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Abstract. This paper presents the I-map hybrid algorithm for select-
ing, given a data sample, a linear Gaussian model whose structure is
a directed graph. The algorithm performs a local search for a model
that meets the following criteria: (1) The Markov blankets in the model
should be consistent with dependency information from statistical tests.
(2) Minimize the number of edges subject to the first constraint. (3)
Maximize a given score function subject to the first two constraints. Our
local search is based on Graph Equivalence Search (GES); we also apply
the recently developed SIN statistical testing strategy to help avoid local
minima. Simulation studies with GES search and the BIC score provide
evidence that for nets with 10 or more variables, the hybrid method
selects simpler graphs whose structure is closer to the target graph.

1 Introduction

Bayes nets [18] are a widely used formalism for representing and reasoning with
uncertain knowledge. A Bayes net (BN) model is a directed acyclic graph (DAG)
G = 〈V,E〉 whose nodes V represent random variables and whose edges E rep-
resent statistical dependencies, together with conditional probability tables that
specify the distribution of a child variable given each instantiation of its parents.
In this paper we consider Gaussian Bayes networks with the following proper-
ties: (1) all variables are continuous, (2) a child variable is a linear function of its
parent variables plus a Gaussian error term, (3) all error terms are independent.

There are two well established general approaches to learning a BN struc-
ture. Constraint-based (CB) methods employ a statistical test to detect condi-
tional (in)dependencies given a sample d, and then compute a BN G that fits
the (in)dependencies [23]. Score-based methods search for models that maxi-
mize a model selection score [13]. Hybrid methods aim to combine the strengths
of both approaches [24, 8, 12]. Evaluations have shown that for DAGs with dis-
crete variables, the best hybrid methods outperform both purely score-based and
purely constraint-based methods [24]. We introduce a new hybrid model selec-
tion criterion and develop a novel search strategy for the criterion that integrates
statistical tests and score functions in the context of continuous variables. Our



new criterion combines constraints and score functions as follows: (1) A DAG G
should satisfy the Markov boundary condition, meaning that for any two nodes
X and Y , no statistically significant correlation is found between X and Y given
the neighbors and spouses (co-parents) of X . (2) The model G should have the
minimum number of edges among the graphs that satisfy the boundary condi-
tion. (3) Among the minimum-edge graphs satisfying the boundary condition,
our criterion selects the ones that maximize a given scoring function.

There are theoretical, statistical and computational motivations for this com-
posite selection criterion. It is well-known in Bayes net theory that a BN model
that represents the target or operating distribution generating the data must
satisfy the Markov boundary condition. It is widely accepted that a graphical
model G of the target distribution should be edge-minimal, meaning that no
subgraph of G represents the target distribution [18, Ch.3.3], [17, Ch.2.4]. Min-
imizing the number of edges implies edge-minimality. Schulte et al. provide a
learning-theoretic justification for minimizing the number of edges as a small-
sample selection criterion [22]. Statistical motivation is provided by the observa-
tion that standard model selection criteria like the Bayes Information Criterion
(BIC; [17, Ch.8.3.2]) tend to favor overly complex models when applied to lin-
ear models [19]. Our simulations provide further empirical evidence to support
this finding. Our composite criterion addresses overfitting by assigning higher
priority to minimizing the number of edges rather than to maximizing the score.
Thus the criterion favors adding an edge only if this is necessary for representing
a statistically significant correlation found in the data, even if adding the edge
improves the model selection score. A computational motivation for adding the
model selection score is that the problem of finding minimum-edge graphs con-
sistent with a set of given dependencies is NP-hard [4, Lm. 4.5]; the score serves
as a heuristic for exploring the search space.

For experimental evaluation, we adapted the state-of-the-art Graph Equiva-
lence Search (GES) procedure [16, 5]. We report a number of measurements com-
paring GES and our constrained GES, based on the well-established BIC score
function. Simulation results for both randomly generated and real-world tar-
get BN structures compare the graphs learned with and without (in)dependency
constraints to the target graph. For graphs with 10 nodes and greater, we observe
that BIC significantly overfits the data in the sense that it produces graphs with
too many adjacencies. Our simulations illustrate how adding (in)dependency
constraints corrects some of this overfitting tendency of the BIC score function.
The constrained search produces simpler models (i.e., with fewer adjacencies)
whose structure is closer to the target graph, as measured by the number of
correctly/incorrectly placed edges. Our source code is available for anonymous
ftp access at ftp://ftp.fas.sfu.ca/pub/cs/oschulte/imap/.

Paper Organization. The next section reviews basic notions from Bayes
net theory. Section 3 discusses the major design choices in our system, including
our adaptation of GES search. It provides a proof of consistency (asymptotic
correctness) for our hybrid search procedure. Section 4 presents simulation stud-



ies that compare constrained GES search with the BIC score to regular GES
search with the same score.

Related Work. Score-based Methods. A number of score functions are widely
used in structural equation modelling, such as AIC and model chi-square [14]. We
focused our study on the BIC information criterion, for several reasons. (1) BIC
is one of the best established in the SEM literature. (2) BIC is widely used for
evaluating Bayes nets in computer science studies [8, 25]; it is the default score
for Gaussian models in CMU’s Tetrad system [6]. (3) Other standard criteria like
AIC penalize complex structures less than BIC so the tendency of BIC towards
complex models corrected by our algorithm is even stronger with these criteria.

Hybrid Methods. Tsamardinos et al. [24] recently presented a hybrid method
(max-min hill climbing) for discrete variables that treats the tests of statistical
outcomes as constraints. While this work indicates that independence constraints
from a statistical test can improve a score-based search, Hay et al. [12] show that
because it accepts independence null hypotheses, max-min hill climbing is sen-
sitive to type II errors. This paper extends our earlier work [21] as it treats only
dependencies (rejections of the null hypothesis) as “hard” constraints. However,
the previous algorithm addressed the problem of underfitting in score-based BN
learning with discrete variables, whereas the problem in BN learning in Gaus-
sian models is overfitting. Therefore the previous method adds more adjacencies
than regular score-based search, whereas the method of this paper adds fewer
adjacencies. Other previous hybrid BN learning algorithms (e.g., [8, 11]) con-
sider statistical measures (e.g., mutual information), but do not incorporate the
outcome of a statistical test as a constraint that the learned model must satisfy.
To our knowledge, the hybrid methods whose description and evaluation have
been published to date, deal with discrete variables rather than continuous ones.

2 Basic Definitions

The definition and theorems cited in this section are standard; for further details
see [17, 18, 23]. We consider Bayes nets for a set of random variables V =
{X1, . . . , Xn} where each Xi is real-valued. A Bayes net structure G = 〈V,E〉
for a set of variables V is a directed acyclic graph (DAG) over node set V. A
Bayes net (BN) is a pair 〈G, θG〉 where θG is a set of parameter values that specify
the probability distributions of each variable conditioned on instantiations of its
parents. A BN 〈G, θG〉 defines a p.d.f over V. In a linear Gaussian BN, each

child Y is a linear function of its parents X1, ..., Xk so Y =
∑k

i=1
aiXi + εY ,

where the error term εY has a normal distribution with mean 0 and variance
σ2

Y . The variance of εY and the coefficients ai are parameters of the model. The
mean and variance of each root node are further parameters of the model. We
make the standard assumption that the error terms for different variables are
uncorrelated. The BIC score is defined as BIC (G, d) = L(Ĝ, d)−par(G)·ln(m)/2

where Ĝ = Ĝ(d) is the BN G with its parameters instantiated to be the
maximum likelihood estimates given the sample d, the quantity L(Ĝ, d) is the



log-likelihood of Ĝ on the sample d, the sample size is denoted by m, and par(G)
is the number of free parameters in the structure G.

Two nodes X, Y are adjacent in a BN if G contains an edge X → Y or
Y → X ; an adjacency is a pair of adjacent nodes. An unshielded collider in G
is a triple of nodes connected as X → Y ← Z, where X and Z are not adjacent.
The pattern π(G) of DAG G is the partially directed graph over V that has
the same adjacencies as G, and contains an arrowhead X → Y if and only if G
contains an unshielded collider X → Y ← Z. We assume familiarity with the
notion of d-separation [18]. We write (X⊥⊥ Y|S)G to denote that two disjoint
sets X and Y of vertices are d-separated by a third set S in G. If two sets X

and Y are not d-separated by S in graph G, then X and Y are d-connected

by S in G, written (X⊥6⊥ Y|S)G. We write D(G) for the set of all d-connections
(X⊥6⊥ Y|S)G or conditional dependencies that hold in a graph G. Two DAGs G
and G′ satisfy exactly the same dependencies iff they have the same patterns (i.e.,
D(G) = D(G′) iff π(G) = π(G′) [17, Th.2.4]). We take the set of dependencies
associated with a pattern π to be the set of dependencies in any DAG G whose
pattern is π. For a node X , we refer to the set of its parents, children and co-
parents (i.e., other parents of its children) as the Markov blanket of X in G,
written MBG(X). Given its Markov blanket MB(X), each node X is d-separated
from all other nodes outside of the Markov blanket.

Let ρ be a joint probability density function (p.d.f.) for variables V. If X,Y
and Z are three disjoint sets of variables, then X and Y are stochastically in-

dependent given S, denoted by (X⊥⊥ Y|S)ρ, if ρ(X,Y|S) = ρ(X|S) ρ(Y|S)
whenever ρ(S) > 0. A BN structure G is an I-map of p.d.f. ρ if for any three
disjoint sets of variables X,Y and Z we have (X⊥⊥ Y|S)G implies (X⊥⊥ Y|S)ρ.
For a given BN structure G and joint density function ρ, there is a parametriza-
tion θG such that ρ is the joint density for V defined by 〈G, θ〉 only if G is an
I-map of P . As the characteristic feature of our approach is searching for a graph
that satisfies this condition, we refer to it as “I-map learning”. The next section
describes an implementation of I-map learning.

3 Algorithm Design for I-map Learning

We first discuss employing statistical tests for detecting conditional (in)dependencies,
then integrating statistical testing with a score-based local search.

Use of Statistical Tests. I-map learning requires a statistical significance
test for testing conditional independence hypotheses of the form X⊥⊥ Y |S. Our
system architecture is modular, so the test can be chosen to suit the type of
available data and application domain. We followed other CB methods and used
Fisher’s z-statistic for testing whether a given partial correlation is 0 [23, Ch.5.5].
For a given pattern graph G, say that node Y is a proper spouse of node X if
X and Y have a common child but are not adjacent. The set of nonchildren of
X and Y are the nodes that are adjacent to X or Y but not children of either;
denote this set by NCG(X, Y ). (In a completely directed graph, these are just
the parents of X and Y ; our definition applies to partially directed patterns as



well.) Our basic test selection strategy applies the chosen significance test to the
following independence hypotheses, for each ordered pair of nodes (X, Y ).

1. The Markov blanket independencies {X⊥⊥ Y |MBG(X) : Y 6∈ MBG(X)}.

2. The spousal independencies {X⊥⊥ Y |NCG(X) : Y is a proper spouse of X}.

These independence tests are well-suited for pattern-based search since the
Markov blanket, adjacencies, and common children are determined by the pat-
tern alone. The spousal independencies distinguish nodes on the Markov blan-
ket that are both neighbors and spouses from nodes that are spouses only. If a
graph entails a Markov blanket hypothesis (resp, spousal independency hypoth-
esis), but a suitable test rejects the independency hypothesis, this is evidence
that the graph is not correct. I-map learning implements the Markov blanket
testing strategy through a procedure find-new-dependencies(G) that takes
as input a new graph G adopted during the local search, tests the new Markov
blanket and spousal hypotheses for the graph G, and returns the set of rejected
independence hypotheses. Every time the local search moves to a new graph
structure G, the procedure find-new-dependencies is applied to G to aug-
ment the cache of observed dependency constraints (cf. [21]). The procedure
find-new-dependencies tests a set of independence hypotheses, so issues of
multiple hypothesis testing arise. Any multiple hypothesis testing method can
be employed to implement the functionality of find-new-dependencies [2, 9].
Like many other constraint-based and hybrid systems, we simply carry out multi-
ple hypotheses at the same fixed significance level [23, 8, 15]. At an intermediate
stage, our method also integrates one of the most recent CB algorithms, the
“condition on nothing and everything else” strategy of SIN graphical model se-
lection [9]: For any two variables X and Y , test (1) the unconditional correlation
betwen X and Y and (2) the correlation conditional on all other variables.

Heuristic Search Algorithm for I-map learning. For our simulations
we adapt the state-of-the art GES (Greedy Equivalence Search) local search al-
gorithm. We describe GES only in sufficient detail to indicate how we adapt
it. During its growth phase, GES moves from a current candidate pattern π
to the highest-scoring pattern π′ in the upper neighborhood nbdh

+(π). A pat-
tern π′ in nbdh

+(π) contains exactly one more adjacency than π, and may have
arrows reversed, subject to several conditions that ensure that D(π) ⊂ D(π′),
i.e., π′ entails a strict superset of the dependencies entailed by π. The growth
phase terminates with a pattern π when no graph in nbdh

+(π) has higher score
than π. During the subsequent shrink phase, GES moves from a current can-
didate pattern π to the highest-scoring pattern π′ in the lower neighborhood
nbdh

−(π). A pattern π′ in nbdh
−(π) contains exactly one less adjacency than

π, and may have arrows reversed, subject to several conditions that ensure that
D(π′) ⊂ D(π), i.e., π′ entails is a strict subset of the dependencies entailed by π.
GES terminates with a pattern π when no graph in nbdh

−(π) has higher score
than π. The constrained version IGES (for I-map + GES) constrains the GES
neighborhoods so they satisfy a given set of observed dependencies. Formally,



Algorithm 1 The IGES procedure adapts GES based on the neighborhood
structures nbdh

+ and nbdh
− to perform constrained score optimization with a

statistical testing method.

Input: data sample d for random variables V.
Calls: score evaluation function score(π, d), statistical testing procedure
find-new-dependencies(π, d).
Output: BN pattern constrained by (in)dependencies detected in the data.

1: initialize with the disconnected pattern π over V, and the empty dependency set
D.

2: for all Variables X, Y do

3: test the hypothesis X⊥⊥ Y on sample d

4: if X⊥⊥ Y is rejected by statistical test, add to detected dependencies stored in
D

5: end for

6: {begin growth phase}
7: while there is a pattern π′ in nbdh

+

D
(π,D) do

8: choose π′ in nbdh
+

D
(π,D) with maximum score

9: D := D ∪ find-new-dependencies(π′, d)
10: end while

11: {begin shrink phase}
12: while there is a pattern π′ in nbdh

−

D
(π,D) with greater score than current pattern

π do

13: choose π′ in nbdh
−

D
(π,D) with maximum score

14: end while

15: {prune pattern π further with “nothing and everything else” SIN tests}
16: for any two variables X and Y that are adjacent in π,

if X⊥⊥ Y or X⊥⊥ Y |V − {X, Y } are not rejected by the statistical test,
remove the link between X and Y .

17: repeat growth phase and shrink phase once (lines 6-14).
18: Return the current pattern π.

the growth neighborhood constrained by dependencies D is defined as follows:

π′ ∈ nbdh
+

D
(π) if and only if π′ ∈ nbdh

+(π) and (D(π′) ∩ D) ⊃ (D(π) ∩ D).

The growth phase keeps expanding a candidate structure to entail more of the
observed dependencies D, and terminates when all observed dependencies are
covered. To check if a graph expansion covers strictly more dependencies, we keep
a cache of dependencies that have not yet been covered during the growth phase,
and go through these dependencies in order to see if any of them are covered
by a candidate graph. The shrink neighborhood constrained by dependencies D
is defined as follows:

π′ ∈ nbdh
−

D
(π) if and only if π′ ∈ nbdh

−(π) and (D(π′) ∩ D) ⊇ (D(π) ∩ D).

The shrink phase moves to higher-scoring patterns in the GES lower neighbor-
hood, subject to the constraint of fitting the observed dependencies, until a local
score maximum is reached. Algorithm 1 gives pseudocode for IGES search.



Analysis of Search Procedure. A score function is consistent if, as the
sample size increases indefinitely, with probability 1 all graphs that maximize the
score are I-maps of the target distribution. The score function is decomposable if
the score of a graph can be computed from scores for each node given its parents.
The standard analysis of CB methods assumes the correctness of the statistical
tests, which holds in the sample size limit [7, 23]. Under these assumptions, our
local search method is consistent. The proof is available at [20].

Proposition 1. Suppose that the statistical test returns only valid dependencies
in target graph G during an execution of Algorithm 1 (with or without SIN
testing), and that the score function is consistent and decomposable. Then as the
sample size increases indefinitely, with probability 1, the algorithm terminates
with an I-map π of the target distribution defined by G.

Number of Statistical Calls. The computational overhead compared to regular
local score optimization is the number of statistical calls. For a graph G with n
nodes, the number of Markov blanket independence hypotheses is on the order of
O(

(

n
2

)

)—two tests for each pair of nodes X, Y that are not in each other’s Markov
blanket. By taking advantage of the structure of the local search procedure, we
can often reduce the set of hypotheses to be tested to an equivalent but smaller
set. For example, if the local search adds a single edge X → Y to a graph G, the
only nodes whose Markov blanket has been affected are X, Y and the parents
of Y . Assuming that the target graph has constant degree (cf. [23, Ch.5.4.2.1]),
only a linear number of new independence tests is required at each stage of the
search. Thus we expect that in practice, the order of independence tests required
will be O(n×ca) where ca is the total number of candidate structures examined
during the local search. Our simulations provide evidence for this hypothesis
(Section 4).

4 Empirical Evaluation of Hybrid Criterion With

Standard Search+Score Method

We performed a large number of simulations, and summarize the main findings.
More details are available in an extended version [20]. Our code is written in
Java and uses many of the tools in the Tetrad package [6]. The following learning
methods were applied with the BIC score function.

1. Score-based search: GES starting with the empty graph.

2. Constraint-based search: PC algorithm [23] with z test and significance level
α = 5%.

3. Backward Selection [10]: start with the complete DAG with all edges, apply
the shrink phase of GES search.

4. Hybrid search method: IGES + SIN search with z test and significance level
α = 5%. We also refer to this as the I-map pruned method.



Experiments with Synthetic Data. The target models considered were
randomly generated networks with 5-20 variables. We used Tetrad’s random
DAG generating functions to build the networks [6] as follows. (1) A parent and
a child are chosen at random and the corresponding edge is added to the random
graph unless it causes a cycle in the resulting graph. The number of edges is also
determined randomly, with the constraint that there are at most twice as many
edges as nodes. (2) Linear coefficients are drawn uniformly from the union of the
intervals (−0.5,−1.5) and (0.5, 1.5). Variance parameters are drawn uniformly
from the interval (1.0, 3.0). Means are drawn from a standard normal distribution
with mean 0 and variance 1. For each graph, we drew samples of various sizes
(ranging from 100 to 20,000). We repeated the simulation 30 times, resulting
in 30 random graphs for each combination of sample size and node count. Our
graphs and tables display the average of the 30 networks for all measurements.

Model Complexity and Structure. Our key findings are graphed in Figures
1 and 2. Figure 1 shows that the hybrid criterion together with the SIN tests
effectively reduces the overfitting tendency of the regular score-based criterion,
as measured by the number of edges in the learned model versus the number
in the true graph. Without the SIN tests, the improvement is not as great. We
measured the quality of the graph structure by combining adjacencies in the
target structure (true positive) vs. adding adjacencies not present in the target
structure (false positive) using the F-measure from information retrieval [26,
p.146], which is defined as

2(True Positive)

2(True Positive) + (False Positive) + (False Negative)
.

Higher F-measures are better. In general, the GES search produces more false
positives than IGES search and fewer false negatives, as our edge-ratio mea-
surements confirm. Figure 2 shows that the adjacency F-measure for the hybrid
criterion is slightly worse for graphs with less than 10 nodes. This is because the
overfitting tendency of the BIC score is small for small graphs, as our edge-ratio
measurements confirm, so the overall balance of false positives and false negative
is slightly favorable for unconstrained GES search. As the graph size increases,
so does the number of false positives relative to graph size in GES, which means
that the F-measure balance becomes favorable for the hybrid criterion.

Performance of Statistical Testing Strategy. A number of measurements concern
the behavior of the testing strategy. A standard measure for the performance
of a multiple hypothesis testing method is the false discovery rate (FDR) [2],
which is defined as #rejected true independence hypotheses/#tested indepen-
dence hypotheses. For the SIN independence hypotheses we also measured the
false acceptance rate (FAR), defined as #false accepted independence hypothe-
ses/#tested independence hypotheses. In our simulations, with the significance
level fixed at α = 5%, the FDR in random graphs was on average no greater
than α, which is a good result in light of the Bonferroni inequality. In fact, for
most experimental constellations the FDR was below 1.5%; it peaks at 3.5%



so does the number of false positives relative to graph size in GES, which means

that the F-measure balance becomes favorable for the hybrid criterion.

Fig. 1. Left: The figure shows the distribution of the edge ratio for the comparison
methods, defined as #edges in target graph/#edges in learned graph. A ratio of 1 is
ideal. The x-axis indicates the number of nodes, the y-axis the average edge ratio over
all sample sizes for the given graph size (30 graphs per sample size and number of
nodes). The average edge ratio for IGES+SIN is closer to 1 than for GES, which has a
clear tendency towards more complex models. The improvement increases with sample
size and network size. Right: The improvement of the edge ratio attained by IGES+SIN;
the y-axis shows edge-ratio(IGES+SIN)-edge-ratio(GES). The improvement increases
with sample size and network size.

Fig. 2. Left: Average improvement in adjacency F-measure of IGES+SIN over the
GES algorithm (both using BIC score) plotted against number of nodes. The x-axis
indicates the number of nodes, the y-axis the difference IGES-GES for the average
edge ratio over all sample sizes for the given graph size (30 graphs per sample size and
number of nodes). Starting around 10 nodes, the average F-measure for IGES + SIN
is better than for GES, which has a tendency towards overly complex models. Right:
The improvement in adjacency F-measure increases with sample size and network size.



with sample size = 100, number of nodes = 4. For sample size 1,000 the average
FAR is about 20%, and decreases linearly to about 5% for sample size 10,000.
The results support our strategy of treating rejections of the null hypothesis as
much more reliable than acceptances. Both FAR and FDR decrease with sample
size. The FDR also depends on the size of the graph, as it increases somewhat
with larger graphs.

We also examined the computational overhead incurred by carrying out sta-
tistical testing in addition to score-based search. Our results show that the num-
ber of independence tests is roughly linear in the length of the search. The exact
slope of the line depends on the sample and graph sizes; averaging over these and
plotting the number of independence tests as a function of number of candidate
graphs examined during the search, we find that the number of tests performed
is about 6 for each graph generated.

Simulations with Real World Networks. Our simulations with real-word

Fig. 3. Boxplots comparing the F-measure in the Alarm and Iinsurance networks
for 3 different sample sizes, for GES search vs. IGES+SIN search (= Imap-pruned).
Higher F-Measure values indicate a closer fit to the target structure. This plot shows
the average F-measures over 5 random samples drawn for the given sample size. To
better display the differences for each setting, the top figures uses a different scale from
the bottom figure.

BNs with more nodes—Alarm [1] (37 nodes) and Insurance [3] (25 nodes)—
confirm that with larger graphs, the difference in model quality increases.3 We
observed an improvement in adjacency F-measure for the constrained method,
both on average and in the variance of the results, as illustrated in Figure 3.

3 These networks models were originally constructed with discrete variables. We fol-
lowed the approach of Schmidt et al. [19] of using the same graph structure with
continuous domains for the nodes.



Conclusion and Future Work

This paper presented a hybrid method for learning linear Gaussian BN struc-
tures. Compared to traditional score-based approaches, the statistical testing
performed by a hybrid method detects regularities in the data that constrain
the search and can guide it towards a better model. Compared to traditional
constraint-based methods, the model selection score serves as a heuristic to
search for a structure that satisfies the observed (in)dependency constraints.
Also, a hybrid method can adopt a strategy for selecting statistical hypotheses
that focuses on a relatively small set of tests that can be performed reliably. Our
testing strategy was based on the Markov blanket. We treated only rejections
of independence hypotheses as hard constraints on the score-based search. This
makes our hybrid method less sensitive to the failures of independence tests,
which are known to be the main problem for constraint-based methods.

We showed how to adapt a generic local search+score procedure for the con-
strained optimization required by the hybrid criterion. Evidence from simulation
studies with the well-established BIC criterion indicates that, when the number
of variables exceeds about 10, the additional constraints from statistical tests
help select a model that is appropriately complex in that it fits the target graph
structure better than the model selected by unconstrained learning. Our hybrid
method appears to be a principled and effective way to address overfitting in
learning Gaussian Bayes networks that combines ideas from both score-based
and constraint-based learning to address the weakness of each.
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