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Abstract

In this paper, we present a fast and accurate implementa-

tion of the diffusion-based non-rigid registration algorithm.

Traditionally, finite differences are used to implement reg-

istration algorithms due to their ease of implementation.

However, finite differences are sensitive to noise, and they

have a narrow numerical stability range. Further, finite dif-

ferences employ a uniform grid. This is often not desirable

in the case of registration, as finer resolution is needed to

capture the displacement field in regions that have a high

number of image features, as opposed to homogeneous re-

gions with fewer features. On the other hand, the less ex-

plored Finite Element Methods are ideal for the non-rigid

registration task, as they use a non-uniform discretization of

the image domain, placing points based on the local image-

feature information. We present such an FEM-based im-

plementation of a popular diffusion-based registration al-

gorithm [8]. Originally, this algorithm was implemented

using finite differences. Experimentally, we show that our

implementation is much faster than the corresponding finite

difference implementation, and that it achieves this compu-

tational speed without compromising the accuracy of the

non-rigid registration results.

1. Introduction

Image registration is an important image processing task.

It is often the first step in various computer vision algo-

rithms. In medical imaging, images are often required to

be registered to a standard reference (an atlas) for compari-

son, or images from two different time instants are required

to be registered with each other to observe the evolution of

a disease. Image registration refers to the task of finding

pixel correspondences between two given images. Specif-

ically, we want to estimate a transformation T such that a

pixel x in image I corresponds to the pixel T (x) in image

J . In rigid or affine registration, the transformation T is

a linear transformation. The affine transformation can be

parametrized by a finite number of parameters and is thus

constrained in the parameter space. In non-rigid registra-

tion, the transformation is estimated as a vector displace-

ment field U(x), such that at each pixel location x we have

T (x) = x + U(x). Thus, a pixel x with intensity I(x) in

the target image corresponds to a point T (x) with intensity

J(x + U(x)). In the case of medical images, one usually

estimates a non-rigid transformation to take into account the

highly non-linear deformations that can occur in the under-

lying anatomy.

In image registration, the transformation between two

images is estimated by minimizing a similarity metric (usu-

ally dependent on pixel intensities). In the case of non-rigid

registration, this minimization is ill-posed as we need to

search for the displacement parameters at each pixel in a

large parameter space. Hence, extra regularization terms are

usually added. In an early work, Broit [1] introduced the

idea of elastic regularization terms to model the non-rigid

deformations between images. Later, Christensen et al. [2]

proposed the viscous fluid regularization to handle large dis-

placements between images. In recent years, Stefenescau et

al. [8] combined the elastic and viscous regularization ideas

and proposed a novel visco-elastic regularization term. This

regularization constraint was imposed by smoothing the de-

formation field using a diffusion process, which involves

solving two Partial Differential Equations (PDEs). They

used Finite Difference methods to solve the PDEs. How-

ever, Finite Difference (FD) methods are limited due to the

fixed grid size. Consequently, they often fail to accurately

model the highly non-uniform deformation fields that com-

monly arise in non-rigid registration problems. On the other

hand, Finite Element Methods (FEMs), due to their ability

to handle variable grid sizes, are better suited for the task of

non-rigid image registration. Subsequently, there have been

some efforts [3, 5] to employ FEMs for non-rigid image

registration. However, these methods employ complex bio-

mechanical models to model the elastic behaviour of the un-

derlying anatomy in the images. These models usually are

tuned to a specific type of image registration task and hence

are not applicable for general non-rigid image registration.



In this paper, we explore the use of FEMs for solving the

diffusion PDEs corresponding to general visco-elastic reg-

ularization constraints. Such regularization constraints can

be imposed in a wider range of image registration problems.

We also describe a procedure to generate non-uniform grids

that adapted to the features in the image. We show the re-

sults of this FEM-based non-rigid registration methodology

on 2D MRI and CT images.

2. Diffusion-based non-rigid image registra-

tion

In this section, we briefly describe the non-rigid registra-

tion algorithm proposed by Stefanescu et al. [8] and present

our proposed Finite Element formulation of this non-rigid

registration method in detail.

2.1. Non-rigid registration by gradient de-
scent

Let I be the template or the target image and let J be the

source or the input image. The goal of non-rigid registration

is to compute a dense deformation (displacement) field U

between the two images. Stefanescu et al. [8] proposed the

iterative minimization of the sum of squared distance (SSD)

similarity criterion using a compositive update rule to obtain

this displacement field U. At each iteration a correction

field u was estimated such that SSD(I, J ◦ (U ◦ u)) is

minimized. Here J ◦ U(x) = J(x + U(x)) is the warped

image and the compositive update of the displacement field

U is given by U ◦ u(x) = U(x + u(x)) + u(x), where x

is a pixel in the image. Using a first order Taylor expansion

we get:

SSD(I, J ◦ (U ◦ u))

=

∫

[I(x) − (J ◦ (U ◦ u))(x)]2dx

≈ SSD(I, J ◦ U)

+

∫

2[(J ◦ U)(x) − I(x)][∇(J ◦ U)](x)T u(x)dx

(1)

From the above we see that the gradient of the SSD crite-

rion is:

∇SSD = 2[(J ◦ U)(x) − I(x)][∇(J ◦ U)](x) (2)

Now given the current displacement field Uk, using a gra-

dient descent strategy we can update this displacement field

by uk = −ǫ∇SSD to obtain:

Uk+1 = Uk ◦ uk

= Uk ◦ (−ǫ 2[J ◦ Uk − I][∇(J ◦ Uk)]) (3)

where, ǫ (a small fraction) is a parameter of the algorithm.

2.2. Diffusion-based smoothing

In the case of non-rigid registration, the smoothing of the

deformation field U is necessary due to two reasons: (1) to

regularize the minimization problem (2) to roughly model

the physical continuity of the underlying real non-rigid

transformation. For this purpose, Stefanescu et al. [8] pro-

posed the smoothing of the displacement field U and also

the smoothing of the correction field u at every iteration.

The smoothing of the displacement field U is imple-

mented on each of the components U = [UxUy] as:

∂Ul

∂t
= div(D(x)∇Ul) l ∈ {x, y} (4)

where D(x) is the scalar stiffness field. This smoothing is

equivalent to the physical elastic constraint where the elas-

ticity of various regions in the image is described by the

stiffness field D(x).
The smoothing of the correction field u is implemented

on each of the components u = [uxuy] as:

∂ul

∂t
= (1 − k(x))div(∇ul) l ∈ {x, y} (5)

where k(x) is the local confidence, which measures the re-

liability of the correction field values obtained at each pixel

p. The local confidence is estimated based on the gradient

(∇J) of the source image as:

k(x) = exp

(

−c
(‖∇J‖

λ

)

)

(6)

From the above, we can see that k(x) is close to 1 when

the gradient is high and k(x) is close to 0 for low gradient

values. This is motivated by the fact that the edges (high

gradients) in the image correspond to reliable landmarks in

the image and low gradients correspond to uniform regions.

This smoothing corresponds to the physical viscosity con-

straint.

2.3. Proposed FEM-based non-rigid regis-
tration method

In general, the displacement field is computed on a uni-

form grid (with spacing 1 pixel × 1 pixel) defined on the

image domain. Then, for a rectangular 2D image domain

I : R
L×W → R we have Uk ≡ Uk(xij), where {xij}, i ∈

{1, 2, . . . , L}, j ∈ {1, 2, . . . , W} are the uniformly placed

grid points. Such a uniform discretization of the image do-

main is not always desirable. This is because there might

exist regions in the image where the displacement field is

highly non-uniform (these are usually regions around the

significant features in the image) and hence require finer

discretization (spacing less than 1 pixel × 1 pixel) and on



the other hand we can have regions with a nearly constant

or linear displacement field (homogeneous regions in the

image) which can be well approximated using a coarse grid

(spacing greater than 1 pixel × 1 pixel). For example, in the

case of MRI images of the brain the regions corresponding

to the ventricles and the skull exhibit relatively non-uniform

deformations compared to the rest of the brain. Hence, a

non-uniform discretization is often needed to estimate the

displacement field accurately over the whole image domain.

Further, the diffusion PDEs (equations (4), (5)) are also

solved on the uniform grid using the FD method to smooth

the update and displacement fields. These smoothing steps

are considerably slow even when implemented using effi-

cient FD numerical schemes. One technique to speedup the

smoothing steps (without losing accuracy of the solution) is

to avoid solving the PDEs at every pixel in homogeneous

regions, where the displacement field is expected to be al-

most constant or linear. Such a methodology can be easily

implemented by using the Finite Element method instead of

the Finite Differences.

In this paper, we propose to solve for the displacement

field U on a non-uniform grid with triangular elements us-

ing the Finite Element method in order to improve the com-

putational speed and accuracy of the non-rigid registration.

The non-uniform grid is generated on the image by the De-

launay triangulation [6] of a set of input points. These

points are chosen automatically so that the resulting grid is

well adapted to the important features in the image (see next

section for more details). Let us denote the points on the

grid (henceforth called nodes) by {Pn}, n = {1, 2, . . . , N}
and the triangles adjacent to the node by δni (see Figure 1).

Using the Finite Element Method, the displacement field U

can now be approximated on the non-uniform grid by a set

of piecewise-linear basis functions {φ1, φ2, . . . , φN}:

U(x) =

N
∑

n=1

U(Pn)φn(x) ∀x ∈ R
L×W (7)

where U(Pn) is the value of displacement field at the node

Pn and we assign a basis function φn to each node Pn which

is uniquely defined as:

φn(x) =











is linear within each triangle δij

1 at each node Pn

0 at every other node Pm 6= Pn

(8)

From the above we see that the displacement field needs to

be computed only at the nodal locations, i.e, U(Pn). For

this purpose we propose a novel iterative non-rigid registra-

tion strategy as follows:

Step 1 : At iteration k = 0, initialize U0(Pn)

For subsequent iterations k > 0

P
n

P
(5)
n

P
(1)
n

P
(2)
n

P
(3)
n

P
(4)
n

xij

Figure 1. This figure shows a schematic

of the non-uniform grid on the rectangu-

lar 2D image domain. Here, a section of
the grid with a node Pn and its neighbor-

ing nodes P
(i)
n , i ∈ {1, 2, . . . , 5} is shown.

We denote the triangles adjacent to Pn by

δn1 ≡ P
(1)
n PnP

(2)
n , δn2 ≡ P

(2)
n PnP

(3)
n . . . δn5 ≡

P
(5)
n PnP

(1)
n . The corresponding uniform grid

is also shown in dashed lines and a sample
pixel xij of the uniform grid overlapping with

the triangular element of the non-uniform

grid is highlighted.

Step 2 : Compute Uk
ij at each pixel xij on the uniform grid

by interpolating Uk(Pn) over the triangular elements

of the non-uniform grid using basis functions φn

Step 3 : Compute uk
ij = −ǫ 2[Jij ◦U

k
ij−Iij ][∇(Jij ◦U

k
ij)]

Step 4 : Compute uk(Pn) = 1
P

ij λij

∑

ij λiju
k
ij . The

summation is over all the pixels xij overlapping the

triangles adjacent to the node Pn, where λij represents

the barycentric coordinate of the pixel xij with respect

to the node Pn. (see Figure 1)

Step 5 : Update Uk+1(Pn) = Uk(Pn) ◦ uk(Pn)

Step 6 : Smooth the displacement field Uk+1(Pn) by solv-

ing equation (4) on the non-uniform grid using the

FEM method



Step 7 : Goto Step 2 and repeat until convergence

For simplicity we represented J(xij) ≡ Jij , I(xij) ≡ Iij ,

U(xij) ≡ Uij , u(xij) ≡ uij .

In the above proposed non-rigid registration methodol-

ogy the first novelty is in step 4, where we compute the

updates at the nodes u(Pn) by taking a weighted average

of the updates at the neighboring pixels uij . This step is

equivalent to the smoothing of the update field (see equation

(5)) to model viscous fluid-like behavior. We also like to

point out that this step is computationally much less expen-

sive than the diffusion based smoothing of the update field

in equation (5). The second novelty of our proposed ap-

proach is in step 6 where we perform the smoothing of the

displacement field U(Pn) on the non-uniform grid, again

which is computationally more efficient as we solve the dif-

fusion PDE in equation (4) only at the nodal locations Pn.

More details are given in the following section.

2.4. Solving the diffusion PDE using the
FEM method

In this section, we present the FEM formulation to solve

the diffusion PDE in equation (4). Following Weickert et

al. [9] we can easily show that solving the diffusion PDE in

equation (4), with an initial condition w0 = f until t = α

is same as minimizing the following functional:

E(w) =
1

2

∫

Ω

[

(w − f)2 + α(D(x)|∇w|2)

]

dx (9)

To determine the minimizer w of the above functional

E(w), we vanish the first variation of the functional E(w)
to get the following:

L(w, v) =

∫

Ω

[

(w − f)v + αD(x)∇w.∇v

]

dx = 0 ∀v

(10)

The basic idea in the Finite Element method is to solve

for the minimizer w by restricting the minimization to a fi-

nite dimensional subspace spanned by the nodal basis func-

tions {φ1, φ2, . . . , φn} (see equation (8)). So, to smooth the

displacement field Uk (here Uk stands for both the com-

ponents Uk
x , Uk

y at any iteration k) we substitute Uk =
N
∑

n=1

Uk(Pn)φn and v ∈ {φ1, φ2, . . . , φn} (from equation

(7)) into the variational equation (10). Now, assuming the

stiffness D(x) to be constant over each triangular element

in the non-uniform grid we obtain the following set of N

Feature image
Input image

Final Mesh Halftoned image

Figure 2. Illustration of the image adaptive
non-uniform grid generation. Here the grid

is generated on an input MRI image. Notice

the greater density of triangular elements in
the skull and the ventricle regions.

linear equations (one for every node):

L(Uk, φm) =

N
∑

n=1

(Uk(Pn) − Uk∗(Pn))

∫

Ω

φnφmdx

+α

N
∑

n=1

∫

Ω

D(x)∇φn.∇φmdx = 0 (11)

Ω ≡ R
L×W m = {1, 2, . . . , N}

where Uk∗ is the non-smooth displacement field estimated

at the iteration k. We would like to bring to the read-

ers‘s attention that the above system of linear equations

is very sparse as the nodal basis functions vanish almost

everywhere except at the respective nodes and their adja-

cent triangles (see equation (8)). Further we point out that

the nodal integrals (
∫

Ω
φnφm,

∫

Ω
∇φn∇φm) are precom-

puted (analytically) at the start of the non-rigid registration

as they are independent of the displacement field estimates

at each iteration. This greatly improves the computational

efficiency of our FEM-based non-rigid registration method.



3. Generation of the non-uniform grid

The generation of a non-uniform grid that is well adapted

to the features in the image is very important for a good per-

formance of our non-rigid registration methodology. For

this purpose we implemented the image-adaptive grid gen-

eration strategy proposed by Yang et.al [10]. The central

idea of this method is to place grid nodes in the image do-

main so that their spatial density varies according to the lo-

cal image content. The subsequent Delaunay triangulation

and the refinement steps automatically ensure that the fine

triangular elements are placed in image regions with high-

frequency features while the coarse elements are used to

represent the smooth areas. The steps to generate the non-

uniform grid are summarized below:

• Given an input 2D image f(x, y) compute the fea-

ture map σ(x, y) =

(

G(x,y)
A

)

where G(x, y) =

max |f
′′

θ (x, y)| θ ∈ [0, 2π] and A is a normalizing

constant

• Halftone the feature image σ(x, y) to obtain a binary

image

• Input the locations of the white pixels in the binary im-

age as initial grid nodes to a Delaunay grid generation

algorithm

• Refine the grid generated from the above step to obtain

the final image adapted non-uniform grid

See Figure 2 for an illustration of the above procedure.

4. Implementation details

We implemented our non-rigid registation method pri-

marily in MATLAB. We made use of the MEX interface

in MATLAB to implement the smoothing PDEs in both the

FD and FEM cases. Further, the computation of the nodal

updates in the FEM case was also performed using MEX

code. The TRIANGLE package [7] was used for the Delau-

nay triangulation and refinement step of our grid generation

procedure. We ran our registration method on a Intel Quad-

Core 2.66GHz CPU with 4GB RAM.

5. Experiments

In this section, we describe the experiments conducted

to evaluate the performance of our non-rigid registration

method. We considered registration between the following

three pairs of images: synthetic MRI source to synthetic

MRI target, real patient MRI to atlas MRI, and CT scans

of a single patient taken at two different times. In all three

Exp. Run time FEM Run time FD

Synth. MRI 13.07 sec 57.06 sec

Real MRI 21.31 sec 112.66 sec

CAT scan 65.59 sec 303.72 sec

Table 1. This table compares the compu-

tational speed of the FD-based and the
FEM-based non-rigid registration methods

on three different image registration tasks.

The run times reported above correspond to
the time taken for the smoothing steps in the

FD case and time taken to perform the nodal
updates along with the smoothing of the dis-

placement field in the FEM case. We observe

that the FEM-based registration method is
∼ 4 − 5 times faster than the FD-based reg-

istration method.

cases, we compared the computational speed and accuracy

of our FEM-based method with the FD-based non-rigid reg-

istration. In the case of FD-based registration, the smooth-

ing steps (for both the displacement and update fields) were

one to two orders of magnitude slower than the rest of the

steps. Similarly, in the case of FEM-based registration,

the computation of the nodal updates and the smoothing of

the displacement field took one to two orders of magnitude

longer than the rest of the registration steps. Hence, below,

we only report the computational time taken for the smooth-

ing steps in the FD case and compare it with the time taken

to perform the nodal updates along with the smoothing of

the displacement field in the FEM case (see Table 1).

In the first experiment, we warped a synthetic brain MRI

image (217 × 181) using a sinusoidal displacement field.

This introduced large “wave-like” deformations in the skull

and in the ventricle regions. We registered the original syn-

thetic MRI image to the warped synthetic MRI image using

both the FEM and FD non-rigid registration methods. We

set the stiffness field to D(x) = 0.1 in the ventricle region

and to D(x) = 0.5 in the rest of the brain. The registration

results are shown in Figure 3. We can clearly observe that

the FEM-based registration performs better, especially in

the skull region. This is due to the fact that the FEM-based

method uses a finer discretization in the skull region, and

therefore it is able to better approximate the relatively non-

uniform displacements there. On the other hand, the FD-

based method fails to capture this non-uniform displace-

ment field as it is limited by the uniform grid size. Further,

the FEM-based method was considerably faster as it only

took 13.07 sec, compared to the 57.06 sec taken by the FD

based method.

In the second experiment, we performed registration be-

tween the MRI image of a patient’s brain and an atlas using



TargetSoure

Registered (FD)
Registered (FEM)

Contours before regis.

Contours after regis. (FD)
Contours after regis. (FEM)

Figure 3. This figure shows the registration

results between a synthetic brain MRI im-

age and the same image warped with a sinu-
soidal displacement field. The stiffness field

was set to D(x) = 0.1 in the ventricle re-
gion and D(x) = 0.5 in the rest of the brain.

Here, we observe that the FEM-registration

result better matches with the target image
in the skull region, when compared to the FD-

registration result.

both the FD and FEM-based registration methods. Both the

atlas and the patient images were of dimensions 217× 181.

We aligned the patient and atlas images using affine regis-

tration before performing the non-rigid registration. Here,

we set the stiffness field at D(x) = 0.01 in the ventricle

region and D(x) = 0.1 in the rest of the brain. The re-

sults of the non-rigid registration can be seen in Figure 4.

In this case, both the FD and FEM methods performed well

with effectively identical results. When superimposed on

the atlas image, the contours in the registered images show

a good matching between the features in the registered and

atlas images. However, again the FEM based method took

much less computational time, at 21.31 sec compared to the

FD-based method which took 112.66 sec.

TargetSource

Registered (FD)

Registered (FEM)

Contours before regis.

Contours after regis. (FD)

Contours after regis. (FEM)

Figure 4. This figure shows the registration
results between a patient’s brain MRI image

and an atlas. Here, the stiffness field was set

to D(x) = 0.01 in the ventricle region and to
D(x) = 0.1 in the rest of the brain.

In the final experiment, we considered CT scans of a pa-

tient’s liver and spleen taken at two different points in time.

The CT scans were of size 445 × 391, almost 4 times the

size of the MRI images. We performed both the FEM and

FD registrations at this high resolution. Here, the differ-

ence between the computational speeds of the FEM- and

FD-based methods is more evident. The FEM method took

about a minute (65.59 sec) whereas the FD-based method

took over 5 minutes (303.72 sec). Looking at the patient’s

two CT scans suggests a relatively small magnitude of the

deformation field between the two images. Both the FEM-

and FD-based registration methods are successful in esti-

mating this deformation field, as can be seen in Figure 5.

Again, we note that the CT scans were affinely registered

before being input to the non-rigid registration methods.



6. Conclusion

In this paper we presented a fast Finite Element Method

based non-rigid registration method. Our method employed

a grid with variable resolution, placing finer elements in im-

age regions with numerous features and coarser elements

in homogenous regions. This improved the computational

speed and accuracy of our registration method when com-

pared to the traditional Finite Difference based implementa-

tions of non-rigid registration. However, we only evaluated

our method on 2D images in this paper. Our method can be

easily extended to 3D images and, we are considering it in

our future work. Further, in our work we chose the stiffness

field by trial and error. In the future we intend to explore

the possibility of learning the stiffness field from a set of

training images.
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