is the probability P (C = classj|FkC1 = fkC1 , ..., Fl1C1 = fl1C1) where

{F1Ck
, ..., Fl1Ck

} is the subset of features used by the kth classifier.

We assume each classifier in the pool responds to this query with a value that is

the true value µ plus an additive Gaussian noise
p1
.
.
.
pm

 = µ+

ε1
.
.
.
εm

ε = [ε1, ..., εm]T ∼ N(b,Σ)

in which b is an m × 1 vector of bias values of each classifier in its response to

this query, due to losing some important features and Σ = [σi,j] is the covariance

matrix of such error between classifier responses to this query. Since the true value

of a query is fixed, the covariance of errors of classifiers is equal to covariance of

responses of classifiers to that query.

We again estimate µ with a linear combination of responses of classifiers: p̂ =∑m
i=1 αipi where

∑m
i=1 αi = 1. Our goal is to find αs that minimize mean square

30

classification error. Using the same steps in Equation 3.15, error(α) = E[(
∑m

i=1 αiεi)
2].

So our goal is to minimize E[(
∑m

i=1 αiεi)
2] subject to

∑m
i=1 αi = 1. Using La-

grange multipliers we will have:

f(α) = error(α) + λ(1−
m∑
i=1

αi)

= E[(
m∑
i=1

αiε)
2] + λ(1−

m∑
i=1

αi)

∂f

∂αi
= E[2εi

m∑
j=1

αjεj]− λ

= E[2
m∑
j=1

εiαjεj]− λ

= 2
m∑
j=1

αjE[εiεj]− λ

= 2
m∑
j=1

αj(Σij + E[εi]E[εj])− λ (From the definition of covariance)

= 2(
m∑
j=1

αjσij + bibj)− λ

Setting this derivative to be equal to 0 means we should solve, for each i, λ
2

=∑m
j=1 αjσij + bibj .

The final solution to this equation is

αk =

∑m
i=1(C

−1)ik∑n
i=1

∑m
j=1(C

−1)ij
(4.2)

where C = Σ + bbT .

This means that once we can estimate the covariance matrix of errors in re-

sponses of different classifiers to a classification query and bias of each classifier,

the weight of each classifier in the ensemble is simply calculated using Equation

4.2.

31

4.1.2 Result 1: Computing Covariance of Naive Bayes Classi-
fiers with Overlapping Features

The focus of this section is how to calculate the covariance of query responses of

different classifiers for a given query.

Figure 4.1: Two simple naive bayes classifiers with overlapping features

Our goal is to calculate the covariance between the responses of two Naive

Bayes classifiers to a certain query. Our approach is similar to the one used in

[AGH01] and explained in Section 3.2.5. Similarly, we adapt independent Dirichlet

priors for the parameters in each row of a CPtable.

Assume we have two Naive Bayes that use the same training samples but differ-

ent subsets of features with possible overlap. (As an example look at Figure 4.1.)

Let q1 be the query response P (Class = c|E1 = e1,Θ1 = µ1) in the first network

where E1 is the subset of variables in the first network, e1 is a legal value assign-

ment to this subset, Θ1 is the set of CPtables related to this network, and µ1 is a

valid assignment to parameters of CPtables derived from training data. Similarly

we define q2 to be P (Class = c|E2 = e2,Θ2 = µ2), which is the response in

the second network . Now we consider the first order Taylor expansion of expres-

sions q1(Θ) around q1(µ) and call it D1. Similarly, we call the first order Taylor

expansion of expressions q2(Θ) around q2(µ) as D2:

q1(Θ) = q1(µ) +D1 +R1

q2(Θ) = q2(µ) +D2 +R2

where

32

D1 =
∑
v∈V1

∑
f∈Fv1

∑
x∈Xv1

q′v,x|f (θv,x|f − µv,x|f)

D2 =
∑
v∈V2

∑
f∈Fv2

∑
x∈Xv2

q′v,x|f (θv,x|f − µv,x|f)

The remainder terms R1 and R2 can be expressed in terms of the matrix of second

derivatives of q1 and q2 respectively.

The covariance of q1(θ) and q2(θ), after ignoring the remainder terms, is equal

to the covariance of D1 and D2, which we compute below:

Cov(D1, D2) =
∑
v1∈V1

∑
f1∈Fv1

∑
x∈Xv1

∑
v2∈V2

∑
f2∈Fv2

∑
y∈Xv2

q′v1,x|f1
q′v2,y|f2

Cov(θv1,x|f1, θv2,y|f2)

(4.3)

Figure 4.2: Subnetwork including only the common nodes.

The asymptotic variance of response to a query of this network computed using

Equation 3.23 has exactly the same terms. We can conclude that Cov(D1, D2) is

equal to the variance of query response of the subnetwork consisting only of shared

nodes.

Theorem 1 The covariance of the responses to a query of two naive Bayes classi-

fiers that use the same training data is equal to the variance of the response of the

shared subnetwork to that query.

33

4.1.3 Result 2 : Asymptotic Normality of Response of MUV
Classifiers

In this section we show that the response to a query of both FMUV and SMUV clas-

sifiers asymptotically follow normal distribution. In addition, we derive expressions

for the asymptotic mean and variance of this distribution.

As we mentioned in Section 3.2.5, Van Allen et al. [AGH01] prove that un-

der the assumption of independent Dirichlet priors for the various CPtable rows

Θ, the response Q of a Bayesian network is asymptotically normal. This result

follows from the asymptotic multivariate normality of the components of Θ and

the fact that a query q(Θ) can be approximated using a linear function of Θ. Let

Qj be the response of the jth Bayesian network classifier to a specific query and

QS =
∑n

j=1 α
S
jQj and QF =

∑n
j=1 α

F
j Qj be the responses of SMUV and FMUV

respectively. Since SMUV and FMUV are linear ensembles of classifiers, we can

approximate QS and QF in turn as linear functions of Θ. Thus with the same rea-

soning that the response of a Bayesian network to a query is asymptotically normal,

we see that:

Theorem 2 The distribution of response to a query of an MUV ensemble classifier

is asymptotically normal.

The next step is to find means and variances of QS and QF . Using the linear

property of expectation, it is easy to compute the means of QS and QF :

E(QS) = E(
n∑
j=1

αSjQj) =
n∑
j=1

αSj E(Qj(Θ)) (4.4)

E(QF) = E(
n∑
j=1

αFj Qj) =
n∑
j=1

αFj E(Qj(Θ)) (4.5)

Cooper et al. [CH92] shows that in some conditions asymptotically E(q(Θ)) =

q(E(Θ)). This property is used in [AGH01] in computing the variance. Here we

34

use it and conclude that asymptotically:

E(QS) =
n∑
j=1

αSj E(Qj(Θ)) =
n∑
j=1

αSjQj(E(Θ))) (4.6)

E(QF) =
n∑
j=1

αFj E(Qj(Θ)) =
n∑
j=1

αFj Qj(E(Θ))) (4.7)

For computing the variances we use a generalized form of the following property

of variance.

V ar(a1x1+a2x2) = a1
2V ar(x1)+a2

2V ar(x2)+2a1a2Cov(x1, x2) =
2∑
i=1

2∑
j=1

aiajCov(x1, x2)

(4.8)

In the same way we will have

V ar(QS) = V ar(
n∑
j=1

αSjQj) =
n∑
i=1

n∑
j=1

αSi α
S
j Cov(Qi, Qj) (4.9)

and

V ar(QF) = V ar(
n∑
j=1

αFj Qj) =
n∑
i=1

n∑
j=1

αFi α
S
j Cov(Qi, Qj) (4.10)

So once we compute the covariance matrix of responses of members of the

classification pool, computing the variance of the distribution is straightforward. In

Section 4.1.2, we showed how to compute the necessary covariance matrix.

4.1.4 Estimating Query-based Bias for a Naive Bayes Classifier

Up to now in this chapter, we derived a formula for FMUV combination of classi-

fiers in Section 4.1.1 (Equation 4.2). In later sections, we could estimate all terms

of this formula except for the bias terms. So what we need is a query based es-

timation of bias in a naive Bayes classifier. Unfortunately, in the duration of this

thesis, we did not manage to solve this problem. So we need to postpone the study

of performance of our proposed method until we can estimate the bias term.

4.2 Feature Allocation Algorithm

In this section we propose an algorithm for FMUV ensemble classification in a

dataset with large number of features. As mentioned in Section 4.1.1, FMUV uses

35

a pool of classifiers. Each classifier in the pool uses a subset of all features as

its variable set, then produces the final result by combining the results of these

classifiers. It should be noted that in our method, each classifier uses all data in

corresponding training folds. In contrast, in SMUV algorithm each classifier uses a

subset of training data generated by bootstrap sampling.

To be able to use FMUV combination rule in practice, we need an effective

algorithm for assigning a subset of features to each of the classifiers in the pool.

We need to select good features and assign them to classifiers. Using too many

similar features in a classifier is not desired. Our goal here is to allocate features to

classifiers in a way that maximizes classification accuracy.

Our algorithm for assigning features produces clusters of similar features. Then

it forms separate classifiers by selecting one feature from each cluster.

4.2.1 Feature Filtering

As 164, 273 is a large number of features, in the first stage we only select a subset

of features. We call this phase “feature filtering”, which is an infold feature selec-

tion procedure, i.e. in this phase, we select the 2000 most informative features from

training folds only. By most informative, we mean the features that have highest in-

formation gain with respect to class value. Previously, we defined feature selection

based on information gain in Section 3.1. Information gain is defined in Equation

3.3. For evaluation, we use 10-fold cross-validation. In 10-fold cross-validation,

for each test fold, we train on the remaining 9 folds.

It is important that feature filtering phase is performed infold. Otherwise, obser-

vation of the labels of test samples can lead to optimistic classification results. Our

evidence for this importance is that we have been able to reach to a 100% test ac-

curacy using 10-fold cross-validation, when 10, 000 features are selected from the

complete dataset (not only training folds). Because 10, 000 is a very large number,

one might think it is acceptable to pick this number of features from the complete

train and test folds. However, 100% is not our real classification accuracy and it

is far beyond the accuracy we could reach when feature selection phase only uses

train folds.

36

4.2.2 Feature Clustering

We cluster the 2000 features produced by feature filtering phase using k-means al-

gorithm [Mac67] with correlation as our distance measure. Section 3.3 provides

information about clustering. Specifically correlation criterion is defined in Equa-

tion 3.28. In our experiments on our prostate cancer dataset, we picked k ∈ {5, 50}

as the number of clusters.

4.2.3 Feature Merging

Once clusters are generated, we pick one feature from each cluster for each classifier

in the pool. Our pool consists of m naive Bayes classifiers. In one trial, we select

one feature from each cluster with replacement, in others without. When we select

features without replacement, the resulting feature sets will not have overlap. In

contrast, when we select features with replacement, the resulting feature sets can

have overlap. In the non-replacing case, if we use all members of one cluster while

other clusters are still remaining, we simply ignore the empty clusters. We used

three methods for selecting the next feature from cluster i for the classifier j:

1. Select the next feature from cluster i randomly.

2. Select the next remaining feature from cluster iwith highest infold correlation

with respect to class variable.

3. Select the next remaining feature from cluster i with the lowest sum of corre-

lations with respect to features already selected for classifier j.

The goal of method 2 is to select relevant features with respect to class. The goal

of method 3 is to select uncorrelated features, so that the feature independence

assumption behind naive Bayes model, which is our base classifier, is partially sat-

isfied. In our experiments on our prostate cancer dataset, we picked m = 5 as the

number of naive Bayes classifiers. We find this number reasonable for the 2000

total features, which is output of our feature filtering phase. However, we have also

tested other numbers, which we do not report here.

37

4.2.4 Complete Algorithm

Algorithm 3 shows the complete algorithm. For evaluation, we use 10-fold cross-

validation. Our algorithm is run infold. It means when we use the ith fold as a test

fold, we give the other 9 folds, which are the training folds, to this algorithm. In

this way we prevent our algorithm from implicitly observing the class labels of test

samples. In summary, this algorithm receives the training folds of data, number of

clusters k, number of classifiers m, the feature merging method meth as defined in

Section 4.2.3 and a Boolean variable called replace that shows whether we want a

selection of features from clusters with replacement or without replacement. The

algorithm returns the feature set to be used by the ith classifier in the pool.

Algorithm 3 {FS1, ..., FSm} = FeatureAlloc(trainData, k,m,meth, replace)
Cluster features in k clusters using k-means and correlation distance measure.
for i = 1 : m do

for all Nonempty clusters C do
F← Select a feature from cluster using selection method meth
FSi ← FSi ∪ F
if replace == FALSE then
C ← C − F

end if
end for
Return {FS1, ..., FSm} .

end for

38

Chapter 5

Experimental Results

In this chapter, we report the results of our experimental studies. We divide this

chapter into three sections. In the first, we describe our experiments on the Prostate

Cancer Radiotherapy Toxicity (PCRT) dataset. In this set of experiments, we use

a group of well-known previously presented classifiers to evaluate the accuracy of

different classifiers on this dataset. In addition, we use SMUV and FMUV classi-

fiers for this purpose. As mentioned before, SMUV is the original version of MUV

classifier and FMUV is our proposed version. In the second section, we evaluate

the performance of different versions of MUV classification method on benchmark

datasets. In the third section of this chapter, we develop a set of experiments testing

the MUV idea in general.

5.1 Experiments on PCRT Dataset

PCRT is a dataset provided by the Cross Cancer Institute (CCI) containing SNP fea-

tures of prostate cancer patients who have undergone radiation therapy, and toxicity

reaction follow-up. As we mentioned in Section 2.1, each SNP is a genetic attribute

of a patient that can have one value from the set {AA,Aa, aa}. Patients react differ-

ently to radiotherapy. Some accept it with satisfactory side effects, while the others

show unpleasant toxicity responses. Based on the reaction they have shown after

radiotherapy, each patient in this dataset is labeled with {0, 1}. Our goal is to build

a classifier with maximum classification accuracy from this dataset.

39

5.1.1 Further Information about PCRT Dataset

In this dataset the number of patients is only 82, while the number of SNP features

is 164, 273. This means the number of features is around 2000 times the number of

samples. This ratio makes a classification problem difficult. We do not have any

missing values in our dataset.

The labels are generated by studying the recorded status of these patients in

several physician visits. A patient who suffered from extensive bleeding in at least

one visit after 90 days is labeled as a “1” ; otherwise as “0”. Among these 82

patients, 31 are labeled with “1” and the remaining 51 with “0”. Hence a majority

classifier, which classifies all samples as majority class “0”, has 62.20% accuracy.

We use this accuracy as a baseline for our study.

To estimate how much each feature can help in the classification process, we

computed the correlation between each feature and the class, after converting cat-

egorical features to binary. The statistical distribution of correlation scores reveals

some information about usefulness of features. To visualize this distribution, we

draw a histogram of correlations; see Figure 5.1. The maximum absolute correla-

tion of any feature with the class is 0.4982, which is very low. Such a histogram and

such low correlations suggest the possibility that no single feature is closely related

to the class variable.

5.1.2 Data Preprocessing

While many classifiers can use nominal features, some only work with numerical

features. To be able to use the latter group of classifiers on our dataset, we need

to transfer our nominal feature values to numerical equivalents. One method is to

choose arbitrary mappings — like “aa” to 1, “Aa” to 2, and “AA” to 3. The dis-

advantage is that assigning a bigger or smaller number to a nominal feature value

compared to other features can affect the classification accuracy. Another sugges-

tion is to convert each feature with nominal values to a set of binary features, each

of which corresponding to one of the possible feature values. In the second method

a SNP feature with possible values {AA,Aa, aa} will be converted to three binary

40

Figure 5.1: Histogram of Correlation Between Class and Features

features with “AA” mapped to 100, “Aa” mapped to 010, and “aa” mapped to 001.

The disadvantage here is that the number of features, which is originally too big,

will now grow to 3 times its size. In addition, there will be redundant information

in the features, i.e. the number of bits we use in this way is more than its minimum

possible number. While both methods have disadvantages, we have empirically

found the latter more promising and use it when we need numerical features.

Given the large number of features in this dataset, it makes sense to try dimen-

sionality reduction techniques hoping to improve classification performance and

avoid overfitting. Some classification methods like Lasso [Tib96] automatically

achieve this as they include an implicit feature selection mechanism. For the rest,

we explicitly run a feature selection procedure. For this purpose, we select only

k features with highest information gain (for definition of information gain, see

Section 3.1.1), where k ∈ {5, 10, 100, 500, 1000}. We are careful to use only the

training data for feature selection, as including test data here can lead to optimistic

estimation of classification accuracy.

41

5.1.3 Results

In our experiments, we examined the performance of a group of classifiers on this

dataset. We included strong classification methods like support vector machines

(SVM), decision trees, and Lasso as well as other classifiers like MUV. For evalu-

ation, we used 10-fold cross-validation. Here, we divide our set of samples to ten

nearly equal portions and each time one part is used as the test data and others as

training data. The final result is the average of accuracy in all 10 test folds. Table

5.1 shows a summary of these results. We present the details of our experiments for

each classifier in Appendix A.

Type of Classification # of features Training p
Classifier Accuracy + std (%) Accuracy (%)
Majority Class 62.20± 0 0 62.20 -
Decision Tree 58.54± 24.76 100 96.34 -
Naive Bayes 64.63± 8.44 500 100 0.1932
Simple Logistic 67.07± 17.91 500 100 0.2061
SVM 65.85± 12.56 100 100 0.1910
Decision Table 63.41± 16.06 500 91.46 0.4085
Lasso 48.50± 13.50 All 96.34 -
PCA + SVM 62.20± 2.68 5 62.20 0.50
Bagging 58.54± 10.78 1000 95.12 -
Boosting 67.07± 12.49 100 100 0.1244
SMUV 62.20± 7.29 500 100 0.50
FMUV 62.20± 9.51 2000 100 0.50

Table 5.1: Best Results Achieved Using Well-known Classifiers

In Table 5.1, the first column shows the type of classifier used. Column 2

represents the best 10-fold classification accuracy we could reach using this type

of classifier. If there are more than one experimental setting leading to the best

result we arbitrarily list one of them here. We have also included the standard

deviation of accuracy in this column. Column 3 shows the number of features

k ∈ {5, 10, 100, 500, 1000} leading to this best result. Here “All” means we did not

use a feature selection method. As the majority classifier does not use any features

for classification, we used “0” for the number of features for this classifier. Column

4 shows the classification accuracy on the training data.

The second column of Table 5.1 shows the baseline here is 62.20%, correspond-

42

ing to majority classifier. Other classifiers do not perform significantly better than

the baseline. The best accuracy found is 67.07% using simple logistic regressor

and boosting methods, which is only 4.73% above baseline. The standard deviation

of error is smaller for boosting, 12.49, than for simple logistic regression, 17.91.

The classification mean and standard deviation of classification accuracy for each

classifier is shown in Figure 5.2.

Figure 5.2: Prediction errors and error bars for different classifiers.

To compare the methods more precisely, for the classifiers not less accurate

than baseline, we compute the statistical significance of the null hypothesis that

their accuracy is from normal distribution with the same mean as baseline, using

unpaired t-test. The last column of Table 5.1 shows the p-values for these tests.

Using 90% significance level, the hypothesis is not rejected for any of the classifiers

in the test. This implies that none of the methods are performing significantly better

than the baseline.

Looking back at Table 5.1, we see that despite the low accuracy on test data, the

classification accuracy on training data is usually high, often near 100%. This high

training accuracy and low test accuracy suggest that the classifiers are overfitting.

Low number of samples in comparison with number of features causes our models

to overfit. To prevent overfitting we have included feature numbers as low as 5

and 10 in our experiments. However, as we report in Appendix A, unfortunately

we observed that, while training accuracy is still high, this reduction in number of

features does not improve test accuracy.

43

We let SMUV refer to the original version of MUV classification method, which

uses an ensemble of classifiers that each use all features but only a subset of sam-

ples generated by bootstrap sampling. FMUV is our proposed version of MUV,

whose base classifiers each use a subset of features, but all samples. We derived

the combination rule for this classifier in Section 4.1. Table 5.1 presents the results,

which show that neither version of MUV performed better than baseline for the

PCRT dataset.

Finally, we show the confusion matrix for each classifier in Table 5.2. Each

each row of the matrix represents the number of samples in an actual class, while

each column of the matrix represents the number of samples in a predicted class.

The number of samples in actual class “0” is 51, while the number of samples in

actual class “1” is 31. While the methods PCA+ SVM, SMUV, and FMUV, all

have 62.20% accuracy, the confusion matrices are not the same for all of them.

PCA+ SVM and FMUV act like a majority classifier and classify all samples as

“0”. While SMUV classifies, 3 samples with label “1” and 48 samples with label

“0” correctly.

5.1.4 Summary of FMUV on PCRT data

In our experiments on PCRT data, we used many well-known and strong classi-

fication methods, but none of them gave us a satisfactory result. Therefore, we

come to conclusion that given this dataset , it is unlikely that these techniques will

be able to learn an accurate classifier for our goal. This conclusion may have two

reasons. First, there is not any relation between these SNPs (only a subset of hu-

man SNPs are in the dataset) and late radiation toxicity. Second, the dataset is not

appropriate for the task of finding an accurate classifier (i.e., even if there is a rela-

tion between SNPs and toxicity, this relation is not inferable from this dataset). In

addition, it should be noted that our experiments was not limited to what we pre-

sented here and in the appendix. We considered a large number of different feature

selection methods e.g. using correlation, gain ratio, etc. criteria and also several

classification methods, e.g. TAN classifiers, MUV ensemble with TAN base clas-

sifiers, nearest shrunken centroids classification method [WZ07]. In addition, we

44

attempted to learn from clinical features, in addition to the SNP value. Unfortu-

nately, none yielded an improvement in accuracy, which is why we just presented a

subset of them in this dissertation.

5.2 Experiments on Benchmark Datasets

The goal of this section is to evaluate the performance of different versions of MUV

on some benchmark datasets like datasets from the UCI machine learning repository

[UCI]. We present the classification results of SMUV and FMUV with and without

feature overlap between base classifiers in Table 5.2. As we mentioned in Section

4.1.4, we need an estimate of the bias of response of a naive Bayes classifier to a

query in FMUV combination rule. Since we could not come up with a theoretically

sound estimation in this thesis, we set the biases equal to 0 — i.e., assume a pool of

unbiased classifiers.

In Table 5.2, column 1 shows the name of dataset. The first three datasets, Spect

Heart, Chess, and Vote, are from the UCI repository, and the last two, Corral and

Mofn-3-7-10, are from [KJ97]. Column 2 shows the classification accuracy of the

SMUV algorithm. Columns 3 and 4 show classification accuracy of FMUV with

and without overlap respectively.

Since our method, FMUV, is a variation of SMUV, it makes sense to com-

pare its result with the result of SMUV. Table 5.2 shows that in the first three

datasets, FMUV without feature overlap could reach better classification accuracy

than SMUV — i.e., our proposed improvement worked for these datasets. Sec-

ondly, our results show that in most of these data sets imposing overlap in features

of base classifiers and then using the combination rule proposed in Equation 4.2

with bias terms set to 0 did not help in improving the classification accuracy. The

only improvement, which is as small as 2.34%, occurred in the last dataset. There-

fore, it shows that this estimation of bias with feature overlap, (i.e. setting it to 0) is

not effective. The best results ever on these datasets appear in Appendix A.11.

45

5.3 Variance of Naive Bayes Classifiers

The goal of this set of experiences is to see if the variance of the response to a query

is different when a classifier predicts the response correctly from when it predicts

incorrectly. Here, we use the UCI and other datasets used before in Section 5.2. For

each test sample, if the prediction is correct we include its variance to one group

and if the prediction is incorrect we include it in another group. The method for

computing variance of response of a Bayesian network to a query is proposed by

[AGH01], as we explained in Section 3.2.5.

To evaluate the result, we draw the histogram of variances of the response to

the queries when classifier is correct versus when it is incorrect. Since the values of

variances are small, we also show the histogram of logarithm of variances. To be

able to compare, we set the size of populations of correct and incorrect responses

to be equal; e.g. if there are 1000 correct predictions, we also have exactly 1000

incorrect predictions. In this way, it is easier to compare the histograms. In this set

of experiments we use a naive Bayes classifier. Figure 5.3, 5.4, 5.5, 5.6, and 5.7

show the histograms related to Corral, Mofn3-7-10, Vote, Spect and Chess datasets

respectively.

Studying these histograms, we find out that the histograms of correct and incor-

rect variances do not look completely alike. When the classifiers are predicting cor-

rectly, the values of variances are more concentrated closely around zero and when

they are predicting incorrectly they are farther from zero. The experiment on mofn-

3-7-10 data with histograms in Figure 5.4 shows this difference better than other

experiments. Since the values of variances are small, a histogram of the logarithm

of the variances shows the distinction between the two distribution more clearly.

As all histograms show, the logarithm of variances are smaller when a naive Bayes

classifier is right versus when it is wrong in answering to a classification query.

Moreover, we use a t-test to test the null hypothesis that both variances come

from distributions with equal mean values. Columns 2 and 3 of Table 5.4 shows the

expected value and standard deviation of variances when a naive Bayes classifier

is right and when it is wrong for different datasets. In addition, column 4 shows

46

Figure 5.3: Comparison of variances and logarithm of variances of response of a
naive Bayes classifier, when classifier is correct versus when it is incorrect in its
prediction for Corral Data.

the rejection or non-rejection of the null hypothesis that both variances are from

Normal distribution with equal means using two sample t-test.

As we can see in all our experiments, the expected value of variances are smaller

when classifier is right that when it is wrong. Moreover, every time the null hypoth-

esis is rejected at the 95% significance level — in fact, this rejection is typically

considerably stronger. The results we see here are promising and strengthen the

idea that correctness of response of a naive Bayes classifier to a query is related to

its variance in responding to the query. Smaller values of variance seem to be more

reliable.

It should be noted that we also explored the behavior of TAN classifiers in the

same experimental setting. We do not present the details of results related to TAN

classifier here. However, in summary, TAN also showed the same behavior; i.e.

the variance of response to the queries is smaller when TAN is predicting correctly

versus when it is predicting incorrectly.

47

Figure 5.4: Comparison of variances and logarithm of variances of response of a
naive Bayes classifier, when classifier is correct versus when it is incorrect in its
prediction for Mofn-3-7-10 data.

48

Predicted

Decision Tree(C4.5)
0 1

Actual
0 29 22
1 12 19

Naive Bayes
0 1

Actual
0 50 1
1 28 3

Simple Logistic
0 1

Actual
0 43 8
1 19 12

SVM
0 1

Actual
0 47 4
1 24 7

Decision Table
0 1

Actual
0 29 22
1 12 19

Lasso
0 1

Actual
0 22 29
1 13 18

PCA + SVM
0 1

Actual
0 51 0
1 31 0

Bagging
0 1

Actual
0 40 11
1 23 9

Boosting
0 1

Actual
0 36 15
1 22 19

SMUV
0 1

Actual
0 48 3
1 28 3

FMUV
0 1

Actual
0 51 0
1 31 0

Table 5.2: Confusion Matrix for Different Classifiers on PCRT Dataset

49

Dataset SMUV FMUV Accuracy (%) FMUV Accuracy (%)
Name Accuracy (%) without Feature Overlap with Feature Overlap

Spect Heart 70.59 72.19 67.91
Chess 87.52 91.37 72.23
Vote 90.11 93.77 88.52

Corral 89.06 88.28 78.12
mofn-3-7-10 87.89 79.69 82.03

Table 5.3: Classification Accuracy of MUV Algorithm on Benchmark datasets

Figure 5.5: Comparison of variances and logarithm of variances of response of a
naive Bayes classifier, when classifier is correct versus when it is incorrect in its
prediction for Vote data.

50

Figure 5.6: Comparison of variances and logarithm of variances of response of a
naive Bayes classifier, when classifier is correct versus when it is incorrect in its
prediction for Spect data.

Dataset mean± std for VF mean± std for VT p
Spect 0.0213± 0.0280 0.0122 ± 0.0247 3.46× 10−2

mofn-3-7-10 0.0204± 0.0025 0.0042 ± 0.0056 2.97× 10−165

Chess 0.0039± 0.0064 0.0015 ± 0.0038 5.66× 10−10

Corral 0.0136± 0.0046 0.0058 ± 0.0058 1.97× 10−6

Vote 0.0095± 0.0293 0.00053 ± 0.0042 4.10× 10−8

Table 5.4: Mean and standard deviation of variance of response to a query. VF
shows variances when prediction of a naive Bayes Classifier is incorrect, VT shows
variances when prediction is correct. We also show p-values that this two sample
t-test rejects the null hypothesis.

51

Figure 5.7: Comparison of variances and logarithm of variances of response of a
naive Bayes classifier, when classifier is correct versus when it is incorrect in its
prediction for Chess data.

52

Chapter 6

Conclusions

Our studies in this dissertation was focused on two different topics. The first was

to find the most accurate classifier for PCRT data. The second was to explore and

improve the MUV classification method. In this section, we summarize the attempts

and results achieved in both parts and present our suggestions for future works.

In the first problem, we dealt with a high dimensional dataset consisting of

164, 273 SNP features of 82 patients for classification. Some of these patients ex-

perienced late toxicity after radiation and some did not. With an assumption that

different reaction to radiotherapy has genetic reasons, we tried to find an efficient

classifier using only these SNP features. Finding such a classifier has practical im-

portance for radiation oncologists as it would help them to identify which cancer

patients will suffer from toxicity from radiotherapy and so avoid giving a high dose

of radiation to these patients.

In the experiments related to this part we used several feature selection and clas-

sification methods. Unfortunately, most of these methods performed worse than

baseline, where the baseline was a majority classifier. Based on these results we

conclude that it is unlikely that this class of techniques can learn an accurate clas-

sifier on PCRT dataset. This conclusion brings up two possibilities. First, perhaps

late toxicity is not related to SNPs or at least not the set of SNPs we are using (no-

tice that the dataset contains only a subset of human SNPs). This means that either

the assumption that late toxicity has genetic reasons is wrong or some related SNPs

are missed from our dataset. This can be an interpretation of what the majority

classifier suggests, i.e. “no patient will suffer from toxicity after radiotherapy with

53

genetic reasons”.

Another possibility is that there are relations between the trait and the set of

features we are using, but we could not find it. One reason this can happen is the

small number of samples in our dataset. We do not know the minimum number

of samples needed for an efficient classification. The number of samples in our

problem can be below a lower bound on the number of samples. In any case, if

data providers can add to the number of samples, it will be helpful in improving or

verifying our results.

In the MUV studies, our results show that we can compute the covariance of

the responses to a query of naive Bayes classifiers. Moreover, we showed that the

variance of response of an MUV classifier, when base classifiers are naive Bayes,

asymptotically follows normal distribution. Then we showed that how the mean

and variance can be computed analytically. We computed the two latter results

using the covariance we found in our first result. We proposed FMUV as a version

of MUV in which each base classifier in the pool uses all samples but a subset of

features. We also derived the FMUV combination rule. However, to be able to use

this combination rule, we needed an estimate of bias of a naive Bayes classifier. In

this project, we used the value of zero for bias — i.e., we assumed the classifiers

are unbiased. We empirically studied the performance of our new classifier on

benchmark datasets, which shows FMUV method can be superior on some datasets.

In addition, using overlapping feature sets and then setting bias to zero did not work.

Finally, our empirical studies show with strong evidence that the expected value of

variance of response of a naive Bayes classifier is lower when the classifier predicts

the response of the query correctly than when it predicts incorrectly. We found this

result promising and motivating for future further studies on variance of response

of a classifier.

Our suggestions for the PCRT dataset is for the data providers to enhance dataset.

It will be useful to add to the number of samples. It is also possible to use biolog-

ical background knowledge like Hapmap database [Con] for clustering the feature

and dimension reduction instead of or accompanied with computational dimension

reduction methods. Our future works for MUV part is to estimate the analytical

54

bias of a naive Bayes classifier. To be able to use FMUV classifier, one suggestion

is to treat it as a parameter for a certain problem and numerically try to set the best

value for this parameter. One other improvement is to try the improved version

of variance computed in [HAYGH09] and study the performance of the resulting

classifier.

55

Bibliography

[AGH01] T. Van Allen, R. Greiner, and P. Hooper. Bayesian error-bars for
belief net inference. In UAI, pages 522–529, 2001.

[All] Allele picture. Retrieved Dec. 25 2009, from http://www.
csulb.edu/˜kmacd/361-6-Ch1_files/allele.jpg.

[ASGH08] T. Van Allen, A. Singh, R. Greiner, and P. Hooper. Quantifying the
uncertainty of a belief net response: Bayesian error-bars for belief net
inference. Artif. Intell., 172(4-5):483–513, 2008.

[BFH75] Y.M.M. Bishop, S.E. Fienberg, and P.W. Holland. Discrete Multi-
variate Analysis: Theory and Practice. The MIT Press, Cambridge
MA, 1975.

[BFOS84] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and
Regression Trees. Wadsworth and Brooks, Monterey, CA, 1984.

[BL97] A.L. Blum and P. Langley. Selection of relevant features and exam-
ples in machine learning. Artificial Intelligence, 97:245–271, 1997.

[Bre96] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140,
1996.

[Bur98] C. Burges. A tutorial on support vector machines for pattern recog-
nition. Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

[CH92] G.F. Cooper and E. Herskovits. A Bayesian method for the induction
of probabilistic networks from data. Machine Learning, 9:309–347,
1992.

[Con] The International HapMap Consortium. A haplotype map of the hu-
man genome. Nature, 437(7063):1299–1320.

[Dar00] A. Darwiche. A differential approach to inference in Bayesian net-
works. In UAI, pages 123–132, 2000.

[DMD+06] S. Damaraju, D. Murray, J. Dufour, D. Carandang, S. Myrehaug,
G. Fallone, C. Field, R. Greiner, J. Hanson, C.E. Cass, and M. Par-
liament. Association of DNA repair and steroid metabolism gene
polymorphisms with clinical late toxicity in patients treated with con-
formal radiotherapy for prostate cancer. Clinical Cancer Research,
12(8):2545–2554, April 2006.

[EHJT04] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle re-
gression. Annals of Statistics, 32:407–499, 2004.

56

[FGG+97] N. Friedman, D. Geiger, M. Goldszmidt, G. Provan, P. Langley, and
P. Smyth. Bayesian network classifiers. In Machine Learning, pages
131–163, 1997.

[FS96] Y. Freund and R. E. Schapire. Experiments with a new boosting al-
gorithm. In ICML, pages 148–156. Morgan Kaufmann, 1996.

[GGS97] R. Greiner, A.J. Grove, and D. Schuurmans. Learning Bayesian nets
that perform well. In UAI, pages 198–207, 1997.

[Guy03] I. Guyon. An introduction to variable and feature selection. Journal
of Machine Learning Research, 3:1157–1182, 2003.

[GZ02] R. Greiner and W. Zhou. Structural extension to logistic regres-
sion: Discriminative parameter learning of belief net classifiers. In
AAAI/IAAI, pages 167–173, 2002.

[HAYGH09] P. Hooper, Y. Abbasi-Yadkori, R. Greiner, and B. Hoehn. Improved
mean and variance approximations for belief net responses via net-
work doubling. In Conference on Uncertainty in Artificial Intelli-
gence (UAI), pages 232–239, 2009.

[HC89] D.L. Hartl and A.G. Clark. Principles of Population Genetics. SInaer
Associates, INC., 2nd edition, 1989.

[Hol93] R. C. Holte. Very simple classification rules perform well on most
commonly used datasets. Machine Learning, 11:63–91, 1993.

[HTF01] T. Hastie, R. Tibshirani, and Jerome Friedman. The Elements of Sta-
tistical Learning. Springer Series in Statistics. Springer New York
Inc., 2001.

[JMF99] A.K. Jain, M.N. Murty, and P.J. Flynn. Data clustering: A review,
1999.

[Jol02] I. T. Jolliffe. Principal Component Analysis. Springer, New York,
2002.

[JSZ+01] A. Jackson, M.W. Skwarchuk, M.J. Zelefsky, E.S. Venkatraman
D.M. Cowen, S. Levegrun, C.M. Burman, G.J. Kutcher, Z. Fuks,
S.A. Liebel, and C.C. Ling. Late rectal bleeding after conformal
radiotherapy of prostate cancer. II. volume effects and dose-volume
histograms. Int. Journal Radiation Oncology Biol. Phys, 49(3):685–
698, 2001.

[KJ97] R. Kohavi and G.H. John. Wrappers for feature subset selection,
1997.

[LGG01] N. M. Luscombe, D. Greenbaum, and M. Gerstein. What is bioinfor-
matics? A proposed definition and overview of the field. Methods Inf
Med, 40(4):346–358, 2001.

[LGW06] C.H. Lee, R. Greiner, and S. Wang. Using query-specific variance
estimates to combine Bayesian classifiers, 2006.

[LHF05] N. Landwehr, M. Hall, and E. Frank. Logistic model trees. Machine
Learning, 59(1-2):161–205, 2005.

57

[LK02] K. Lukasz and J.C. Krzysztof. Ensemble of classifiers to improve
accuracy of the clip4 machine-learning algorithm. In Belur V.
Dasarathy, editor, Sensor Fusion: Architectures, Algorithms, and Ap-
plications VI, volume 4731, pages 22–31. SPIE, 2002.

[Lus07] C.M. Luscombe. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer, October 2007.

[Mac67] J.B. MacQueen. Some methods for classification and analysis of mul-
tivariate observations. In Proceedings of 5th Berkeley Symposium on
Mathematical Statistics and Probability, pages 281–297, 1967.

[MDD+09] L. Marret, P. De, D. Dryer, L. Ellison, E. Grunfeld, H. Logan,
M. MacIntyre, L. Mery, H. Morrison, and H.K. Weir. Canadian
cancer statistics 2009. Technical Report ISSN 0835-2976, Canadian
Cancer Society, www.cancer.ca, April 2009. Toronto.

[Mit97] T. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[Pea88] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1988.

[PZS+02] A. Pollac, G.K. Zagars, G. Starschall, J.A. Antolak, J.J. Lee,
E. Huang, A.C. von Eschenbach, D.A.Kuban, and I. Rosen. Prostate
cancer radiation dose response: results of M.D. Anderson phase
III randomized trials. Int. Journal Radiation Oncology Biol. Phys,
53:1097–105, 2002.

[QSY07] A. Quinn, A. Stranieri, and J. Yearwood. Classification for accuracy
and insight: A weighted sum approach. In Peter Christen, Paul J.
Kennedy, Jiuyong Li, Inna Kolyshkina, and Graham J. Williams, edi-
tors, AusDM 2007, volume 70 of CRPIT, pages 203–208, Gold Coast,
Australia, 2007. ACS.

[Qui86] J.R. Quinlan. Induction of decision trees. In Machine Learning,
pages 81–106, 1986.

[RPF04] P. Reutemann, B. Pfahringer, and E. Frank. A toolbox for learning
from relational data with propositional and multi-instance learners. In
G. I. Webb and X. Yu, editors, Proc 17th Australian Joint Conference
on Artificial Intelligence, volume 3339 of LNAI, pages 1017–1023,
Cairns, Australia, 2004. Springer.

[SNP] DNA microarrays. Retrieved Dec. 25 2009, from
http://www.ncbi.nlm.nih.gov/About/primer/
microarrays.html.

[Tib96] R. Tibshirani. Regression shrinkage and selection via the lasso. Jour-
nal of the Royal Statistical Society, Series B, 58:267–288, 1996.

[UCI] UC Irvine machine learning repository. Retrieved Dec. 25 2009, from
http://archive.ics.uci.edu/ml/.

[WZ07] S. Wang and J. Zhu. Improved centroids estimation for the nearest
shrunken centroid classifier. Bioinformatics, 23(8):972–979, 2007.

58

[zyg] Gene combinations picture. Retrieved Dec. 25 2009, from http:
//www.fao.org/docrep/006/x3840e/X3840E04.gif.

59

Appendix A

Details of Experimental Results

In this section, we explain the details of our experiments for each classifier on PCRT

dataset. It should be noted that, the optimal number of features is a parameter that

should be set in each fold using another layer of cross-validation. The way we are

doing it here, that is having a set of choices for the parameter and announcing the

parameter leading to best result, leads to optimistic evaluation of performance of

classifier. We designed our experiment in this way on purpose, so that we can more

quickly find the promising classification methods and then set the parameters in a

second stage only for that classifiers. However, the optimistic results are all below

or around baseline. That is they are so bad that we do not see any need to find the

actual accuracy with correct way of parameter setting.

A.1 Decision Tree and Decision Table Experiments

We used C4.5 decision tree in the first experiment. In this and next four sections,

independent of the classifier used we considered using k top features based on infor-

mation gain for k ∈ {5, 10, 100, 500, 1000}. Table A.1 shows the training and test

error in 10-fold cross-validation experiments related to each number of features.

The best test accuracy is 58.54%, which happens when we select 100 features.

Next, we used decision tables and achieved a 63.41% accuracy corresponding

to 500 features. The training accuracy is 91.46% here (Table A.2). We used Weka

implementation of the algorithms of this section [RPF04].

60

Features Selected Training Accuracy (%) Test Accuracy (%)
5 84.15 47.56
10 97.56 46.34

100 96.34 58.54
500 97.56 48.34

1000 96.34 41.46

Table A.1: C4.5 Decision Tree Results

Features Selected Training Accuracy (%) Test Accuracy (%)
5 80.49 50
10 85.37 46.34

100 87.80 58.54
500 91.46 63.41

1000 91.46 60.77

Table A.2: Decision Table Results

A.2 Naive Bayes Experiments

In this experiment, we used a naive Bayes classifier. The train and test classifica-

tion accuracy using 10-fold cross-validation can be seen in Table A.3. The highest

test accuracy is 64.63% and happens when we select 500 features. The correspond-

ing training accuracy is 100%. We used Weka implementation of this algorithm

[RPF04].

Features Selected Training Accuracy (%) Test Accuracy (%)
5 95.12 54.88
10 98.78 48.78

100 100 54.76
500 100 64.63

1000 100 62.20

Table A.3: Naive Bayes Classifier Results

A.3 Simple Logistic Regressor

In this experiment, we used simple logistic regressors [LHF05]. Again the best clas-

sification accuracy which is 67.07% is related to 500 features with a corresponding

61

100% train accuracy (Table A.4). We used Weka implementation of this algorithm

[RPF04].

Features Selected Training Accuracy (%) Test Accuracy (%)
5 95.12 48.78
10 100 53.66

100 100 62.20
500 100 67.07

1000 100 65.85

Table A.4: Simple Logistic Regressor Used as a Classifier Results

A.4 SVM Experiments

The best accuracy happens when we select the top 100 features which is 65.85%.

The corresponding training accuracy is 100% (Table A.5). We used Weka imple-

mentation of this algorithm [RPF04].

Features Selected Training Accuracy (%) Test Accuracy (%)
5 95.12 47.56
10 98.78 52.44

100 100 65.85
500 100 63.41

1000 100 62.20

Table A.5: SVM Results

A.5 Lasso Experiments

We tested Lasso as another strong classifier. The parameters we needed to set for

Lasso was the number of iterations and λ. The number of iterations is an upper

bound on the number of features. We considered 5, 10, 30, 50, 100, and 500 as the

number of iterations, and 0, 0.001, 0.01, 0.1, 1, 10, 100, and 1000. as the values for

parameter λ. Table A.6 shows the results achieved using 10-fold cross-validation.

The best accuracy here is 62.5% using 1000 features and λ = 1000.

62

λ 5 10 30 50 100 500
0 41.50 46.50 44 46 48.25 48.50

0.001 53.50 52.25 51 55 40 47.75
0.01 44.75 39.75 40 42.50 43.75 48.5
0.1 53 57.50 43 46.75 56.75 44.25
1 51.25 51.50 39 34 53 58.25

10 50.25 41.50 39.25 38 39.75 45.25
100 51.25 47.75 47.75 38 45 47.25

1000 62.5 50 42.25 43.75 42.75 54.25

Table A.6: Lasso Test Accuracy Results

The best Lasso result is 48.5% when number of iterations is 500 (Table A.6).

The corresponding train accuracy is 96.34%. The best Lars result is 62.5% with

λ = 1000 and 5 iterations.

A.6 Principal Component Analysis

The goal of this set of experiments is to use principal component analysis (PCA)

as a feature extraction method [Jol02]. We first extracted 81 principal components.

We have 82 samples so these are all of the principal components. Then we selected

the first k components where k ∈ {5, 10, 20, 81}. Then we use a classification

algorithm on the reduced data. To make sure that our classification algorithm is not

weak, we tested four different methods. Since PCA is only a transformation and

does not use the class value, it is not needed to infold application of it. Table A.7

shows the results.

classifier 5 10 20 81
Naive Bayes 53.66 47.56 51.22 58.54

SVM 62.20 62.20 54.88 57.32
5-nearest neighbour 54.88 52.44 52.44 58.54

C4.5 62.20 62.20 57.32 56.10

Table A.7: Accuracy Results of PCA, followed by Different Classification Methods

63

A.7 Bagging

We used bagging [Bre96], as an ensemble method to compare with SMUV and

FMUV ensemble methods. In this method each classifier in the pool is trained on a

subset of samples selected by bootstrap sampling. Table A.8 shows the results.

Features Selected Test Accuracy (%)
5 54.88

10 53.66
100 56.10
500 52.44
1000 58.54

Table A.8: Bagging Results

A.8 Boosting

We used boosting [FS96], as another ensemble method to compare with SMUV

and FMUV ensemble methods. In this set of experiments, we used Adaboost as the

classifier. Table A.9 shows the results.

Features Selected Test Accuracy (%)
5 50

10 53.66
100 63.07
500 57.32
1000 54.88

Table A.9: Boosting Results

A.9 SMUV Experiments

In these set of experiments again for each fold we selected 5, 10, 100, 500 or 1000

features from training data and learned a pool of naive Bayes classifiers on the

reduced data. Each classifier in the pool uses a training set generated by bootstrap

sampling. The results are then combined using original MUV combination rule.

64

Table A.10 shows the training and testing error for different number of features.

These results show that the best test accuracy is related to 500 features. However, it

is 62.2% that is no better than our baseline. The training accuracy for 500 features

is 100%.

Features Selected Training Accuracy (%) Test Accuracy (%)
5 93.90 45.12
10 98.78 52.44

100 100 54.88
500 100 62.20

1000 100 50

Table A.10: SMUV Results

A.10 FMUV Experiments

In this section we report our experiments on FMUV classifiers where each classifier

uses a subset of features. We assume our classifiers are unbiassed. When features

used by different classifiers do not have any overlap, the FMUV and SMUV combi-

nation rules will be the same. In Section A.10.1 we report our experiments on such

a classifier. In section A.10.2 we report our experiments where classifiers do have

overlap in features they use.

A.10.1 Classifiers without Feature Overlap

In the experiments of this section, we use 10-fold cross-validation for evaluation.

We use in-fold feature selection to pick the 2000 most informative features with re-

spect to class variable. Then we cluster them to k clusters for k ∈ {5, 50}. We form

5 groups of features using three methods of selecting features from each cluster.

Features are selected and removed from cluster without replacement using one of

these methods:

• Method 1: Select the next random feature.

• Method 2: Select the next best feature.

65

• Method 3: Select the next least correlated feature with the features selected

so far for the classifier.

Then we learn 5 naive classifiers on these 5 feature sets and combine their results

using FMUV combination rule.

Number of clusters Method 1 Method 2 Method 3
5 57.32 52.44 57.32

50 52.44 60.98 62.20

Table A.11: FMUV Test Accuracy Results without Replacement

A.10.2 Classifiers with Feature Overlap

Table A.12 shows the results when we impose overlap between features used by

classifiers. Again, we learn 5 naive Bayes classifiers and combine their results.

Number of clusters Method 1 Method 2 Method 3
5 53.66 62.20 62.20

50 62.20 62.20 62.20

Table A.12: FMUV Test Accuracy Results with Replacement

A.11 Best Results on Benchmark Datasets

We report the best results ever on benchmark datasets used in Section 5.2. To the

best of our knowledge, the best classification accuracy for Spect Heart dataset is

90.4% [LK02], for Chess dataset is 99.2% [Hol93], for Vote dataset is 97.01%

[QSY07], for Corral dataset is 100% [GZ02] and mofn-3-7-10 dataset is 100%

[GZ02].

66

