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Abstract

Some real-world problems arepartially decomposable, in
that they can be decomposed into a set of coupled sub-
problems, that are each relatively easy to solve. However,
when these sub-problem share some common variables, it
is not sufficient to simply solve each sub-problem in isola-
tion. We develop a technology for such problems, and use
it to address the challenge of finding the concentrations of
the chemicals that appear in a complex mixture, based on
its one-dimensional1H Nuclear Magnetic Resonance (NMR)
spectrum. As each chemical involves clusters of spatially lo-
calized peaks, this requires finding the shifts for the clusters
and the concentrations of the chemicals, that collectivelypro-
duce the best match to the observed NMR spectrum. Here,
each sub-problem requires finding the chemical concentra-
tions and cluster shifts that can appear within a limited spec-
trum range; these are coupled as these limited regions can
share many chemicals, and so must agree on the concen-
trations and cluster shifts of the common chemicals. This
task motivates CEED: a novel extension to the Cross-Entropy
stochastic optimization method constructed to address such
partially decomposable problems. Our experimental results
in the NMR task show that our CEED system is superior to
other well-known optimization methods, and indeed produces
the best-known results in this important, real-world applica-
tion.

1. Introduction
Our practical goal is to automatically “interpret” a1H Nu-
clear Magnetic Resonance (NMR) spectrum, based on a li-
brary of the “signatures” of a set of chemicals — that is, to
find the concentrations of the chemicals (think “linear com-
bination of these signatures”) that best matches the spec-
trum. The challenge is that each signature is actually a set
of clusters, where each cluster (a set of peaks with known
relative positions and heights) can shift within a small re-
gion. Hence, we can view this task as a multi-extremal con-
tinuous optimization problem that can involves hundreds of
bounded variables (corresponding to the concentrations of
the chemicals, and the shifts of the clusters). As the spectra
is noisy and the loss function is not convex, the best candi-
dates for solving this problem seem to be global, stochastic
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optimization methods. One such technique is theCross En-
tropy (CE) method — a relatively new method that has been
successfully applied to many different domains, includinga
variety of continuous and combinatorial optimizations such
as clustering and vector quantization, policy optimization,
and buffer allocation (see (Rubinstein and Kroese 2004) and
references therein). While the standard CE has proven suf-
ficient for many of these tasks, in some situations we may
be able to get yet better performance by exploiting some
characteristic of the problem itself. Motivated by our real-
world NMR task, we develop a variation of the original CE
method that can exploit the structure of partially decompos-
able problems, by an iterative process that, in each step, first
finds a distribution of “solutions” to each sub-problem sepa-
rately and then combines these distributions over each vari-
able domain. While there are many primal and dual decom-
position methods in the convex optimization literature that
also try to solve several sub-problems simultaneously (Boyd
and Vandenberghe 2004), we are addressing a non-convex
problem using a non-deterministic method. Similarly, ge-
netic algorithms have been used to improve probabilistic
models that exploit inter-variable dependencies to control
future cross-overs or samplings (see for example (Baluja
2002)). In addition to methodological differences, our work
differs by considering interdependencies of (sub)problems,
rather than just relations of variables.

Section 2 quickly summarizes the basic CE method, then
uses the SAT problem to motivate our extension, calledCE
Exploiting partial Decomposability(CEED). Section 3 pro-
vides experimental results showing that CEED works effec-
tively on the challenging and important problem of interpret-
ing NMR spectra. It also compares CEED’s performance
to other optimization methods, including gradient descent,
simulated annealing and genetic algorithms, and a current
state-of-the-art system for NMR analysis. The web-page
(RPG 2010) provides some more background on CE, the re-
sults of applying CEED to SAT and Sudoku problems, and
additional results on the analysis of NMR spectra.

2. Extending CE to Exploit Decomposability
2.1 Introduction to the CE Method

We are given a loss functionL : X → ℜ defined over a
bounded convex (continuous or discrete) domainX . Our



goal is to find an approximation to the global minimizer
of L: x∗ .

= argminx∈X L(x). The Ordinary Cross En-
tropy (OCE) method addresses this using an iterative process
that involves sampling from distributions that have the least
Cross Entropy (KL-divergence) to distributions over succes-
sively improving level sets.

Let the indicator functionI{condition} be 1 if the condition
is true and 0 otherwise. Define a uniform distribution over
level-setL(x) < τ : hτ (x)

.
=

I{L(x)<τ}
R

X
I{L(x1)<τ}dx1

. Let f(·) be

the distribution that minimizes the cross-entropy tohτ :

f(·)
.
= arg min

g

{∫

X

hτ (x) ln
hτ (x)

g(x)
dx

}

= arg max
g

{∫

X

hτ (x) ln(g(x)) dx

}

(1)

The OCE method seeksf for a smallτ , in which casêx∗ =
mode(f) is typically a good approximation tox∗.

This is performed iteratively, by adaptively updatingτ
and f ; we useτ t and f t to denote their values on itera-
tion t. In iteration t, OCE first drawsN instances from
f t−1, X = {Xn ∼ f t−1(x)}1≤n≤N , renumbered such that
L(X1) ≤ . . . ≤ L(XN). It then uses theelite samples
Xelite = {Xn}1≤n≤⌈ρN⌉, which are the topρ fraction of the
instances. At the next time-step, OCE setsτ t = L(X⌈ρN⌉)
to be the smallest level-set that includes these topρ fraction
of the instances, and then useXelite as an empirical approx-
imation forhτ t(x). OCE then uses the empirical version of
Eq 1 to calculatef t.

We use a parametric approach by restrictingf to a para-
metric familyF

.
= {fv(x)}v. In this parametric representa-

tion, the empirical counterpart of Eq 1 at time-stept simpli-
fies to

v̂t .
= arg max

v

{

1

N

N∑

n=1

I{L(Xn)<τ t} ln fv(Xn)

}

= arg max
v

{
∑

Xn∈Xelite

ln fv(Xn)

}

, (2)

whereXn ∼ fvt−1(x) are the instances generated from dis-
tribution that has the minimum cross-entropy to the previous
level setτ t−1. The solution to Eq 2 is themaximum likeli-
hoodestimate of parametervt from the elite samples. This
update equation has an analytical form for the natural expo-
nential family, which makes this method practical (Rubin-
stein and Kroese 2004).

2.2 Decomposability
Many real-world optimization problems can be (partially)
decomposed into a set of ‘simpler’ sub-problems, each with
fewer variables. As most problem domains grow expo-
nentially in the number of variables, this reduction in the
number of variables can be very advantageous. As a triv-
ial example, consider SAT: Given a Conjunctive Normal
Form formula (overD variables withP clauses), find an
assignment that satisfies every clause (Garey and Johnson
1990). Here, we can view each individual clauseLp =

±d1Xd1 ∨ · · · ∨ ±dk
Xdk

as a sub-problem, and seek an as-
signment that satisfies it alone. Of course, this is trivial —
indeed, a1 − 1/2k portion of assignments satisfy each in-
dividualLp. We could do this for each clause individually,
to obtain several assignments over (various subsets of) the
variables. The challenge then is combining these resulting
assignments, to find a single assignment that satisfies every
clause. Our novel CE-based approach, CEED, deals with
severaldistributionsover each variable (here one associated
with each clause that includes that variable), and providesa
way to combine them to produce a single good distribution
for each variable.

We assume there areD variables, each parameterized
by Q parameters. (E.g., in the SAT problem, each of the
D variables is represented by a Bernoulli variablevd, with
two parametersQ = 2 representing the probability of that
variable being true or false.) More formally, letXD be a
boundedD-dimensional domain representing the possible
tuples of variable assignments, and for eachd ∈ {1, ..., D},
let

vd = [vd(1), ..., vd(Q)] ∈ ℜQ (3)
be a row vector representing the parameters for that variable.

Let F = {fv} be a joint distribution of a specific family
defined overXD: fv(x)

.
=
∏D

d=1 fvd
(xd), where for each

d ∈ {1, ..., D}, vd is the parameter vector of the distribution
fvd

: X → ℜ, andv = [v1; ...; vD] ∈ ℜDQ is the parameter
vector offv : XD → ℜ. For combinatorial optimizations,
that is whenX = {1, ..., Q} is discrete,fvd

(xd = q) =
Pr(xd = q) = vd(q) is a probability mass function (pmf),
wherevd is located on a simplex —i.e.,

∑|X |
q=1 vd(q) = 1

andvd(q) ≥ 0.
For notation, we letxA (resp.,vA) be the restriction ofx

(resp.,v) to the coordinates inA ⊆ {1, ..., D}. Using the
same notation,fvA(xA) =

∏

d∈A fvd
(xd) is a joint distri-

bution defined overXD
A , the restriction ofXD toA.

For eachp ∈ {1, ..., P}, let M(p) ⊆ {1, ..., D} in-
dex the set of variables in thepth group (e.g., this could
be the indices of the Boolean variables in thepth clause).
Observe that, for any loss function of the formL(x) =
∑P

p=1 Lp(xM(p)) and for any valueτ , if
∑

p τp ≤ τ then

we haveI{L(x)<τ} ≥
∏P

p=1 I{L(xM(p))<τp}, for some val-
ues of{τp}. We can therefore try to solve the optimization
Eq 2 by finding assignments that produce good results for
all sub-problems at the same time.

Given this notion of sub-problem, we can show the in-
teraction of variables in sub-problems using thecoupling
matrix C ∈ {0, 1}P×D, whose rows correspond to sub-
problems and columns to variables, where the elementCp,d

is 1 iff the sub-problemp depends on variablexd. We then
defineM(p) = {d : Cp,d = 1} to index thevariablesin-
volved in sub-problemp andA(d) = {p : Cp,d = 1} to
indexsub-problemsthat involvevariablexd.1

1To summarize the notation: We haveD variables, grouped
into P (overlapping) subgroups.f t

vt
d,p

(·) refers to a distribution

where the superscript “t” indexes the iteration (here forv andf ,
and also for the levelτ ∈ ℜ), v stands for the parameters, where
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Figure 1: Coupling matrices for (a) Random SAT, (b) Struc-
tured SAT, (c) Sudoku, (d) NMR problems

Figures 1(a) and 1(b) show the coupling matrix for a ran-
dom SAT and a SAT formulated graph coloring problem;
here each clause is a sub-problem. Figure 1(c) shows the
coupling matrix for the formulation of a9× 9 Sudoku prob-
lem, where the sub-function to be maximized (in each sub-
problem) is the number ofdistinct elements of each row,
column and sub-square of the Sudoku puzzle . (Each ele-
ment of the puzzle is represented by a pmf over{1, ..., 9}.)
This matrix clearly shows how the various sub-problems are
inter-related. Finally, Figure 1(d) shows the coupling matrix
for our NMR Spectra interpretation task; see Section 3.

2.3 Cross Entropy Exploiting partial
Decomposability (CEED) method

The basic idea underlying the CEED method is to first obtain
several estimates of each variable using the loss functionsfor
each sub-problem, and then combine these estimates into a
single distribution, which CEED uses for sampling in the
next iteration. Note we identify each sub-problem with its
associated loss functionLp; also the number of instances
drawn for each sub-problemNp is computed based on the
complexity of that sub-problem. (This complexity varies by
application; see below.)

We can summarize CEED algorithm in the following
steps:

Input: Prior v̂0; Elite fractionρ ∈ (0, 1);
Set of sub-problem/#instances pairs{〈Lp, Np 〉}
Output: approximate minimizer of

∑

p Lp(x), x̂∗ ∈ XD

0. Initialize t = 1, and deriveA(d) andM(p) using the
domain of given sub-problemLp(.)

vd,p refers to the parameters of a distribution learned for thedth

variable, based on thepth sub-problem. Note the first subscript
(called “d” above) can be a set —e.g., vA,p refers to the param-
eters learned for the set of variable indicesA, which could be
A = M(p) ⊂ {1, ..., D}.

1. At time-stept, drawNp instances from the joint distribu-
tion fv̂

t−1
M(p)

, for each sub-problemLp.

2. For each sub-problemp, calculate the error for the in-
stances, and find a joint distribution with the least cross
entropy to the elite instances (the topρ fraction). More
formally, similar to Eq 2, define, for eachp ∈ {1, ..., P},

v̂
t
M(p),p = arg max

v

8

<

:

1

Np

Np
X

n=1

Ip(Xn) ln fvM(p)
(Xn)

9

=

;

(4)

where eachXn ∼ fv̂
t−1
M(p)

. Here,v̂t
M(p),p is the estimate

of many distributions, each parameterized byv∗M(p) (the
restriction of global optima to sub-problemp) for all of
the variables inM(p), given by sub-problemp at time-
stept.

3. Each variablevd appears in each of the sub-problems
in A(d), and so is estimated by multiple parameter val-
ues {v̂t

d,p | p ∈ A(d)} — one for each sub-problem
p ∈ A(d). We therefore “combine” the associated distri-
butions{fv̂t

d,p
| p ∈ A(d) } to produce a single parameter

valuev̂t
d, then join this over all variablesvd to produce a

single parameter valuêvt, describing a single joint distri-
butionfv̂t over all variables. See Section 2.4.

4. If not converged, incrementt and return to Step 1. Else
stop and return the mode offv̂t as an approximation to
x∗.

For our SAT example, after sampling a distribution, and
assigning a distribution to the variables in each clause, we
obtain several distributions over each variableX — one
joint distribution associated with each clause that contains
X . We then combine these distributions to produce a sin-
gle distribution over each variable, which we then use in the
next iteration.

In terms of the general coupling matrixC, each
CEED iteration first estimates the parameters in each row
{v̂t

M(p),p}1≤p≤P , then combines the estimates in each col-
umn, {{v̂t

d,p}p∈A(d)}1≤d≤D to get v̂t. This is repeated in
each iteration, using the previous estimate as the sampling
distribution.

Step 3 needs to combine several estimates. We know that
each estimatêvd,p of variabled given by sub-problemp cor-
responds to a distribution,fv̂

d,p
(x). Here, CEED uses the

distribution that minimizes the sum of the KL-divergences
to the given set of distributions:

v̂t
d = arg min

ω







∑

p∈A(d)

DKL(fω, fv̂t
d,p

)






(5)

= arg min
ω







∑

p∈A(d)

(
∫

x∈X

fω(x) ln(
fω(x)

fv̂t
d,p

(x)
)dx

)






Although this optimization (Eq 5) is convex for the expo-
nential family, it is still challenging to find the global optima



here. The next section therefore provides a linear combina-
tion method to approximate this solution to Eq 5. We believe
this is a novel method for combining experts’ votes when
each expert is reporting a maximum likelihood estimate.2

2.4 Combining ML Estimates Using Their Fisher
Information

Given a set of randomi.i.d. instancesX = {X1, ..., XN},
the score functionis defined as the gradient of the log-
likelihood function: U(v,X) = ∂log(L(v;X))

∂v
, where

L(v;X) =
∏N

n=1 fv(X
n) is the likelihood function based

on the parameterv. This is the zero vector for the
maximum-likelihood (ML) parameters. Since for ML es-
timatesE{U(v, X)|v} = 0, the variance of the score func-
tion is the quantity that contains the information about the
ML estimate —a.k.a.its Fisher information:

I(v) = E{U(v, X)2|v} = E

{

[
∂

∂v
log(fv(X))]2 | v

}

If the distribution familyF satisfies the regularity condition
∫

∂2

∂v2 fv(x) dx = 0, then we can also write the Fisher in-
formation as (Lehmann and Casella 1998):

I(v) = −E



∂

∂v
U(v, X) | v

ff

= −E



∂2

∂v2
log(fv(X)) | v

ff

The elementId,d′(ṽ) (i.e., the element in rowd and col-
umnd′ of the matrixI) basically shows the rate of change in
the maximum likelihood estimation of parameterv(d) ∈ ℜ
by changing the parameterv(d′) in the neighborhood of
ṽ(d); see Eq 3. Therefore higher values suggest greater ac-
curacy in the maximum likelihood estimation. This is the
basis of our approach for combining estimations; we com-
bine the estimations{v̂t

d,p}p by weighting the estimates with
the Fisher information matricesI(v̂t

d,p):

v̂
t
d

.
=

0

@

X

p∈A(d)

v̂
t
d,pI(v̂t

d,p)

1

A

0

@

X

p∈A(d)

I(v̂t
d,p)

1

A

−1

(6)

We can also connect Eq 6 with the minimization Eq 5
by using the relation (Kullback 1959):2DKL(fv, fv+dv) ≈
dvT I(v) dv . This provides a second degree approximation
of KL-divergence, which we can use to approximate the so-
lution to the optimization (Eq 5):

v̂t
d = argmin

ω







∑

p∈A(d)

DKL(fω, fv̂t
d,p

)







≈ argmin
ω







∑

p∈A(d)

1

2
(v̂t

d,p − ω)TI(v̂t
d,p)(v̂

t
d,p − ω)







This minimization has the analytical solution, in the form of
the linear combination given by Eq 6.

2Fisher (1925) was the first to usesample weightingpropor-
tional to the Fisher information.

We can also relate combination of ML estimates using
their Fisher Information to the well-known method of lin-
ear combination by the inverse of the variance-covariance
matrix. The Cramér-Rao theorem (Cramer 1946; Rao
1945) states that any unbiased estimatorv̂d(X) of param-
eterv∗d, with variance-covariance matrixV ar(v̂d) satisfies
V ar(v̂i) � I−1(v∗d) , i.e., the differenceV ar(v̂d)−I−1(v∗d)
is positive semi-definite. As ML estimators areasymptoti-
cally efficient, this inequality becomes equality as the sam-
ple size grows to infinity (Everitt 2002). Therefore for a
relatively large sample size, we can assume that the inverse
of the Fisher information matrix is a good representative of
variance of ML estimates, and by substituting the inverse of
the variance matrix into Eq 6, we get an approximation to
the combination using the inverse of variance matrix.

3. Analysis of NMR Spectra
Each pure chemical compound has a unique NMR “sig-

nature”, which is a 1-dimensional signal composed of a set
of clusters, where each cluster has a center and involves one
or more peaks, each of which is characterized by 3 param-
eters, defining the peak’s heighta, width w and position
z relative to the cluster center, within a Lorentzian func-
tion (Freeman 1987; Wishart et al. 2007). As these clus-
ters do not move much, biochemists have long used NMR
to determine the identity of a pure compound, based on
the observed peak locations. Moreover, as the height of
the peaks in a compound are essentially proportional to the
concentration of that compound, they can also quantify that
concentration. Hence, the NMR spectrum of a mixture of
chemicals{cm} (appearing in, say, human blood or urine) is
essentially just the linear combination of those signatures
—

∑

m βm signature(cm) where eachβm coefficient
depends on the concentration of the associated compound
cms — which potentially allows us to recover those concen-
trations from a mixture (Weljie et al. 2006). In fact, once we
determine the centersα = (αp) for the clusters, we can then
find the concentrationsβ = (βm) by the non-negative lin-
ear least square methods (Lawson and Hanson 1974). The
challenge, however, is finding the cluster centers.

To be more precise, the following equation shows the
1-dimensional spectrum (over the discrete set of points on
which spectrum is defined,Y) produced byM metabolites,
where themth metabolite has concentrationβm ≥ 0 and
involves clusters in the setΓ(m), where thepth cluster is
at positionαp and involves peaks inΥ(p), each with its
Lorentzian parameters〈wr, ar, dr 〉: ∀y ∈ Y Sα,β(y) =

M∑

m=1

βm

∑

p∈Γ(m)

∑

r∈Υ(j)

arwr

wr + 4(αp + zr − y)2
︸ ︷︷ ︸

peak, centered atαp + zr

︸ ︷︷ ︸

cluster, centered atαp

︸ ︷︷ ︸

metabolite, with concentrationβm

(7)

These parameter values and peak and cluster information ap-
pear in a predefined library that specify the NMR signatures
of a set of compounds (Wishart et al. 2007).

Given an observed spectrum̃S, we want to find the



Figure 2: NMR spectrum, overlayed with two clustersαi1

andαi2 , associated with metabolitej. (Herei1, i2 ∈ Γ(j).)

metabolite concentrations,β = (βm) over the set of
possible compounds — which corresponds to{α̂, β̂} =
arg minα,β L({α, β}) where

L({α, β}) =
∑

y∈Y

[Sα,β(y) − S̃(y)]2 (8)

is theL2 error ; see Figure 2. (While we only care about the
concentrationsβ, we must also determine the cluster centers
α to find them.) If we knew the true concentrationsβ∗, we
could measure the error using the averagecontrolled relative
error:

κ1
.
=

1

M

M∑

m=1

min

(

1,
|β̂m − β∗

m|

β∗
m

)

.

We also considerrelative absolute errordefined as:

κ2
.
=

∑M
m=1 |β̂m − β∗

m|
∑M

m=1 β∗
m

.

As we see in Eq 7, the value of the Lorentzian function
drops quadratically with the distance(αp + zr − y) from the
center of peak. We can therefore assume that each peak has a
compact support, which consequently implies that each clus-
ter (small set of close-by peaks) will potentially affect only
a small region of the whole spectra. This region includes
the bounded amount of shift in the center of the clusterαp,
and the effective width of cluster; call this regionYp ⊂ Y.
We can rewrite the optimization (Eq 8) as a weighted sum of
squared error over all regions.

{α̂, β̂} = arg min
α,β

∑

p∈Γ(m)
1≤m≤M

Lp({α, β}M(p)) (9)

where {α, β}M(p) is the set of variables appearing in
sub-problemj. For convenience we define the function
Λ(p) that identifies the metabolite of clusterp: Λ(p) =
m iff p ∈ Γ(m). Using this notation{α, β}M(j) =
{{αp′ , βΛ(p′)}}p′∈M(p) andM(p) = {p′ s.t. Yj ∩ Yp′ 6=
∅}. Now define each sub-problem as:

Lp({α, β}M(p)) =
X

yk∈Yp

ηk

0

@̃S(yk) −
X

p′∈M(j)

Sαp′ ,βΛ(p′)
(yk)

1

A

2

(10)

where

Sαp′ ,βΛ(p′)
(y) = βΛ(p′)

∑

r∈Υ(p′)

arwr

wr + 4(zr + αp′ − y)2

is a single cluster that appears in sub-problemp.3

Figure 1(d) shows the coupling matrix for this optimiza-
tion problem. Our CEED implementation uses Gaussian dis-
tributions, which meansvd = [µd, σd] ∈ ℜ2. Therefore
NvM(p)

= N[µM(p),σM(p)] is a distribution over the variables

of pth sub-problem, including bothαs andβs.

Input: NMR spectrumS̃(y); Library of NMR chemical
signatures; Number of instances for sub-problemp at
iterationt, N(p, t); Elite fractionρ ∈ (0, 1); Learning rate
ζ ∈ (0, 1); Stopping critiontmax ∈ N ; Max Standard
Deviationσmax.
Output: A vector µ∗ = {α̂∗, β̂∗} of concentration for
metabolites and shift values for clusters.

1. For each clusterp in the library find Yp — the area
affected by each cluster — and using this derive sub-
problemsLp(.), A(d) andM(p). Sett = 1 and define an
initial distributionfv0 usingYps and some upper-bound
for concentrations.

2. For each sub-problemp, generateN(p, t) instances
{X1, ..., XN(p,t)} from Nv

t−1
M(p)

, where N(p, t) ∝
∑

p′∈M(p) σt−1
p′ . That is, the sample size for each sub-

problem is proportional to the problem size/difficulty.

3. Evaluate the samples over each domain using Eq 10.
Since our variables are bounded but the support of the as-
sociated Gaussian distributions is not, we may find some
cluster center outside of its legal range; here we simply
ignore any such instance. (Kroese, Porotsky, and Rubin-
stein (2006) use a similar approach in OCE.)

4. For each sub-problemp: find the elite instances (here us-
ing ρ = 0.05), and use them to estimate the maximum
likelihood parameter̂vt

M(p),p.

5. For each variabled, linearly combine its estimates
{v̂t

d,p}p∈A(d) using their Fisher information. For Gaus-
sian distributions, the Fisher information isI([µ, σ]) =
Diagonal( 1

σ2 , 1
2σ4 ), from which we get the following lin-

ear combination:

µ̂t
d =

∑

p∈A(d)

µ̂t
d,p

(σ̂t
d,p

)2

∑

p∈A(d)
1

(σ̂t
d,p

)2

σ̂t
d =

∑

p∈A(d)
1

(σ̂t
d,p

)2

∑

p∈A(d)
1

(σ̂t
d,p

)4

(11)

3As a small technical issue: For̂α, β̂ in Eq 9 to be the min-
imizers of Eq 8, we should avoid double-counting, perhaps by
setting ηk = |{i : yk ∈ Yi}|

−1. For example, for each
yk ∈ Yp1 ∩ Yp2 ∩ Yp3 , we could setηk = 1

3
. However, for

practical reasons we set all the weightsη equal to 1 in our experi-
ments. In the ideal case, as all loss functionsLp are equal to zero
in global minima, any choice of weights gives the same zero error,
and therefore this choice ofη ≡ 1 will not matter. For real spectra,
however, by removing the weights we are giving more weight to
more critical regions, which produces better results in practice.



After this, we then update the parameter vector by setting
vt+1 = ζ[µ̂t, σ̂t]+(1−ζ)vt, whereζ ∈ (0, 1) is a learning
rate.

6. If max(σt+1) < σmax or t ≥ tmax, returnµt+1 as the ap-
proximation to{α∗, β∗}. Otherwise increaset, and return
to Step 2.

In practice, the available metabolite library will not in-
clude all-and-only the metabolites in the chemical mixture
— i.e., there are some metabolites in the mixture that are not
present in the library and vice versa. Here, CEED may pro-
duce an inferior fit by trying too hard to match the metabo-
lites in its library. To reduce this problem we changed Step 5
to use theminimumof the different estimates of each con-
centration value (βm), rather than their linear combination
(Eq 11). We still use Eq 11 to combineα’s. We also found
that adding a term to the loss function of Eq 8 that is propor-
tional to thetotal variation of the absolute error produces
better fits for real spectra: TV ({α, β}) =
∑

y∈Y−{0}

|[Sα,β(y) − S̃(y)] − [Sα,β(y − 1) − S̃(y − 1)]|.

(I.e., the loss function is a linear combination of Eq 8 and
this TV term.) This term encourages CEED to produce a
smooth difference (between the fit and the spectra), which
helps CEED to avoid trying too hard to fit an region whose
peaks correspond to compounds that are not present. This
means our system will proprose a mixture over relatively
few chemicals, which is appropriate, given the inherent in-
completeness of our library.

Since CEED works with a decomposed loss function, we
count the number of total evaluations of the Lorentzian func-
tion (peaks in Eq 7) as the measure of computation re-
source used by algorithms. We compared our algorithm
against Gradient Descent (GD), Simulated Annealing (SA)
and Genetic Algorithm (GA) methods on a typical simulated
spectrum, over 90 metabolites involving 505 cluster centers
(hence a total of 595 variables). We used the implementa-
tion of these methods provided by the standard MatlabTM

toolbox.4 Figure 3 compares the convergence rate of differ-
ent algorithms for the typical spectrum, using theL2 error
(Eq 8).

We also applied our CEED system to a set of39 manually-
fitted600 MHz real urine spectra, and compared our results
to results obtained bySAGD (a hybrid of Simulated Anneal-
ing and Gradient Descent), a state-of-the-art tool provided
by a company that is active in the analysis of NMR Spectra.
Overall, our CEED achieved significantly better fits. Fig-
ure 4 shows CEED’s fits. We see that CEED avoids exces-
sively fitting available areas — that are results of baseline
error and missing compounds — and also tends to produce

4GD is implemented by constrained nonlinear optimization,
which uses active-set and line-search. SA is using fast annealing
with exponential temperature update; we report results based on
the best reannealing interval. GA used ranking for fitness scaling,
stochastic uniform method for parent selection, cross-over fraction
of 0.8; we report the result for the best combination of population
size and generations. All major choices are made by a reasonable
effort of trial and error.
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Figure 3: Comparing convergence rates on a simulated spec-
tra. Horizontal axis: number of Lorentzian function evalua-
tions. Vertical axis:L2 norm of reconstruction error, Eq 8.

Table 1: Comparison of CEED and SAGD: (left) concentra-
tion errors and (right) presense detection.

Alg κ1 κ2 Precision Recall F-measure
CEED .39± .05 .43± .11 .83± .08 .93± .06 .87± .06
SAGD .76± .05 .69± .17 .68± .13 .97± .03 .79± .10

smooth difference lines, which leads to better fits in general.
We can also confirm the high quality of the fit by comparing
the metabolite concentrations reported by CEED, to expert’s
estimates; see Table 1(left) which uses theκ1 andκ2 error
measures defined above. We also considered the task of sim-
ply detecting the presence of a compound, by thresholding
its reported concentration with the threshold of 0.02 mMol;
see Table 1(right). Overall CEED performed better in both
tasks. We usebold-face when CEED statistically signifi-
cantly outperformsSAGD (paired t-test,p <5E-13).

4. Conclusion

This paper introduces a new stochastic optimization method
CEED that attempts to find good solutions to partially de-
composable problems, and demonstrates that it works effec-
tively in the important real-world context of interpreting1H
NMR spectra. Here, we found that CEED was considerable
better than many existing optimization methods. (To demon-
strate the generality of the method, we also applied CEED
to several other decomposable problems, including SAT and
Sudoku; see (RPG 2010).) This improvement is largely due
to CEED’s ability to use the sub-problem structure, which
is clearly very important information. In addition to our
theoretical claims, we have also produced a very practical
system, one that can effectively analyse complex1H NMR
spectra; this will prove extremely valuable in the study of
metabolic bio-markers and helpful in diagnosing and treat-
ing diseases (Wishart et al. 2007).
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Figure 4: (top) CEED fit for a simulated spectrum; (middle) Two typical fits produced by CEED on real urine spectra; (bottom)
Comparison of concentrations found by CEED with expert’s estimate for a typical urine spectrum
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