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Abstract

Some real-world problems angartially decomposablein

that they can be decomposed into a set of coupled sub-
problems, that are each relatively easy to solve. However,
when these sub-problem share some common variables, it
is not sufficient to simply solve each sub-problem in isola-
tion. We develop a technology for such problems, and use
it to address the challenge of finding the concentrations of
the chemicals that appear in a complex mixture, based on
its one-dimensionalH Nuclear Magnetic Resonance (NMR)
spectrum. As each chemical involves clusters of spatially |
calized peaks, this requires finding the shifts for the eltsst
and the concentrations of the chemicals, that collectipety

duce the best match to the observed NMR spectrum. Here,
each sub-problem requires finding the chemical concentra-
tions and cluster shifts that can appear within a limiteccspe
trum range; these are coupled as these limited regions can
share many chemicals, and so must agree on the concen-
trations and cluster shifts of the common chemicals. This
task motivates CEED: a novel extension to the Cross-Entropy
stochastic optimization method constructed to address suc
partially decomposable problems. Our experimental result
in the NMR task show that our CEED system is superior to
other well-known optimization methods, and indeed produce
the best-known results in this important, real-world aggpli
tion.

1. Introduction

Our practical goal is to automatically “interpret™& Nu-
clear Magnetic Resonance (NMR) spectrum, based on a li-
brary of the “signatures” of a set of chemicals — that is, to
find the concentrations of the chemicals (think “linear com-
bination of these signatures”) that best matches the spec-
trum. The challenge is that each signature is actually a set
of clusters, where each cluster (a set of peaks with known
relative positions and heights) can shift within a small re-
gion. Hence, we can view this task as a multi-extremal con-
tinuous optimization problem that can involves hundreds of
bounded variables (corresponding to the concentrations of
the chemicals, and the shifts of the clusters). As the spectr
is noisy and the loss function is not convex, the best candi-
dates for solving this problem seem to be global, stochastic
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optimization methods. One such technique is@mness En-
tropy (CE) method — a relatively new method that has been
successfully applied to many different domains, including
variety of continuous and combinatorial optimizationstsuc
as clustering and vector quantization, policy optimizatio
and buffer allocation (see (Rubinstein and Kroese 2004) and
references therein). While the standard CE has proven suf-
ficient for many of these tasks, in some situations we may
be able to get yet better performance by exploiting some
characteristic of the problem itself. Motivated by our real
world NMR task, we develop a variation of the original CE
method that can exploit the structure of partially decompos
able problems, by an iterative process that, in each step, fir
finds a distribution of “solutions” to each sub-problem sepa
rately and then combines these distributions over each vari
able domain. While there are many primal and dual decom-
position methods in the convex optimization literaturet tha
also try to solve several sub-problems simultaneously (Boy
and Vandenberghe 2004), we are addressing a hon-convex
problem using a non-deterministic method. Similarly, ge-
netic algorithms have been used to improve probabilistic
models that exploit inter-variable dependencies to céntro
future cross-overs or samplings (see for example (Baluja
2002)). In addition to methodological differences, our kvor
differs by considering interdependencies of (sub)proklem
rather than just relations of variables.

Section 2 quickly summarizes the basic CE method, then
uses the SAT problem to motivate our extension, caltéd
Exploiting partial DecomposabilitfCEED). Section 3 pro-
vides experimental results showing that CEED works effec-
tively on the challenging and important problem of intetpre
ing NMR spectra. It also compares CEED’s performance
to other optimization methods, including gradient descent
simulated annealing and genetic algorithms, and a current
state-of-the-art system for NMR analysis. The web-page
(RPG 2010) provides some more background on CE, the re-
sults of applying CEED to SAT and Sudoku problems, and
additional results on the analysis of NMR spectra.

2. Extending CE to Exploit Decomposability

2.1 Introduction to the CE Method

We are given a loss functioh : X — R defined over a
bounded convex (continuous or discrete) dom&in Our



goal is to find an approximation to the global minimizer
of L: z* argmingecy L(x). The Ordinary Cross En-
tropy (OCE) method addresses this using an iterative psoces
that involves sampling from distributions that have thestea
Cross Entropy (KL-divergence) to distributions over sisece
sively improving level sets.

Let the indicator functiofi;congisory D€ 1 if the condition
is true and 0 otherwise. Define a uniform distribution over

level-setL(z) < 7 h(z) = %. Let f(-) be

the distribution that minimizes the cross-entropy:to

arg min {/ hr(z)1n - (2) dx}

9 X g9(z)
arg max {/ hr(z) In(g(x)) da:} Q)
9 X
The OCE method seelfsfor a smallr, in which caset* =
mode(f) is typically a good approximation to*.

This is performed iteratively, by adaptively updating
and f; we user! and f! to denote their values on itera-
tion ¢. In iterationt, OCE first drawsN instances from
75 X = {X,, ~ fi=1(z) }1<n<n, renumbered such that
L(Xy) <€ ... < L(Xyw). It then uses thelite samples
Xetite = {Xn}1<n<[pn7, Which are the top fraction of the
instances. At the next time-step, OCE sgfts= L(X[,n7)
to be the smallest level-set that includes thesestéipaction
of the instances, and then uXg;;;. as an empirical approx-
imation forh:(x). OCE then uses the empirical version of
Eq 1 to calculatef®.

We use a parametric approach by restrictfntp a para-
metric family F = {f,(x)},. In this parametric representa-
tion, the empirical counterpart of Eq 1 at time-stepmpli-
fies to

f0)

'Dt

N
1
arg max { N ; Lrxny<rtyIn fv(Xn)}

Z 1nfv(Xn)} s

Xn€Xelite

)

arg max {
v

whereX,, ~ f,.-1(,) are the instances generated from dis-
tribution that has the minimum cross-entropy to the presiou
level setri—!. The solution to Eq 2 is theaximum likeli-
hoodestimate of parametef from the elite samples. This
update equation has an analytical form for the natural expo-
nential family, which makes this method practical (Rubin-
stein and Kroese 2004).

2.2 Decomposability

Many real-world optimization problems can be (partially)
decomposed into a set of ‘simpler’ sub-problems, each with
fewer variables. As most problem domains grow expo-
nentially in the number of variables, this reduction in the
number of variables can be very advantageous. As a triv-
ial example, consider SAT: Given a Conjunctive Normal
Form formula (overD variables withP clauses), find an

+a,Xa, V-V 14, X4, as asub-problem, and seek an as-
signment that satisfies it alone. Of course, this is trivial —
indeed, al — 1/2* portion of assignments satisfy each in-
dividual L,,. We could do this for each clause individually,
to obtain several assignments over (various subsets of) the
variables. The challenge then is combining these resulting
assignments, to find a single assignment that satisfies every
clause. Our novel CE-based approach, CEED, deals with
severalistributionsover each variable (here one associated
with each clause that includes that variable), and provéides
way to combine them to produce a single good distribution
for each variable.

We assume there arP variables, each parameterized
by Q parameters. E.g, in the SAT problem, each of the
D variables is represented by a Bernoulli variahje with
two parameter§) = 2 representing the probability of that
variable being true or false.) More formally, 1&t” be a
boundedD-dimensional domain representing the possible
tuples of variable assignments, and for edch {1, ..., D},
let

va = [va(1),..,va(Q)] € R (3)
be a row vector representing the parameters for that variabl

Let F = {f,} be a joint distribution of a specific family
defined overx”: f,(z) = Hlefvd(xd),where for each
d € {1,..., D}, vq is the parameter vector of the distribution
fo, 1 X — R, andv = [vy;...;vp] € RPQ is the parameter
vector of f,, : XP — R. For combinatorial optimizations,
that is whent = {1,...,Q} is discrete,f,, (x4 = q)
Pr(zq = q) = wa4(q) is a probability mass function (pmf),
wherev, is located on a simplex —e,, Zl;i‘l va(g) =1
andug(q) > 0.

For notation, we let: 4 (resp.,v4) be the restriction of
(resp.,v) to the coordinates il C {1,..., D}. Using the
same notationf, , (rv4) = [[4c4 fos(za) is @ joint distri-
bution defined ove 7, the restriction oft'” to A.

For eachp < {1,...,P}, let M(p) C {1,..,D} in-
dex the set of variables in the” group €.g, this could
be the indices of the Boolean variables in {ité clause).
Observe that, for any loss function of the forhfx)
Yo 1 Ly(2 () and for any valuer, if 3° 7, < 7 then
we havel(r(s)<r > [Tp—1 [{L(wpyyy)<rp}+ fOF SOMeE val-
ues of{7,}. We can therefore try to solve the optimization
Eq 2 by finding assignments that produce good results for
all sub-problems at the same time.

Given this notion of sub-problem, we can show the in-
teraction of variables in sub-problems using ttwupling
matrix C € {0,1}7*P, whose rows correspond to sub-
problems and columns to variables, where the eler@gnt
is 1 iff the sub-problenp depends on variable;. We then
defineM(p) = {d : Cp 4 = 1} to index thevariablesin-
volved in sub-problenp and A(d) = {p : Cpq = 1} tO
indexsub-problemshat involvevariablez,.!

1To summarize the notation: We have variables, grouped
into P (overlapping) subgroupsfjé (+) refers to a distribution
p

assignment that satisfies every clause (Garey and Johnsonwhere the superscript™ indexes the iteration (here far and f,

1990). Here, we can view each individual clausg =

and also for the levet € R), v stands for the parameters, where



1. Attime-stept, draw N, instances from the joint distribu-
tion f,:—1 , for each sub-problem,,.
M(p)

2. For each sub-problem, calculate the error for the in-
stances, and find a joint distribution with the least cross
entropy to the elite instances (the tpgdraction). More
formally, similar to Eq 2, define, for eaghe {1, ..., P},

SRR,

ol ] e
]
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. 1

(). = argmax {Fp S T (Xa)In fuyg,, (Xn)} @)
n=1

where eachX,, ~ ft : . Here,o M() is the estimate

of many d|str|but|ons each parameterlzedzl;w (the

restriction of global optima to sub-problep) for aII of
the variables inM (p), given by sub-problemp at time-
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Figure 1: Coupling matrices for (2) Random SAT, (b) Struc- 3 Each variablen; appears in each of the sub-problems

tured SAT, (c) Sudoku, (d) NMR problems in A(c}?, and so is estimated by multiple parameter val-
ues{d,, | p € A(d)} — one for each sub-problem
p € A(d). We therefore “combine” the associated distri-

Figures 1(a) and 1(b) show the coupling matrix for aran-  butions{ f;: |p € A(d) } to produce a single parameter

dom SAT and a SAT formulated graph coloring problem;  yajue?, then join this over all variables; to produce a

here each clause is a sub-problem. Figure 1(c) shows the single parameter valu#, describing a single joint distri-

coupling matrix for the formulation of & x 9 Sudoku prob- bution f;: over all variables. See Section 2.4.

lem, where the sub-function to be maximized (in each sub-
problem) is the number ddistinct elements of each row,
column and sub-square of the Sudoku puzzle . (Each ele-

4. If not converged, incrememntand return to Step 1. Else
stop and return the mode ¢f: as an approximation to

*

ment of the puzzle is represented by a pmf of/ker..., 9}.) L
This matrix clearly shows how the various sub-problems are - —
inter-related. Finally, Figure 1(d) shows the coupling rixat For our SAT example, after sampling a distribution, and
for our NMR Spectra interpretation task; see Section 3. assigning a distribution to the variables in each clause, we
obtain several distributions over each variable— one
2.3 Cross Entropy Exploiting partial joint distribution associated with each clause that corstai
Decomposability (CEED) method X. We then combine these distributions to produce a sin-

gle distribution over each variable, which we then use in the
next iteration.

In terms of the general coupling matriK’, each
EED iteration first estimates the parameters in each row
{’UM(p),p}lgpSP, then combines the estimates in each col-

The basic idea underlying the CEED method is to first obtain
several estimates of each variable using the loss fundibons
each sub-problem, and then combine these estimates into ac
single distribution, which CEED uses for sampling in the
next iteration. Note we identify each sub-problem with its i . . :
associated loss functioh,; also the number of instances UMM {05 ,}pea) h1<a<p to geto,. This is repeated in
drawn for each sub-problemv, is computed based on the each iteration, using the previous estimate as the sampling
complexity of that sub-problem. (This complexity varies by ~distribution.

application; see below.) Step 3 needs to com_bine seyeral estimates. We know that
We can summarize CEED algorithm in the following €ach estimaté, , of variabled given by sub-problem cor-
steps: responds to a distributiory;, (x). Here, CEED uses the
distribution that minimizes the sum of the KL-divergences
Input: Prior¢Y; Elite fractionp € (0, 1); to the given set of distributions:

Set of sub-problem/#instances p&fifL,, p>}
Output: approximate minimizer oy L, (), #* € xp

0y = argming Y Drr(fu. fir,) (5)
0. Initializet = 1, and deriveA(d) and M(p) using the pEA(d)
domain of given sub-problem,(.)
vy, refers to the parameters of a distribution learned fordte = argmin (/ fu(x)In( fu(@) )dz )
variable, based on thg’" sub-problem. Note the first subscript ¢ pEA(d) f% p( z)
(called "d” above) can be a set -e.g, v, , refers to the param- ] S )
eters learned for the set of variable indicas which could be Although this optimization (Eq 5) is convex for the expo-

A=M(p) c{l,..D}. nential family, it is still challenging to find the global apta



here. The next section therefore provides a linear combina- We can also relate combination of ML estimates using
tion method to approximate this solution to Eq 5. We believe their Fisher Information to the well-known method of lin-
this is a novel method for combining experts’ votes when ear combination by the inverse of the variance-covariance

each expert is reporting a maximum likelihood estinfate. matrix. The Cramér-Rao theorem (Cramer 1946; Rao
1945) states that any unbiased estimatgiX) of param-
2.4 Combining ML Estimates Using Their Fisher eterv;, with variance-covariance matriXar(v,) satisfies
Information Var(v;) = Z-(v3),i.e,the differenc& ar(d,)—Z*(v3)

is positive semi-definite. As ML estimators aaeymptoti-
cally efficient this inequality becomes equality as the sam-
ple size grows to infinity (Everitt 2002). Therefore for a
relatively large sample size, we can assume that the inverse
L(v;X) = [}, fo(X™) is the likelihood function based  of the Fisher information matrix is a good representative of
on the parametew. This is the zero vector for the  variance of ML estimates, and by substituting the inverse of
maximum-likelihood (ML) parameters. Since for ML es-  the variance matrix into Eq 6, we get an approximation to
timatesE{U (v, X)|v} = 0, the variance of the score func-  the combination using the inverse of variance matrix.

tion is the quantity that contains the information about the

Given a set of randori.d. instancesX = {X!, ..., XV},
the score functionis defined as the gradient of the log-

likelihood function: U(v,X) = 20slliX) " \yhere

v

ML estimate —a.k.a.its Fisher information 3. Analysis of NMR Spectra
) ) ) Each pure chemical compound has a unique NMR “sig-
Z(v) = E{U(v,X)"jv} = E {[8_ log(fo(X))]” | U} nature”, which is a 1-dimensional signal composed of a set
v of clusters, where each cluster has a center and involves one

If the distribution family.F satisfies the regularity condition ~ or more peaks, each of which is characterized by 3 param-

[ -2 f,(x)dz = 0, then we can also write the Fisher in-  €t€rs, defining the peak’s height width w and position
fofar%ation as (Lehmann and Casella 1998): z relative to the cluster center, within a Lorentzian func-

tion (Freeman 1987; Wishart et al. 2007). As these clus-

d 0? ters do not move much, biochemists have long used NMR

Z(v) = _E{%U(U’X) | v} - _E{Wlog(f”(x)) | v} to determine the identity of a pure compoun?j, based on
the observed peak locations. Moreover, as the height of

The element, 4 (7) (i.e., the element in rowd and col- the peaks in a compound are essentially proportional to the
umnd’ of the matrixZ) basically shows the rate of changein ~ concentration of that compound, they can also quantify that
the maximum likelihood estimation of parametéd) € & concentration. Hence, the NMR spectrum of a mixture of

by changing the parameterd’) in the neighborhood of chemicals{c,, } (appearing in, say, human blood or urine) is
v(d); see Eq 3. Therefore higher values suggest greater ac- essentially just the linear combination of those signaure
curacy in the maximum likelihood estimation. Thisisthe — 3~ '3 signaturéc,,) where each3,, coefficient
basis of our approach for combining estimations; we com- depends on the concentration of the associated compound
bine the estimation§oy , },, by weighting the estimateswith ¢ s — which potentially allows us to recover those concen-
the Fisher information matricﬁﬁ};,p): trations from a mixture (Weljie et al. 2006). In fact, once we
determine the centets= («,,) for the clusters, we can then
- find the concentrations = (3,,) by the non-negative lin-
o = ( > @3,,,1(%)) ( > I(f;fi,p)> (6) ear least square methods (Lawson and Hanson 1974). The
pEA(d) PEA(d) challenge, however, is finding the cluster centers.
To be more precise, the following equation shows the
We can also connect Eq 6 with the minimization Eq 5 1-dimensional spectrum (over the discrete set of points on
by using the relation (Kullback 195Dk 1.( fv, fot+dv) =~ which spectrum is defined/) produced byl metabolites,
dvT Z(v) dv . This provides a second degree approximation where them!" metabolite has concentratigh, > 0 and
of KL-divergence, which we can use to approximate the so- involves clusters in the sdt(m), where thep!" cluster is

lution to the optimization (Eq 5): at positiona,, and involves peaks iff'(p), each with its
Lorentzian parametexsw,, a,,d, ): Vy € ¥ S p(y) =
. . o
o = argming D Prulforfiy,) PIEDINDY " )
" _ 2
pEA(d) wol peTim) reTl) wy +4(ap + 2 —Y)
1 t T t t peak, centered at, + z,

o HBH Z _(vd-ﬁ - W) I(vd,p)(vd,p - W) cluster, centered at,,

pEA(d)

metabolite, with concentratiofi,,,
These parameter values and peak and cluster information ap-
pear in a predefined library that specify the NMR signatures

2Fisher (1925) was the first to usample weightingropor- of a set of compounds (Wishart et al. 2007).
tional to the Fisher information. Given an observed spectru, we want to find the

This minimization has the analytical solution, in the forfn o
the linear combination given by Eq 6.
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Figure 2: NMR spectrum, overlayed with two clusters
anda,, associated with metabolife (Hereiy, i2 € T'(5).)

metabolite concentrations; (Bm) over the set of

possible compounds — which corresponds{ta 3} =
arg min, g L({c, 5}) where

L({a, 5}) > [Sas(y) = S

yeYy

(8)

is the L, error ; see Figure 2. (While we only care about the
concentrationg, we must also determine the cluster centers
« to find them.) If we knew the true concentratigb’s we
could measure the error using the averagetrolled relative

error:
K1 = —Zm1n< ﬁmﬂ*|>

We also considerelative absolute errodefined as:

S 1 = Bl
St B

As we see in Eq 7, the value of the Lorentzian function
drops quadratically with the distan¢e,, + z. —y) from the

R2

center of peak. We can therefore assume that each peak has a

compact support, which consequently implies that each clus
ter (small set of close-by peaks) will potentially affectyon

a small region of the whole spectra. This region includes
the bounded amount of shift in the center of the clusigr
and the effective width of cluster; call this regidf C ).

We can rewrite the optimization (Eq 8) as a weighted sum of
squared error over all regions.

{daﬁ}=argrgigl > Ly Blmp)

" per(m)
1<m< M

9)

where {«, 5} v(p) IS the set of variables appearing in
sub-problemj. For convenience we define the function
A(p) that identifies the metabolite of cluster A(p) =

m iff p € T'(m). Using this notation{c, B} rq(j) =
{{ap, Bag) Frpremp) @AM (p) = {p’ s.t. Y; NV, #
#}. Now define each sub-problem as:

=> m (g(yk) - > Sap/,ﬁA(p/)(yk)>2

YyREYp p’€M(j)
(10)

Lp({e, 5}/\4(1)))

where
Sap/,ﬁA(p/) (y)

Ay Wy

> —
vty W T o —y)

= 5/\(17’)

is a single cluster that appears in sub-probjetn

Figure 1(d) shows the coupling matrix for this optimiza-
tion problem. Our CEED implementation uses Gaussian dis-
tributions, which means,; = [u4,04] € R2. Therefore

Noaiy = Niiaiin oaim] 1S 2 distribution over the variables

of p'* sub-problem, including boths andgs.

Input: NMR spectrumS(y); Library of NMR chemical
signatures; Number of instances for sub-problpnat
iterationt, N(p,t); Elite fractionp € (0,1); Learning rate
¢ € (0,1); Stopping critiont,,.. € N; Max Standard
Deviationo,,q - R

Output: A vector u* = {a&*,5*} of concentration for
metabolites and shift values for clusters.

1. For each clustep in the library findY, — the area
affected by each cluster — and using this derive sub-
problemsL,(.), A(d) and M (p). Sett = 1 and define an
initial distribution f,o usingY,s and some upper-bound
for concentrations.

. For each sub-problemp, generateN(p,t) instances

N

(X1, .., XN@D) from Nvii? K where N(p,t) o
P
2 peMip) szl. That is, the sample size for each sub-

problem is proportional to the problem size/difficulty.

3. Evaluate the samples over each domain using Eq 10.
Since our variables are bounded but the support of the as-
sociated Gaussian distributions is not, we may find some
cluster center outside of its legal range; here we simply
ignore any such instance. (Kroese, Porotsky, and Rubin-
stein (2006) use a similar approach in OCE.)

For each sub-problem find the elite instances (here us-
ing p = 0.05), and use them to estimate the maximum
likelihood parameteﬁjw(p)_’p.

4,

5. For each variabled, linearly combine its estimates

{0 ,}pea(ay using their Fisher information. For Gaus-
sian distributions the Fisher informationZg|[u, o])
D|agona{ 35 5 5+7), from which we get the following lin-
ear combination:

d
ot ZPGA(d) (&;;)2 At
flg===—""""7— 04
2opeA(d) )7

d,

1
ZpE.A(d) (CGASE

1
2 peAd) )T

(11)

As a small technical issue: Far, 3 in Eq 9 to be the min-
imizers of Eq 8, we should avoid double-counting, perhaps by
settingn, = |{i yr € Y;}/7'. For example, for each
Y € Yp, N Yp, NY,,, we could sety, = . However, for
practical reasons we set all the weightequal to 1 in our experi-
ments. In the ideal case, as all loss functidnsare equal to zero
in global minima, any choice of weights gives the same zemarer
and therefore this choice gf= 1 will not matter. For real spectra,
however, by removing the weights we are giving more weight to
more critical regions, which produces better results ircfice.



After this, we then update the parameter vector by sett
it = ([at, 6+ (1-C)vt, where¢ € (0, 1) is alearning
rate.

6. If max(o't1) < 0y40 OFt > tnas, returnu! ™t as the ap-

proximationto{a*, 5*}. Otherwise increasg and return
to Step 2.

T T T

—=— CEED (N = 1,000,000)
CEED (N = 100,000) |7

—— CEED (N = 10,000)

<+ Genetic Algorithm
Gradient Descent

- = = Simulated Annealing |7

s oa
5 &
—
h o
jd
(R
1 N
[ 4
L
I

Sum of Squared Error over the Spectra

In practice, the available metabolite library will not ir
clude all-and-only the metabolites in the chemical mixtt
—i.e., there are some metabolites in the mixture that are not
present in the library and vice versa. Here, CEED may pro-
duce an inferior fit by trying too hard to match the metabo-
lites in its library. To reduce this problem we changed Step 5
to use theminimumof the different estimates of each con-
centration valuef,,,), rather than their linear combination

(Eq 11). We still use Eq 11 to combines. We also found  Taple 1: Comparison of CEED and SAGD: (left) concentra-
that adding a term to the loss function of Eq 8 that is propor- tjon errors and (right) presense detection.

, X L =

.
05 1 1.5 2 3
Lorentzian Evaluations x 10*

Figure 3: Comparing convergence rates on a simulated spec-
tra. Horizontal axis: number of Lorentzian function evalua
tions. Vertical axis:L, norm of reconstruction error, Eq 8.

tional to thetotal variation of the absolute error produces a|g K1 Ka Precision Recall F-measure
better fits for real spectra: TV ({«, 5}) = CEED .39+.05 43+ .11 .83+.08 .93f.06 .87+.06
S 1Sas(y) = 5)] — [Sasly — 1) = Sy — 1)) SAGD .76+ .05 .69+ .17 || .68+.13 .974+.03 .79+.10

yey—{0}

(I.e., the loss function is a linear combination of Eq 8 and

this TV term.) This term encourages CEED to produce a smooth difference lines, which leads to better fits in gelnera
smooth difference (between the fit and the spectra), which We can also confirm the high quality of the fit by comparing
helps CEED to avoid trying too hard to fit an region whose the metabolite concentrations reported by CEED, to expert’

peaks correspond to compounds that are not present. Thisestimates; see Table 1(left) which uses #heand . error

means our system will proprose a mixture over relatively
few chemicals, which is appropriate, given the inherent in-
completeness of our library.

Since CEED works with a decomposed loss function, we
countthe number of total evaluations of the Lorentzian func
tion (peaks in Eq 7) as the measure of computation re-
source used by algorithms. We compared our algorithm
against Gradient Descent (GD), Simulated Annealing (SA)
and Genetic Algorithm (GA) methods on a typical simulated
spectrum, over 90 metabolites involving 505 cluster ceanter
(hence a total of 595 variables). We used the implementa-
tion of these methods provided by the standard Matab
toolbox? Figure 3 compares the convergence rate of differ-
ent algorithms for the typical spectrum, using the error
(Eq 8).

We also applied our CEED system to a se3@fmanually-
fitted 600 MHz real urine spectra, and compared our results
to results obtained bgAGD (a hybrid of Simulated Anneal-
ing and Gradient Descent), a state-of-the-art tool pravide
by a company that is active in the analysis of NMR Spectra.
Overall, our CEED achieved significantly better fits. Fig-
ure 4 shows CEED's fits. We see that CEED avoids exces-
sively fitting available areas — that are results of baseline

measures defined above. We also considered the task of sim-
ply detecting the presence of a compound, by thresholding
its reported concentration with the threshold of 0.02 mMol;
see Table 1(right). Overall CEED performed better in both
tasks. We uséold-face when CEED statistically signifi-
cantly outperformsAGD (paired t-testp <5E-13).

4. Conclusion

This paper introduces a new stochastic optimization method
CEED that attempts to find good solutions to partially de-
composable problems, and demonstrates that it works effec-
tively in the important real-world context of interpretihigl
NMR spectra. Here, we found that CEED was considerable
better than many existing optimization methods. (To demon-
strate the generality of the method, we also applied CEED
to several other decomposable problems, including SAT and
Sudoku; see (RPG 2010).) This improvementis largely due
to CEED’s ability to use the sub-problem structure, which
is clearly very important information. In addition to our
theoretical claims, we have also produced a very practical
system, one that can effectively analyse compledxXNMR
spectra; this will prove extremely valuable in the study of

error and missing compounds — and also tends to produce metabolic bio-markers and helpful in diagnosing and treat-

4GD is implemented by constrained nonlinear optimization,
which uses active-set and line-search. SA is using fastadimge
with exponential temperature update; we report resultedas
the best reannealing interval. GA used ranking for fitneafirsy,
stochastic uniform method for parent selection, cross-fraetion
of 0.8; we report the result for the best combination of papiah
size and generations. All major choices are made by a rebiona
effort of trial and error.

ing diseases (Wishart et al. 2007).
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