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Abstract

This thesis presents Pathway Informed Analysis (PIA), a classification method for predicting

disease states (diagnosis) from metabolic profile measurements that incorporates biological

knowledge in the form of metabolic pathways. A metabolic pathway describes a set of chem-

ical reactions that perform a specific biological function. A significant amount of biological

knowledge produced by efforts to identify and understand these pathways is formalized in

readily accessible databases such as the Kyoto Encyclopedia of Genes and Genomes. PIA

uses metabolic pathways to identify relationships among the metabolite concentrations that

are measured by a metabolic profile. Specifically, PIA assumes that the class-conditional

metabolite concentrations (diseased vs. healthy, respectively) follow multivariate normal

distributions. It further assumes that conditional independence statements about these dis-

tributions derived from the pathways relate the concentrations of the metabolites to each

other. The two assumptions allow for a natural representation of the class-conditional dis-

tributions using a type of probabilistic graphical model called a Gaussian Markov Random

Field. PIA efficiently estimates the parameters defining these distributions from example

patients to produce a classifier. It classifies an undiagnosed patient by evaluating both

models to determine the most probable class given their metabolic profile.

We apply PIA to a data set of cancer patients to diagnose those with a muscle wast-

ing disease called cachexia. Standard machine learning algorithms such as Näıve Bayes,

Tree-augmented Näıve Bayes, Support Vector Machines and C4.5 are used to evaluate the

performance of PIA. The overall classification accuracy of PIA is better than these algo-

rithms on this data set but the difference is not statistically significant. We also apply PIA

to several other classification tasks. Some involve predicting various manipulations of the

metabolic processes performed in experiments with worms. Other tasks are to classify pigs

according to properties of their dietary intake. The accuracy of PIA at these tasks is not

significantly better than the standard algorithms.
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Chapter 1

Introduction

This thesis considers the problem of diagnosing a disease from the metabolic profile of a
patient. A metabolic profile quantifies the concentrations of various chemical compounds,

called metabolites, that are present in the body. Metabolites are small molecules pro-

duced by breaking down larger molecules and consumed to build other molecules that

the body needs through processes called catabolism and anabolism respectively [37]. To-

gether these processes compose the metabolism of an organism. Here, we focus on a disease
called cachexia that occurs when the body catabolizes its own muscle tissue. Intuitively, a

metabolic profile will convey some information relevant to the cachexic state of a patient.

Catabolism of muscle tissue produces various metabolites that we expect to increase in

concentration in affected patients. Currently, no simple diagnostic rule based on metabolite
concentrations exists for cachexia however. Positively diagnosing cachexia currently requires

an expert to examine diagnostic images of a patient, such as those from computerized to-

mography (CT) scans, at two different time points to identify a loss of muscle mass [35]. The

goal is to develop an automated disease diagnosis tool for a disease such as cachexia. Our

approach is unique because it combines knowledge of human metabolism with known exam-
ples of patients that are positive and negative for that disease. These examples are in the

form of a single metabolic profile for each patient. The underlying ideas are general enough

that they are potentially applicable to diagnosing any disease affecting the metabolism of a

patient.
This type of problem fits naturally into the framework of supervised machine learning.

In this setting, the goal is to produce a model that can classify objects based on some

description of them. For the problem of disease diagnosis, patients are described by their

metabolite concentrations and they are from one of two categories: they have the disease or

they do not. The model is typically derived from examples of each of the relevant categories.
An algorithm that produces a classifier from examples previously classified by a domain

expert is called a learning algorithm. Research in supervised machine learning has produced

numerous learning algorithms to address these classification problems. Implementations

of these algorithms that can produce diagnosis tools based on metabolic profile data are
readily available. Performance of these tools is measured by their accuracy at diagnosing

new patients. Our experience with some standard machine learning methods shows that

they incorrectly diagnose many patients. This thesis attempts to improve on these results

by taking advantage of an easily accessible and intuitively useful form of expert biological

knowledge.
We consider knowledge of metabolic pathways to improve classification accuracy for

metabolic profile data. A metabolic pathway is a set of chemical reactions that perform

a specific function [37]. These reactions are linked to each other in sequences where the

products of one reaction are consumed in the next. Human metabolism involves many such
pathways that have been elucidated over decades of biological research. Databases such as
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the Kyoto Encyclopedia of Genes and Genomes (KEGG) formalize the description of these

pathways for a variety of organisms. In KEGG, pathways relate metabolites via the reaction

equations that compose the known metabolic pathways for each organism [28]. We expect
that knowing how measured metabolites participate in chemical reactions with each other

in the body will improve the performance of classifiers based on metabolic profile data. This

thesis considers an interpretation of the metabolic pathways as probabilistic independence

statements about the distributions of metabolite concentration values. Graph structures are
a natural way to represent metabolic pathways leading to consideration of classifiers based

on probabilistic graphical models.

We develop a diagnosis tool around these ideas called Pathway Informed Analysis (PIA).

The system effectively incorporates expert biological knowledge of metabolic pathways and

it efficiently learns parameters from a data set of example metabolic profiles. Evaluating
the model learned by PIA to diagnose a new patient is also efficient. PIA results in better

accuracy than standard classification methods on metabolic profile data from cancer patients

with and without cachexia. The difference between PIA and the other methods is not

statistically significant however. This suggests that metabolic pathways from KEGG may
provide some benefit in performing classification based on metabolic profile data.

1.1 Motivation

One reason that classifiers based on metabolic profile data are easy to implement is be-

cause a usable biological sample is relatively easy to obtain. Our cachexia data set contains

metabolic profiles derived from urine samples. Urine is a biological fluid that is mini-
mally invasive to acquire and that is routinely collected from patients. Intuitively, urinary

metabolic profiles should convey some signal indicating the cachexic state of a patient. As

suggested, we expect that catabolism of muscle tissue will increase the concentrations of

certain metabolites in the body. Some of these metabolites are waste products that are
removed from the body via urine [18]. For reasons discussed below, retrieving this signal

from urinary metabolic profiles is a challenging task. It is possible to obtain metabolic

profiles from other samples such as blood or tissue. Muscle tissue samples are desirable for

diagnosing cachexia because this is where the disease takes place but these samples require

removing a portion of muscle tissue from a patient. This is a much more invasive procedure
than collecting a urine sample. Our goal is to take advantage of the more readily available

form of data by using biological knowledge to overcome its limitations.

Extensive knowledge of human metabolism in the form of metabolic pathways is available

in databases such as KEGG. This knowledge is provided in a format that is easily parsed to
retrieve information about the pathways including the reactions and metabolites that com-

pose them. Previous research has considered graph representations of metabolic pathways

and has produced a number of possibilities. Graph structures are the basis for graphical

models that provide a way to represent probabilistic independence statements about a set

of variables and to compactly represent probability distributions over them [30]. The com-
pactness of the representation is greater the smaller the number of nodes and edges in the

underlying graph. Because metabolic pathway graphs are sparse, PIA should benefit from a

reduction in the number of parameters it must learn to represent distributions over metabo-

lite concentrations. Fewer parameters reduces the likelihood of overfitting, a phenomenon
where a learned model captures too much of the noise in a data set and fails to accurately

classify future examples [22]. We hypothesize that PIA will learn more accurate parameter

values that will result in better classification performance when compared to other learning

algorithms.

Computational diagnosis of cachexia from metabolic profiles is potentially more efficient
than current approaches. These approaches are based on diagnostic images of a patient

2



acquired at two different times that an expert analyzes to determine if the patient has lost

muscle mass or not [35]. The time between these images represents a delay that contributes

to the poor prognosis of cachexia [36]. Naturally, an early positive diagnosis of a disease
means that treatment for it can start sooner. An automated diagnosis tool based on single

time point urinary metabolic profiles would reduce the time needed to make a positive di-

agnosis of cachexia. This is an important achievement because often cachexia is associated

with cancer. For a cachexic patient, certain cancer treatments are harmful [33, 34], thus ef-
ficiently diagnosing cachexia in patients with cancer is important for their cancer treatment

as well. In addition, an automated diagnosis system may reduce the amount of intervention

required from trained human experts, freeing them for other tasks. Applying machine learn-

ing techniques to make diagnoses from urinary metabolic profiles poses significant challenges

however.

1.2 Challenges

Cachexia diagnosis from urinary metabolic profile data is challenging for several reasons.

The relevant biological state of this disease occurs within the muscle tissue of an affected

patient. A urine sample only indirectly reflects this state because all bodily tissues produce
waste products that are excreted via the urine [18]. Thus, the waste products that we expect

to increase in concentration when muscle is catabolized are diluted with the waste products

from other biological processes. Relevant concentration changes indicative of cachexia are

more difficult to detect as a result. As suggested, muscle tissue is a possible source for

metabolic profiles but acquiring the samples is more invasive of the patient. PIA seeks to
address the challenges of working with more easily acquired urinary metabolic profile data.

Another problem specific to urinary metabolic profiles is related to kidney function.

The kidney is an organ that actively influences the metabolites that appear in the urine.

Through a process called re-uptake, the kidneys selectively draw certain useful metabolites,
some produced by muscle catabolism, from the urine back into the body before the urine is

excreted [18]. The efficiency of this process is limited however, thus some useful metabolites

will appear in a urine sample. The selectivity of the process interferes with detection of

concentration differences between positive and negative patients. Urinary metabolite con-

centrations for waste metabolites and useful metabolites reflect their actual concentrations
in the body differently. The metabolic pathway knowledge that PIA uses may suggest that

the concentrations of metabolites on the same catabolic pathway are all elevated in cachexic

patients but kidney function makes this less apparent in the data.

Working with urinary metabolic profile data from patients poses challenges specific to
human subjects. In addition to disease, many factors influence urinary metabolite concen-

trations such as age, sex, diet, drugs, etc. Digestion of certain food produces byproducts

similar to those produced by muscle catabolism for example. These factors are not con-

trolled in our cachexia data set. Naturally, it is difficult to control these variables in a

population of human patients. All of these factors contribute noise with respect to disease
state in the measured metabolite concentrations because they are mostly irrelevant to the

correct diagnosis. Factors such as these complicate the process of learning effective disease

classifiers from a human metabolic profile data set.

The cachexia data set that we consider here is limited in some other ways as well. It
contains 73 patients, each with a single metabolic profile derived from a spot urine sample.

These are samples that are taken at a single time point, thus the metabolic profiles exhibit

higher variability than those based on samples taken over a period of time such as 24

hour urine samples. Each metabolic profile in the data set contains 63 measured metabolite

concentrations, a number that is large relative to the number of patients. The dimensionality
of the metabolic profile measurements is problematic for another reason as well. The 63
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measured metabolites represent only a small fraction of the approximately 1,500 metabolites

represented in the full set of human metabolic pathways in KEGG. Constructing graphical

models that directly represent these pathways is not feasible because they would contain far
too many unobserved (latent) variables to handle effectively. Although we cannot change

the properties of the data set, we will consider various approaches to eliminating latent

variables from the models that PIA uses. A related problem is that only some of the 63

measured metabolites are represented in the set of KEGG metabolic pathways. Those that
are not represented require special handling to avoid losing this portion of the data set.

1.3 Assumptions

PIA makes several assumptions that help it address the challenges outlined above. These

assumptions are necessary because most machine learning algorithms were not designed to

incorporate the type of expert knowledge that we are considering. They are made in order
to incorporate metabolic pathways into PIA in a way that allows for efficient parameter

learning and model evaluation to diagnose new patients. Supervised machine learning al-

gorithms generally assume that a data set of classified examples is provided from which

to derive a classification model. Metabolic pathways constitute a different form of input.
PIA assumes that graph structures are an appropriate representation for metabolic path-

way knowledge because graphs are a natural representation for computational analysis. The

result is a classification problem involving noisy measurements of multiple variables and a

graph structure relating the variables. Probabilistic graphical models are an appropriate

choice to address this type of problem.
Using KEGG metabolic pathways to derive a probabilistic graphical model structure

rests on the assumptions that the KEGG pathways are correct and complete. Correctness

means that there are no errors in the pathways that KEGG contains. Completeness implies

that KEGG contains all known pathways, including all of their constituent reactions. The
latter assumption is false because KEGG is missing some of the metabolites in our data set

and known reactions involving them. We take steps to correct these problems (described

in Appendix A) because of their relevance to the metabolic mechanisms of cachexia. In

general, we do not know how faithful KEGG is in representing human metabolism but there

are reasons to believe that the two assumptions are mostly correct. First, metabolism is
well studied and understood at a high level of abstraction. Detailed parameters governing

metabolic reactions such as reaction rates are not well understood for all reactions but the

metabolites and their participation in metabolic reactions are [37]. KEGG originated in

1995 and it is one of several competing metabolic pathway databases [26]. The literature
does not suggest that KEGG is inferior to any of these at meeting the requirements of PIA.

It is possible that none of these databases contains an adequate representation of metabolic

pathways to support the probabilistic interpretation we apply to them however.

KEGG metabolic pathways and probabilistic graphical models both have semantics that

PIA must unify in an appropriate manner. The graph structure of a probabilistic graphi-
cal model encodes conditional independence statements about its associated variables [30].

Thus, PIA assumes a probabilistic interpretation of metabolic pathways to model distribu-

tions of metabolite concentrations in a meaningful way. Metabolic pathways in KEGG are

described as sets of chemical reaction equations. From these equations, PIA can determine,
for any metabolite v, the set of metabolites N(v) that are involved with v in some reaction.

Suppose that the concentration value of each metabolite in the set N(v) is measured. PIA

assumes that the concentration of v is independent of every other metabolite in the body

given these measurements. This makes sense because, according to KEGG, there is no way

to directly influence the production of consumption of metabolite v that does not involve
the metabolites in N(v). Conditional independence statements about metabolite concentra-
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tions of this form lead to a simple method for constructing a graph from a set of metabolic

pathways as described in Section 3.2.

PIA makes the additional assumption that all metabolic reactions can operate in both
directions. Although true for many reactions, some only convert matter in one direction

[37]. For these, the substrate metabolites and the products that are derived from them

are fixed. PIA assumes that the sets of substrates and products in a reaction are always

interchangeable. This assumption is convenient in the context of probabilistic graphical
models because it is difficult to accommodate graph structures with directed cycles. We are

not aware of a sensible graph representation of metabolic pathways that avoids cycles. To

address this problem, PIA will consider only undirected graph structures because graphical

models based on them effectively incorporate cyclic graphs. The assumption is also mild

from a biological perspective. Most metabolic reactions depend on an enzyme to catalyze
them. Because of the way these enzymes work, concentrations of product metabolites can

affect the concentrations of the metabolites used to produce them. Thus, concentration

changes can propagate backward through irreversible reactions even if actual matter does

not [45].
Another assumption is related to the steady state of metabolic reactions. When a reac-

tion is in steady state, the rates that it consumes substrate metabolites and produces product

metabolites are equal [37]. Because our data set contains a single time point metabolic pro-

file for each patient, PIA implicitly assumes that the entire metabolic network is in steady

state with respect to the cachexic state of the patient. This means that when the disease
occurs, it exerts some change on the consumption and production rates of each metabolic

reaction. After the initial changes, the disease does not continue to effect changes in these

rates. From the perspective of the classifier, factors other than the disease of interest that

influence them are summarized in the metabolic profile measurements as noise. Thus, PIA
does not assume that the reactions themselves are in steady state. It only assumes that the

disease of interest is not characterized by changing rates of consumption and production of

metabolites. Classifiers for a disease with this characteristic would benefit from metabolic

profile measurements taken at multiple time points.

PIA further assumes that the class-conditional metabolite concentrations follow multi-
variate normal distributions to ensure efficient learning and inference. This means that the

metabolic profiles of diseased patients are described by a multivariate normal distribution

and those of healthy patients follow a different multivariate normal distribution. The as-

sumption is not entirely unrealistic because metabolic profile measurements are continuous
values and the univariate distributions of these values are approximately unimodal. It allows

PIA to take advantage of a type of undirected graphical model called a Gaussian Markov

Random Field (GMRF). Parameter learning and classification of undiagnosed patients are

both computationally efficient with these models.

1.4 Classification Technique

To more formally outline the classification technique of PIA, this section introduces notation

used throughout this thesis. The metabolic profile of a patient r is denoted by a vector

xr = (xr1, xr2, . . . , xrp)
T that contains concentration values for p measured metabolites.

Specifically, the variable xri ∈ R represents the concentration value of metabolite i for the
patient r. A generic metabolic profile, without reference to a specific patient, is denoted

by x = (x1, x2, . . . , xp)
T . A patient r has an associated class cr ∈ {+,−} that indicates

their disease state. The class cr = + indicates that patient r is positive for the disease

whereas cr = − indicates that r is negative for it. PIA assumes that it is provided a data

set D containing some number of example patients n = n+ + n− where n+ are positive and
n− are negative. It further assumes that the correct class cr is given for each patient in
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the data set. PIA learns a model from these examples that accurately predicts the class of

undiagnosed patients based only on their metabolic profiles.

As noted above, PIA assumes that a metabolic profile xr follows one of two multivariate
normal distributions. Metabolic profiles of positive patients are distributed according to

one and those of negative patients according to the other. These distributions are called

class-conditional distributions because they depend on the class of the patient. A multi-

variate normal distribution is usually described by two parameters: a mean vector µ and a
covariance matrix Σ. The probability density function is

P (xr | µ,Σ) =
1

(2π)p/2|Σ|1/2
exp

(

−
1

2
(xr − µ)TΣ−1(xr − µ)

)

for the given parameters [30]. The development of PIA is oriented around the inverse of the

covariance matrix Σ−1. For convenience, we denote this matrix, also called the precision
matrix [30], byK = Σ−1. Note that we can parameterize the density function withK instead

of Σ by replacing Σ with K−1. Since PIA is concerned with class-conditional distributions,

we must distinguish between the class-conditional parameters. We use µ+ and K+ (or

Σ+) to denote the parameters of the distribution for the positive patients and µ− and K−

(or Σ−) for the negative patient distribution. The learning component of PIA consists of

estimating these parameter values from the metabolic profiles of example patients given

a graph structure describing conditional independence statements about the distributions.

Various algorithms employed by PIA for this task are discussed in Chapter 4.

After estimating the class-conditional parameter values, PIA classifies a new patient r
with metabolic profile xr as follows. PIA assigns the patient class cr as positive for the

disease if

P (cr = + | xr) > P (cr = − | xr)

and as negative otherwise. Unfortunately, the posterior probability values P (cr = + | xr)
and P (cr = − | xr) are not directly computable from the learned parameters. PIA can

use these learned parameters to compute the class-conditional densities P (xr | cr = +) and

P (xr | cr = −) however. The posterior probability values are then computed indirectly using

Bayes’ rule [30]. For example

P (cr = + | xr) =
P (xr | cr = +)P (cr = +)

P (xr)

and similarly for P (cr = − | xr). The classification rule is now equivalent to

P (xr | cr = +)P (cr = +) > P (xr | cr = −)P (cr = −)

where the denominator terms P (xr) are dropped because they cancel each other. Computing

the values in this rule requires the class prior probabilities P (cr = +) and P (cr = −) but

these are easily computed by counting patients in the data set, for example P (cr = +) = n+

n .
Although this method can be employed as described with no prior biological knowledge,

PIA is based on the hypothesis that incorporating this knowledge will improve classification

accuracy.

PIA takes advantage of metabolic pathway knowledge through its use of GMRF models.

A GMRF model represents a multivariate normal distribution by explicitly incorporating
conditional independence statements about the variables in the distribution [30]. These

conditional independence statements are represented as an undirected graph where each

node corresponds to a variable and each edge encodes a dependence between two variables.

In particular, the value of a variable is independent of the other variables given the values
of its neighbors in the graph [30]. Section 3.2 discusses various graph structure representa-

tions of metabolic pathways. We will show that one approach yields conditional indepen-

dence statements with an intuitively appealing interpretation. Under this interpretation,
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the concentration of a metabolite is independent of all others given the concentrations of the

metabolites participating in a common reaction with it. Knowing conditional independence

statements such as these has immediate relevance for the way that PIA learns parameters.
The undirected graph structure of a GMRF describes a pattern of zero-valued elements

in the precision matrix of the corresponding distribution. The precision matrix element

corresponding to two variables is zero if the nodes corresponding to those variables are

not joined by an edge [30]. Because most metabolites participate in only a few reactions as
observed in KEGG, we expect that a graph of all metabolic pathways will be sparse. In other

words, the graph will contain few edges resulting in many zero-valued elements. Knowing

that an element of the precision matrix is zero means that PIA does not have to estimate

it from the data set. This is important because it reduces the possibility that the learning

algorithm will overfit the data causing poor performance on undiagnosed patients [22]. A
GMRF structure derived from a set of metabolic pathways implies a set of constraints on the

precision matrix of the distribution. Fortunately, efficient algorithms exist that can perform

parameter estimation for multivariate normal distributions subject to these constraints.

PIA employs these to learn the parameters of the distributions corresponding to positive
and negative patients.

1.5 Contribution

This thesis develops a tool called PIA that diagnoses a single disease from the metabolic

profile of a patient. It learns to distinguish patients with the disease from those without

by analyzing example metabolic profiles of patients from both categories. PIA incorporates
biological knowledge through a novel probabilistic interpretation of metabolic pathways as

conditional independence statements about the joint distribution of metabolite concentra-

tions. This interpretation allows PIA to take advantage of existing learning algorithms based

on probabilistic graphical models. The contribution of this thesis is a description of how to
make a disease classifier from existing components. In the chapters that follow, we describe

the ideas that PIA employs to address the challenges outlined above. The resulting system

is general enough that it is applicable to any diagnosis problem based on metabolic profile

measurements. Additional ideas for extending and possibly improving PIA are suggested as

well. PIA is evaluated empirically using a data set of urinary metabolic profiles from real
cancer patients with and without cachexia.

Several well-established machine learning algorithms are used to provide a benchmark

for evaluating PIA. The algorithms include Näıve Bayes, Tree-augmented Näıve Bayes,

Support Vector Machines and C4.5 decision trees. We use cross validation to determine the
overall accuracy of each approach on all patients in the data set. The results show that

PIA obtains higher classification accuracy than any other method. The difference between

PIA and the other top performing algorithms is not statistically significant however. Thus

it is not clear from our work that PIA is a superior method for diagnosing patients from

their metabolic profiles. PIA is based on several assumptions discussed above that may
limit the best performance that it can achieve. To our knowledge, this is the first attempt

to incorporate metabolic pathway knowledge and metabolic profile data into a supervised

learning algorithm.
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Chapter 2

Background

The development of the PIA system depends on fundamental concepts from biology and
machine learning. PIA incorporates knowledge about certain chemical compounds involved

in human metabolism and their interactions with each other. Here, we discuss this knowledge

including how it is organized in a biological database called the Kyoto Encyclopedia of Genes

and Genomes (KEGG). Ideas from machine learning are important to the development of

PIA as they provide the foundation of the system as a disease classifier. These ideas are
also important because we will evaluate the performance of PIA by comparing it to existing

machine learning methods.

2.1 Metabolic Profiles

Metabolic profiles quantify the concentration of various chemical compounds in a biological
sample. These compounds, called metabolites, are small molecules that are consumed to

make the large molecules that the body needs and are produced by breaking down those

that are not needed [37]. Intuitively, a metabolic profile can help diagnose cachexia because

the disease is an abnormal breakdown of muscle tissue that produces some of the measured

metabolites. A metabolic profile can be derived from different samples including urine,
blood and tissue. From the perspective of a classifier, the sample source most relevant to

the disease of interest is ideal but, for human patients, a sample that is minimally invasive to

collect is desirable. The ideal sample source for cachexia is muscle tissue because this is where

the disease occurs. Here, we focus on urine samples to quantify metabolite concentrations
as these are easier to collect.

The quantification of metabolites is performed via a process called nuclear magnetic

resonance (NMR) spectroscopy. Jacobsen describes the process as follows [24]. The NMR

spectroscopy technique focuses on one particular atom. For example, our cachexia data set

focuses on the 1H atom, an isotope of hydrogen, thus it is called 1H-NMR spectroscopy.
When put into a magnetic field, nuclei of this atom resonate at a certain known frequency.

Within a particular compound, various atoms are joined together in an arrangement unique

to that compound. Atoms joined to 1H atoms influence its resonant frequency, shifting

it slightly depending on the specific arrangement. These shifts are also known, thus each
compound produces a unique signature in the spectrum of resonant frequencies. Experts

can identify compounds in the spectrum based on these signatures. An example spectrum

produced from a urine sample of a patient in our cachexia data set is given in Figure

2.1. Quantifying metabolite concentrations involves identifying the patterns of peaks in a

spectrum that correspond to different compounds. The intensity of the signal at a given
frequency is proportional to the amount of 1H resonating at that frequency. Experts can

determine the concentration of a compound by examining the intensities of its correspond-
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-0.2 ppm0.00.20.40.60.81.01.21.41.61.82.0

2.2 ppm2.42.62.83.03.23.43.63.84.04.24.4

Figure 2.1: Example 1H-NMR spectrum produced from a urine sample. Signal intensities
are plotted based on frequency shifts with respect to the resonant frequency of the 1H atom.
The magnitude of these shifts is on the order of 10−6 times this frequency, thus they are
given in parts per million (ppm).

ing peaks. This approach is called targeted profiling because it seeks to quantify specific
metabolites (targets) in the spectrum.

An alternative approach to analyzing a spectrum that can produce meaningful measure-

ments but avoids quantifying metabolite concentrations is called spectral binning. In this

approach, the spectrum is divided into some number of frequency ranges called bins. Each

bin becomes a variable with a value equal to the total signal intensity in the corresponding
frequency range [32]. These intensities are directly related to the concentrations of com-

pounds in the sample. This approach is simpler than targeted profiling because it avoids the

intervention of the NMR expert to interpret the peaks. Because the measurements no longer

correspond to metabolites, PIA cannot use them because it depends on metabolic pathway
knowledge. Pathways describe the ways that specific metabolites interact with each other

in various biological processes. It is not clear how to connect measurements from spectral

binning with the metabolites on these pathways.

2.2 Metabolic Pathways

Metabolites interact with each other via chemical reactions that take place within an or-
ganism. These reactions convert one set of metabolites into another and they are typically

catalyzed by a specific enzyme. An enzyme is a molecule that significantly increases the

rate that a reaction takes place [37]. The rates of most reactions in the absence of an en-

zyme catalyst are too slow for those reactions to accomplish anything useful. Although the
operation of an enzyme is complex and may perform several steps to complete a reaction, it

is generally viewed as a single discrete step of converting one or more substrate molecules
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into one or more products. Some reactions can occur in both directions, thus the role of

substrates and products switch depending on the state of the organism.

The reactions involved in metabolism are organized into metabolic pathways. Pratt
and Cornely discuss this organization along with several important metabolic pathways

in detail [37]. A metabolic pathway is a set of reactions that are linked to each other

through shared substrates and products. Within a pathway, these links indicate that a

product of one reaction becomes a substrate in another. Pathways are defined based on
the specific functions that they perform. There are two general categories of metabolic

pathways: catabolic and anabolic. Catabolic pathways break large molecules down into

smaller ones. These catabolic processes produce energy and the molecules needed to build

other large molecules that an organism needs. The formation of large molecules from smaller

ones is performed by anabolic pathways. Some pathways simultaneously perform functions
that are both anabolic and catabolic.

One important pathway that is both anabolic and catabolic is the Citric Acid Cycle,

also known as the Tricarboxylic Acid Cycle or the Krebs Cycle [37]. This pathway performs

several important functions such as producing energy for the body. It also eliminates un-
needed carbon atoms, in the form of CO2, produced by catabolizing other molecules. The

Citric Acid Cycle involves eight reaction equations. In these equations, a → indicates that

a reaction is unidirectional. Here the set of substrates on the left of the arrow are always

converted into the products on the right. Bidirectional reactions use ↔ to indicate that the

conversion of metabolites can occur in either direction. In order, the reactions of the Citric
Acid Cycle pathway are:

1. Oxaloacetate + Acetyl-CoA + H2O → Citrate + CoASH

2. Citrate ↔ Isocitrate

3. Isocitrate + NAD+ → α-Ketoglutarate + NADH + CO2

4. α-Ketoglutarate + CoASH + NAD+ → Succinyl-CoA + CO2 + NADH

5. Succinyl-CoA + GDP + Pi ↔ Succinate + GTP + CoASH

6. Succinate + Q ↔ Fumarate + QH2

7. Fumarate + H2O ↔ Malate

8. Malate + NAD+ ↔ Oxaloacetate + NADH + H+

These reactions are linked together such that a product of one reaction becomes a substrate

in the next. The links of the Citric Acid Cycle pathway are indicated by the underlined

metabolites. For example, the first reaction produces citrate that is then consumed in the
second reaction. As the name suggests, the Citric Acid Cycle also has the property that

the pathway is cyclic. Thus, the oxaloacetate produced by the last reaction is reused as a

substrate in the first reaction.

In addition to the connections within a pathway, there are also connections between

pathways. The Citric Acid Cycle makes many connections to other pathways [37]. The Gly-
colysis pathway, for example, catabolizes glucose molecules to produce energy and pyruvate.

These pyruvate molecules are converted to acetyl-CoA, a substrate in the first reaction of this

pathway. Another example connection is via the metabolite α-ketoglutarate that is used to

synthesize many amino acids. Catabolism of certain amino acids produces α-ketoglutarate
as well. These kinds of connections imply that metabolism is a network of reactions and

molecules instead of a collection of individual pathways. PIA derives a graph representation

of the human metabolic network from a set of metabolic pathways from KEGG.
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Figure 2.2: The KEGG representation of the human Citric Acid Cycle pathway [27]. High-
lighted enzymes (rectangles) correspond to those that are encoded in the human genome.

2.3 Kyoto Encyclopedia of Genes and Genomes

KEGG is a collection of databases spanning a range of biological knowledge including
metabolic compounds, enzymes, reactions and pathways [27]. The primary motivation for

starting the project was to aid genome sequencing efforts. These efforts involve identifying

a set of genes in an organism and then determining what function each of them performs.

Many genes encode enzymes, thus it is desirable to know the identities of these enzymes

to determine the reaction(s) that they catalyze. KEGG contains this type of functional
information about genes in sequenced organisms. It also has information about the higher

level organization of genes in the form of pathways that describe how genes interact with

each other. One view of a metabolic pathway, for example, is as a sequence of genes that

encode the enzymes catalyzing successive reaction steps. The idea is that this high level
knowledge can help to assign functions to the genes of a new organism because different

organisms have similar pathways. For example, it can help to verify functional assignments

and identify missing assignments via incompletely assigned pathways [21]. PIA, however, is

based on an alternative view of the structure and purpose of metabolic pathway knowledge.

In addition to the set of enzyme genes on each metabolic pathway, KEGG also contains
the metabolites that participate as substrates and products in the reactions corresponding

to those enzymes. PIA derives its metabolic pathway representation from these metabo-

lite relations in contrast to a representation based on the interactions of enzyme-encoding

genes. The developers of KEGG suggested a graph representation of metabolite relations
where nodes represent metabolites and edges correspond to the reactions involving those

metabolites [21]. They argued that this graph could be used to identify pathways present in

an organism but did not consider a probabilistic interpretation of it in terms of conditional
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independence statements.

The KEGG representation of the human Citric Acid Cycle pathway discussed in Section

2.2 is shown in Figure 2.2. From this pathway representation, it is clear that KEGG includes
both enzymes and metabolites (as rectangles and circles respectively). Less clear is how to

retrieve this information about a pathway. KEGG stores each metabolic pathway as a

combination of pathways from the organisms for which it is known. After sequencing the

genome of an organism and assigning functions to the enzyme genes, enzymes can be mapped
onto these reference pathways to determine the organism-specific set of reactions for them

[21]. The highlighted enzymes in Figure 2.2 indicate enzymes that are encoded in the human

genome. As suggested by the enzymes not present in the human genome, other organisms

accomplish the function of this pathway with a different set of enzymes. Fortunately, the

human genome is already known, thus the information is available to help determine what
parts of the KEGG pathways to use in analyzing human metabolic profile data.

There are several reasons that we selected KEGG for the development of PIA. First,

the database originated in 1995 [26]. Since PIA depends on metabolic pathways, we are

particularly interested in this section of KEGG. Metabolic pathways were an early focus of
attention in the development of KEGG [27]. According to the developers, these pathways

were the best organized pathways in KEGG early in its development [21]. Another major

reason is the ease with which KEGG data can be incorporated into PIA. Information de-

scribing the needed components of the KEGG graphical pathway diagrams is available in

an easily parsed format. KEGG provides all the necessary data files instead of a limited
set of software programs or a narrow interface to access its information. This makes it easy

to take advantage of KEGG for tasks that were not envisioned by its creators. As noted

above, PIA represents a novel application metabolic pathways to develop a classifier that

diagnoses a disease from a metabolic profile.

2.4 Machine Learning

Classification is a fundamental problem addressed by the field of machine learning [22]. We

are interested in this area because the disease diagnosis task is an instance of a classification

problem. A classification problem involves objects that are described by a set of features and

that belong to one of several categories or classes. The goal in machine learning is to produce
a program, called a classifier, that is able to determine the correct category for an object

based only on its feature values. In the context of our disease diagnosis problem, the objects

are patients that are described by their metabolite concentration values. Thus, there is one

feature corresponding to each of the metabolites measured in a metabolic profile. A diagnosis
tool based on a machine learning classifier predicts whether or not an undiagnosed patient

has a disease given their metabolic profile. The metabolite concentrations are the input to

this program and the output is a diagnosis. Naturally, the more often these diagnoses are

correct, the better the underlying classifier is.

Classifiers are based on models that are derived from a set of example instances, each
correctly labeled with its corresponding class. The set of labeled example instances is called

a training set and the models are derived by a process called learning. This process is called

supervised learning because it depends on knowledge of the correct classes. As noted, we

want a classifier that accurately predicts the correct classes of future instances. Because
future data is not available by definition, we can estimate the performance of a learned

classifier by dividing the available data into two data sets called the training set and the

test set. The training set is used to learn a classifier that is then evaluated on the test set

where the correct classes of these instances are hidden. The predicted classes are compared

with the correct classes to measure accuracy as a percentage of correctly classified instances.
The learning and prediction processes vary for different machine learning algorithms. Several
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commonly used machine learning algorithms that we consider for our disease diagnosis task

are described below.

2.4.1 Algorithms

This section discusses the machine learning algorithms that we use to evaluate the ideas

presented in this thesis. Since our diagnosis problem is a binary classification task (a task

with two classes), we describe the algorithms in this context. These algorithms can be

generalized to handle problems with more than two classes but this typically introduces
additional complexity. Focusing on the simpler case simplifies the discussion and makes it

more relevant to our specific problem. The following standard machine learning algorithms

are used in this thesis.

• Support Vector Machines (SVM) are linear classifiers that seek a linear function
of the attributes f(xr) = w0 +w1xr1 +w2xr2 + . . .+wpxrp that can separate the two

classes from each other. In other words, points corresponding to metabolic profiles of

positive patients should occur on one side of the hyperplane defined by this function

and negative patients on the other side. If such a hyperplane exists then the data

points are linearly separable. In this case, there are potentially many hyperplanes
able to separate the classes. For any given hyperplane, one or more points from each

class are closer to it than the others in the same class. These points are called support

vectors and their distance from the hyperplane is called the margin. An SVM chooses

the hyperplane that maximizes the size of the margin based on the idea that this
choice yields the best generalization (see Section 2.4.4) to future points.

In general, a hyperplane that perfectly separates the training points may not ex-

ist. One approach to this problem is to map the data into a higher dimensional
feature space using kernel functions where it might become linearly separable. An

example of a commonly used kernel function is the radial basis kernel defined as

K(xq, xr) = exp(−γ‖xq − xr‖2) for γ > 0. The function K(xq, xr) is applied to all

pairs of training data points xq and xr (not necessarily distinct) prior to learning.
Since misclassifications may occur regardless of the feature space, SVMs are general-

ized to allow points to occur on the wrong side of the hyperplane. The generalized

approach imposes a penalty for each misclassified point that increases with its distance

from the hyperplane. These penalties are incorporated into a constrained optimization

problem that simultaneously maximizes the margin and minimizes the misclassifica-
tion penalties. This problem is a convex quadratic program, thus there is an efficient

solution for the optimal coefficients w = (w0, w1, . . . , wp)
T . After training, the class of

an undiagnosed patient q is assigned as positive if f(xq) ≥ 0 and as negative otherwise.

Many authors describe SVMs in greater detail including Shawe-Taylor and Cristianini
[15], Bishop [7] and Hastie et al. [22].

• Decision Trees (DT) apply a sequence of tests to the attribute values of an instance

to determine a classification. The simplest decision tree that always predicts a single

class is called a leaf. More general trees start at a root specifying a test to apply and

having a DT associated with each possible outcome. Tests for continuous attribute

values, such as metabolite concentrations, consist of an attribute and a threshold.
Given an instance, the root test of a DT is applied by comparing an attribute value

xri to a threshold t. The comparison xri ≥ t is either true or false, thus there are

two possible outcomes that each branch to an associated DT. The appropriate DT

is selected for the instance and further tests are applied in this manner until a leaf
predicting a class is reached. DT models are advantageous because they are more

easily interpreted than other models, potentially revealing insights into the structure

of a classification problem.
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The specific algorithm for learning DT models that we consider here is C4.5 [38].

Given a training set, the algorithm considers all possible ways to test each attribute

by considering each attribute value as a threshold. Because a specific test implicitly
divides the training data into two subsets, the algorithm computes a measure of the

class purity of the subsets to determine the best possible test. This greedy test se-

lection mechanism is recursively applied to learn the outcome-specific DTs from the

corresponding training subsets. Learning eventually terminates with a leaf when these
subsets contain instances from only a single class. A pruning step is then applied to

simplify the structure of the learned DT and to allow it to better generalize (see Sec-

tion 2.4.4) to future instances. Quinlan discusses C4.5 in greater detail as well as

general issues related to DT learning [38].

• Graphical models compactly represent multivariate probability distributions by ex-

plicitly incorporating independence statements about them [30]. This thesis focuses
on undirected graphical models only. In these models, independence statements are

represented by an undirected graph structure where nodes correspond to variables and

edges represent direct dependencies. The absence of an edge between two nodes im-

plies a set of conditional independence statements relating the corresponding variables
that can be determined by examining the graph. The compactness of the representa-

tion is derived from the sparsity of the graph structure. Fewer parameters are required

to represent a distribution over a graph with a small number of edges than one with

many edges. Given a parameterized distribution, we can create Bayesian classifiers as

described in Section 1.4 by representing the likelihood distribution P (xr | cr).

Several standard machine learning models fit naturally into the framework of graphical

models. The Näıve Bayes (NB) model assumes that the variables in a distribution
are independent of each other given only the class cr [30]. Tree-augmented Näıve

Bayes (TAN) and Multi-TAN (MTAN) allow a limited set of conditional independence

statements that are captured by tree-structured graphs [20]. We also consider a full

dependence (Full) model that assumes every variable is dependent on every other

variable in a distribution. Our PIA system is based on an interpretation of metabolic
pathways as probabilistic independence statements about metabolite concentrations.

This interpretation allows us to treat the pathways as the underlying graph structure

for distributions over metabolic profiles. Chapter 4 shows how to implement these

models using a specific type of undirected graphical model called a GMRF.

These algorithms share the common assumption that the training and testing sets contain

no missing measurements. When working with metabolic profile data, this is problematic for

two reasons. Occasionally it is not possible to determine the concentration of a metabolite

from an NMR spectrum. Also, metabolic profiles only measure a subset of the metabolites

in an organism, thus some potentially important metabolites are never measured. These
unmeasured metabolites correspond to latent variables in the models that we consider. As

we will see in Chapter 5, models that account for these latent variables can be much simpler

than those that do not. We employ a general approach commonly used in machine learning

called Expectation Maximization (EM) to address the problem of missing values.

2.4.2 Missing Values

EM is a general technique for handling missing values that works with models that represent

probability distributions over a set of variables that are not always measured [16]. The

graphical models described above are an example of this type of model. Distributions are
described by a set of parameters that are learned from a training data set. The procedure

starts with some guess of the values for the parameters (chosen randomly for example) and

maintains a set of current parameters throughout. EM is a two step procedure.
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The expectation step uses the current parameters to compute the expected value for

every missing value in the training data given the observed values from the corresponding

instances. These computed values are treated as if they are the actual values for the missing
measurements. In a sense, this step fills in the missing values in the data to produce a data

set with no missing values. The maximization step takes the full training data and learns

a new set of parameters according to some learning algorithm. These new parameters are

then treated as the current parameters and the EM procedure is repeated until the current
parameters converge to a set of fixed values. The final parameters are not necessarily the

optimal values but they typically perform well in practice.

2.4.3 Cross Validation

As noted above, the performance of a classifier is determined by its ability to accurately

classify future instances. We simulate these instances using data we already have with

a technique called k-fold cross validation (CV) [22]. The first step of the procedure is to
partition the data set into k subsets, called folds, that are approximately equal in the number

of instances that they contain. One of the folds is held aside and the remaining k − 1 folds

are used as a training set for the machine learning algorithm. The held out fold is then used

as the test set. The classes of these instances are kept hidden and the learned classifier is
evaluated on them, thus they effectively represent future instances.

This process is repeated for each of the other folds, yielding an accuracy rate on each of

the k test sets. Averaging these values gives an estimate of the performance of the learned

classifier applied to every instance in the data set. These fold-specific accuracy values can

be used to compare the performance of two learning algorithms as well. Assuming that the
folds are the same for both algorithms and treating fold accuracy as a random variable,

we can use a paired t-test to determine if the mean fold accuracy values are significantly

different for the two algorithms. Another advantage of cross validation is that it makes

efficient use of the data. Every instance gets used as a test instance once and every training
set uses most of the available instances, approximately (k− 1)/k of them [7]. Leave one out

CV (LOOCV) is a special case of CV that sets k = n, the number of instances in the data

set. This procedure makes the most efficient use of the available instances by maximizing

the size of each training set but it requires more computational effort than smaller values

of k would.

2.4.4 Overfitting

Overfitting is a phenomenon that affects the classification performance of machine learning

algorithms. A good model is one that performs well on future instances or, more concretely,

accurately classifies instances in the test set [22]. Machine learning algorithms are applied

to instances in the training set to infer something about a mechanism of interest. In addi-

tion to characterizing this mechanism, the training instances are assumed to contain some
noise as well. Overfitting occurs when the model is more complicated than the underlying

mechanism, allowing the learning algorithm to model too much of the noise. An overly-

complicated model is able to more accurately classify training set instances at the expense

of performance on the test set [22]. Thus, a simple measure of the degree of overfitting
exhibited by a model is its accuracy at classifying instances in the training set.

In our case, we assume that there is some mechanism governing normal metabolism that

determines urinary metabolite concentrations in patients that do not have cachexia and a

different mechanism for those that do. Random noise is introduced in a number of ways.

Metabolism varies according to the diet, age and sex of a patient for example. Quantification
of metabolite concentrations by NMR spectroscopy is imperfect, thus it is a source of noise

as well. One way to overcome the effect of noise is to increase the number of instances in the
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training set. Since we cannot simply increase the size of our data set, we consider varying

model complexity instead.

Unfortunately, the appropriate level of complexity is unknown. Classifier performance
generally improves with increasing model complexity up to a certain point where classi-

fication accuracy on future instances decreases as overfitting increases [22]. We consider

models over a range of complexity levels from those with few parameters to models with as

many parameters as possible under the assumption that the class conditional distributions
follow multivariate normal distributions. PIA is an attempt to find the optimal complexity

level that balances the complexity of the disease mechanism with minimal overfitting. It

accounts for mechanisms determined by known metabolic pathways but no others. The

following chapters describe how PIA is implemented and discuss its performance relative to

other models.
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Chapter 3

Related Work

The development of PIA combines several threads of previous research. First, machine
learning techniques have already been applied to metabolic profile data with the specific

goal of developing disease diagnosis tools. Only a limited amount of biological knowledge

was used in these previous applications however. To our knowledge, metabolic pathways

were not incorporated in any of them. In addition to its learning component, PIA interprets

metabolic pathways in graph theoretic terms. Previous work has examined the properties
of graph representations of metabolic networks for various organisms. From this work, we

derive our technique for converting a set of pathways into a graph structure.

This chapter summarizes this relevant work as well as a few other existing ideas important

to the development of PIA. These include the idea of currency metabolites that we use to
simplify the models that PIA employs. Currency metabolites are assumed to be available

in sufficiently high quantity in the body that they do not influence the concentrations of

the other compounds that react with them. Understanding this related work is necessary

to understand the development of the PIA system.

3.1 Metabolic Profiles and Machine Learning

Baumgartner et al. applied machine learning algorithms to diagnose two metabolic diseases

from metabolic profiles [6]. The first disease, called phenylketonuria (PKU), involves a defi-

ciency of the enzyme that catalyzes a reaction producing tyrosine from phenylalanine. This

defect causes concentrations of phenylalanine to increase and tyrosine to decrease in affected
patients. The disease mechanism leads to simple diagnostic rules based on these concen-

tration values [9, 10]. The other disease Baumgartner et al. considered was medium-chain

acyl-CoA dehydrogenase deficiency (MCADD). Fatty acids are not metabolized correctly in

patients with MCADD resulting in higher concentrations of these metabolites. For exam-

ple, the concentration of C8-carnitine is particularly increased in MCADD patients and its
value is the basis of similar diagnostic rules for this disease [44]. Intuitively, both diseases

provide some diagnostic information in the metabolite concentrations of affected patients.

This information should allow machine learning algorithms to accurately classify healthy

and diseased patients.
To evaluate this hypothesis, Baumgartner et al. used metabolic profiles derived from

blood samples taken from newborns [6]. Their data set contains 43 PKU patients, 63

MCADD patients and 1,241 patients with no known metabolic diseases. The newborn

metabolic profiles quantify the concentrations of 14 amino acid and 29 fatty acid metabo-

lites. Machine learning algorithms were applied to the amino acids for PKU and the fatty
acids for MCADD because of the nature of these diseases. Thus, some expert knowledge

was used to do feature selection initially. Two classification tasks were considered: PKU
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vs. healthy and MCADD vs. healthy. Baumgartner et al. employed SVMs and DTs as well

as the machine learning algorithms Partial Least Squares Discriminant Analysis (PLS-DA),

Logistic Regression (LR), k Nearest Neighbors (k-NN), Artificial Neural Networks (ANN).
In all but two cases, the accuracy of the machine learning algorithms in 10 fold CV exceeded

99%. When LR and k-NN are applied in the MCADD task, their accuracies each exceeded

98%. The authors do not state whether any of the differences are statistically significant.

Baumgartner et al. expanded on their newborn disease diagnosis work by considering
additional features in their machine learning diagnosis tools [5]. In addition to individual

metabolite concentration values, diagnosis rules have been developed based on ratios of

metabolite concentration values. The authors considered these ratios as a form of expert

knowledge and treated their values as distinct variables that are used as inputs to the

machine learning algorithms. To classify MCADD patients, for example, the value of the
ratio between the concentrations of C8 carnitine and C10:1 carnitine was an input variable

in addition to the individual metabolite concentrations.

They tested this idea using a similar data set to the one used above. Instead of PKU,

they considered a more general disease called phenylalanine hydroxylase deficiency (PAHD)
that includes PKU as a special case. Thus, the data set contains the 43 PKU patients

plus 51 non-PKU patients for a total of 94 patients in the PAHD class. The 63 MCADD

patients are also in this data set. Finally, they added 22 patients with a third disease called 3-

methylcrotonyl CoA carboxylase deficiency (3-MCCD). The same number of normal patients

were used again and a similar division into three disease classification tasks was used.
Two machine learning algorithms were considered: LR and DT (C4.5 algorithm). LR was

given the additional expert features but DT was not. Results from 10 fold CV indicate that

the accuracy exceeded 99% in all cases as before. It appears that, with the expert knowledge,

LR classifiers performed significantly better than the DT classifier on the positive patients.
Again, the authors do not address the statistical significance of any of their results.

One major problem with the work of Baumgartner et al. [6, 5] is that they evaluated

the machine learning classifiers in isolation. The authors acknowledge that, for the diseases

they considered, current diagnosis methods are based on rules applied to the concentrations

of specific diagnostic metabolites. They did not compare their machine learning results with
these methods nor did they describe them. MCADD, for example, can be diagnosed from the

concentrations of marker metabolites or through genetic analysis to identify the mutation

causing the enzyme defect [10]. In order to justify the use of machine learning algorithms to

diagnose a disease, something must be gained. The gain does not necessarily have to come
from improved classification accuracy. Classifiers produced by machine learning techniques

may be faster, require less expert intervention, cost less or use biological samples that are

less invasive to acquire. Baumgartner et al. motivate their work based on the large number

of samples to be analyzed [6] but this only suggests computational analysis, not necessarily

a machine learning approach. They should address the question of why it is infeasible to
implement the established diagnostic rules directly in a computer program.

Mahadevan et al. also investigated the efficacy of machine learning algorithms applied

to metabolic profile data [32]. They considered two machine learning tasks, one of them

diagnostic in nature. The tasks were identifying pneumonia patients and distinguishing male
and female from urinary metabolic profile data. Mahadevan et al. use a data set containing

59 patients with pneumonia and a total of 352 normal patients. Of these healthy patients,

194 of them are female and 158 are male. They evaluated two machine learning algorithms

on the two tasks: SVMs and PLS-DA.

The authors considered two views of the NMR spectra in their data set. One was
based on a spectral binning approach that yields a set of 360 bins (features) per patient.

The other was a targeted profiling approach that produces a metabolic profile quantifying

82 metabolite concentrations for each patient. The latter approach has the advantage of

allowing for drug metabolites to be removed before analysis. This is necessary for patients
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in the data set diagnosed through other means that are already receiving drugs to treat

their pneumonia. Naturally, patients without pneumonia are not likely to take these drugs.

Knowing the concentrations of drug metabolites is highly indicative of the disease state of
a patient but a patient cannot begin treatment until a diagnosis is made. Therefore, the

input to a disease classifier will not have this additional information from drug metabolite

concentrations if it is used as a diagnosis tool in a clinical setting. The authors state that

their work is intended to evaluate learning algorithms on metabolic profile data and it is
not presented as a new method of diagnosis.

The authors performed 4 fold CV and LOOCV to evaluate machine learning algorithms

on their data set. In both cases, results based on spectral binning were slightly better than

those based on targeted profiling. SVMs slightly outperformed PLS-DA for this task in all

cases as well. The authors do not discuss the statistical significance of their results. Their
work also lacks a discussion of existing diagnosis methods for pneumonia.

Our work on PIA is an attempt to develop classification algorithms for metabolic profiles

that outperform existing machine learning methods and that are faster and less invasive

than existing approaches for making diagnoses. To do this, we attempt to take advantage
of metabolic pathway knowledge that describes relationships among the metabolites in a

metabolic profile. Incorporating pathways into computational analysis is a challenge in itself

however. Addressing this challenge requires an appropriate representation for metabolic

pathways.

3.2 Graph Representations of Metabolic Pathways

Developing a classifier using metabolic pathways requires a representation suitable for com-

putational analysis. As described above, metabolic pathways are composed of chemical

reaction equations linked together via product metabolites that become substrates in sub-

sequent reactions. For several reasons, the most natural approach is to represent pathways
using graph structures. Graphs are well understood theoretically, easy to incorporate into

computer programs and fit into the framework of probabilistic graphical models. In this

framework, the nodes of a graph correspond to variables and an edge between a pair of

nodes indicates a direct dependence between the corresponding variables [30]. A significant

amount of work exists that has sought to represent metabolic pathways using graphs in
various ways and to analyze the structural properties of these graphs. This section reviews

several of these representations. We focus on representations that explicitly include metabo-

lites as nodes because the variables in a metabolic profile data set correspond to metabolite

concentrations.
To illustrate the various graph representations and related ideas we use an example

metabolic reaction taken from the Citric Acid Cycle pathway as described in Section 2.2.

The reaction is the irreversible third step of this pathway that involves five metabolites (2

substrates and 3 products). The reaction equation is

Isocitrate + NAD+ → α-Ketoglutarate + CO2 +NADH

and it is catalyzed by an enzyme called isocitrate dehydrogenase with Enzyme Commission

number 1.1.1.41 [37]. We show how to covert this reaction into a graph for each of the

graph representations considered in this section. Given the entire set of metabolic reactions

from a pathway or multiple pathways, a combined graph representing them is constructed
in a natural way. The set of nodes in the combined graph is the set of unique nodes in all

reaction graphs. The set of edges is the union over all edges. Two nodes are unique if and

only if they correspond to different metabolites. This section analyzes the advantages and

disadvantages of various graph representations of metabolic pathways from the perspective of

PIA. We argue for using a particularly simple undirected graph representation that captures
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NAD+

CO2

NADH

α-Ketoglutarate
Isocitrate

1.1.1.41

Figure 3.1: Graph representation of the third reaction of the Citric Acid Cycle pathway
proposed by Jeong et al. [25].

NAD+

CO2

NADH

α-Ketoglutarate
Isocitrate

Figure 3.2: Graph representation of the third reaction of the Citric Acid Cycle pathway
proposed by Ma and Zeng [31].

an intuitively meaningful set of conditional independence statements about distributions of

metabolite concentrations.
An early study of the statistical properties of metabolic networks was conducted by

Jeong et al. [25]. They analyzed the graph structures of 43 organisms and found that they

exhibit similar degree distribution and average path length. To facilitate this analysis, Jeong

et al. construct a directed graph representation of the metabolism of each organism where

metabolism is composed of the set of metabolic reactions that an organism can perform.
There are three types of nodes in their representation: metabolite, enzyme and reaction. In

this representation, our example reaction would correspond to the graph shown in Figure

3.1. If the reaction were reversible, then the edges adjacent to the metabolites would become

bidirected. Directed edges make sense for Jeong et al. because they are interested in path
lengths between pairs of metabolites or, equivalently, the number of steps needed to covert

one metabolite into another. This conversion cannot happen by going against the direction

of a reaction. The representation of Jeong et al. includes metabolites that are quantified by

metabolic profiles but their representation also contains nodes that do not correspond to

metabolite concentrations.
Ma and Zeng proposed a similar graph representation that includes metabolite nodes only

[31]. This representation places edges between every pair of nodes where one is a substrate

and the other is a product in the same metabolic reaction. For irreversible reactions, these

edges are directed from substrate node to product node. If a reaction can operate in both
directions then the corresponding edges are undirected. The graph of the example Citric

Acid Cycle reaction is shown in Figure 3.2. Note that this representation does not connect

two substrates (or two products) that occur in the same reaction together unless one is a

substrate and the other is a product in some other reaction. Huss and Holme use this method
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NADH

α-Ketoglutarate
Isocitrate

Figure 3.3: Graph representation of the third reaction of the Citric Acid Cycle pathway
proposed by Wagner and Fell [45].

NAD+

CO2

NADH

α-Ketoglutarate
Isocitrate

Figure 3.4: Graph representation of the third reaction of the Citric Acid Cycle pathway
proposed by Arita [1, 2].

for constructing graphs from metabolic networks except that all edges are undirected in

their representation [23]. In contrast to the mixed directionality graph of Ma and Zeng, this

undirected version easily fits into the framework of probabilistic graphical models. A natural

probabilistic interpretation applies to this particular graph structure: the concentration of

a metabolite is independent of all others given the concentrations of all metabolites that are
used to produce or consume it in a reaction. This interpretation has a major flaw however

because the metabolites that a substrate reacts with also influence its concentration. If

these metabolites were removed then the concentration of that substrate is directly affected

because the reaction could no longer occur.
A slight variation on the graph representation of Huss and Holme that yields a more

sensible interpretation was proposed by Wagner and Fell [45]. Their graph construction also

produces an undirected graph. The resulting graph differs from that of Huss and Holme

because it does not distinguish substrates and products of a chemical reaction. Instead, any

two compounds that participate in the same reaction are connected via an edge. The graph
constructed from the example reaction following this method is shown in Figure 3.3. This

metabolic graph representation gives the desired probabilistic interpretation. In this case,

the concentration of a metabolite is independent of all others given the concentrations of

the metabolites participating in a common reaction. No other metabolites could influence
the production of consumption of the metabolite in question. Influences on this node are

effectively blocked by its neighbors in the graph. We select the Wagner and Fell (WF)

representation as the basis for the PIA system.

Although the selected structure yields a convenient interpretation from a machine learn-

ing perspective, it loses much information about the pathways themselves. Arita developed
a more biologically realistic graph representation that attempts to more accurately represent

the operation of metabolic pathways [1, 2]. The graph construction is based on a specific

21



α-KetoglutarateIsocitrate

Figure 3.5: Graph representation of the third reaction of the Citric Acid Cycle pathway
after removing the currency metabolites NADH, NAD+ and CO2.

definition of a pathway. According to this definition, a pathway exists between two metabo-
lites if and only if an atom from one can reach the other through a sequence of reactions.

To identify pathways, it is necessary to know how metabolites are changed by metabolic re-

actions. This leads to atomic mappings that describe how each atom in a substrate appears

in a product of a reaction. Directed edges are derived from these mappings that connect
a substrate and product if and only if they share an atom. This produces a more sparse

graph structure with fewer edges as shown for the example reaction in Figure 3.4. The

representation does not capture a meaningful set of independence statements however. To

increase the sparsity of the WF graph representation, PIA takes advantage of the idea of

currency metabolites discussed in the next section.

3.3 Currency Metabolites

Currency metabolites are a class of metabolites defined by their prevalence in an organism.

An exact definition of what metabolites are in this class does not exist, although many au-

thors have discussed the idea of currency metabolites. These metabolites are assumed to be
available in sufficient quantities in the body that they do not influence the occurrence of any

reactions. Also, they tend to occur in many more reactions than the average metabolite [23].

Thus, they will result in nodes of high degree in any of the graph representations considered

above. Structural analyzes of metabolic graphs tend to underestimate properties such as

average path length when currency metabolites are included because they are connected to
so many other metabolites. Ma and Zeng argue that these currency metabolites should be

removed from metabolic graphs because paths that pass through them do not correspond

to valid metabolic pathways [31]. There is no agreement on the metabolites to remove,

although the currency metabolite lists that appear in the literature are similar.
Several authors simply state a set of metabolites that they consider to fit the definition

of currency metabolite. Ma and Zeng consider defining currency metabolites on a per-

reaction basis [31]. Huss and Holme implement a graph clustering approach to identify

currency metabolites computationally [23]. The idea here is that the metabolic graph can
be grouped into clusters of nodes. Within a cluster, the nodes are densely connected to

each other with many edges but between clusters there are much fewer edges. The presence

of currency metabolites distorts the clustering however. Their approach iteratively removes

metabolites attempting to increase a score function based on how well the graph can be

clustered. The result is a list of metabolites that they define as currency metabolites. Table
3.1 shows this currency metabolite list as well as the lists of several other authors1. Because

PIA uses the WF graph representation, we will use the corresponding currency metabolite

list as well.

We believe that PIA is justified in ignoring these currency metabolites. If a metabolite is
always available in sufficient quantity that it does not affect the occurrence of any reactions,

then the concentrations of other metabolites do not depend on it. This is because knowing

the concentration of this metabolite reveals nothing about the others. We have already

stipulated that its concentration is high regardless of the disease state of an organism.

Ignoring these currency metabolites simplifies the models that PIA employs. Among the

1Note that KEGG does not differentiate between NAD+ and NAD and between NADP+ and NADP.
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Wagner and Fell Ma and Zeng Huss and Holme
ATP ATP ATP
ADP ADP ADP
NAD NAD+ NAD+

NADH NADH NADH
NADP NADP+

NADPH NADPH
NH3 NH3

CO2 CO2

O2 O2

H2O H2O
PPi

Thioredoxin

Table 3.1: Currency metabolites proposed by Wagner and Fell [45], Ma and Zeng [31] and
Huss and Holme [23] that are also in KEGG.

common currency metabolites that appear in the literature are NADH, NAD+ and CO2.
These three metabolites are all involved in the example Citric Acid Cycle reaction used in

Section 3.2. If we consider ignoring these in the graph construction procedure, the result

is the much simpler graph shown in Figure 3.5. In this case, following the WF graph, the

graph is reduced in size by three nodes and nine edges. The result is a smaller number of
parameters that PIA must learn. Although this example is an extreme case, incorporating

the additional biological knowledge of currency metabolites results in a reduction in the size

of the graphs used by PIA.

23



Chapter 4

Markov Random Fields

This chapter discusses the theory of GMRF models, the type of undirected graphical model
that PIA uses to incorporate metabolic pathway knowledge into a disease classifier. The

standard machine learning models NB, TAN, MTAN and Full have natural interpretations

as GMRF models that we describe here as well. There are two basic GMRF learning

problems that this chapter considers: learning the parameters of a model given a graph

structure and learning the underlying structure itself. We present algorithms that solve
both of these problems. Finally, this chapter shows how to use GMRF models to represent

class-conditional distributions of the form P (xr | cr) and how to use them to produce a

classifier.

Most of the material in this chapter summarizes existing work in machine learning.
In particular, the first two sections of this chapter summarize material from Koller and

Friedman [30]. Later sections are derived from a variety of sources that are cited where

appropriate.

4.1 Basic Graph Theory

A graph structure G = (V,E) consists of a set of nodes V = {1, 2, . . . , p} and a set of edges
E ⊆ V × V that connect pairs of nodes. An example of a graph with 7 nodes and 10 edges

is shown in Figure 4.1. In this thesis, we consider only undirected graphs where the order

of nodes in an edge is irrelevant. Specifically, if nodes u and v are connected, then there is

an edge e = {u, v} and it is equivalent to the edge {v, u}. If there is an edge e = {u, v} then
u and v are adjacent to each other and the edge e is said to be incident to both u and v.

We occasionally assign a weight value to edges in a graph via a function w : E 7→ R.

A sequence of nodes v1, v2, . . . , vk is called a path if and only if successive nodes in the

sequence are joined via edges. Thus, {v1, v2} ∈ E, {v2, v3} ∈ E, . . . , {vk−1, vk} ∈ E. The

length of a path is the number of edges it contains. The sequence of nodes 1, 2, 5, 6 and 4
in the graph in Figure 4.1 is a path of length 4. If v1 = vk, then the path is called a cycle.

The graph in Figure 4.1 contains the cycle 2, 3, 6 and 5 among others. A graph with no

cycles is called a tree. An important concept related to paths is called separation. A path

from node a to b is separated by a node c if and only if c occurs on the path. More generally,
two sets of nodes A and B are separated by a third set C if and only if every path from a

node a ∈ A to a node b ∈ B contains a node c ∈ C.

The set of nodes denoted by N(v) is called the neighborhood of the node v. It contains

all nodes u such that u and v are adjacent and no others. In the graph in Figure 4.1, the

neighborhood of node 3, N(3), consists of nodes 2, 4, 5 and 6 for example. The degree of a
node v, denoted deg(v), is the number of nodes that it is adjacent to or, equivalently, the

size of its neighborhood |N(v)|. In Figure 4.1, deg(3) = 4 for example.
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2

5 76

31 4

Figure 4.1: Example graph structure consisting of the nodes V = {1, 2, 3, 4, 5, 6, 7} and the
edges E = {{1, 2}, {2, 3}, {2, 5}, {2, 6}, {3, 4}, {3, 5}, {3, 6}, {4, 6}, {5, 6}, {6, 7}}.

A clique is a set of nodes {v1, v2, . . . , vk} with the property that every pair of nodes in

the set is adjacent. A maximal clique is one to which no additional nodes can be added
without losing this property. The graph in Figure 4.1 contains several cliques including

{2, 3, 5} and {2, 3, 5, 6} for example. The latter set of nodes is a maximal clique but the

former is not.

One important use of graph structures is to model properties of joint probability distri-
butions over multiple variables. As suggested in Section 1.3, this thesis is concerned with

models based on undirected graph structures. These structures are the basis of a general

class of graphical model called Markov Random Fields. In the following sections we describe

how these models represent probability distributions and how to develop classifiers based

on them.

4.2 Markov Random Fields

A Markov Random Field (MRF) represents a joint probability distribution over a set of

random variables {x1, x2, . . . , xp}. This representation explicitly incorporates conditional

independence statements about the distribution in the form of an undirected graph. In
this graph G = (V,E), each node v ∈ V corresponds to one variable xv in the distribution

and every variable has a corresponding node. An edge between two nodes in the graph

indicates a direct dependence between the corresponding variables. Indirect dependencies

are captured via paths over multiple edges in the graph. Intuitively, observing the state

of a variable will reveal information about the states of variables that depend on it. In a
sense, information about other variables flows through paths in the graph structure from

this variable.

This information flow is driven by observed variables but it is limited by them as well.

The mechanism is formalized based on the notion of conditional independence of variables.
Here, two variables xi and xj are independent of each other given the value of some other

variable xk if and only if P (xi, xj | xk) = P (xi | xk)P (xj | xk). This conditional indepen-

dence is denoted as (xi ⊥ xj | xk). Observing the value of xk blocks the flow of information,

if any, between xi and xj . The idea of conditional independence can be generalized to sets

of variables xI , xJ and xK where the subscripts I, J and K denote disjoint subsets of V .
Conditional independence statements about the variables are explicitly encoded in the graph

structure of an MRF.

There are several ways to characterize the independence statements made by an MRF

graph structure. To do this, we use the notation xI as a shorthand for xV −I = {xi | i /∈ I},
the set of variables with indices not in the set I. The characterizations are as follows.

• Pairwise independence indicates that a pair of variables xu and xv are conditionally
independent given all others if and only if the corresponding nodes u and v are not

adjacent. The set of independencies in this case is (xu ⊥ xv | x{u,v}) for all {u, v} /∈ E.
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For example, according to the graph in Figure 4.1, the variables x2 and x4 are pairwise

independent because nodes 2 and 4 are not adjacent.

• Local independencemeans that a variable xv is independent of all others given those

variables corresponding to nodes in its neighborhood N(v). The set of independence

statements is (xv ⊥ xN(v)∪{v} | xN(v)) for all v ∈ V . For example, according to the
graph in Figure 4.1, the variable x3 is independent of x1 and x7 given the variables

neighboring x3: x2, x4, x5 and x6.

• Global independence states that two sets of variables xI and xJ are independent
of each other given the set of variables xK if and only if every path between a node

in I and a node in J in G passes through a node in the set K. Thus (xI ⊥ xJ | xK)

for all sets of nodes I, J and K such that the nodes in K separate those in I and J .

For example, variables x{1,2,5} are independent of x{4,7} given x{3,6} according to the
graph in Figure 4.1.

Each of the three types of independence statements implies the other two for a graph struc-

ture if the joint distribution it represents is positive. This means that P (x1, x2, . . . , xp) > 0

for all values of the variables x1, x2, . . . , xp. We employ a specific parameterization of MRF
models, described below in Section 4.3, that ensures that this requirement is met.

Up to this point, we have focused on the qualitative properties of probability distri-

butions. MRF models and other graphical models are useful because they separate these

properties from the quantitative properties represented by a specific parameterization. This
allows us to use expert domain knowledge to determine the structure of a distribution and

then use machine learning algorithms to determine the parameters that define it. This

idea is the basis of the PIA system. Because PIA must handle continuous variables from

metabolic profile measurements, we use a specific kind of MRF model that represents a

multivariate normal (or Gaussian) probability distribution.

4.3 Gaussian Markov Random Fields

Suppose that the variables x1, x2, . . . , xp follow a joint normal probability distribution.

Thus, for the vector x = (x1, x2, . . . , xp)
T , we have the probability density function

P (x | µ,Σ) =
1

(2π)p/2|Σ|1/2
exp

[

−
1

2
(x− µ)TΣ−1(x− µ)

]

(4.1)

with mean vector µ and covariance matrix Σ. The matrix Σ and its inverse, the precision
matrix K = Σ−1, are both symmetric and positive definite [30]. Note that we can also define

the density in terms of K as P (x | µ,K) by replacing Σ with K−1 in (4.1). It is useful for us

to focus on this alternative definition because pairwise independence statements as described

in Section 4.2 are directly represented in the precision matrix K. Specifically, the pairwise
independence statement (xi ⊥ xj | x{i,j}

) is true if and only if Kij = 0 (and, because

K is symmetric, Kji = 0). Therefore, every multivariate normal distribution implicitly
incorporates a MRF graph structure in its precision matrix. This type of MRF model is

called a GMRF because it represents a multivariate Gaussian distribution.

To understand the connection between a graph structure and the precision matrix of a

multivariate normal distribution, it is necessary to know how the density P (x | µ,K) changes

when the values of a subset of the variables are observed. Assume that the values of the
variables xB are observed and that the unobserved variables are xA where A = V −B. Par-

titioning the variables in this manner leads to a corresponding partitioning of the parameters

in the mean vector and the precision matrix:

µ =

[

µA

µB

]

and K =

[

KA,A KA,B

KB,A KB,B

]

.
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The conditional density P (xA | xB) is multivariate normal with parameters derived from

the components of these partitionings [7]. Treating the observed variables xB as constants

in (4.1) yields the conditional mean

µA|B = µA −K−1
A|BKA,B(xB − µB) (4.2)

and the conditional precision matrixKA|B = KA,A. It is also useful to note that the marginal

density P (xA) is also multivariate normal and that we can determine its parameters by

integrating the variables xB out of (4.1) [7]. In this case, the mean is simply µA and the

precision matrix is
KA = KA,A −KA,BK

−1
B,BKB,A.

The parameters of the marginal density are useful when we consider learning with EM in

Section 4.5.1. With the parameter update equations for µA|B and KA|B, we can establish
the link between graph structures and precision matrices.

This connection is made in the proof of the following claim. Speed and Kiiveri prove

a similar result for more general conditional independence statements but their proof is

significantly more complex [43]. Here we focus on the relatively simple case of pairwise

independence statements. Because the multivariate normal density P (x | µ,K) > 0 for
all x, the pairwise and local independence statements defined in Section 4.2 both hold for

the graph structure encoded in the precision matrix K. This is important because PIA

constructs a graph structure based on local independence statements derived from a set of

KEGG pathways. It then invokes the pairwise independence statements about that graph to
constrain the elements ofK prior to learning. The following claim establishes the connection

between K and the pairwise independence statements of a GMRF graph structure.

Claim 4.1. If the variables x1, x2, . . . , xp follow a multivariate normal probability distribu-

tion with precision matrix K = [Kij ], then Kij = Kji = 0 if and only if (xi ⊥ xj | x{i,j}).

Proof. First, assume that Kij = Kji = 0 for a multivariate normal density with precision

matrix K = [Kij ]. Let A = {i, j} and B = V − {i, j} represent the indices of unobserved

and observed variables respectively. For convenience, let I = {i} and J = {j}. Based on the

update equation, the precision matrix in the conditional density P (xA | xB) has a simple
diagonal form:

KA|B =

[

Kii Kij

Kji Kjj

]

=

[

Kii 0
0 Kjj

]

.

Because K is positive definite, the values Kii and Kjj must be non-zero. Thus, the inverse

of this matrix, the conditional covariance matrix, is

K−1
A|B = ΣA|B =

[

1
Kii

0

0 1
Kjj

]

.

Consider the effect that this diagonal form has on the conditional mean:

µA|B = µA −K−1
A|BKA,B(xB − µB)

=

[

µi

µj

]

−

[

1
Kii

0

0 1
Kjj

]

[

KI,B

KJ,B

]

(xB − µB)

=

[

µi −
1

Kii
KI,B(xB − µB)

µj −
1

Kjj
KJ,B(xB − µB)

]

=

[

µI|B

µJ|B

]

.

The initial assumption that Kij = Kji = 0 decouples the parameters of the conditional

density corresponding to the mean values of xi and xj . Consequently, the conditional
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density has the form

P (xA | xB) ∝ exp

[

−
1

2
(xA − µA|B)

TKA|B(xA − µA|B)

]

= exp

[

−
1

2
(xi − µI|B)Kii(xi − µI|B)−

1

2
(xj − µJ|B)Kjj(xj − µJ|B)

]

= exp

[

−
1

2
(xi − µI|B)Kii(xi − µI|B)

]

exp

[

−
1

2
(xj − µJ|B)Kjj(xj − µJ|B)

]

∝ P (xi | xB)P (xj | xB)

implying that (xi ⊥ xj | xB). The other direction of the proof starting with the pairwise

independence statement is similar. The conditional independence implies that the condi-

tional covariance has a diagonal form. Inverting yields a diagonal precision matrix, thus the

assumption implies Kij = Kji = 0. Therefore, the statement (xi ⊥ xj | xB) is true if and

only if Kij = Kji = 0.

The consequence of this result is that the graph structure of a GMRF corresponds to a

pattern of zero-valued elements in the precision matrix of a multivariate normal distribution.
This is based on the definition of the pairwise independencies of a graph structure given in

Section 4.2. The PIA system exploits this correspondence to incorporate a graph derived

from metabolic pathways into the representation of a multivariate normal distribution. If

the pathways were unknown, then PIA could make no assumptions about conditional inde-
pendencies. This corresponds to a complete graph where every pair of nodes are adjacent to

each other. The complete graph has the maximum number of parameters possible associated

with it. PIA uses the pathway-based graph structure to reduce the number of parameters

in the models that it learns.
In particular, a multivariate normal density over p variables has 2p + p(p−1)

2 total pa-

rameters. The mean vector µ accounts for p of these and there are p variances (the diagonal

elements of Σ). Also, there are p(p−1)
2 possible ways to select distinct pairs of elements

from a set of size p ignoring the order of elements. This is the number of unique covariance

elements in Σ because this matrix is symmetric. In a GMRF model, where the zero pattern

is known, the number of parameters is reduced because a certain number of elements of K
are fixed. In this case, the number of parameters reduces to 2p+ |E| because only the edges

correspond to non-zero elements of the precision matrix. The zero pattern in the covariance

matrix Σ, if any, is generally different from that in K but the number of parameters is

effectively reduced.
Under the assumption that the data is is jointly normal, several standard machine learn-

ing models have interpretations as GMRF models. These models have varying numbers of

parameters, some with less than PIA and some with more. We turn now to a discussion of

these models.

4.4 GMRF Models

Different types of graphical model are determined by how the underlying graph structure

is obtained. One general approach involves learning a graph structure from the same data

set used to learn parameters. We discuss two specific algorithms for GMRF structure

learning in Section 4.5. Another approach is to specify a fixed graph structure in advance
of parameter learning. One way to accomplish this is to use knowledge provided by a

domain expert to determine an appropriate structure. The metabolic pathways used by PIA

constitute a form of expert knowledge. There are also common structures that a probability

distribution of interest is assumed to follow. In general, these structures incorrectly represent
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Figure 4.2: Graph structure representation of three generic reactions separately (left) and
their combined (right) representation employed by PIA.

the independence properties of the distribution but they tend to produce good classifiers in

practice.

4.4.1 Knowledge-based Models

The basis of the PIA system is a graph structure derived from a set of metabolic pathways.

PIA treats these pathways as a single large set of chemical reaction equations. Of the several

possible graph constructions discussed in Section 3.2, we employ the WF construction in
PIA. This construction joins all pairs of metabolites in a reaction with edges, thus the set

of nodes corresponding to each reaction forms a clique. A combined graph representing

multiple reactions is constructed in a natural way. The set of nodes in the combined graph

is the union of the nodes in the graph corresponding to each reaction. A node is uniquely
determined by the metabolite that it represents. An edge is included in the combined graph

that joins a pair of metabolite nodes if and only if those metabolites participate in a reaction

together. As an example, consider the generic chemical reaction equations

1. A+B → C

2. C ↔ D

3. D ↔ E + F

and their separate and combined graph representations shown in Figure 4.2.

The WF graph construction leads to a natural interpretation of the combined graph in
terms of probabilistic independence statements about the distribution of metabolic profile

measurements. To understand this interpretation, consider a metabolite v. Metabolic path-

ways describe how v is produced and consumed by the chemical reactions that involve it.

The only metabolites that can directly influence the concentration of v are the other metabo-

lites that participate in these reactions. Given the concentrations of these metabolites, the
concentration of v is independent of every other metabolite. This is a local conditional

independence statement about the concentration of v. The WF construction produces a

graph structure that captures precisely these conditional independence statements about

the concentrations of metabolites in a set of metabolic pathways.

4.4.2 Heuristic Models

One standard model with very few parameters is the NB model. This model is based on the

assumption that metabolite concentrations are completely independent of each other, given
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Figure 4.3: Example graph structures for distributions with five variables used by the Näıve
Bayes model (left) and Full dependence model (right).

Figure 4.4: Example tree-structured graph learned by Tree-augmented Näıve Bayes.

the class of the patient. In this context, the assumption is clearly false but the model tends
to produce classifiers that perform well in practice [17]. When accurate classification is the

only goal, correctly representing the class-conditional densities is not necessary. In the NB

model, the class-conditional probabilities are represented by graph structures containing no

edges. This model contains the smallest possible number of parameters for a multivariate

normal distribution.
The Full model is a related model that assumes the concentration of each metabolite

depends on every other metabolite. In this model, every pair of nodes is joined by an edge

into a single large clique. Unlike the NB model, the Full model makes no independence

statements about the distribution it represents. It has the maximum number of parameters
possible under the assumption that the data follows a multivariate normal distribution.

Example graph structures for the NB and Full models with five variables are shown in

Figure 4.3.

Slightly more sophisticated models are obtained by relaxing the assumptions of the

NB model. Two examples are TAN and the related MTAN models [20]. These involve
learning graph structures from the data with the restriction that the learned graph has

a tree structure. An example tree-structured graph is given in Figure 4.4. The difference

between TAN and MTAN is that both class-conditional distributions in TAN share the same

structure but in MTAN they are allowed to differ. TAN uses all instances in the data set
to learn a single structure for both distributions. In MTAN, the training set is split into

positive and negative instances and the two class-conditional GMRF structures are learned

from these two sets separately. Details of this structure learning algorithm are described in

the next section.

4.5 GMRF Learning Algorithms

This section discusses the two dimensions of GMRF learning introduced above. From the

perspective of PIA, the most important of these is parameter learning. In this problem,

there is a previously known graph structure, such as one derived from metabolic pathway

knowledge. Given this structure, we want to compute the mean µ and precision matrix K
consistent with the constraints implied by the structure. We are particularly interested in
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the precision matrix K because the mean µ is not constrained by the structure. Most of

the models we consider have a structure specified in advance but there are techniques for

learning the structure itself from a data set when one is not provided. In this section, we
discuss algorithms for structure learning, parameter learning and one that simultaneously

performs both.

4.5.1 Learning Parameters

This thesis employs two GMRF parameter learning algorithms. The first of these is an

unconstrained approach that finds the most likely parameter values given a data set of
examples. The other algorithm is based on this principle but it also incorporates constraints

on the learned precision matrix K determined by an underlying graph structure. When

learning the parameters for models with latent variables, we incorporate these two algorithms

into the EM algorithm introduced in Section 2.4.2. These algorithms work as follows.

• Maximum Likelihood (ML) is a general technique for estimating the parameters

of a model from data. Bishop describes it in the context of data following a multivari-

ate normal distribution [7]. The approach assumes that all of the instances xr ∈ D
are independent of each other. In this case, we can easily express the probability of

the instances in the data set given a set of parameters µ and Σ. The logarithm of

this expression is usually taken because the result is easier to maximize. The result-

ing expression will have the same maximum because the log function is monotonic.
Specifically, this expression is

logP (D | µ,Σ) =
n
∑

r=1

logP (xr | µ,Σ) (4.3)

where the probability of a single instance is given by (4.1). Typically, to obtain the

maximum likelihood parameter settings µ and Σ, we differentiate with respect to
these variables and set the resulting expressions to zero. For a multivariate normal

distribution, manipulation of these expressions yields the standard estimates

µ̂ =
1

n

n
∑

r=1

xr

Σ̂′ =
1

n

n
∑

r=1

(xr − µ̂)(xr − µ̂)T .

It turns out that the ML estimate Σ̂′ is biased because its expected value is not equal
to Σ, the true covariance matrix. This problem is easy to correct however, thus we

use the unbiased estimate of Σ instead:

Σ̂ =
1

n− 1

n
∑

r=1

(xr − µ̂)(xr − µ̂)T . (4.4)

The estimate Σ̂ is problematic for PIA because it does not account for graph structure

constraints on the precision matrix. We can use Σ̂ for the NB and Full models and
µ̂ for all models but a different algorithm is needed to incorporate the constraints

imposed by the GMRF graph structures of TAN, MTAN and PIA.

• Speed and Kiiveri (SK) describe an algorithm for maximum likelihood parameter

estimation that incorporates constraints on the precision matrix given by a GMRF

graph structure [43]. Given a positive definite covariance matrix estimate Σ̂ and a
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known graph structure G = (V,E) for the GMRF, the SK algorithm produces a

precision matrix estimate K̂ such that

(K̂−1)ij = Σ̂ij if {i, j} ∈ E or i = j

K̂ij = 0 if {i, j} /∈ E.

It does this by performing a series of matrix updates over elements of K̂ corresponding

to cliques in the graph G. These updates are repeated until convergence to a fixed

matrix K̂. Speed and Kiiveri prove that there is one such matrix and that their

algorithm computes it efficiently.

If the SK algorithm updates are performed over maximal cliques, then the algorithm
executes faster than if they are not. Although computing the maximal cliques of a

graph is computationally inefficient in the worst case, we pursue an approach based on

maximal clique updates for two reasons. First, the metabolic pathway graphs derived

from KEGG are relatively small. Also, the structure of the metabolic network for well-
studied organisms does not change frequently. Thus, we invest the computational effort

necessary to compute the maximal cliques of the metabolic pathway graph structures

of interest and store the results for repeated use in the future. Section 5.3.2 describes

how PIA obtains the maximal cliques of a graph.

• Expectation Maximization (EM) is a general approach for handling missing values

when performing maximum likelihood parameter estimation [16]. Section 2.4 discussed
EM in general terms and here we describe how PIA uses EM. PIA employs EM to

estimate the parameters of GMRF models with latent variables. Let A and B represent

the indices of unobserved and observed variables respectively. Our approach begins

with a random mean vector µ̂ and precision matrix K̂ with appropriate elements set to

zero to incorporate the constraints from the GMRF graph structure. For each instance
x ∈ D, the expectation step must compute the mean of the conditional distribution

P (xA | xB) to fill in the missing values. To do this, we set xA = µ̂A|B where µ̂A|B

is defined according to (4.2). After filling in all missing values in this manner, PIA

computes a covariance estimate Σ̂ for the SK algorithm. The maximization step uses
the ML and SK algorithms to learn a new mean vector µ̂ and precision matrix K̂

respectively. The two steps of EM are repeated until convergence to a fixed µ̂ and K̂.

4.5.2 Learning Structure

We consider two different algorithms for GMRF structure learning. They are very different

in the types of constraints they place on the learned structures. In the limit of infinite data,

the ML approach above would produce the correct structure [4]. Our data sets are relatively
small, thus some constraints are necessary to produce a good structure that adequately

represents the observed distribution of the data. The following algorithms represent different

ideas about how to impose these constraints.

• Tree-augmented Näıve Bayes (TAN) and the related MTAN are models that

generalize NB to account for certain dependencies among the variables [20]. These

models allow for a restricted set of edges among the nodes in a graph underlying a
probability distribution. Specifically, a tree structure is imposed on this graph. TAN

learns a tree structure from a data set with the property that no other tree structure

could assign a larger likelihood to the data [20]. TAN was originally described in

the context of directed graphical models, called Bayesian Networks, with discrete

variables. The ideas also apply to undirected GMRF models of continuous variables,
thus we describe TAN graph learning in this context.
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TAN structure learning is based on the idea of conditional mutual information be-

tween two variables [14]. When the class variable is binary, the conditional mutual

information

I(xi, xj | c) =
∑

c∈{+,−}

∫ ∫

P (xi, xj | c)P (c) log
P (xi, xj | c)

P (xi | c)P (xj | c)
dxi dxj

measures the dependence between two variables xi and xj given the class c. The

distributions P (c), P (xi | c), P (xj | c) and P (xi, xj | c) are estimated from the

instances in the data set. If these instances are assumed to follow a joint normal

distribution the computation of I(xi, xj | c) simplifies to

I(xi, xj | c) =
n+

n

1

2
log

(

Σ̂+
ii Σ̂

+
jj

det(Σ̂+)

)

+
n−

n

1

2
log

(

Σ̂−
ii Σ̂

−
jj

det(Σ̂−)

)

(4.5)

where Σ̂+ and Σ̂− are covariance matrix estimates for the marginal distributions

P (xi, xj | c = +) and P (xi, xj | c = −) respectively [3]. After first computing
the value I(xi, xj | c) for every pair of variables xi and xj in the data set, TAN then

constructs a complete graph where every pair of nodes is joined via an edge. Each

edge in this graph {i, j} is assigned a weight

w({i, j}) = I(xi, xj | c).

This weight is the conditional mutual information between the corresponding variables.
Next, TAN produces the learned graph structure by computing a maximum spanning

tree over this weighted graph [13]. For Bayesian networks with discrete variables,

TAN would then direct the edges in this tree from a selected root node and learn local

parameters for each node. For GMRF models, we keep the undirected tree and apply
the SK algorithm to learn the parameters.

As described, TAN learns a single graph structure over an entire data set to represent

the two class-conditional distributions. MTAN is an alternative approach that allows

these distributions to have different structures depending on the class value c. The

approach is the same as that of Chow and Liu [12] and works as follows. The same

idea as regular TAN is used except that the training data set is divided into two data
sets according to the class. Each of these data sets is used to learn the structure for

the corresponding class. Again, SK is used to learn GMRF model parameters given

each of these learned structures.

• Graphical Lasso (GL) is a learning algorithm that maximizes a penalized log-

likelihood equation to estimate the precision matrix K from a data set [19]. Specifi-

cally, GL maximizes
logP (D | µ,K)− ρ‖K‖1 (4.6)

where the penalty ‖K‖1 =
∑

i

∑

j |Kij | is the standard L1 norm. This penalty has

the property that it tends to force many of the Kij values to zero. Note that any

value Kij = 0 reduces the value of the log-likelihood function but it also effectively
eliminates a parameter from the model. Only the most important of these parameters,

equivalent to graph edges in a GMRF model, are allowed into the model. Including

such a penalty is useful for structure learning from a finite data set because the ML

solution is unlikely to produce a precision matrix K with elements that are exactly
equal to zero [4].

The value of ρ influences the exact number of edges in the resulting graph. As ρ

increases, more of the Kij become zero producing a graph with fewer edges. It is

33



possible to generalize the scalar ρ into a matrix so that every possible edge {i, j} has
an associated value ρij . This allows us to incorporate knowledge about the underlying

graph structure into the GL algorithm. Given a graph G = (V,E), we set ρij to a very
large penalty for the non-edges ({i, j} /∈ E) forcing the corresponding Kij = 0. For

the edges {i, j} ∈ E, ρij is set normally allowing the GL algorithm to determine what

edges from the graph to keep. Thus, we can use GL to learn a structure constrained

by prior knowledge from KEGG.

The penalized log-likelihood equation (4.6) is convex in K and there are a variety of
efficient algorithms to optimize it [19]. The GL algorithm is one such algorithm that is

based on a form of penalized linear regression called Lasso. GL sequentially performs

Lasso regression to predict one variable given the others in the data set. Appropriately

combining the solutions to these regression problems produces an estimate K̂ that

maximizes (4.6). Iterating the procedure and updating this estimate at each step
converges to the optimal estimate K̂. In practice, the GL algorithm is significantly

faster than the other algorithms for this problem.

4.6 GMRF Classifiers

At this point, we have the tools necessary to obtain a GMRF graph structure G = (V,E)
as well as the corresponding parameter values µ and K. We use these GMRF models

to represent joint probability densities over metabolic profile measurements. Specifically,

the models represent the class-conditional densities P (xr | cr = +) and P (xr | cr = −)
corresponding to metabolic profiles of diseased patients and healthy patients respectively.

Naturally, the best classification we can make is to predict the most probable class given a
metabolic profile or, more precisely, the value cr ∈ {+,−} that maximizes P (cr | xr). To

compute this value, we employ Bayes’ rule

P (cr | xr) =
P (xr | cr)P (cr)

P (xr)

where the class-conditional densities corresponds to the likelihood term P (xr | cr). The

computation entails selecting

c = argmax
cr

P (cr | xr) = argmax
cr

P (xr | cr)P (cr)

P (xr)
= argmax

cr

P (xr | cr)P (cr)

where the denominator term P (xr) is dropped because it does not depend on cr. In other

words, we select the class with the largest posterior probability. Since we can represent the

likelihood, it is only necessary to compute the class prior probabilities for each class. This
is easily accomplished by simply counting the patients from each class in the training set.

The result is a Bayesian classifier based on GMRF models.

To make a prediction about the class of an undiagnosed patient q, we must evaluate

the class-conditional likelihood densities. Consider the case where we assume the patient is

positive, thus cq = +. If the model has no latent variables (and the metabolic profile xq

contains no missing values), then evaluating the likelihood involves inserting the values xq

into the multivariate normal density of (4.1) determined by the GMRF parameters µ+ and

K+. In the case that there are latent variables or missing values in xq , we instead compute

the parameters of the marginal density over the observed values as described in Section 4.3.
We then use these parameters to evaluate the marginal density of the observed values in

xq. The same procedure is used to evaluate the likelihood of xq assuming that the patient

q is negative. The two likelihood values are used to determine the most likely class for the

patient.
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Chapter 5

Methods

This chapter describes how to combine the ideas developed in previous chapters to derive
the PIA system. In particular, it discusses how PIA converts a set of metabolic pathways

from KEGG into a GMRF graph structure. These structures are far too large to apply

learning algorithms directly. Thus, we develop some techniques for simplifying them to

make parameter learning feasible. Additional ideas that are important to PIA are described

here as well. These ideas include a technique for computing a covariance matrix estimate
from a small number of samples and an algorithm to compute the maximal cliques of a

graph to improve the performance of the SK algorithm.

5.1 Metabolic Graph Construction

At this point, we have established the motivation for treating a set of metabolic pathways as a
graph structure and discussed specific approaches for generating these graphs. We described

the interpretation of these graphs in terms of probabilistic independence statements and

their use in representing probability distributions with GMRF models. PIA combines these

ideas to create a pathway-based disease classification tool. The PIA system employs the WF

graph construction discussed in Section 3.2. This and other representations were described
there in terms of individual reactions. An individual pathway consists of several reactions

however. PIA generates a combined graph representation of a set of pathways as described

in Section 4.4.

A metabolic pathway in KEGG consists of a set of chemical reaction equations. For a
given pathway, a specific organism will have a subset of these reactions corresponding to the

enzymes encoded in its genome. The details of how KEGG represents this information are

contained in Appendix A. PIA generates a graph representation of a given set of pathways

as follows. For every reaction that is on one or more of the pathways, it generates a graph

representation of the reaction following the WF construction as described in Section 3.2.
The nodes in this graph are identified by the name of the corresponding metabolite. Given

this set of reaction graphs, PIA generates a combined graph over all nodes and edges in the

reaction graphs. In this combined graph, nodes are uniquely determined by their metabolite

names. Thus, a metabolite that occurs in many reactions will only have one node in this
graph. An example of this procedure applied to several generic reaction equations is shown

in Figure 4.2.

The combined graph that results from using the WF representation has an intuitively

appealing interpretation in terms of probabilistic independence statements. Recall that

in this representation, a pair of metabolites are connected via an edge if and only they
participate in a reaction together. According to the independence properties of an undirected

graph described in Section 4.2, we can interpret the resulting graph structure in a specific
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Pathway ID Pathway Name
00010 Glycolysis / Gluconeogenesis
00020 Citrate cycle (TCA cycle)
00220 Urea cycle and metabolism of amino groups
00251 Glutamate metabolism
00252 Alanine and aspartate metabolism
00260 Glycine, serine and threonine metabolism
00271 Methionine metabolism
00272 Cysteine metabolism
00280 Valine, leucine and isoleucine degradation
00290 Valine, leucine and isoleucine biosynthesis
00300 Lysine biosynthesis
00310 Lysine degradation
00330 Arginine and proline metabolism
00340 Histidine metabolism
00350 Tyrosine metabolism
00360 Phenylalanine metabolism
00380 Tryptophan metabolism
00400 Phenylalanine, tyrosine and tryptophan biosynthesis
00410 beta-Alanine metabolism
00430 Taurine and hypotaurine metabolism
00440 Aminophosphonate metabolism
00450 Selenoamino acid metabolism
00460 Cyanoamino acid metabolism
00471 D-Glutamine and D-glutamate metabolism
00472 D-Arginine and D-ornithine metabolism
00473 D-Alanine metabolism
00480 Glutathione metabolism

Table 5.1: Metabolic pathways from KEGG that are relevant to the metabolism of cachexia.

way. In particular, we invoke the local independence properties of an undirected graphical

model. In this context, the nodes are taken to represent random variables corresponding

to metabolite concentrations. The graph implies that the concentration of a metabolite is
independent of every other metabolite given the concentrations of those metabolites that

are participants in a common reaction. Because we are only modelling the metabolite

concentrations and their relationships, nothing else in the model could have a direct influence

on the concentration of a metabolite.

To simplify the default graph structure, we use the idea of currency metabolites from
Section 3.3. Because we use the WF graph construction, we also use the corresponding

currency metabolite list that is given in Table 3.1. Currency metabolites are not included in

the graph structures that PIA uses. Their exclusion takes place during the reaction graph

construction step. Any metabolite on the list of currency metabolites is treated as if it did
not participate in any reactions even if it does according to KEGG. KEGG generally does

not represent complete reaction equations in its metabolic pathways however. Instead, only

the primary metabolites of a reaction are included, thus the removal of currency metabolites

does not have a major impact on the resulting graph structures. This is because the currency

metabolites typically are not the most important metabolites in a reaction. They are defined
as those metabolites that are available in sufficient quantity that they do not affect the

operation of the reactions where they participate. Thus, the concentrations of non-currency

metabolites do not depend on the currency metabolites. In the context of probabilistic

graphical models, this constitutes sufficient justification for ignoring them.
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reactions nodes edges parameters
H. sapiens (all pathways) 1,651 1,504 1,795 4,803
currency metabolites removed 1,493 1,731 4,717

H. sapiens (cachexia pathways) 417 391 506 1,288
currency metabolites removed 386 487 1,259

C. elegans 918 1,004 1,108 3,116
currency metabolites removed 994 1,057 3,045

S. scrofa 897 1,022 1,022 3,066
currency metabolites removed 1,012 995 3,019

Table 5.2: Metabolic graph structure properties, before and after removing currency metabo-
lites.

Another way to control the size of the graph structures is through the sets of metabolic
pathways used to generate them. We consider two different sets of metabolic pathways

from KEGG. The first set consists of all 165 pathways that KEGG designates as metabolic

pathways. We also consider using a set of expert-determined pathways that include only

the pathways that are most relevant to the disease mechanism of cachexia. Activity in these

pathways is expected to differ in cachexic patients when compared to patients without the
disease. The list of these 27 cachexia pathways is given in Table 5.1. This list shows that

PIA can incorporate additional biological knowledge through the selection of pathways it

uses to derive its GMRF graph structure.

The PIA system is applied to three data sets, each containing metabolic profiles from a
different organism. Properties of the default graph structures for these three organisms are

given in Table 5.2. The table suggests that the models corresponding to these graphs have

many parameters to learn. Recall that the number of parameters in a GMRF model based

on graph G = (V,E) is 2|V |+ |E|. Our data sets have around 100 instances each, not nearly

enough to accurately estimate over 1,000 parameters as required for the graphs in Table
5.2. The table shows that removing currency metabolites does not significantly reduce the

number of parameters. This is because KEGG already ignores most currency metabolites

on its pathways.

As indicated in Table 5.2, the default graph structure resulting from the WF construction
procedure applied to all human metabolic pathways contains 1,493 nodes and 1,731 edges.

Only 48 of the nodes in this graph correspond to measured metabolites in the cachexia data

set. The remaining 1,445 nodes correspond to latent variables. Clearly, a metabolic profile

only measures a small portion of the compounds that are involved in the human metabolic

network. Since this number of latent variables is far too large to apply EM directly, we
consider some ideas to further simplify the graph structure. These are intended primarily to

remove latent variables but they also help to significantly reduce the number of parameters

in the models used by PIA.

5.2 Metabolic Graph Transformations

This section introduces two graph operations that PIA employs to reduce the size and com-

plexity of its GMRF graph structures. Assume that there is a graph structure G = (V,E)

constructed from a set of metabolic pathways according to the WF procedure. For a given

data set, the set of nodes V is implicitly partitioned into two subsets M and L corresponding

to measured and latent (unmeasured) variables respectively. As noted above, our cachexia
data set only covers 48 of the 1,445 metabolites in the human metabolic network. The other

data sets described in Chapter 6 poorly cover the networks of their respective organisms

as well. Thus, the default graphs contain too many latent variables to effectively learn
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v

Figure 5.1: Example of the marginalize operation applied to a node v of a graph.

1: procedure marginalize(G, v)
Require: G = (V,E) is an undirected graph with v ∈ V
2: E ← E ∪ {{i, j} | i, j ∈ N(v) and i 6= j} ⊲ connect pairs of neighboring nodes
3: E ← E − {{i, v} | i ∈ N(v)} ⊲ remove edges incident to v
4: V ← V − {v} ⊲ remove the node v
5: end procedure

Algorithm 5.1: Marginalize a variable out of a distribution modeled as a GMRF.

the parameters of the corresponding models. The two transformations described here are

intended to reduce the number of latent variables in a graph while attempting to preserve

its independence properties.

5.2.1 Marginalize

Marginalization is the process of integrating a variable out of a distribution to produce the

distribution over the remaining variables [30]. The conditional independence statements

satisfied by the variables in the resulting marginal distribution can be derived from those

of the original distribution. The marginalize operation implements this derivation. Given
a GMRF graph structure and a variable, the marginalization process produces a graph for

the marginal distribution over the remaining variables. The operation is implemented as a

simple graph transformation.

Typically, the marginalize operation will introduce some new dependencies into the

marginal distribution. The fact that a variable is not modeled in a distribution does not
mean it no longer exists. A marginalized-out variable still influences and is influenced by

other the variables in the marginal distribution. In addition to removing a variable node,

the marginalize operation accounts for these influences in the graph it produces. Algorithm

5.1 defines the graph transformation implemented by the marginalize operation.
The transformation considers a node v and its neighborhoodN(v). Every pair of nodes in

N(v) must be joined via an edge producing a clique over them. The conditional independence

of any two variables with nodes in N(v) always requires conditioning on the variable xv

according to the three characterizations given in Section 4.2. This is no longer possible

in the marginal distribution however. Without xv, the possible dependencies can only be
accounted for by the edges added on line 2. The remainder of the marginalize operation

removes edges incident to v and the node v itself. An example of applying the marginalize

operation to a node in a graph is shown in Figure 5.1.

The marginalize operation introduces the minimum number of dependencies to avoid in-
troducing independencies that did not exist in the original graph. To see that the marginalize

operation adds only the necessary edges and no more, first consider the possibility that it

adds an edge unnecessarily. Suppose that the graph G = (V ,E) is the result of marginal-

izing v ∈ V from the graph G = (V,E) and that the edge {a, b} was unnecessarily added
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nodes edges parameters

all pathways

default graph 1,493 1,731 4,717
fully marginalized 48 572 668
greedily marginalized 80 259 419
merged 55 65 175
merged + greedily marginalized 49 59 157

cachexia pathways

default graph 386 487 1,259
fully marginalized 35 284 354
greedily marginalized 47 120 214
merged 42 52 136
merged + greedily marginalized 36 43 115

Table 5.3: Transformed metabolic graph structure properties for human graphs after re-
moving currency metabolites.

by the algorithm. Now assume that {a, b} /∈ E and consider the implications. In this case,
a, b ∈ N(v) because marginalizing only joins pairs of nodes in N(v) as seen on line 2 of

Algorithm 5.1. Also, because the algorithm made the decision to join a and b, {a, b} /∈ E

is true. The set of nodes C = V − {a, b} must separate a and b in G. The assumption

{a, b} /∈ E implies that any path between a and b must pass through some node in C.

The set C does not separate a and b in G however because of the path a, v, b. Thus, G
implies that (xa ⊥ xb | xC) but G does not. This represents a newly introduced conditional

independence, contradicting the assumption that the edge {a, b} was unnecessarily added.

Therefore, all edges added by the marginalize operation are necessary.

The marginalize operation also does not introduce any independencies by failing to add
a required edge. To see this, assume that E should contain {a, b} but it does not, thus

{a, b} /∈ E. If {a, b} ∈ E, then the marginalize operation would not have removed it because

the operation only removes edges incident to v and both a and b are different from v. Thus,

{a, b} /∈ E must hold for consistency with the assumption. The assumption also would be

false if a, b ∈ N(v) so at least one of a, b is not in N(v). Assume without loss of generality
that a /∈ N(v). The set of nodes C = V − {a, b} must separate a and b in G. The only

nodes not in C are a, b and v. The separation is true because any path from a to b through

v must pass through a node in N(v) that is different from b but this node is in C. Thus,

the graph G implies (xa ⊥ xb | xC) but the assumption implies that (xa ⊥ xb | xC) is false.
This contradiction means that the operation did not fail to add an edge to G. Therefore,

exactly the right set of edges is added by the marginalize transformation.

Applying this transformation to a node v of a graph affects the number of parameters

in the corresponding GMRF model. The change can increase or decrease the number of

parameters depending on how highly connected the neighborhood of v is. The operation
always eliminates two parameters: one for the mean of xv and the other for the corresponding

diagonal precision matrix element. For node v, there exists some number kv of edges among

the nodes in N(v). The maximum number of possible edges among N(v) is 1
2 |N(v)|(|N(v)|−

1). Thus, the total change in the number of parameters is

−2− deg(v) +
1

2
|N(v)|(|N(v)| − 1)− kv.

This number can be positive or negative depending on the connectivity of the nodes in

N(v). The change in the number of parameters for the example graph in Figure 5.1 is

−2− 4 + 1
2 × 4× 3− 2 = −2.

PIA uses the marginalize operation in two ways. One approach applies it to every latent

variable node in the model. We call this approach full marginalization because it does not

consider the effect on the number of parameters in the corresponding GMRF model. The
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u v w

Figure 5.2: Example of a merge operation applied to the nodes u and v of a graph to produce
a new node w.

1: procedure merge(G, u, v)
Require: G = (V,E) is an undirected graph with u, v ∈ V and {u, v} ∈ E
Ensure: w /∈ V
2: V ← V ∪ {w} ⊲ add a new node
3: E ← E ∪ {{i, w} | i ∈ N(u) ∪N(v)} ⊲ connect new node to neighbors of u and v
4: E ← E − {{i, u} | i ∈ N(u)} ⊲ remove edges incident to u
5: E ← E − {{i, v} | i ∈ N(v)} ⊲ remove edges incident to v
6: V ← V − {u, v} ⊲ remove the nodes u and v
7: end procedure

Algorithm 5.2: Merge a pair of latent variables in a distribution modeled as a GMRF.

same graph is produced regardless of the order of marginalization (see Theorem C.1). The

other approach takes the parameterization of the resulting models into consideration. This

approach is called greedy marginalization because it marginalizes a latent variable node

only if the transformed graph structure has fewer parameters than the original one. This
process is repeated as long as such a node can be found, selecting the node that produces

the greatest reduction in the number of parameters. Because marginalizing one node u can

change the effect marginalizing v has on this number, we apply the operations in this greedy

fashion. The effect that these two graph transformations have on the default graph structure

are indicated in the “fully marginalized” and “greedily marginalized” rows of Table 5.3.

5.2.2 Merge

The merge operation operates on two nodes u, v ∈ L at a time. The nodes u and v must be

adjacent, thus {u, v} ∈ E. It removes the two nodes and replaces them with a single new

node connected to all nodes to which either u or v was adjacent. The motivation for this

operation stems from the typical arrangement of metabolites on a KEGG pathway. Many
of these involve one compound being transformed into another and so on, forming a long

path of latent variables in the default GMRF structures. Instead of modelling the effects

of many latent variables on each other, we are only interested in the effects that they have

on the observed variables. In contrast to the marginalize operation, the merge operation

reduces the complexity of the GMRF model but it also preserves some latent variables to
account for these effects. The merge operation that we devised is defined in Algorithm 5.2.

An example of a merge operation performed on two adjacent nodes of a graph is shown in

Figure 5.2.

The merge operation creates a new latent variable xw and a node w for it that was
not previously in V . This node will take the place of the nodes u and v that are merged.

Merging is accomplished by joining every node in N(u) ∪ N(v) to the new node w. The

nodes u and v and their incident edges are all removed from the graph. Because the node

w did not exist and u and v both correspond to latent variables, w must also correspond to
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a latent variable.

The merge operation preserves the independencies among variables corresponding to

unaffected nodes without adding additional independencies among them. Because the op-
eration is only applied to latent variable nodes, these are the only independencies that are

important in the GMRF models. As described in Section 4.6, PIA uses marginal densities

over the measured variables to compute the likelihood values needed to produce a classifi-

cation. To understand the consistency between the initial and transformed graphs, consider
the merge operation applied to adjacent nodes u and v of a graph G = (V,E). Suppose that

G = (V ,E) is the result of this transformation. Let A, B and C denote disjoint subsets of

V such that neither A or B contains u or v (but C might).

If (xA ⊥ xB | xC) holds according to G then a similar statement (xA ⊥ xB | xC) is true

according to G where C is defined as

C =

{

C if u /∈ C and v /∈ C

C ∪ {w} if u ∈ C or v ∈ C.

Consider a path a, v1, v2, . . . , vk, b in G from a ∈ A to b ∈ B that is blocked by a node c ∈ C.

We can translate this into a path in G by replacing occurrences of u and v with their merged

counterpart w. If the node c = u or c = v, then w ∈ C and this node blocks the path in G.
If c is not u or v, then by construction c ∈ C and c blocks the translated path because this

node was not changed by the translation. Therefore, independencies among the nodes that

the merge operation is not applied to are preserved in the resulting graph.

The merge operation should not introduce new independencies among these nodes either.
To see why, consider that (xA ⊥ xB | xC) is true according to G and define the set of nodes

C as

C =

{

C if w /∈ C

C ∪ {u, v} if w ∈ C.

Then the graph G implies that (xA ⊥ xB | xC) is true. As above, let a, v1, v2, . . . , vk, b be a

path in G from a ∈ A to b ∈ B that is blocked by a node c ∈ C. Translate the path into

G by replacing w with u, v or the edge {u, v} as needed depending on what nodes occur

before and after w in the path to make it valid in G. If the node c = w then the replacement
node(s) block the translated path in G. If c is not w then c ∈ C and it also blocks the

translated path because the node was not changed. Therefore, the merge operation does

not introduce new independencies among the nodes it is not applied to either.

Like the marginalize operation, applying the merge operation to a graph changes the
number of parameters in the corresponding GMRF model. In this case, however, the change

is strictly a reduction in the number of parameters. Two nodes u and v are reduced to the

one node w for a net decrease of two parameters. Four parameters are lost from u and v but

two more are added for w. We also have that deg(u) + deg(v) ≥ deg(w). This is because

w is adjacent only to nodes in N(u) ∪N(v) but there could be overlap. In other words, if
N(u) ∩N(v) 6= ∅ then deg(u) + deg(v) > deg(w). Therefore, the total reduction in number

of parameters is

2 + |N(u) ∩N(v)|.

The change in number of parameters for the graph in Figure 5.2 is −2− 1 = −3.
The PIA system uses the merge operation to merge every pair of adjacent latent variables

in a graph structure. The merge operation is repeatedly applied until no such pair exists.

Note that this includes the w nodes in line 2 of Algorithm 5.2 because these are also latent

variable nodes. As with the marginalize operation, the order of application of the merge

operation is not relevant. The same graph is produced as a result (see Theorem C.2). The
result of applying the merge operation in this manner is that some latent variables will

remain in the structure. The nodes corresponding to these variables have the property that

they are only adjacent to measured variable nodes.
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After repeated application of the merge operation as described, a common pattern in the

resulting metabolic graphs is to have a sequence of nodes u, v and w where u, v, w is a path,

u is not adjacent to w, v ∈ L and u,w ∈ M . In this case, the latent variable node v can
be marginalized to produce a graph with strictly fewer parameters. Thus, the distribution

modeled by the graph has fewer latent variable nodes as well. We add these marginalization

steps after the merge operations are applied to obtain these simplified graphs. We expect

that learning parameters for the resulting models will be easier.
As with the marginalization, applying merge to a graph structure significantly affects

the number of parameters in the corresponding GMRF model. These effects are quantified

in Table 5.3.

5.3 Other Issues

We describe two additional components of the PIA system that are necessary to produce the

results in the next chapter. Both components are related to the input of the SK algorithm

described in Section 4.5. These inputs are a covariance matrix estimate and a set of maximal

cliques for a graph structure.

5.3.1 Covariance Estimation

The SK learning algorithm described in Section 4.5.1 requires a positive definite covariance

matrix estimate as input [43]. The standard unbiased estimate of the covariance matrix

from a data sample Σ̂ defined by (4.4) is unsuitable in some cases because of the limited

number of samples in our data sets. Schäfer and Strimmer point out that in the “small n,
large p” case where p≫ n, the matrix Σ̂ is not full rank, thus it is not positive definite [40].

Considering that we are learning two models, one for positive and the other for negative

patients, the data set is effectively reduced in size by one half. Also, because we employ

cross validation to estimate future performance, we are further reducing the data available
for training each of these models. Thus, it is likely that Σ̂ is not positive definite. To

address this problem, PIA uses the more robust covariance estimate described by Schäfer

and Strimmer [40].

This estimate is called a shrinkage estimate and has the form

Σ⋆ = λT + (1 − λ)Σ̂

where T is called the target matrix and λ ∈ [0, 1] is used to combine T with Σ̂. Like Σ̂,

the target T is estimated from the data but it is chosen to have fewer parameters than

Σ̂ to ensure that its estimate has lower variance than Σ̂ given a small number of samples.

We select the target T = I, the p × p identity matrix, called target A by Schäfer and
Strimmer [40], for its simplicity although the authors propose several others. They show

that if Σ is the true covariance matrix, then the loss function L(λ) = ‖Σ⋆−Σ‖22 has a closed

form expression for the value of λ = λ⋆ that minimizes it. To compute the estimate Σ⋆, we

compute Σ̂ from the data set and then calculate the value of λ⋆ according to this expression.

The PIA system uses Σ⋆ as the input to the SK and GL algorithms described in Section
4.5. This matrix is guaranteed to be positive definite and will tend to produce an estimate

that is closer to Σ than the unbiased estimate Σ̂ [40].

5.3.2 Maximal Cliques

As noted above, the runtime of the SK algorithm applied to learn parameters for a GMRF
model is improved considerably when given the set of maximal cliques in the underlying

graph structure. PIA uses a maximal clique enumeration algorithm described by Bron and

Kerbosch (BK) to find this set of cliques [8].
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nodes edges largest clique

all pathways

default graph 1,493 1,731 5
fully marginalized 48 572 34
greedily marginalized 80 259 7
merged 55 65 4
merged + greedily marginalized 49 59 4

cachexia pathways

default graph 386 487 4
fully marginalized 35 284 24
greedily marginalized 47 120 7
merged 42 52 4
merged + greedily marginalized 36 43 4

Table 5.4: Largest clique sizes in the human metabolic graphs after removing currency
metabolites.

The BK algorithm (version one) is a simple search algorithm that maintains a fully

connected set of nodes C at every search step. Specifically, every pair of nodes in C are

adjacent in the graph. Initially empty, the set C may or may not be a maximal clique.

Every node not in C connected to every node in C is stored in one of two sets. The first
of these is the set of candidate nodes D that are the nodes that have not been considered

as extensions of those in C. The other is the set of nodes R that have been considered.

Initially, D contains all nodes in the graph and R is empty. Each search step takes a node

v out of D and adds it to C and updates D and R to reflect the new set C. If both D
and R become empty, the search branch stops and C is declared maximal or if D becomes

empty but R does not then the search branch stops and C is discarded. Otherwise, the

search continues until completion. At this point, the node v is placed into R and another

candidate is considered.

The problem of enumerating the maximal cliques of a graph is NP-hard following a trivial
reduction from the NP-complete clique problem1 [29]. Despite the hardness of the problem,

we find that the BK algorithm runs very fast for the graphs that we consider. There are

other, more sophisticated algorithms that are more efficient but the BK algorithm is easy to

implement. Also, the metabolic network does not change frequently, thus we can compute
the maximal cliques for a graph and store them for reuse with different diagnosis tasks.

Even if the maximal clique finding were a bottleneck, it is rarely necessary to perform the

computation. In our experience, the improvement in speed of the SK algorithm is worth

this computational effort.

After applying the maximal clique finding algorithm to the graph structures listed in
Table 5.3, a distinct feature of the fully marginalized graphs becomes apparent. The size of

the largest clique in these graphs is very large, containing most of the nodes in the graph.

The largest clique sizes for the human graphs are given in Table 5.4. Unfortunately, these

clique sizes imply that much of the pathway structure from the default graphs is lost in
the transformation. The fully marginalized graphs are the only graphs that contain only

observed variable nodes. We consider the influence of this feature on the results in the next

chapter.

1Given an undirected graph G and a positive integer k, determine whether G contains a clique of size k.
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Chapter 6

Results

This chapter describes the results of applying the ideas discussed in previous chapters to a
variety of classification tasks derived from three data sets. We describe various experiments

that we performed with PIA and summarize the results we obtained with the system on these

tasks. More detailed numerical results from these experiments are provided in Appendix B.

6.1 Data Sets

We use several data sets to evaluate the learning algorithms described in this thesis. This
section describes the relevant properties of these data sets including the various classification

tasks that we derive from them. Our main data set contains metabolic profiles of human

cancer patients with and without cachexia. In addition, the data set contains healthy

human metabolic profiles. We also have a data set of worm metabolic profiles with many
associated classification tasks. Worms in this data set were subjected to various dietary and

genetic manipulations that we use classifiers to predict from metabolic profile measurements.

Another data set was produced by a study to determine the amino acid intake requirements

of pigs. Based on these metabolic profiles, we learn classifiers that predict whether the

intake of a pig is above or below this requirement. For reasons discussed below, the data
from this study is produced by a biological process similar to cachexia.

6.1.1 Cachexia Data Set

The cachexia data set contains metabolic profiles for 148 people, 38 of whom are healthy and

110 have cancer. Of the 110 cancer patients, we ignore four because of kidney failure leaving

a total of 106. Each metabolic profile quantifies the concentrations of 64 metabolites. The
metabolite urea is excluded from the data set because its quantification is unreliable [39].

Each person in the data set is described by the concentrations of 63 metabolites in a spot

urine sample. The data set contains no missing values; every metabolite was quantified for

every patient. The raw metabolite concentration values were all log transformed (using base

e) before any analysis was performed on them. The cachexia data set also contains spectral
binning data for each cancer patient with 206 bins and no missing values.

A pair of abdominal CT scans were performed on 93 of the 106 cancer patients approx-

imately three months apart. These scans were analyzed to determine the percentage of

muscle mass that the patient lost (or gained) per 100 days. Thus, there is a real number
associated with each patient quantifying their change in muscle mass. Ideally, we would

produce a regression model that could predict this particular value. Instead, we focus on

the easier classification task of determining whether or not a patient is cachexic. We define

the disease state of a patient based on their muscle loss percentage.
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instances positive negative base accuracy
cachexia diagnosis 73 44 29 60.3
cancer diagnosis 144 106 38 73.6
cancer type 106 35 71 67.0
sex 106 41 65 61.3

Table 6.1: Classification tasks derived from the cachexia data set and their properties.

Essentially, if a patient lost muscle we define them as cachexic and if they gained muscle
then they are not. The instrument that detects the muscle mass changes is only precise to

±0.75% per 100 days however. Therefore we define a patient as cachexic if their muscle loss

value is ≥ 0.75% and as not cachexic if the value is ≤ −0.75%. Patients with loss values in

the interval (−0.75, 0.75) are ignored in the classification task. The result of this definition

of the two classes is a data set with 73 patients. Of them, 44 have cachexia and 29 do
not. Because 60.3% of the patients are positive, we expect the accuracy of the predictions

made by our classifiers to exceed this rate. A simple classifier that always predicts positive

trivially achieves 60.3% accuracy.

In addition to the muscle loss values that are used to define the disease classes, the data
set contains other information from which to derive additional classification tasks that we use

to test our methods. The 106 cancer patients in the data set have one of two cancer types:

colorectal cancer (35 patients) or lung cancer (71 patients). Thus, we consider predicting

the type of cancer that a patient has as another task. Also, 38 people in the data set are

healthy so we will consider the general cancer diagnosis task. The sex of the cancer patients
is also recorded in the data set so we consider predicting this attribute as well. Details of

the four classification tasks are summarized in Table 6.1. Naturally, each task has a baseline

accuracy rate that a simple classifier that always predicts the majority class can achieve.

The learned classifiers should perform at least as well as this.

6.1.2 Worm Data Set

This data set contains 57 metabolic profiles from worms (C. elegans) each quantifying 30

metabolites. These metabolic profiles are derived from samples composed of the entire

body of the worm. Thus, the profiles more closely reflect the state of the organism than the

urinary metabolic profiles of the cachexia data set. This data set has a different problem

that is the consequence of many zero value measurements in it. For certain classification
tasks derived from it, there are metabolites with no nonzero values in the subset of the

data specific to a particular class. Thus, we cannot produce the required positive definite

covariance matrix estimate for the distribution corresponding to that class. To avoid these

problems, metabolites with ten or more zero values in the data set are dropped. There are
four such metabolites, leaving a data set with 26 measurements per worm. Because we are

only concerned with comparing classifiers to each other and not achieving the best possible

classifier performance, we consider this simple approach to making the data set amenable

to our analysis acceptable. Also, the data set was already log transformed as provided, thus

we did not perform this preprocessing step.
Worms in the data set are from one of three strains: the wild type or one of two mutant

strains. The mutant strains are produced by a gene knockout procedure that deactivates a

specific enzyme gene. We denote the set of wild type worms by WT and the sets of mutant

worms by KO1 and KO2. Further, each of the worms is fed one of two diets producing the
two diet-specific worm sets D1 and D2. Finally, of the worms in D2, some are subjected to

one of two gene knockdown procedures that reduce the expression of a particular gene. The

sets of worms subjected to knockdown 1 and knockdown 2 are denoted by KD1 and KD2
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Figure 6.1: Possible characterizations of the worms in the worm metabolic profile data set.

instances positive negative base accuracy
wild type vs. others 57 22 35 61.4
knockout 1 vs. others 57 17 40 70.2
knockout 2 vs. others 57 18 39 68.4
knockdown vs. no knockdown 57 25 32 56.1
diet 1 vs. diet 2 57 15 42 73.7

Table 6.2: Classification tasks derived from the worm data set and their properties.

respectively and the remaining worms, subjected to no knockdown, are denotedKD0. There
are many possible categorizations for the worms in this data set. These are summarized by

the possible paths through the graph in Figure 6.1. Every worm must have a strain and a

diet but they are not necessarily subjected to a gene knockdown.

We derive several binary classification tasks from the possible worm categorizations.

Although tasks with more than two classes are possible and possibly make more sense from
a biological perspective, our software was initially developed to support binary classification

tasks only. As noted, we are not concerned with the optimal classification performance on

this particular data set. Because we are only interested in evaluating the performance of

PIA relative to standard machine learning algorithms, we did not modify the software to
support more general classification problems. The tasks that we consider and their relevant

properties are summarized in Table 6.2.

6.1.3 Pig Data Set

The pig (S. scrofa) data consists of four related data sets. These data sets were produced

by studies to determine the required intake of two different amino acids for pigs [42, 41].

The two amino acids cysteine (Cys) and methionine (Met) were fed to the pigs in varying
amounts to quantify these requirements. Pig diets were delivered via two different routes:

intravenous (IV) and intragastric (IG). The four data sets were produced from the four

possible combinations of amino acid and route.

Each of the two amino acids has a required intake quantity that depends on the route
that the compound is fed. Pigs in the four data sets have a value corresponding to the

amount of Cys or Met in their diet. These amount are either above or below the required

amount, thus we have a natural classification task to consider for each data set. Specifically,

the classifiers predict whether or not the diet of a pig contains the required amount of

an amino acid from its metabolic profile. Relevant details of these classification tasks are
summarized in Table 6.3. Metabolic profiles in the Cys and Met data sets quantify 26 and

25 amino acid metabolites respectively from a blood sample taken from each pig. As with
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instances positive negative base accuracy
Cys, IG 27 12 15 55.6
Cys, IV 28 13 15 53.6
Met, IG 28 16 12 57.1
Met, IV 32 17 15 53.1

Table 6.3: Classification tasks derived from the pig data set and their properties.

the human metabolic profile data set, we log transform the pig data (using base e) before

analysis.

In a sense, the tasks derived from the pig data sets are similar to cachexia diagnosis.

One of the main metabolic characteristics of cachexia is the catabolism of the amino acids
produced by the breakdown of muscle tissue. Patients with cachexia tend to have more

amino acids available than those without cachexia. These amino acids are either used to

build proteins or they are catabolized [37]. They are not stored for future use. Because the

construction of a protein depends on many different amino acids, if one of these amino acids
is not available in sufficient quantity, protein production is limited. The other amino acids

that would have been used to make proteins are no longer usable, thus they are catabolized.

This process is induced by holding the intake of a particular amino acid in the diets of

pigs below the required level. Therefore, the byproducts of amino acid catabolism should

be reflected in the metabolic profiles of these pigs in a manner similar to that of human
cachexia patients.

6.2 Classification Results

This section presents classification results for the tasks and the algorithms described above.

KEGG contains metabolic pathways for the three organisms that are used to derive our
classification tasks, thus the PIA algorithms all use organism-specific KEGG pathways. In

addition to using the metabolic pathways to derive fixed structures for PIA models, we can

also incorporate them into GL. This involves using a matrix penalty in the GL optimization

based on a known graph as described in Section 4.5.2. In this section we abbreviate these
results as PIA+x or GL+x where x is one of

• FM = fully marginalized structure

• GM = greedily marginalized structure

• MM = merged, then greedily marginalized structure

indicating the transformation performed on the underlying graph. These transformations

are described in detail in Section 5.2.
There are two other relevant dimensions to the results presented in this section. First,

we compare the full set of KEGG pathways with a subset of them. This subset, designated

as the cachexia pathways in Section 5.1, are those pathways deemed to be relevant to the

metabolic processes underlying cachexia. The list of these pathways is given in Table 5.1.

Second, the set of pathways also affects what metabolites are actually included in the PIA
models. In a given data set, not every metabolite actually appears on a KEGG metabolic

pathway. The measured metabolites for the three data organisms and the corresponding

number of those metabolites on a pathway are given in Table 6.4. We treat these KEGG-

selected metabolites as a form of feature selection and evaluate classifiers on data sets
restricted to them.

To obtain the results in this section we use five fold CV for all algorithms and all

tasks. The instances in each fold are selected to match the class distribution in the full
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total metabolites KEGG-selected metabolites
human 63 48
worm 26 19
pig 26/25 14

Table 6.4: Total number of metabolites measured for each organism and the number of them
appearing on an organism-specific KEGG metabolic pathway.

data set as closely as possible. For a given task, the same division of instances into folds
is used for every algorithm. The performance metric used to evaluate these algorithms is

classification accuracy. Classifier performance is measured by averaging its accuracy over

the five folds (even though they may not have equal size). To determine if the difference in

performance between two classifiers on the same task is significant we apply a paired t-test.

Each algorithm has five accuracy values associated with each of the five folds in a task. We
treat these values as independent random variables that depend on a specific classifier. The

paired t-test determines if the difference in the mean of these values for two classifiers is

significant. We consider a difference to be significant if the p value from the test satisfies

p < 0.05.
The implementations of the algorithms presented here are from a variety of sources.

SVM results are based on LibSVM with a radial basis function kernel using the default

parameters [11]. The C4.5 implementation is provided by Quinlan [38] and our results with

it are based on the default settings as well. Friedman et al. provide an implementation of

their GL algorithm [19]. To select the value of the regularization term ρ we use an internal
five fold CV technique over the values ρ ∈ {0.01, 0.1, 0.2, . . . , 1.0}. After determining the

best choice of ρ from this set on the training data, we apply it to the full training set to

learn a model. The remainder of the algorithms used here were implemented by the author

based on their descriptions in the literature. Chapter 4 discusses these algorithms in detail
and provides references for them.

6.2.1 Cachexia Data Set Results

Results for the cachexia diagnosis task are given in Figure 6.2. Error bars indicate one

standard deviation of the fold accuracy values in this and other figures presenting classifi-

cation accuracy results. The base classification accuracy for each task is indicated by the

horizontal line in these figures. The cachexia diagnosis results show that the PIA model
based on all human metabolic pathways with the full marginalization transformation ap-

plied produces the best classification accuracy. Although promising, the difference between

this result and some of the standard algorithms is not statistically significant. Results for

the other classification tasks are given in Figures 6.3, 6.4 and 6.5. In the these tasks, none
of the PIA models outperforms the standard algorithms although the performance of PIA

is comparable to them in all cases. The exact classification accuracy of each algorithm for

the four tasks in the cachexia data set are given in Table B.1. Accuracy results for spectral

binning data is given in Table B.12.

Along the other dimensions that we considered we see no significant differences as well. In
all cases, PIA models based on all metabolic pathways slightly outperform the corresponding

model based on the cachexia pathways. The improvement in classification accuracy of PIA

at cachexia diagnosis obtained by restricting the system to the relevant cachexia pathways

is shown in Figure 6.6. Detailed PIA results with cachexia pathways for the all four tasks
are given in Table B.10. PIA models based on the cachexia pathways are only strictly

better for the sex classification task. When the standard machine learning algorithms are

applied to data sets based on all metabolites compared to KEGG-selected metabolites, no
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Figure 6.2: Classification accuracy results for the cachexia data set, cachexia diagnosis task.
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Figure 6.3: Classification accuracy results for the cachexia data set, cancer diagnosis task.
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Figure 6.4: Classification accuracy results for the cachexia data set, cancer type task.
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Figure 6.5: Classification accuracy results for the cachexia data set, sex task.
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Figure 6.6: Classification accuracy improvements obtained by models limited to cachexia-
relevant pathways for the cachexia data set, cachexia diagnosis task.
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Figure 6.8: Classification accuracy results on the training data for the cachexia data set,
cachexia diagnosis task.
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Figure 6.9: Classification accuracy results for the worm data set, wild type task.
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Figure 6.10: Classification accuracy results for the worm data set, knockout 1 task.
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significant differences are observed either. Classification accuracy improvements for the

cachexia diagnosis task with KEGG-selected metabolites only are shown in Figure 6.7.

Detailed results for all four tasks are given in Table B.7.
These results provide no evidence that any form of expert-provided knowledge improves

classification accuracy on human metabolic profile data. Standard approaches that are

better developed and more widely used are probably as good as or better than the PIA

model. One possible explanation for these results is that the PIA models overfit the data.
To measure this, we use each algorithm to learn a classifier using the entire data set as a

training set and then evaluate it on the same data. Models with high classification accuracy

in this setting are more likely to have overfit the data than those with lower accuracy rates.

The training set results produced by all algorithms on the cachexia diagnosis task are shown

in Figure 6.8. Results from all tasks are given in Table B.4. As indicated, PIA models are
among the most overfit of the algorithms that we considered.

6.2.2 Worm and Pig Data Set Results

The conclusions reached based on the cachexia data set are not improved when we consider

the other two data sets. Classification accuracy results for the tasks derived from the worm

data set are shown in Figures 6.9, 6.10, 6.11, 6.12 and 6.13. Detailed numerical results are
given in Table B.2. Accuracy results for the pig data set classification tasks are in Figures

6.14, 6.15, 6.16 and 6.17. Table B.3 contains the detailed results. As with the cachexia data

set results, the PIA models are comparable to the standard algorithms on these tasks but

they are not significantly better.

KEGG-based feature selection does not appear to make a difference for the classification
accuracy of the standard algorithms either. The improvements obtained in this setting for

the worm and pig data set classification tasks are given in Tables B.8 and B.9 respectively.

In most cases, classification accuracy is reduced when classifiers are restricted to metabolites

that appear on a KEGG metabolic pathway. For the Met IG and Met IV tasks from the pig
data set, KEGG-based feature selection produces improvements in classification accuracy

that are approximately 15% better for classifiers based on graphical models (GL, NB, TAN,

MTAN and Full).

As with the cachexia data set, we measured the training set error for each classifier on

the worm and pig classification tasks. These results are given in Tables B.5 and B.6 for
these two sets of tasks respectively. As with the cachexia data set, PIA models tend to

exhibit a high degree of overfitting relative to some of the standard approaches.

6.3 Other Results

We consider some other situations to determine if there is any benefit to using KEGG
metabolic pathways in a metabolic profile classifier. This section goes beyond the simple

classification experiments presented in Section 6.2 to investigate the performance of PIA in

these situations. The focus of this section is on the cachexia data set only.

6.3.1 Additional Variables

As previously discussed, only a subset of the metabolites in any of our data sets actually

appears on a KEGG pathway. This may limit the accuracy that PIA can achieve relative to
the other classifiers because it is based on less data than them. In this section, we consider

ways to overcome this limitation by incorporating additional variables into the PIA models.

There are three approaches to incorporating a variable into a pathway-based GMRF

model when that variable does not correspond to a metabolite on one of those pathways.
The first assumes that the variable is completely independent of every other variable. Thus,
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Figure 6.11: Classification accuracy results for the worm data set, knockout 2 task.
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Figure 6.12: Classification accuracy results for the worm data set, knockdown task.
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Figure 6.13: Classification accuracy results for the worm data set, diet task.
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Figure 6.14: Classification accuracy results for the pig data set, Cys IG task.
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Figure 6.15: Classification accuracy results for the pig data set, Cys IV task.
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Figure 6.16: Classification accuracy results for the pig data set, Met IG task.
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Figure 6.17: Classification accuracy results for the pig data set, Met IV task.
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Figure 6.18: Classification accuracy results obtained by models extended with age and sex
variables for the cachexia data set, cachexia diagnosis task.
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Figure 6.19: Classification accuracy results obtained by models extended with additional
metabolite variables for the cachexia data set, cachexia diagnosis task.
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the node corresponding to the added variable will have no incident edges in the graph

structure. Another approach assumes the opposite: that the variable is directly dependent

on all of the others. In this case, the added node is adjacent to all other nodes in the graph
structure. A more complicated approach is to fully connect nodes corresponding to added

variables as in the latter case. We can then use the GL algorithm to learn the correct way

to connect the new nodes to the others. Note that GL may also remove connections among

existing nodes.
In addition to the extra metabolites not found on a KEGG pathway, the cachexia data

set contains other information about the patients in it. This information includes age and

sex, two factors that we know influence metabolite concentrations. In general, we would

like a way to incorporate such additional information into the PIA system because it may

be relevant to a diagnosis task of interest. Perhaps the easiest approach is to assume the
additional variables follow normal distributions and to add them into the model using one

of the approaches just suggested. In this case, we encode sex as a variable with numeric

values zero and one. This method is not correct because, particularly with age and sex,

the additional information is not likely to follow a normal distribution. The method is
easy to implement however. Additional methods are an important area of future work with

PIA because some of the variables we might consider adding to the models could be very

important for distinguishing disease states.

We consider six experiments based on these ideas:

• additional metabolites, independent

• additional metabolites, dependent

• additional metabolites, dependent + GL

• age and sex, independent

• age and sex, dependent

• age and sex, dependent + GL

The classification accuracy results for PIA models extended with age and sex applied to the

cachexia diagnosis task are shown in Figure 6.18. The same results for models extended

with additional metabolite variables are shown in Figure 6.19. Numerical results all of these
models are given in Table B.11. These results make it clear that we cannot improve on the

best results obtained without additional variables. Models based on GL all obtain the same

performance as they did without additional variables. The extended models for the MM and

GM transformations improve slightly over the original models when the additional variables

are added independent of the others. The difference here is not statistically significant
however. In general, the independent models outperform the dependent models suggesting

that this approach is the better of the two.

6.3.2 Patient Subsets

Another dimension that we investigated to determine if PIA has any advantage is learning

from subsets of the patients in the data set. Our hypothesis is that PIA might have an

advantage when the number of examples available for learning is small. In this case, knowing
about the pathways might help produce better models of the data that more accurately

classify future patients. Since the results given above indicate similar accuracy rates for

PIA models and the standard machine learning algorithms, it is possible that the cachexia

data set already contains enough patients for any reasonable algorithm to obtain the best
possible accuracy. There are two approaches that we consider to investigate the hypothesis.
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One way to investigate the hypothesis that PIA has an advantage when data is limited

is to consider random subsets of the data set of various sizes. Here we still use a muscle loss

threshold of ±0.75 to define the classes. We did this for subset sizes in the range 12, 11, . . . , n
always following the class distribution of the full data set in the subsets that we consider

as closely as possible. Starting the subset sizes at 12 ensures that every data set considered

contains at least five patients from each class. For each size, we perform LOOCV with 100

random subsets of that size and average the results and compute the standard deviation.
Results comparing PIA+FM with NB, TAN, MTAN and Full are given in Figures 6.20, 6.21,

6.22 and 6.23 respectively. The PIA+FM results almost always fall within one standard

deviation of the considered algorithms regardless of the number of patients used in the

small data sets. Only when most patients are included does a significant difference emerge

because the standard deviation approaches zero. As indicated above, the differences at the
upper end of the size range are not significant.

We consider another approach to generating smaller data sets based on changing our

definition of cachexia. As noted above, the patients in the cachexia data set each have a

real number quantifying their loss in muscle mass. We used this variable lr to divide the
patients into two classes: cr = + if lr ≥ 0.75, cr = − if lr ≤ −0.75 and the patient is

dropped otherwise. The threshold t = ±0.75 is not the only one we could consider. Every

such threshold drops more or fewer patients from the effective data set. To validate the

hypothesis in this case, we considered varying the threshold t in the following manner. The

threshold t is started at zero and gradually increased in magnitude, dropping more and more
patients from the data set until not enough remain to compute a positive definite covariance

estimate. Again, we use LOOCV to evaluate the algorithms with the generalized definition

of the classes. As with the previous set of results, we observe no significant difference

between PIA+FM and the four standard algorithms NB, TAN, MTAN and Full.

6.3.3 Edge Priors

Up to this point, in all of the experiments that we have considered, the metabolic pathway

graph structures derived from KEGG were treated as fixed structures. This means that if

two metabolites are not joined via an edge, then PIA will never join them when learning

regardless of the information contained in the training set. Recall that the GL learning

algorithm may remove an edge from an initial structure with some probability that depends
on the value of the parameter ρ. As described in Section 4.5.2, we can generalize ρ so that

each possible edge {i, j} has a value ρij specific to it. In this way we can influence the

probability that a particular edge is included in a learned structure. This allows us to treat

a metabolic pathway graph structure as a soft structure: edges implied by KEGG are given
a higher probability of inclusion but no edge is ruled out completely.

We achieve this by considering two parameter values instead of one. The first, denoted

ρe is the value assigned to ρij for every edge {i, j} ∈ E in a graph G = (V,E) derived

from KEGG. The other parameter is ρe is assigned to ρij for every {i, j} /∈ E. Values of ρe
and ρe are selected from the set {0.01, 0.1, 0.2, . . . , 1.0} such that ρe > ρe. We consider all
such combinations and perform five fold CV with GL learning and starting with a KEGG

structure. Classification accuracy results for the cachexia diagnosis task staring with graphs

produced via the FM, GM and MM transformations are given in Tables B.13, B.14 and B.15.

These results show that we obtain a small but insignificant improvement with this technique
when the FM or GM transformations are employed. We note that selecting the best values

for ρe and ρe by examining the results in these tables is inappropriate. The correct way to

do this we should use cross validation to select the parameter values for a specific training

set. Because we did not obtain a significant improvement in classification accuracy we did

not pursue this approach.
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Figure 6.20: Average classification accuracy results comparing NB and PIA on random
patient subsets of various sizes for the cachexia data set, cachexia diagnosis task.

50

60

70

80

90%

20 30 40 50 60 70

number of patients

PIA
TAN

rs rs

rs rs

rs rs

rs

rs

rs

rs

rs

rs

rs

rs rs

rs rs rs rs

rs

rs rs rs rs rs rs

rs rs

rs

rs

rs

rs rs rs

rs rs

rs

rs

rs rs

rs

rs

rs rs

rs

rs rs

rs

rs rs

rs rs rs rs rs rs rs rs rs

rs

rs rs

rs

Figure 6.21: Average classification accuracy results comparing TAN and PIA on random
patient subsets of various sizes for the cachexia data set, cachexia diagnosis task.
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Figure 6.22: Average classification accuracy results comparing MTAN and PIA on random
patient subsets of various sizes for the cachexia data set, cachexia diagnosis task.

50

60

70

80

90%

20 30 40 50 60 70

number of patients

PIA
Full

rs

rs

rs rs

rs rs

rs

rs

rs

rs

rs

rs

rs

rs

rs rs rs

rs rs

rs rs rs rs

rs rs rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs rs

rs

rs rs

rs

rs rs rs rs rs rs rs rs

rs rs rs

rs

rs rs rs rs rs

rs rs

rs

Figure 6.23: Average classification accuracy results comparing Full and PIA on random
patient subsets of various sizes for the cachexia data set, cachexia diagnosis task.
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6.4 Conclusion

The results presented in this chapter suggest that incorporating metabolic pathway knowl-

edge into classifiers based on metabolic profile data provides no benefit in terms of the ac-

curacy that those classifiers can achieve. The fact that the performance of the PIA models
is comparable with standard machine learning algorithms suggests that metabolic pathway

knowledge does not hurt performance either. In many cases, the differences between the

performance of the algorithms is not statistically significant. This suggests that most algo-

rithms are able to achieve the best possible classification accuracy for the tasks we consider.
If true, then the prior biological knowledge could not have improved performance. Because

we consider a wide variety of tasks and situations in evaluating PIA, this is unlikely however.

In the case that we have not achieved the best possible classification accuracy in the tasks

considered here, there are two potentially significant limitations on the performance of PIA.

The first limitation is that much of the structure of the metabolic network is lost after
transforming it to reduce the number of latent variables in the resulting models. This is

particularly true with the fully marginalized graph structures as suggested by Table 5.4.

In these graphs, the maximal clique contains most of the nodes. Structures produced from

the other transformations have the distinguishing characteristic of a single latent variable
node with many measured variable nodes connected to it. In this case, marginalizing the

latent variable would result in a structure with a single large clique like the fully marginal-

ized structure. Increasing the number of measured metabolites in a metabolic profile would

reduce the amount of lost structural information because the transformations are necessar-

ily applied to remove unmeasured metabolites. Less destructive transformations may be
possible as well.

Another limiting factor is the assumption that class-conditional metabolic profiles follow

multivariate normal distributions. Under this assumption, PIA benefits from computa-

tionally efficient learning and classification of unseen patients. Standard machine learning
algorithms such as SVM and C4.5 do not make assumptions about the distribution of feature

values. It is not likely that metabolic profile measurements actually follow multivariate nor-

mal distributions. Thus, PIA may benefit from assuming a different distribution although

we are not aware of any with the desirable properties of multivariate normal distributions.

These include computational efficiency and ability to incorporate prior knowledge about the
distribution. Although other assumptions were mentioned in Section 1.3, these are related

to the way metabolic pathway knowledge is interpreted in the context of graphical models.

We believe that any classifier that attempts to leverage pathway knowledge would have to

make these assumptions. Thus, they are less likely to account for the inability of PIA to
outperform standard machine learning algorithms.
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Appendix A

KEGG Details

This appendix describes the parts of the KEGG database that PIA uses. The discussion
includes how the relevant data is retrieved, its organization and its structure. We also

discuss some changes that we made to the KEGG database to correct errors and to include

additional knowledge of human metabolism. The KEGG data files that we use correspond

to the version of the database that was available via the KEGG File Transfer Protocol

(FTP) server1 on 22 June 2009. Because changes are made to KEGG on a daily basis,
the information here may not be valid for other versions of the database. As noted in

Section 2.3, KEGG contains information covering many aspects of biology. The discussion

here is limited to the components of the KEGG database necessary to generate a GMRF

graph structure for PIA from an organism, a data set of metabolic profiles and and a set of
metabolic pathways.

A.1 Metabolic Pathway Organization

KEGG data is stored in numerous flat files provided for download via FTP. The files that

are relevant to the organization of the metabolic pathways used in this thesis are

ligand/reaction/reaction_mapformula.lst

pathway/organisms/hsa/hsa*.rn

pathway/organisms/cel/cel*.rn

pathway/organisms/ssc/ssc*.rn

where the * character corresponds to a possible KEGG pathway ID number. File names are

relative to the root of the KEGG directory structure at ftp://ftp.genome.jp/pub/kegg/.

The file ligand/reaction/reaction mapformula.lst is the most important of these for

PIA because it describes how chemical reaction equations map onto KEGG pathway images.

KEGG pathways are commonly presented as graphical images such as the Citric Acid Cycle
pathway in Figure 2.2. The reaction mapping file is an easily parsed representation of these

images. This file is necessary because PIA cannot easily incorporate information directly

from the image of a pathway.

Figure A.1 lists the first ten lines of the reaction mapping file. Every line of this file has
the form

r: p: cl1 + cl2 + . . .+ cln d cr1 + cr2 + . . .+ crm

where r and p indicate reaction and pathway ID numbers respectively. Note from Figure A.1

that these ID numbers contain five digits each and that the reaction ID numbers have the
letter R as a prefix. The prefix indicates that the ID refers to an entry in the KEGG reaction

1ftp://ftp.genome.jp/pub/kegg/
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R00005: 00220: C01010 => C00011

R00005: 00791: C01010 <=> C00011

R00006: 00770: C00900 <= C00022

R00008: 00362: C06033 => C00022

R00008: 00660: C06033 <= C00022

R00010: 00500: C01083 => C00031

R00013: 00630: C00048 => C01146

R00014: 00010: C00022 + C00068 => C05125

R00014: 00020: C00022 + C00068 => C05125

R00014: 00290: C00022 => C05125

Figure A.1: Example lines from the KEGG reaction equation to pathway mapping file
ligand/reaction/reaction mapformula.lst.

abbreviation organism
hsa H. sapiens (human)
cel C. elegans (worm)
ssc S. scrofa (pig)

Table A.1: KEGG organism abbreviations for selected organisms.

database. The values of cli and crj represent KEGG compound (metabolite) ID numbers.

These ID numbers also contain five digits but have the prefix C used to indicate an entry in
the compound database. The value of d indicates the direction of the reaction encoded as

a textual arrow: right (=>), left (<=) or bidirectional (<=>). As discussed in Section 1.3, the

graph construction procedure of PIA ignores this directionality information.

The reaction to pathway mapping file describes the reference pathways of KEGG. As
discussed in Section 2.3, reference pathways include reactions for every organism in the

KEGG database. Only a subset of the these reactions actually occur in each organism.

Thus, we must determine, for a given set of pathways, which of the reactions in the mapping

file to use for a given organism. KEGG stores organism-specific data in a directory such as

pathway/organisms/hsa/where the last directory (here named hsa/) indicates the specific
organism. In this case, because hsa is an abbreviation for H. sapiens, this directory contains

human pathway data. Organism abbreviations for the three organisms corresponding to

the data sets in Chapter 6 are given in Table A.1. Within the organism-specific pathway

directory there are several different file types. Only the files with names ending in .rn are
relevant to PIA. Files ending with .rn list the reactions on a particular pathway that occur

in a specific organism. The name of each file includes the ID number of the pathway that

corresponds to the reaction list. The Citric Acid Cycle pathway has KEGG ID number

00020, thus the file pathway/organisms/hsa/hsa00020.rn contains the list of reactions

that occur on the human version of that pathway. The first ten lines of the file are shown in
Figure A.2. This figure suggests an easily parsed data format with one reaction ID number

per line of the file.

The process of generating a graph from a set of pathways is described in Section 5.1.

It requires an organism and a list of pathways to use. Given a list of KEGG pathway
ID numbers and an organism abbreviation, it is straightforward to determine the reaction

equations needed to generate a combined graph. Assume that the desired KEGG organism

abbreviation is hsa and the pathway ID numbers are 00010, 00020, 00030 and 00040. The

relevant files corresponding to these pathways for the organism are
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R00014

R00268

R00342

R00344

R00351

R00352

R00405

R00431

R00432

R00621

Figure A.2: The first ten lines of the file pathway/organisms/hsa/hsa00020.rn for the
human Citric Acid Cycle pathway.

pathway/organisms/hsa/hsa00010.rn

pathway/organisms/hsa/hsa00020.rn

pathway/organisms/hsa/hsa00030.rn

pathway/organisms/hsa/hsa00040.rn

each containing a list of KEGG reaction ID numbers. Note that the reaction equation
mapping file described above is indexed by a pathway and a reaction ID number. For each

pathway of interest and each reaction ID in the corresponding reaction list file, there is a

line in the mapping file containing a reaction equation. This equation describes how KEGG

represents the reaction on the pathway. From these reaction equations a set of reaction

graphs are constructed. A combined graph structure is generated from these graphs as
described in Section 5.1. Every unique KEGG compound ID number is associated with

a node in the graph and edges are added based on the occurrence of those compounds in

reaction equations.

A.2 Metabolite Mapping

Another problem that arises when combining a data set of metabolic profiles with KEGG

pathways is mapping between metabolite names in the data set and KEGG compound ID

numbers. The metabolite names in a metabolic profile data set must be converted into these

ID numbers by PIA in order to learn the correct set of parameters for GMRF models based

on metabolic pathway graphs. These data set names do not necessarily correspond to the
names in KEGG however.

KEGGmetabolite names are stored in the file ligand/compound/compound that contains

the KEGG compound database. An example entry from this database is shown in Figure

A.3. The PIA system only depends on the field named ENTRY that indicates the ID number
of a compound and the NAMES field listing synonyms for the compound. Given a metabolite

name from a data set, if an exact match is found with one of these synonyms, that metabolite

is mapped to the corresponding compound ID. If no match is found, then we consult the

Human Metabolome Database (HMDB) to find a synonym match there [46]. The HMDB
typically has a longer list of synonyms to match against for each metabolite. If such a

match is made, then the synonyms from HMDB are used to search the KEGG compound

database. Again, if a match is found, the metabolite is mapped to the matched compound

ID. Otherwise, PIA concludes that the compound does not exist in KEGG.
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ENTRY C00036 Compound

NAME Oxaloacetate;

Oxalacetic acid;

Oxaloacetic acid;

2-Oxobutanedioic acid;

Oxosuccinic acid;

keto-Oxaloacetate

FORMULA C4H4O5

MASS 132.0059

REACTION R00217 R00338 R00339 R00340 R00341 R00342 R00343 R00344

R00345 R00346 R00347 R00348 R00350 R00351 R00352 R00353

R00354 R00355 R00357 R00359 R00360 R00361 R00362 R00363

R00373 R00400 R00431 R00477 R00493 R00695 R00726 R00930

R00931 R01144 R01257 R01447 R01713 R01731 R03735 R05053

R05758 R07164 R07165

PATHWAY PATH: ko00010 Glycolysis / Gluconeogenesis

PATH: ko00020 Citrate cycle (TCA cycle)

Figure A.3: Example compound database entry from the KEGG compound database.

A.3 Corrections and Additions

Several modifications to the version of the KEGG database that we use are needed to

support the results presented in Chapter 6. The first set of modifications that we made to
the KEGG data files were to correct some malformed reaction ID numbers. In particular,

the files

pathway/organisms/hsa/hsa00601.rn

pathway/organisms/ssc/ssc00601.rn

contain the reaction ID number R6086 that does not correspond to an entry in the KEGG
reaction database. The only real KEGG reaction ID number containing the digits 6086 is

R06086, thus we changed R6086 to this ID number in the two files. In addition, several

reaction ID numbers in the reaction list files are malformed. These ID numbers have the

prefix “rn:” attached to them. These prefixes were removed in the following files

pathway/organisms/hsa/hsa00272.rn

pathway/organisms/hsa/hsa00450.rn

pathway/organisms/hsa/hsa00600.rn

pathway/organisms/hsa/hsa00630.rn

pathway/organisms/hsa/hsa00920.rn

from every reaction ID number that they contained. The two other organisms in Table

A.1 are also affected for the same set of pathways. After making the necessary changes,

the reaction ID numbers in the reaction list files for the three organisms of interest are all

correctly formatted.

We also modified KEGG to include a few additional reactions and metabolites that are
known components of human metabolism and relevant to cachexia but that the database

does not contain. These modifications were made only to the human portion of the KEGG

database. The changes are oriented around the three metabolites hydroxyisovalerate, crea-

tinine and 3-methylhistidine. These metabolites are known products of muscle catabolism,
thus we incorporated them into the pathways used by the PIA system.

Incorporating creatinine is relatively easy because it is known to participate in the re-

action Creatinine-P → Creatinine. This reaction is already represented in KEGG on its
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arginine and proline metabolism pathway with ID number R07420. Possibly an oversight,

the reaction is not designated as a part of the human pathway in the corresponding re-

action list file. We changed this by adding the reaction ID number R07420 to the file
pathway/organisms/hsa/hsa00330.rn for that pathway.

The metabolite 3-methylhistidine is more challenging to incorporate into PIA because it

and the relevant reaction are not in KEGG. This reaction is L-Histidine↔ 3-Methylhistidine

which we incorporated into the KEGG histidine pathway. To accomplish this, we cre-
ated the dummy compound ID number C99999 for 3-methylhistidine and the dummy

reaction ID number R99999 for the reaction. The new reaction was added to the file

ligand/reaction/reaction mapformula.lst so that it is included on the histidine path-

way with ID number 00340. The exact line added to the file is

R99999: 00340: C99999 <=> C00135

We updated the mapping between metabolite names and compound ID numbers to reflect

C99999 as 3-methylhistidine.

A similar situation arises with the metabolite hydroxyisovalerate but instead of one

reaction to add, we have several. These reactions are

1. Leucine ↔ α-Ketoisocaproate

2. α-Ketoisocaproate↔ Isovaleryl-CoA

3. Isovaleryl-CoA↔ Hydroxyisovalerate

and we added them to the valine, leucine and isoleucine pathway of KEGG with ID number

00280. Neither α-ketoisocaproate nor 3-hydroxyisovalerate are in KEGG, thus we created

them with the dummy ID numbers C99997 and C99998 respectively. Three dummy reactions

were created corresponding to the three reactions above. These reactions are given reaction
ID numbers R99996, R99997 and R99998 respectively. The lines added to the reaction

equation mapping file are

R99996: 00280: C99997 <=> C02939

R99997: 00280: C00123 <=> C99997

R99998: 00280: C02939 <=> C99998

where C00123 and C02939 are the ID numbers for leucine and isovaleryl-CoA respectively.

As before, we updated the mapping with the three new compounds.
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Detailed Results
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cachexia cancer cancer type sex
PIA + FM 82.1 92.3 75.5 67.1
PIA + GM 79.1 89.5 77.3 70.8
PIA + MM 79.1 88.1 80.2 71.8
GL + FM 76.5 73.6 67.0 61.3
GL + GM 76.5 73.6 67.0 61.3
GL + MM 76.5 73.6 67.0 61.3
GL 76.5 73.6 67.0 61.3
NB 75.1 72.8 69.0 64.5
TAN 76.6 90.3 81.2 79.3
MTAN 76.8 94.4 79.3 71.7
Full 75.3 91.7 64.3 68.9
SVM 75.0 92.3 77.4 72.7
C4.5 59.2 79.9 70.8 66.0
Base 60.3 73.6 67.0 61.3

Table B.1: Classification accuracy results for the cachexia data set.

wildtype knockout 1 knockout 2 knockdown diet
PIA + FM 93.0 86.2 96.5 94.6 85.8
PIA + GM 93.2 84.4 96.5 89.7 80.6
PIA + MM 89.6 82.6 94.9 86.1 78.9
GL + FM 77.1 70.3 68.5 56.1 73.6
GL + GM 77.1 70.3 68.5 56.1 73.6
GL + MM 77.1 70.3 68.5 56.1 73.6
GL 77.1 70.3 68.5 56.1 73.6
NB 80.8 77.0 77.0 84.6 77.3
TAN 91.2 84.6 98.3 89.6 82.6
MTAN 89.4 86.2 98.3 93.0 86.1
Full 96.7 89.6 98.3 94.7 89.7
SVM 93.0 98.3 94.7 94.7 98.2
C4.5 87.7 75.3 87.6 73.9 94.7
Base 61.4 70.2 68.4 56.1 73.7

Table B.2: Classification accuracy results for the worm data set.
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Cys IG Cys IV Met IG Met IV
PIA + FM 58.7 100.0 71.3 57.6
PIA + GM 54.7 100.0 71.3 57.6
PIA + MM 54.7 100.0 71.3 57.6
GL + FM 56.0 86.0 57.3 52.4
GL + GM 56.0 89.3 57.3 52.4
GL + MM 56.0 92.7 57.3 52.4
GL 56.0 96.7 57.3 49.5
NB 66.0 90.0 60.7 48.1
TAN 63.3 88.7 43.3 41.0
MTAN 67.3 92.0 35.3 41.0
Full 63.3 100.0 39.3 41.0
SVM 59.3 92.7 67.3 59.5
C4.5 52.7 89.3 71.3 51.4
Base 55.6 53.6 57.1 53.1

Table B.3: Classification accuracy results for the pig data set.

cachexia cancer cancer type sex
PIA + FM 98.6 100.0 100.0 100.0
PIA + GM 90.4 95.1 90.5 91.5
PIA + MM 89.0 93.1 89.6 86.8
GL + FM 76.7 73.6 67.0 61.3
GL + GM 76.7 73.6 67.0 61.3
GL + MM 76.7 73.6 67.0 61.3
GL 76.7 73.6 67.0 61.3
NB 75.3 72.2 74.5 66.0
TAN 87.7 97.9 91.5 93.4
MTAN 91.8 99.3 95.3 96.2
Full 100.0 100.0 100.0 100.0
SVM 100.0 99.3 89.6 93.4
C4.5 100.0 97.9 97.2 97.2

Table B.4: Classification accuracy results on the training data for the cachexia data set.
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wildtype knockout 1 knockout 2 knockdown diet
PIA + FM 100.0 87.7 98.3 100.0 93.0
PIA + GM 100.0 84.2 98.3 93.0 89.5
PIA + MM 98.3 84.2 96.5 91.2 87.7
GL + FM 73.7 70.2 68.4 56.1 73.7
GL + GM 73.7 70.2 68.4 56.1 73.7
GL + MM 73.7 70.2 68.4 56.1 73.7
GL 73.7 70.2 68.4 56.1 73.7
NB 82.5 77.2 79.0 82.5 77.2
TAN 94.7 84.2 98.3 98.3 87.7
MTAN 98.3 87.7 98.3 100.0 94.7
Full 100.0 93.0 98.3 100.0 98.3
SVM 100.0 100.0 100.0 100.0 100.0
C4.5 100.0 100.0 98.3 100.0 100.0

Table B.5: Classification accuracy results on the training data for the worm data set.

Cys IG Cys IV Met IG Met IV
PIA + FM 59.3 100.0 92.9 56.3
PIA + GM 59.3 100.0 92.9 56.3
PIA + MM 59.3 100.0 92.9 56.3
GL + FM 55.6 85.7 57.1 53.1
GL + GM 55.6 92.7 57.1 53.1
GL + MM 55.6 92.7 57.1 53.1
GL 55.6 96.4 57.1 62.5
NB 77.8 96.4 85.7 59.4
TAN 66.7 96.4 71.4 53.1
MTAN 74.1 96.4 78.6 53.1
Full 77.8 100.0 78.6 56.3
SVM 88.9 100.0 78.6 75.0
C4.5 96.3 96.4 100.0 93.8

Table B.6: Classification accuracy results on the training data for the pig data set.
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cachexia cancer cancer type sex
GL 0.0 0.0 0.0 0.0
NB 1.4 -2.7 -2.8 -1.3
TAN 2.6 1.4 -1.9 0.9
MTAN -0.1 -5.6 -0.9 4.7
Full 2.7 0.7 8.4 1.0
SVM 1.4 -0.6 4.7 -1.0
C4.5 4.3 -0.8 0.9 0.1

Table B.7: Classification accuracy improvements obtained by models limited to KEGG-
selected metabolites for the cachexia data set.

wildtype knockout 1 knockout 2 knockdown diet
GL 0.0 0.0 0.0 0.0 0.0
NB -1.7 1.8 1.8 -3.5 1.8
TAN -3.5 -1.8 -1.8 -1.7 -2.5
MTAN 0.2 0.0 0.0 -5.1 0.0
Full 0.0 0.0 0.0 -2.8 1.5
SVM 1.7 0.0 0.0 -2.8 0.0
C4.5 -3.5 0.0 0.0 6.6 -5.5

Table B.8: Classification accuracy improvements obtained by models limited to KEGG-
selected metabolites for the worm data set.

Cys IG Cys IV Met IG Met IV
GL 0.0 -4.0 0.0 9.6
NB 0.0 3.3 14.6 15.2
TAN -0.6 11.3 14.0 12.8
MTAN -4.6 8.0 18.0 12.8
Full -3.4 -4.0 14.7 10.0
SVM -4.0 -3.4 0.7 0.0
C4.5 -10.7 3.4 -14.0 -3.8

Table B.9: Classification accuracy improvements obtained by models limited to KEGG-
selected metabolites for the pig data set.
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cachexia cancer cancer type sex
PIA + FM -2.8 -4.9 1.0 1.9
PIA + GM -3.9 -2.0 1.1 3.8
PIA + MM -5.2 -3.5 -1.8 4.6
GL + FM -4.0 0.0 0.0 0.0
GL + GM -4.0 0.0 0.0 0.0
GL + MM -4.0 0.0 0.0 0.0

Table B.10: Classification accuracy improvements obtained by models limited to cachexia-
relevant pathways for the cachexia data set.

transform independent dependent dependent + GL

additional metabolites
FM 80.67 78.10 77.81
GM 76.48 69.71 77.81
MM 75.05 72.48 77.81

age and sex
FM 82.10 80.76 76.48
GM 79.14 77.81 76.48
MM 76.48 77.90 76.48

Table B.11: Classification accuracy results obtained by extended models for the cachexia
data set, cachexia diagnosis task.

cachexia cancer type sex
GL 60.3 67.0 61.3
NB 69.6 68.9 58.5
TAN 56.3 79.2 60.4
MTAN 57.6 77.3 62.3
Full 60.6 74.6 50.0
SVM 54.5 58.9 60.4
C4.5 48.6 62.6 57.5
Base 54.2 73.6 61.3

Table B.12: Classification accuracy results obtained from spectral binning data for the
cachexia data set.
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0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.01
0.1 76.67
0.2 75.33 78.10
0.3 75.33 76.67 78.00
0.4 76.67 80.67 80.67 77.81
0.5 78.10 82.00 77.81 77.90 79.24
0.6 76.67 83.43 77.90 77.90 77.90 76.48
0.7 76.67 83.43 77.90 76.57 76.48 76.48 76.48
0.8 76.67 83.43 77.90 76.57 76.48 76.48 76.48 76.48
0.9 78.10 83.43 77.90 76.57 76.48 76.48 76.48 76.48 76.48
1.0 78.10 83.43 76.57 76.57 76.48 76.48 76.48 76.48 76.48 75.05

Table B.13: Classification accuracy results obtained by GL+FM with edge priors that prefer
metabolic pathway edges for the cachexia data set.

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.01
0.1 80.76
0.2 80.86 76.67
0.3 80.67 77.90 76.57
0.4 82.00 76.48 76.48 77.81
0.5 80.67 75.14 77.81 79.24 77.90
0.6 80.67 76.57 76.48 76.48 76.48 76.48
0.7 80.67 61.43 76.48 76.48 76.48 76.48 76.48
0.8 83.33 70.95 76.48 76.48 76.48 76.48 76.48 76.48
0.9 80.67 73.81 76.48 76.48 76.48 76.48 76.48 76.48 76.48
1.0 80.90 57.43 76.48 76.48 76.48 76.48 76.48 76.48 75.05 75.05

Table B.14: Classification accuracy results obtained by GL+GM with edge priors that prefer
metabolic pathway edges for the cachexia data set.

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.01
0.1 74.00
0.2 75.24 75.33
0.3 76.57 75.24 75.14
0.4 76.48 72.67 68.48 77.81
0.5 76.48 73.90 74.95 77.81 77.90
0.6 77.90 73.62 64.48 76.48 76.48 76.48
0.7 76.57 68.29 73.71 76.48 76.48 76.48 76.48
0.8 77.90 71.05 66.57 76.48 76.48 76.48 76.48 76.48
0.9 76.57 73.90 68.19 61.14 57.81 76.48 76.48 76.48 76.48
1.0 76.57 69.43 65.81 65.81 71.14 76.48 76.48 76.48 75.05 75.05

Table B.15: Classification accuracy results obtained by GL+MMwith edge priors that prefer
metabolic pathway edges for the cachexia data set.
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Appendix C

Proofs

This appendix presents two theorems related to the graph transformations discussed in
Section 5.2. Specifically, we prove that the order that the transformations are applied

to a graph is unimportant. The same graph results regardless of what order nodes are

marginalized or merged in a graph structure. First, we consider the result for the marginalize

algorithm.

Theorem C.1. Given an undirected graph G = (V,E) and two nodes u, v ∈ V , the graph

produced by marginalizing out u and v according to Algorithm 5.1 is the same regardless of

the order of marginalization. In particular, let Gu = (Vu, Eu) and Gv = (Vv, Ev) denote
the graphs produced by marginalizing out u and v from G respectively. Further, let Gu,v =

(Vu,v, Eu,v) and Gv,u = (Vv,u, Ev,u) denote the graphs produced by marginalizing v from Gu

and u from Gv respectively. Then Gu,v = Gv,u.

Proof. First, consider the sets of nodes Vu,v and Vv,u. The first marginalization yields

Vu = V − {u} and Vv = V −{v} according to line 4 of Algorithm 5.1. Similarly, the second

marginalization yields

Vu,v = Vu − {v} = V − {u, v}

Vv,u = Vu − {u} = V − {u, v}

therefore Vu,v = Vv,u.

Next, consider the sets of edges Eu,v and Ev,u. There are several possible cases for edges
e = {i, j} ∈ E that these sets may or may not contain:

• {i, j} is incident to both u and v

Line 3 of Algorithm 5.1 removes all edges incident to a node that is marginalized out,
thus {i, j} /∈ Eu and {i, j} /∈ Ev. The only other line of the algorithm affecting Eu,v

or Ev,u is line 2. This line never adds an edge incident to a node that is marginalized

out, thus {i, j} /∈ Eu,v and {i, j} /∈ Ev,u.

• {i, j} is incident to one of u or v but not the other

Assume without loss of generality that i = u and j 6= v. The first marginalization

yields {i, j} /∈ Eu but {i, j} ∈ Ev. The former is true because {i, j} is incident to the

marginalized node u but the latter is not because {i, j} is not incident to v. After
the second marginalization, {i, j} /∈ Eu,v because u /∈ Vu so the edge {i, j} cannot

be added by line 2 of Algorithm 5.1. Similarly, {i, j} /∈ Ev,u because the edge {i, j}
incident to u is removed during the second marginalization by line 3 of the algorithm.

• {i, j} is not incident to either u or v
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In this case, {i, j} ∈ Eu,v and {i, j} ∈ Ev,u. The reason is that the edge {i, j} is not
removed during either sequence of marginalizations by line 3 of Algorithm 5.1 because

it is not incident to either u or v.

Because Algorithm 5.1 adds edges, possible edges e = {i, j} /∈ E must also be considered. If

i or j is among the marginalized nodes u and v then {i, j} /∈ Eu,v and {i, j} /∈ Ev,u. Because
Vu,v and Vv,u do not contain these nodes, the graphs Gu,v and Gv,u could not contain the

edge {i, j}. Algorithm 5.1 always removes edges incident to a node before removing that

node and it never adds an edge incident to a node that does not exist. Thus, the only case

left to consider is when {i, j} is not incident to either u or v. There are two possibilities to

consider

• {u, v} /∈ E

Marginalizing u from G does not change N(v) in Gu because line 2 would only add

edges incident to nodes in N(u) and v /∈ N(u). Similarly, marginalizing v from G does

not change N(u) in Gv. Consequently, the same set of edges are added by Algorithm

5.1 regardless of the order of marginalization. Therefore, the edge {i, j} ∈ Eu,v if and
only if {i, j} ∈ Ev,u.

• {u, v} ∈ E

Let Nu(v) denote the neighborhood of node v in Gu, the graph produced by marginal-

izing u out of G. Because {u, v} ∈ E, the neighborhood Nu(v) = N(v) ∪N(u)− {u}.
Further marginalizing v from Gu results in a set N = N(v) ∪N(u)− {u, v} such that

for all a, b ∈ N , {a, b} ∈ Eu,v. These are the only edges added by this sequence of
marginalizations. Reversing the order of marginalizations results in the same set of

nodes N however. Therefore, the edge {i, j} ∈ Eu,v if and only if {i, j} ∈ Ev,u.

This establishes that the edge set Eu,v = Ev,u. Therefore, the graphs Gu,v and Gv,u are the
same, proving the result.

Next, we consider a similar result for the merge algorithm.

Theorem C.2. Given an undirected graph G = (V,E) and three nodes v1, v2, v3 ∈ V such

that {v1, v2}, {v2, v3} ∈ E, the graph produced by twice applying the merge algorithm to merge

the three nodes into one according to Algorithm 5.2 is the same regardless of the merge order.

In particular, let G12 = (V12, E12) and G23 = (V23, E23) denote the graphs produced from G
by merging {v1, v2} into the node v12 and {v2, v3} into the node v23 respectively. Further,

let G123 = (V123, E123) and G231 = (V231, E231) denote the graphs produced by merging

{v12, v3} into the node v123 in G12 and {v1, v23} into the node v231 in G23 respectively.

Taking v123 = v231, then G123 = G231.

Proof. First, consider the sets of nodes V123 and V231. The only lines of Algorithm 5.2 that

can influence these sets are lines 2 and 6. Accordingly, the set V12 = V ∪ {v12} − {v1, v2}
and V23 = V ∪ {v23} − {v2, v3}. After the second merge, V123 = V12 ∪ {v123} − {v12, v3} =
V ∪{v123}−{v1, v2, v3}. Similarly, V231 = V23∪{v231}−{v1, v23} = V ∪{v231}−{v1, v2, v3}.
Taking v123 = v231 implies that V123 = V231.

Next, consider the sets of nodes E123 and E231. After merging {v1, v2}, lines 4 and 5 of

Algorithm 5.2 ensure that E12 contains no edge incident to v1 or v2. Line 3 adds edges to E12

incident to v12 and each node in N(v1)∪N(v2)−{v1, v2}. Merging {v12, v3} to produce E123

then removes these edges and those incident to v3. Therefore the only edges not in E123 that

are in E are those incident to v1, v2 or v3. Edges added to E123 by the second merge are those

that join v123 to each node inN(v12)∪N(v3)−{v12, v3} = N(v1)∪N(v2)∪N(v3)−{v1, v2, v3}.
The only edges in E123 that are not in E are those incident to v123. Applying this reasoning
to the alternative merge order and assuming that v123 = v231 yields E123 = E231. Therefore,

the graphs G123 and G231 are the same.
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