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Abstract

Survival prediction is the task of predicting the length of time that an individual patient will survive;

accurate predictions can give doctors better guidelines on selecting treatments and planning futures.

This differs from the standard survival analysis, which focuses on population-based studies and tries

to discover the prognostic factors and/or analyze the median survival times of different groups of

patients.

The objective of our work, survival prediction, is different: to find the most accurate model

for predicting the survival times for each individual patient. We view this as a regression problem,

where we try to map the features for each patient to his/her survival time. As the relationship between

features and survival time is still not understood, we consider various ways to learn these models

from historical patient records. This is challenging in medical/clinical data due to the presence of

irrelevant features, outliers, and missing class labels. This dissertation describes our approach for

overcoming these, and other challenges, producing techniques that can predict survival times.

We focus our experiments on a data set of 2402 patients, including 1260 censored patients (i.e.,

whose survival time is not known). Our approach consists of two major steps. In the first step,

we apply various grouping methods to divide the data set into smaller populations. In the second

step, we apply different regression models to each sub-group we obtained from the first step. Our

experiments show that the linear regression, the support vector regression, and the gating regression

are effective: each predictor can obtain an average cross validated relative absolute error lower

than 0.54 (where the average relative absolute error of a regressor is E[ |t−p|p ] where t is the true

survival time and p is our prediction for each patient). We also use our regressors to classify each

patient into “long survivor” versus “short survivor” where the classification boundary is the median

survival time of the entire population; here, we show that several regressors can achieve at least 70%

accuracy. These experimental results verify that we can effectively predict patients’ survival times

with a combination of statistical and machine learning approaches.
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1.1 The Problem

Imagine if you are diagnosed with a terminal illness. Here, it is clearly useful to know how much

time you have left to spend with your loving families and friends.

Survival Prediction is the task of predicting the length of time that a patient will survive. This

task is difficult in general due to the complicated relationship between genetic, biological, and envi-

ronmental factors in the human body. Furthermore, no one knows which features affect survivability.

Most research on this topic has focused on population-based studies, which try to discover the

prognostic factors and/or analyze the probability distributions over the survival times of different

groups of patients. This problem has been studied within the field of statistics for decades, and

there exist some standard methodologies to estimate survival distributions, such as the Kaplan-Meier

estimator, the Cox Proportional Hazard Model, and the logistic regression model. (Details can be

found in Section 2.3.) While these models are powerful, they are not designed to make predictions

for individuals. Knowing only that a patient belongs to a specified distribution, the best we can do is

return the mean/median survival time. However, as this analysis applies to a large group, it usually

has huge variance (e.g., 19 months± 30 months). Recalling the question we asked above, we would

prefer a more detailed response – i.e., one with tighter variance.

This motivates our work, which has this objective: to find the most accurate model for predicting

the survival times for each individual patient. We view this as a regression problem, where we try to

map the features for each patient to his/her survival time. As the relationship between features and

survival time is still not understood, we consider various ways to learn these models from existing

historical patients. This is challenging in medical/clinical data due to the presence of irrelevant fea-

tures, outliers, and missing class labels. In this thesis, we describe our approach and framework for

handling these, and other challenges, producing techniques that can group patients, and regression

methods for predicting survival times.

1.2 Motivation

Thousands of people suffer or die from cancers each day. Medical doctors still cannot make accurate

prognosis since the relationship between health conditions and survivability is still unknown. When

patients consult doctors regarding their survival time, the doctors make predictions based on their

medical knowledge and previous observations. On the other hand, past experiences are not always

reliable – e. g., prognoses from different doctors are often inconsistent [7]. A system that can use

medical observations to produce accurate survival times has immediate application in real world.

We list several below.

Most cancer patients have to decide whether they want to receive treatments, such as chemother-

apy or radiation therapy. However, these treatments are invasive and carry the potential for severe

side effects, indeed, many patients die from the therapies rather than the cancer itself [18]. Patients
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with mild outlooks may not need to undergo aggressive treatments. Patients with severe outlooks

may find it more prudent to focus their energies on getting their affairs in order and spending time

with their families rather than subjecting themselves to painful treatments. In all cases, accurate

prognosis can give doctors better guidelines on selecting treatments and planning futures. Providing

patients with an accurate prognosis allows them to make informed choices about whether to accept

painful or risky treatments.

There are also other ways that an effective prognostic system will be able to improve the quality

of health care. The relationship between health conditions and survivability is still unknown. If

we can show which features are more dominant in determining the survival time, it could help the

medical doctors understand why certain phenomenon happens.

1.3 Challenges

Survival prediction is challenging for several reasons. This is difficult in general due to the com-

plicated relationship between genetic, biological, and environmental factors in the human body,

especially as it is not clear which variable affects survivability. For each patient, we can collect

many factors from the medical records, such as his/her age, gender, blood test results, weight loss,

etc. However, irrelevant features solely contribute more noise to the data and degrade the quality of

the regression model.

Also, working with survival data is challenging as the information is often incomplete. This

is especially problematic when the class labels (survival times) are missing, because supervised

learning algorithms rely on these labels for training a predictor. The survival data that we analyze

in this work contains 2402 patients, including 1260 censored — i.e., patients whose survival time is

unknown. (Details of missing class labels can be found in Section 2.1.) However, we cannot simply

eliminate these 1260 patients from our experiment since they contribute important information .

The third challenge in processing medical data is the the presence of outliers— that is, patients

who are extremely different from the rest of the populations. Among all stage IV lung cancer patients

in our data set, the median survival time is 11.20 ± 12.89 months, but 4 out of 389 patients have

survived more than 5 years (more than 3 standard deviations away from the mean). Additionally,

patients could die from unexpected external factors that are not correlated to their diseases. Imagine

a group of patients, whose medical conditions are similar, normally survive more than 2 years, but

one patient passed away from a car accident 1 week after his/her diagnosis. We certainly cannot

anticipate this patient’s death because it is caused by an accident. Outliers often exert problematic

influence on the parameters and should to be excluded before training the model.

Another challenge is that patients are heterogeneous, with different survival patterns for different

subgroups of patients. For instance, the variable “cigarette smoking” may be important for lung

cancer patient but perhaps not as critical as for colon-rectum cancer patients. In order to overcome

this non-linear relations between features and survival time, we attempt to model each risk group

3



separately. Unfortunately, it is not known which group of patients share the same survival pattern.

Therefore, in this thesis, a major task is to design an appropriate method that can segregate patients

with different survival distributions.

1.4 Contributions

My thesis claim is that we are able to learn a model from historical patient data that can effectively

predict survival times for novel patients. We build this model from a data set of patients’ historical

records, including personal attributes, diagnostic assessments, and blood test results. We develop

a framework for processing censored information, segregating populations, and predicting survival

time for each individual patients. We define the measurements to evaluate the quality of survival

predictions, an assessment that verifies that a model built upon a combination of machine learning

and statistical methodologies can make decent survival predictions.

We consider survival prediction as a regression problem and base our solution on a combination

of unsupervised and supervised learning. One issue we need to address is the missing class labels

in the training samples; here, we propose several methodologies to approximate the class labels

and a weighting strategy to lower the significance of these incomplete instances. Our approach to

this problem involves two phases, the learning phase and the performance phase. The learning

phase has two steps. In the first step, we apply various grouping methods to segregate patients into

smaller populations. In the second step, we apply different regression models to each sub-group we

obtained from the first step. Then, we pick the most accurate combination as our final model. In the

performance phase, we can predict a specific value for each novel patient by using the final model

we produce from the learning phase.

1.5 Outline

We briefly provide some background information in the next chapter. Section 2.1 introduces the

basic concept and terminologies of survival analysis. Section 2.2 describes the definition and the

formulation of survival data. Section 2.3 shows several classical models and evaluation methods that

have been used in survival analysis. We will discuss how this differs from our survival prediction

task. Although there is no standard methodology to predict survival, Section 2.4 will briefly review

some historical and related work in prognosis using statistical models, artificial intelligence, and

machine learning.

In Chapter 3, we describe the validation and evaluation methods of our framework. We describe

the notion of cross-validation in Section 3.1. The evaluation methods for uncensored and censored

data are explained in Section 3.2.

Chapter 4 explains our framework and methodologies in detail. Section 4.1 introduces our ideas

of handling censoring observations. We propose several techniques to approximate survival times for
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censored patients, and we discuss the details in Section 4.1.1. Our attempts to weight the censored

observations are described in Section 4.1.2.

In Section 4.2, we review the methodologies and background theories of regression models. In

Section 4.2.1, we describe the general ideas of the linear regression, the support vector regression,

and the regression trees. In Section 4.2.2, we illustrate some variations of regression models that

are customized to handle censored observations. As mentioned above, our approach first divides

patients into smaller population; in the last section, we describe the ideas of automatically select a

good regressor for each population.

Section 4.3 describes our methodologies for grouping patients, which are based on two primary

methods, tree and clustering. Section 4.3.1 describes our ideas of applying the classification and

regression trees to discriminate patients, and Section 4.3.2 describes the clustering methods. Details

of splitting, pruning, and parameters setup can be found in this chapter.

In Section 4.4, we discuss some issues of outliers and our methods on eliminating them from the

data set. Section 4.4.1 provides a detailed explanation on Mahalanobis distance, and Section 4.4.2

provides information on applying the minimum covariance estimator in outlier detection.

Section 4.5 describes our methods for manipulating data. As our data is a mixture of discrete

and continuous variables, Section 4.5.1 explains our reasons and methods for expanding the discrete

features. In Section 4.5.2, we describe ways to eliminate irrelevant features using subset selection

by backward wrapper and variable ranking by mutual information. In Section 4.5.3, we discuss the

technique of log-space transformation.

Chapter 5 summarizes the experiment setup and outcomes. The result of censored data handling,

outlier detections, grouping methods, and regression algorithms can be found in Section 5.2, and

detailed results are provided in Appendix B. Finally, we conclude our work in Chapter 6.
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Chapter 2

Background
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In this chapter, we briefly describe the basic concept and related work on survival analysis. Sec-

tion 2.1 explains some frequently used terminologies and equations on medical prognosis and sur-

vival analysis. Section 2.2 describes the definition and the formulation of survival data. Section 2.3

discusses common research methods in survival analysis, and Section 2.4 reviews some relevant

work in prognosis using survival analysis, artificial intelligence, and machine learning approaches.

2.1 Survival Analysis

The goal of survival analysis is to examine and model the time of an event of interest, which has

been broadly applied in medicine, reliability study, financial insurance, etc. For instance, in clinical

research, some typical events are death or recurrence of a phenomenon. Notice that survival analysis

is different from survival prediction in that survival analysis models the probability distribution of

this phenomenon within a population, which is typically used to discover the prognostic factors (i.e.,

factors that affect survivability) or estimate the median survival time of this population. In contrast,

the goal of survival prediction is to accurately predict the remaining time to this phenomenon for

each individual within a population.

Let T be a non-negative random variable that represents survival time. In medical prognosis, for

instance, T generally refers to how much longer a patient will remain alive, after the diagnosis of

the disease. The probability of T can be specified in three ways: the survival function, the density

function, and the hazard function. Here is a list of terminologies and frequently used functions.

The survival function is the probability that an event will occur later than a specified time t. The

survival function is a non-increasing function, which is defined as

S(t) = Pr(T > t) = 1− Pr(T ≤ t) (2.1)

where S(0) = 1 and S(∞) = 0

The cumulative density function of T is defined as

F (t) = Pr(T ≤ t) = 1− S(t)

By definition, the probability density function of T can be calculated by

f(t) =
dF (t)
dt

= −dS(t)
dt

The hazard function of T measures the instantaneous decline in survival at T = t, given that the

patient has survived until t.

h(t) = Pr(t ≤ T < t+ dt|T ≥ t) =
f(t)
S(t)

The cumulative hazard function is related to the survival function by

H(t) =
∫ t

0

h(u)du = − lnS(t)
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S(t) = e−H(t) (2.2)

After acquiring the survival function of a population, many medical researchers are interested in

looking at the median survival time. This median survival time divides the samples into two equal

halves, so that half the patients die before this time and the other half survive longer than this time.

Some follow a variant: take the median survival time within the 95% confidence interval— i.e., after

eliminating the most extreme five-percent of patients [39].

2.1.1 Medical Prognosis

Medical prognosis studies the challenge of estimating the recurrence of disease and predicting sur-

vivability of patients [15]. Much medical and clinical reasoning takes the hypothetico-deductive

method as a procedure in scientific research. A hypothesis is a statement or explanation about some

medical observations that is either true or false, and the hypothetical-deductive approach is the pro-

cedure of testing the hypothesis to deduce a consequence of the explanation. For example, consider

the assumption that females have longer survival time than males among lung cancer patients. To

verify this assumption, experiments are carried out to test the difference on survival distributions

of females and males. The result is usually verified with some statistical methods; if the statistical

result is significant, then this hypothesis is supported.

A randomized clinical trial (RCT) is a common method to verify a hypothesis through experi-

ment. This process randomly chooses patients belonging to various predefined groups (e.g., men vs.

Women or men under 25 vs. Women over 50) to receive treatments. We record the relevant char-

acteristics of each patient, such as age, gender, etc. After completing the experiments (often taking

years), researchers ask whether there is a statistical difference among different groups; such result

may provide useful information in designing procedures for the treatment and the development of

drugs [40].

As described above, studies of medical prognosis normally begin with one or more assumptions

and involve performing experiments to support some given hypotheses. However, it is usually not

proven that these assumptions are relevant and unbiased. Besides, it is relatively harder to analyze

high dimensional data set with hypothesis (e.g., consider micro-array data that includes thousands

of features). For these reasons, our approach is to develop models solely from a data set of patients’

records without any prior grouping in our work.

2.2 Survival Data

In this section, we will introduce the notion of censoring and our formulation of survival data. We

will provide a simple example of survival data, which will be used to demonstrate examples through

out this paper.
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2.2.1 Censored Observations

A major difference between survival data and a standard machine learning data is that some patients

may not have event-times, that is, we do not know when these patients experience the event. Such

omissions are their label — that is called censoring [10]. Type I censoring occurs when the patients

are still alive when the data is collected, so we only know the time of their last visit. Censoring

can also happen when a patient failed to follow up after a certain time, and this is called Type II

censoring. In either case, the censored value is a lower bound on the patient’s actual survival time.

In survival analysis, censored data can provide valuable information even though the actual

event time is unknown [51]. Missing survival times is dissimilar to missing values in the features

because the censored time provides the lower bound on the actual survival time. Simply eliminating

censored observations or treating them as uncensored samples (i.e., pretend that the censored time

is the time of the actual event) would bias the predictor and so should be avoided. For instance,

consider a group of patients that were studied over a fixed period of 3 months, and imagine that 10%

of patients died within 3 months while the remaining 90% survived at the end of study. If we simply

omit all censored observations, the remaining data would suggest that all patients will die within this

fixed period of 3 months.

Given the difficulties of obtaining and collecting information from patients’ records, the number

of patients in the data set is often insufficient. Although the actual survival times of censored data

are unknown, Shivaswamy et al. suggests that we should utilize a censored observation when there

is complete information [51]. For example, assume that our goal is to predict whether a patient can

survive more than 2 years versus less than 2 years. It is correct to include all censored patients who

survive at least 2 years since we know that they belong to the categories of long survivors. (If a

censored patient whose censor time is shorter than 2 years, we choose to discard this sample since

we are not sure whether or not this patient can survive longer than 2 years.)

2.2.2 Formulation of Survival Data

Given a set of survival data D = (X,T ), where X represents the feature values (characteristics of

patients) and T represents the class label (survival time or censored time), our goal is to predict a

survival time P for each patient. Table 2.1 is a list of symbols/variables that we use through out this

paper.

Table 2.2 and Table 2.3 shows an example of survival data. Throughout this paper, we will use

this imaginary data set to demonstrate examples of different models and algorithms. Table 2.2 lists

some features of this example data, which are either nominal (e.g., Yes/No, Censored/Uncensored,

etc) or numerical (i.e., real numbers). Table 2.3 is an imaginary data set of 6 patients.
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Symbols Description
D Survival data set
n Number of instances (patients)
m Number of features
A m-dimensional vector of features in D
X n×m feature matrix of D
Xi m-dimensional vector of feature values of the ith patient in D
Xj n-dimensional vector of feature values of the jth feature of n patients in D
xji Feature value of the jth feature of the ith patient in D
T n-dimensional vector of class labels (survival time or censored time) of D
ti Class label of the ith patient in D and ti ∈ R
C n-dimensional vector of censored flags of n patients in D
ci Censored flag of the ith patient in D and ci ∈ {0, 1}
P n-dimensional vector of predicted survival times of n patients in D
pi Predicted survival time for the ith patient in D and pi ∈ R
Ri Risk set at time ti such that Ri = {Patientj ∈ D|tj ≥ ti}

Table 2.1: The formulations and notations of survival data

Feature Name Variable Name Data Type Range
Patient Name Patienti String Unique Identifier
Gender Xgender Nominal 0: Male, 1: Female
Age Xage Numerical
Lung Cancer X lung Nominal 0: No, 1: Yes
Pancreas Cancer Xpancreas Nominal 0: No, 1: Yes
Performance Status Xps Nominal 1, 2, 3, 4
Albumin Xalbumin Numerical
...

...
...

...
Time (Event or Censored) ti Numerical
Censored Flag ci Nominal 0: Uncensored, 1: Censored

Table 2.2: An example of the feature set

2.3 Modelling Survival Distribution

Survival analysis traditionally focuses on analyzing prognostic factor and/or modelling the survival

distribution of a population [52]. Here is an imaginary scenario: we would like to know if cigarette

smoking is a good prognostic factor for lung cancer. We study the populations of lung cancer

patients with versus without cigarette smoking, and we try to prove or disprove that people who

smoke and have lung cancer are more likely to die earlier than those who do not. There are several

well-established methods on modelling such survival distribution, which we briefly describe them

in the following section. We conclude this section by relating these approaches to our goal.

2.3.1 Kaplan-Meier Estimator

Kaplan-Meier analysis [27] is one of the most widely used tools for analyzing survival distributions

of different populations. The basic idea of Kaplan-Meier is to examine the proportion of events that

occur at each distinct time point. Assuming there are r distinct event times, (t1, t2, ..., tr), and Ri is
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Patienti Xgender Xage X lung Xpancreas Xps Xalbumin ... ti ci
Patient0 0 80 0 1 1 33.5 ... 1 0
Patient1 1 70 0 1 3 30.7 ... 8 0
Patient2 1 65 1 0 4 25.2 ... 10 1
Patient3 0 25 1 0 1 50.3 ... 13 0
Patient4 1 65 0 1 2 27.4 ... 18 1
Patient5 1 60 0 1 1 26.7 ... 120 0

Table 2.3: An example of a data set

the risk set , which is the set of patients who are still alive at time ti, let

ni = |Ri| be the size of the risk set at time ti

di be the number of events that occur at time ti

αi = P (T > ti|T > ti−1) =
ni − di
ni

More precisely, αi is the probability of survival in [ti−1, ti) given that a person has survived until at

least ti−1. The Kaplan-Meier estimator of the probability of survival at time ti is calculated by:

S(ti) = S(ti−1)× αi =
∏
tj<ti

αj

For the first 5 patients in our imaginary data set in Table 2.3, there are 3 events in this data set,

at time t =1, 8, and 13. (Censored observations are not considered as events.) At each distinct

event time t, we can calculate the number of events, the size of the risk set, and the probability of

survival, as shown in Table 2.4. Figure 2.1 plots the probability distribution of the survival function

we calculated in the second table.

ti ni di αi S(ti)
0 5 0 5 / 5 1.0
1 5 1 4 / 5 1.0 × 4/5 = 0.8
8 4 1 3 / 4 0.8 × 3/4 = 0.6
13 2 1 1 / 2 0.6 × 1/2 = 0.3

Table 2.4: An example of using the Kaplan-Meier estimator

Kaplan-Meier is one of the standard methods in survival analysis. One advantage is that this

model effectively incorporates censored observations since the estimator only requires the informa-

tion on the size of the risk set and number of events at each distinct time. Notice that the final product

of Kaplan-Meier estimator is a survival distribution not a survival time, which is different from our

primary goal. Since this model is one of the most common tool in survival analysis, we will later try

this for our prediction task: after placing a patient into a particular Kaplan-Meier distribution, we

will then use the mean/median survival time from this KM distribution as a predicted survival time

for that patient.
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Figure 2.1: An example of a Kaplan-Meier curve extracted from [42]

2.3.2 Cox Proportional Hazard Model

Cox Proportional Hazard Model [9] is a multivariate regression method in survival analysis that

incorporates the ideas of the Kaplan-Meier estimator and the effect of features. A proportional

hazard model assumes that the hazard (see Section 2.1 for definition) between different risk groups

are proportional, and all features are time independent. This model consists of (1) a function that

models the effect of features, and (2) a baseline hazard, an arbitrary and unspecified function that

models the risk over time. In general, any hazard function can be written as

h(t|X) = h0(t)g(X)

where h0(t) is the baseline hazard function

X is a vector of features

g(X) is a function that models the effect of features

Since each instance is proportional to the baseline, the hazard ratio (HR), or the ratio between a

risk group and the baseline, can be calculated by:

HR =
h(t|X)
h0(t)

= g(X)

One of the benefits of the proportional model is that we can leave the baseline function unspecified

if we are interested in the the hazard ratio between the two groups.

Cox proportional hazard model is a type of proportional hazard model, which assumes that the

effect of features is an exponential function of a linear combination of the features. More precisely,

this model defines g(X) = eβ(X−X0) where β is a vector of parameters for the feature and X0 is a

vector of features of the baseline. The hazard function of a Cox proportional hazard model can be
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written as:

h(t|X) = h0(t)eβ(X−X0)

We will demonstrate how to estimate the hazard function of a patient using the same imaginary

scenario from the last section (see Table 2.3). Assuming that for each patient, we are only given

his/her age = Xage
i , gender = Xgender

i (0 indicates Male and 1 indicates Female), and event time

ti. Let’s use Patient0 as the baseline in this example and assume that we know the hazard function

of Patient0 — that is, the baseline hazard function h0(t), which models the instantaneous risk of

Patient0 over time, as previously described in Section 2.1. (Recall that the baseline hazard function

is an arbitrary and unspecified function. In this example, our aim is to show the process of calculating

the hazard function of a patient from the baseline hazard function, and so we will leave this function

unspecified.) Assuming that we had fit a Cox model and obtained two parameters: βage = 0.01

for the age feature and βgender = 1 for the gender feature, we can estimate the hazard function of

Patient1 by

h1(t) = h0(t)e[βage(Xage1 −Xage0 )+βgender(Xgender1 −Xgender0 )]

= h0(t)e[(0.01)(70−80)+(1)(1−0)]

≈ h0(t)× 2.4596

The above result shows that Patient1 is approximately two to three times more risky (i.e., more

likely to have an event) than Patient0. Notice that it does not matter which patient was selected as

the baseline, since the hazard function only measures the ratios between the patients. It is common

to choose the average of each feature µX as the baseline and then normalize the features of each

patient. Letting X ′ = X − µX be a vector of normalized features, we can rewrite the hazard

function of the Cox model as:

h(t|X) = h0(t)eβX
′

The parameter β can be estimated using partial likelihood maximization, and the baseline hazard

function can be estimated by Kalbfleisch-Prentice Estimator [25]. Detail of calculations can be

found in the work of [25] and is omitted here. Once we have the baseline hazard function, we can

estimate the baseline survival function S0(t) (by Equation 2.2). Then, the survival function for each

individual patient is

S(t) = S0(t)e
βX′

Similar to the KM estimator, the Cox proportional hazard model is one of the standard method-

ologies in survival analysis, but it is not designed to produce survival time. In our work, we attempt

to evaluate the effectiveness of Cox model for individual prediction by using the median survival

time generated from a Cox model as the predicted survival time for each patient.
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2.3.3 Logistic Regression

Logistic Regression is a popular methodology for predicting the posterior probabilities of an indi-

vidual belonging to some classes, when there are two or more classes [35]. In survival analysis, if

we are only concerned with the likelihood of an event, we can apply logistic regression to estimate

the probability of this event. For example, to predict whether or not a patient will experience a

recurrence, the logistic regression is employed to estimate the probability of “recurrence” (positive

class) versus “no recurrence” (negative class). Let

X be a vector of features of the patient

β be the vector of coefficient for positive class

β0 be the intercept or noise variable for positive class

C = Positive denotes that the patient belongs to the positive class

C = Negative denotes that the patient belongs to the negative class

The probability that the patient belongs to the positive class and the negative class are estimated

by:

Pr(C = Positive|X = Xi) =
1

1 + eβ0+βx

Pr(C = Negative|X = Xi) = 1− Pr(C = Positive|X = Xi)

Suppose now we are interested to know the likelihood of 1 year survival of each patient in the

data set from Table 2.3. Without loss of generality, we can define Long Survival (survive more

than 1 year) as the positive class and Short Survival as the negative class (survive less than 1

year). Imagine that we fit a logistic regression model and obtain three parameters b0 = −0.5,

bage = 0.01, and bgender = 1. The process of estimating the probability that Patient0 belongs to

the longer survival group versus the shorter survival group is shown below. Table 2.5 shows the

predicted probabilities for the first five patients in the data set in Table 2.3.

Pr(Long Survival|X = X0) =
1

1 + e[β0+βageXage0 +βgenderXgender0 ]

=
1

1 + e[(−0.5)+(0.01)(80)+(1)(0)]

=
1

1 + e0.1

≈ 0.43

Pr(Short Survival|X = X0) = 1− P (Long Survival|X = X0)

≈ 1− 0.43

≈ 0.57
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Patient Time (Month) Event Pr(Long Survival) Pr(Short Survival)
Patient0 1 Death 0.43 0.53
Patient1 8 Death 0.23 0.77
Patient2 10 Censor 0.24 0.76
Patient3 13 Death 0.56 0.44
Patient4 18 Censor 0.24 0.76
Patient5 120 Death 0.15 0.85

Table 2.5: An example of result from the Logistic Regression

If there are more than two classes, we need to estimate the posterior probability that a patient

belongs to each class. Let

X be a vector of features of the patient

βk be the vector of coefficient for class k

β0
k be the intercept or noise variable for class k

C = k denotes that the patient belongs to class k

Pr(C = k|X = Xi) =
eβ

0
k+βkXi

1 +
∑K−1
l=1 eβ

0
l +βlXi

, for k = 1, ..,K − 1

Pr(C = K|X = Xi) =
1

1 +
∑K−1
l=1 eβ

0
l +βlXi

Logistic Regression is another dominant method in survival analysis; unfortunately, this model

is not sufficient for predicting individual survival times. Logistic Regression produce the probability

that a patient belongs to a class but not the remaining time of survival. Again, although it is different

from our primary objective, we will test its effectiveness in classifying patients into long survivors

and short survivors.

2.3.4 Evaluation and Validation

Much research on survival analysis focuses on finding the prognostic factors that can segregate

patients and/or produce a survival distribution for a population. The effectiveness of a prognostic

factor and the predictability of a survival function is usually evaluated via statistical methods and/or

graphical visualization. We discuss some general methods here.

Evaluating Prognostic Factor

How well a feature can discriminate populations is usually measured by some statistical test such

as the p-value from the log-rank statistics, which uses an hypothesis-test to compare the difference

between two survival distributions. For instance, to determine whether gender is an effective fea-

ture on discriminating patients, one could test the difference between the survival distributions of

men and women. If their survival distributions are significantly different, gender is considered an

effective prognostic factor.
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Here is the basic procedure of log-rank statistical test. Suppose we are given two populations,

G1 and G2. For each patient, we are given his/her survival time (if the patient is already dead) or

censored time (if the patient is still alive or has left the study prior to death). This statistic will

measure the likelihood that G1 and G2 are identical (the null hypothesis).

Let ti be distinct event times in either group

d1i and d2i be the number of observed events of group 1 and group 2 at ti

di = d1i + d2i be the number of observed events at ti

n1i and n2i be size of the risk set of group 1 and group 2 at ti

ni = n1i + n2i be size of the risk set at ti

Eij = di
d1i

d1i + d2i
be the expected value of group i

Vj =
di(n1j/ni)(1− n1j/ni)(ni − di)

nj − 1
be the empirical variance

The Z score of the log-rank statistic is calculated by

Z =
∑j
i=1 d1iE1j√∑j

i=1 Vj

Finally, the p-value is obtained by applying the chi-square statistic to the Z score shown above.

A large p-value (close to 1) indicates that these two populations are similar, while smaller p-value

(close to 0) suggests they are not. Typically, a p-value < 0.05 is considered significant. That is, this

value allows us to claim that the null hypothesis does not hold here — i.e., the two populations are

not drawn from the same distribution.

  

S(t)

Time(Month)

KM curve of G
1

KM Curve of G
2

Figure 2.2: An example of visualizing the performance of a prognostic factor

Another typical way to evaluate the performance of a prognostic factor is to visualize at the

Kaplan-Meier curves of the different sub-populations (differing only in the value of this single fac-
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tor) in the same plot [27]. For example, Figure 2.2 shows the Kaplan-Meier curves of two risk

groups such that these two groups do not have the same survival distributions.

The p-value and the graphical visualization are two common tools in evaluating the effective-

ness of prognostic factor. Notice this is different with our primary interest of predicting individual

survival times. However, the p-value of the log-rank statistic can help us quantify the difference

between two groups of patients. In our work, we use this measurement to evaluate how well a fea-

ture can segregate patients into small sub-populations. (See Section 4.3.1 for more details on how

p-value is used when splitting a classification and regression tree.)

Evaluating Predictability

The concordance index(CI) is a standard metric for evaluating the correctness of a survival distribu-

tion by measuring the proportion of all comparable patient pairs in which the predicted and actual

survival time are ranked in the correct order [20]. Imagine that our goal is to predict whether or not

a patient can survival until a specific time t (e.g., 1 year, 2 years, 5 years), and our model predicts

the probability that a patient will live longer than t. For all possible pairs of patients i and j, let:

ti, tj be the survival time of patient i, j

pi, pj be the predicted probability of survival until a specific time t for patient i, j

A pair i and j is “comparable” if we can determine whether ti > tj or vice versa. (If Patienti

is censored at ti and ti < tj , we cannot compare the survival time of these two patients since the

actual survival time of Patienti could be longer than tj .) For all comparable pairs of i and j, the

relationship between them is defined (disjointly) as:

Concordant if

{
ti > tj and pi > pj or
ti < tj and pi < pj

If not Concordant , then Tie if

{
ti > tj and pi = pj or
ti < tj and pi = pj

If not Concordant nor Tie , then Discordant if

{
ti > tj and pi < pj or
ti < tj and pi > pj

The concordance index is then calculated by:

CI =
number of concordance + 0.5× number of ties

number of comparable pairs

Table 2.6 shows the result from Logistic Regression model (Table 2.5) and a few examples of

determining concordant relationship between pairs of patients. In order to calculate the concordance

index , we need know the number of concordant pairs among all pairs of comparable patients. Notice

that Patient2 and Patient3 are not comparable since Patient2 is censored and may survive longer than

Patient3, and we cannot determine their concordant relationship. Here, of the 15 pairs of patients,

11 pairs are comparable.
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Patient Time (Month) Event Pr(Long Survival)
Patient0 1 Death 0.43
Patient1 8 Death 0.23
Patient2 10 Censor 0.24
Patient3 13 Death 0.56
Patient4 18 Censor 0.24
Patient5 120 Death 0.15

⇓

Patienti Patientj ti tj pi pj Result
Patient0 Patient1 1 8 0.43 0.23 Discordant
Patient0 Patient2 1 >10 0.43 0.24 Discordant
Patient0 Patient3 1 13 0.43 0.56 Concordant
Patient0 Patient4 1 >18 0.43 0.24 Discordant
Patient0 Patient5 1 120 0.43 0.15 Discordant
Patient1 Patient2 8 >10 0.23 0.24 Concordant
Patient1 Patient3 8 13 0.23 0.56 Concordant

...

Table 2.6: An example of using the concordance index

The CI is then the ratio between number of concordant pairs to the number of all possible pairs.

This number range from 0 to 1, with 0.5 indicates no correlation, and 1 indicates perfect prediction.

A difference of 0.02 or larger is typically considered to be significant. In the above example, the CI

is 11
15 ≈ 0.73.

In survival analysis, the Concordance Index is typically applied to evaluate models that produce

probability distributions (such as the proportional hazard models) or probability of different survival

classes (such as Logistic Regression models). In our work, we define Concordance Index differently

than the example above since our models produce survival times instead of survival probabilities.

We will reintroduce this idea again in Section 3.2.3.

Besides concordance index , it is also typical to measure accuracy, sensitivity, specificity. re-

ceiver operating characteristic curve (ROC) and/or the area under a receiver operating character-

istic curve (AUC). Assume that the actual outcomes and the predicted outcomes are either positive

or negative (e.g. survive longer than 1 years), we can visualize the relationships from a confusion

matrix, which is defined in Table 2.7.

Actual Outcome
Positive Negative

Positive True Positive (TP) False Positive (FP)
Predicted Outcome

Negative False Negative (FN) True Negative (TN)
Sensitivity Specificity

Table 2.7: The definition of confusion matrix
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Table 2.8 shows an example of predicted results from Logistic Regression model and confusion

matrix from these predictions. Recall that Long Survival represents the group of patients who sur-

vive longer than 1 year (the positive class) and Short Survival represents the group of patients who

survive shorter than 1 year (the negative class). Pr(Long Survival) is the predicted probability that

a patient belongs to the positive class (i.e., survive longer than 1 year) and Pr(Short Survival) is

the predicted probability that the patient belongs to the negative class (i.e., survive less than 1 year).

If Pr(Long Survival) > Pr(Long Survival), the patient is more likely to be in the positive

class, or the predicted class for this patient is Long Survival. From the results of predictions in the

first table, we can determine each component of a confusion matrix as shown in the second table.

Patienti Pr(Long Survival) Pr(Short Survival) Actual Class Predicted Class
Patient0 0.43 0.57 Short Survival Short Survival

Patient1 0.23 0.77 Short Survival Short Survival

Patient2 0.24 0.76 Short Survival Short Survival

Patient3 0.56 0.44 Long Survival Long Survival

Patient4 0.24 0.76 Long Survival Short Survival

Patient5 0.15 0.85 Long Survival Short Survival

⇓

Actual Outcome
Positive Negative

Positive TP: 1 FP: 0
Predicted Outcome

Negative FN: 2 TN: 3
Sensitivity Specificity

Table 2.8: An example of the confusion matrix

The most naive measurement is the accuracy, which is the percentage of correct predictions.

Sensitivity measures the percentage of true positive that are correctly predicted as positive, and

specificity measures the percentage of negatives that are correctly predicted as negative, that is, use:

accuracy =
TP + TN

TP+TN+FP+FN

sensitivity =
TP

TP + FN

specificity =
TN

TN + FP

From the same example of confusion matrix above, we can calculate:

accuracy =
1 + 3

1+3+0+2
≈ 0.67

sensitivity =
1

1 + 2
≈ 0.33

specificity =
3

3 +0
= 1

If the class labels are real numbers (e.g., in our case, the survival times), the regression results

can be estimated by determining a threshold value to create a classification boundary between two
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classes. (In the example above, the classification boundary is 1 year.) Assuming that t is the actual

output and p is the predicted output, where both t and p are real number, we can define a threshold

value c, so that all values larger than c belong to one class and all values less than c belong to another

class. sensitivity and specificity can be calculated by:

sensitivity = Pr(p > c|t > c)

specificity = Pr(p < c|t < c)

While these measurement are often adapted for model assessment, they are problematic if the

classes are imbalanced (i.e., the majority belong to one class) which is often the case in medical

data [36]. An alternative method is to inspect the receiver operating characteristic (ROC) [16],

which measures classifier performance over the whole range of possible frequencies and tradeoff.

A ROC curve has two dimension: the sensitivity on the x-coordinate and (1-specificity) on the y-

coordinate. One point in an ROC dominates another if it is above and left to another (higher true

positive and lower false positive). The ROC curves display the relationship of predictions and out-

comes by plotting the estimates of sensitivity versus (1-specificity) for all possible threshold values.

In the previous example, we used 1 year as the classification boundary. For this particular time-

threshold, the classification results are sensitivity = 0.5 and 1-specificity= 0, which yields a single

point (0.5, 0) in a two-dimensional graph.

We can define multiple classification boundaries (e.g., 1 months, 6 months, 1 year, 2 years, etc.)

and repeat the same calculation for each boundary. The results will be multiple pairs of (sensitivity,

1-specificity), or multiple ROC points. Plotting these points on the same figure and connecting

them together will give us a ROC curve. Figure 2.3 illustrates an example of ROC curves from two

classifiers A and B.

Another way to evaluate a classifier or regressor is to estimate the area under the ROC curve

(AUC), which reduces multiple ROC points to a single scalar number. From Figure 2.3, we can also

visualize that Classifier B has larger area under its ROC curve, and therefore is a better classifier.

Survival analysis tells us the probability distribution of survival times, from which we can com-

pute the average or the median survival time. However, this statistic is usually with large variance

since it is an average estimation for a population. Recalling our motivating example, we want to

be able to anticipate how long an individual patient will survive. The methods we reviewed in this

section are powerful in producing and evaluating survival distributions; nevertheless, these methods

are not precise enough to predict an accurate survival time for individuals. Hence, in this work, we

have to consider alternative methods for our purpose.

2.4 Related Work

While survival analysis is primarily studied by statisticians and bio-statisticians, many computer sci-

entists have attempted to utilize artificial intelligence and machine learning techniques for medical
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Figure 2.3: An example of ROC curves and AUC extracted from [16]

diagnosis and prognosis. Early applications of artificial intelligence in medicine focuses on mod-

elling the knowledge of experts, but today, much research adapts machine learning algorithms to

solve binary or multi-class classification problems. In this section, we review some relevant work in

prognosis using survival analysis, artificial intelligence, or machine learning approach.

2.4.1 Previous Work in Survival Analysis

A large number of research projects are working on discovering the prognostic factors or deter-

mining the relationship between features and survival. Seve et al. use uni-variate Cox proportional

hazard model to determine the significance of each variable to overall survival, and found that low

serum albumin levels and liver metastasis (both prognostic factor have p-value < 0.0001) are pow-

erful prognostic markers for carcinomas cancer patients [49]. But notice that knowing the relevant

prognostic markers is not sufficient to predict individual survival times.

Predicting the probability of survival is another focal point in survival analysis. One example is

the commercial APACHE III [29], a proprietary database and decision support system that estimates

the probability of death in intensive care units. Luaces et al. also predict the probability of survival in

intensive care unit but with different approach: the authors apply support vector machine where the

model is built by optimizing the area under the ROC curve [33]. Notice that this method produces

the probability (that the patient will survive in ICU), which is different from our goal of predicting

the remaining time of survival.

Beer et al. use gene-expression to identify whether a patient with lung adenocarcinomas belongs

to the low risk group or the high risk group [1]. This work use uni-variate analysis to find the
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prognostic factor that can best identify risk groups. Log-rank statistics was applied to quantify the

differences among these groups, and the top 50 genes correctly identified low and the high risk group

within the hold-out set (p = 0.024). Again, this is not sufficient to predict individual survival times.

Another research subject in survival analysis is to develop scoring system for prognosis of spe-

cific diseases or events. For example, the Model for End-Stage Liver Disease (MELD) is used to

determine the priority of liver transplant candidates [26]. This system predicts the mortality in pa-

tients with end-stage liver disease and quantified the assessment as a numerical score from 6 to

40. The quality of this scoring system is evaluated using 95% concordance index , and the best

model achieved 0.87% concordance. Again, developing a scoring system is not our objective, but

concordance index will be applied in our evaluation criteria.

2.4.2 Previous Research in Artificial Intelligence

Since the 1960s, several artificial intelligence projects involved in medical diagnosis or prognosis,

most focusing on modelling large scale domain-specific knowledge [48]. The first successful rule-

based expert system, MYCIN, was designed to identify bacteria and recommend antibiotics for

treatments. The system was a simple inference engine with a knowledge base of if-then rules. After

posing a sequence of yes/no questions, it then provided a list of plausible diagnoses. However, the

development of this type of expert system fell out of favour due to difficulty in translating medical

knowledge into logical statements as required by such rule-based models.

In the early 1980s, probability and decision theory were introduced to the AI community, lead

by Pearl who started the Bayesian networks to encode the inherent uncertainty [38]. This proba-

bilistic approach resolved the difficulties of rule-based system and became the dominant models of

representing uncertainty in medical expert system [22]. Figure 2.4 shows a simple example of a

probabilistic graphical model. It is known that asthma can cause cough and wheeze, and flu can

cause fever and cough. Given the presence of fever, cough, and wheeze, the model can derive the

probability of flu and probability of asthma. One downside of this approach is the challenge in

constructing a correct structure since the causality between features and outcomes is still unknown.

Even though the structure and parameters can be acquired using machine learning methods, the large

number of features often makes the training process, and hence this approach, ineffective.

2.4.3 Previous Work in Machine Learning

Data-driven approach plays a major role in medical diagnosis/prognosis research today [6]. One of

the advantages of machine learning approach is that most algorithms could build a model using only

raw data – i.e., without prior medical or biological knowledge. Various machine learning techniques

have been used in classifying patients into groups of different survival times; for example, predicting

whether or not a patient will survive more than two year or less than two years. We briefly review

some representative work here.
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Figure 2.4: An example of a probabilistic graphical model

Delen et al. [12] try to predict whether a breast cancer patient will still be alive after 5 years from

the date of diagnosis. Artificial neural network, decision trees, and logistic regression were applied

in this project, and the performances were evaluated by their accuracy, sensitivity, and specificity.

Their experiments show that decision tree outperforms other models with a classification accuracy

of 93.6%. Decision tree seems like a potential solution, but this algorithm predicts a survival class

rather then a survival time. In our work, we apply regression trees, a variation of decision trees,

which predicts a real number for each individual; see Section 4.2.1.

Jayasurya et al. [23] employ Bayesian network and support vector machine for two-year sur-

vival prediction in lung cancer patients. Their results show that Bayesian network outperformed

support vector machine with AUC = 0.77 versus AUC = 0.71 respectively. These two models are

originally designed for classification purpose, which is different with our primary goal. This work

has shown the effectiveness of these two algorithms; hence, we will evaluate their performance on

classifying patients using the median survival time as the classification boundary.

Other applications including variations of neural networks. For example, Dybowski et al. [14]

predict systemic inflammatory response syndrome and show that neural network is more accurate

than logistic regression (AUC = 0.863 vs AUC = 0.753). One advantage of neural network is the

ability to model nonlinear relationship, but it is often challenging to train such a model. Again, we

will test the effectiveness of Neural Network for classification in our experiments.

Lee1 et al. [30] also try to predict a category for each breast cancer patient, but their work

categorizes patients into three risk groups: good, intermediate, and poor. The goal of their work is

to find a linear combination of features that can segregate the populations. (Notice that their work is

different from conventional survival analysis, which tests how well a single feature can discriminate

different populations.) The authors consider this task as a multi-class classification problem, that

is, classifying patients into more than two categories. Their approach is to apply Support Vector
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Machine (SVM) with Gaussian Kernel to classify patients into these three categories. Experiments

are performed on a set of 253 breast cancer patients, and the performance of this model is evaluated

by calculating the p-values of log-rank statistics between all pairs of categories. In their experiments,

(a linear combination of) all prognostic factors have p-value < 0.05, and therefore these separations

are significant. We applies SVM for both regression and classification, and we provide basic concept

and our approach of SVM in Section 4.2.1.

Aside from predicting how long a patient can survival, medical doctors are interested in pre-

dicting the recurrence of a disease or cancer. This is crucial because the physicians can use this

prediction to decide whether to perform a surgery on a patient or not. Zupan et al. consider this

problem as a binary classification task, and they attempt to predict the probability that a patient will

have recurrence within 7 years [57]. Unfortunately, the difficulty of applying machine learning to

this task was due to the large amount of censoring in their testing data. (Whether the prostate cancer

recurs after 7 years was unknown for 73% of the patients because the 7 years period had not been

reached.) The authors used a weighted example technique to handle censored data and applied dif-

ferent statistical and classification models to find the probability of recurrence. They claimed that

Naive Bayes and the Cox model perform better than other predictors by evaluating their accuracy,

sensitivity, specificity, and concordance index. In our work, we consider similar type of weighted

method to handle censored observations (see Section 4.1.2 for more details).

There are several machine learning projects that segregate patients via classification and regres-

sion trees. To determine recurrence of breast cancer patients, Ture et al. incorporate a decision tree

with Kaplan-Meier estimator to segregate patients into small categories [54]. Experiment results

suggest that C4.5 performs better than other models by evaluating their sensitivity, specificity, etc.

We use a similar approach in this work, and we describe our solution in detail in Section 4.3.1.
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Chapter 3

Evaluation
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This chapter summarizes our methods on validations and evaluation. Section 3.1 discusses the

reasons of incorporating verification methods and the k-fold cross-validation. We followed the stan-

dard machine learning approach of evaluating the quality of a predictor by the average loss over the

set of independent testing cases, but we found it challenging to define the term “loss” in predicting

survival times. In Section 3.2, we will explain why conventional approaches are not sufficient in sur-

vival predictions and how our models are evaluated with alternative measurements for uncensored

and censored observations.

3.1 Cross-Validation

As described in section 2.3.4, much research on survival analysis has focused on finding prognostic

factors of some specific events for a population. In our work, our goal is to make predictions for

new patients — i.e., it is more crucial that our models perform well on novel data that was not used

for training the model.

In machine learning, we typically evaluate a predictor by measuring its performance on a holdout

set— that is, a set of data that is not used for training the predictor. We will use a learning algorithm

L(.) to build a predictor f = L(D) using a given training data set D. To evaluate the quality

of that predictor f , D is partitioned into a training set Dtraining and a testing set Dtesting , such

that Dtraining is for building the predictor f ′ = L(Dtraining) and Dtesting is for evaluating this

learned f ′. (The purpose of f ′ is to rate the effectiveness of L(.); recall the actual f is based on

all of D.) How D is divided into Dtraining and Dtesting will affect the results of assessment. It is

common to incorporate a k-fold cross-validation to obtain the best estimate of the effectiveness of

the predictor [41].

Given a data set D, a learning algorithm L(.), and a constant k (e.g., k = 5 or k = 10 are

common choices for k), the process of the k-fold cross-validation is as follows:

Algorithm 1 The k-fold cross-validation algorithm
Input:

D: a data set
L(.): a learning algorithm
k: a constant that specifies the number of divisions for cross-validation

Output:
ErrCV (L,D): the average cross-validation error of the algorithm L(.) on the data set D

1: Randomly divide D into k disjoint subsets of equal size D = ∪{D1, D2, ..., Dk}
2: for i = 1 to k do
3: Dtesting ← Di

4: Dtraining ← D −Di

5: fi = L(Dtraining) be the predictor based on Dtraining

6: Ei ← evaluation result of fi based on Dtesting

7: ErrCV (L,D)← 1
k

∑k
i Ei

8: return ErrCV (L,D)

The k-fold cross-validation effectively uses all data for both training and testing, without reusing
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any instance for testing. After k iteration (with different Di in each iteration), each Di is used for

both training (k − 1 times) and testing (once). We evaluate the performance of each fi and the

average performance from these fi (see the next section for evaluation methods).

Figure 3.1 illustrates an example of a 3-fold cross-validation. Suppose that we have a set of

patients who are either in class A or class B. We begin by randomly dividing our data into 3 sets: the

red set, the blue set, and the grey set. As shown in the figure, the rightmost classifier is trained using

the red set and the blue set, and it is evaluated using the grey set. We repeat the same process 3 times

(with different testing set), so we have 3 predictors and 3 evaluations. Finally, we can estimate the

average results from these 3 experiments.

Figure 3.1: An example of 3-fold cross-validation extracted from [11]

3.2 Evaluating Predictions

Ideally, the regression models should give a prediction pi for each patient Patienti that is a reasonable

approximation of the patient’s true survival time ti. In the following section, we will discuss our

evaluation methods and how to interpret them in our experiments.

3.2.1 L1 and L2 Error

In machine learning community, typical methods for evaluating regression models include:

• The average mean absolute error, or the average L1 error, measures the magnitude of differ-

ence between the true survival time and the estimated survival time.

average L1 error =
1
n

n∑
i=1

|ti − pi|
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• The average root-mean-squared error, or the average L2 error, measures the average root

squared errors between actual survival time and the predicted survival time.

average L2 error =

√√√√ 1
n

n∑
i=1

(ti − pi)2

Table 3.1 shows an example using the average L1 error and the average L2 error on our imag-

inary data in Table 2.3. Notice that censored patients are not included in this example since we do

not know their actual survival times and so we cannot evaluate their predictions using L1 nor L2.

3.2.2 Relative Absolute Error

However, the performance of a predictor cannot be fairly evaluated using L1 or L2 error. From the

example in Table 3.1, the true survival time of Patient0 is 1 month, and the model predicts 6 months.

Consider another case, Patient5, whose true survival time is 10 years, and the model predicts 10

years + 5 months. The absolute L1 error (resp., squared L2 error) for Patient0 and Patient5 are both

5 months (resp. 25 months2) respectively; while this is a rather good prediction for Patient5, it is

less adequate for Patient0.

For this reason, we consider evaluating our model using the average relative absolute error

(RAE); more precisely, for each patient, we measure the difference between the true survival time

ti and the predicted survival time pi over the magnitude of the prediction pi. The RAE of the ith

patient is calculated by:

RAEi =
|ti − pi|
pi

The average relative absolute error is then calculated by:

RAE =
1
n

RAEi =
1
n

n∑
i=1

|ti − pi|
pi

Table 3.1 shows an example of different evaluation method on the same data set in Table 2.3.

We predict that Patient5 will survive 10 years + 5 months, which differs from Patient5’s true survival

time by a factor of 4%. Although Patient5 and Patient0 have the same L1 and L2 error, the relative

absolute error for Patient0 was 83%, while the relative absolute error for Patient5 was 4%. The

relative absolute error is consistent with our assessment that the prediction for Patient5 is better

than the prediction for Patient0.

Notice that we have chosen the absolute error relative to the predicted survival time but not rel-

ative to the true survival time since the prediction is known at the time of prognosis while the actual

survival time is not. We want to estimate, in average, how much our predictions may be off from

the patient’s actual survival time, and we consider this quantity will provide a useful information

for our patients. For instance, in the example in Table 3.1, the average relative absolute error of

our predictor is 0.5. Suppose we have a new patient, Patient6, whose predicted survival time is 8

28



Patient Actual Survival (Month) Predicted Survival (Month) L1 L2 RAE
Patient0 1 6 5 25 0.83
Patient1 8 4 4 16 1.00
Patient3 13 15 2 4 0.13
Patient5 120 125 5 25 0.04
Average 35.50 37.75 4.00 ≈ 4.18 0.5

Table 3.1: An example of using the L1, the L2, and the relative absolute error

months. We can inform Patient6 that he/she will probably survive 8 months, but this prediction may

be different from his/her true survival time by 4 months (i.e., 50% of 8 months).

Notice that the relative absolute error is not a completely fair measurement. If pi � ti , then

RAEi≈ 1. In contrast, if pi � ti, then RAEi will be relatively large since the absolute error is

divided by a small number. Consider the example in Table 3.2. Here, as we predict Patient0 will

survive 11 month, but the actual survival time is 1 month, the relative absolute error for Patient0 is

10. We predict that Patient1 will survive 100000 months while the actual survival time is 8 months,

the relative absolute error for Patient1 is approximately 1. However, we consider the prediction for

Patient0 is better since the prediction for Patient1 is unreasonable and unrealistic.

Patient Actual Survival (Month) Predicted Survival (Month) RAE
Patient0 1 11 10
Patient1 8 100000 ≈ 1

Table 3.2: Examples of extreme cases in calculating the relative absolute error

Although there is no standard definition on what a “bad” RAE is, in our work, we consider lim-

iting the RAE of our models under 1. For instance, if the RAE of a predictor is higher than one, we

do not consider using this predictor.

3.2.3 Concordance Index

The Concordance Index (CI), described in Section 2.3.4, is one of the most common evaluation

methods for survival models; it measures the portion of all pairs of patients whose predicted survival

probability are correctly ordered among all “comparable” pairs of patients. In this work, we also use

the CI to evaluate our predictors, but we measure the portion of correctly ordered predicted survival

times instead.

Let ti, tj be the actual survival times of patient i, j

pi, pj be the predicted survival times of patient i, j

Recall that a pair i and j is “comparable” if we can determine whether ti > tj or vise versa. (If

Patienti is censored at ti and ti < tj , we cannot compare the survival time of these two patients
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since the actual survival time of Patienti could be longer than tj .) For all comparable pairs of i and

j, the relationship between them is defined (disjointly) as:

Concordant if

{
ti > tj and pi > pj or
ti < tj and pi < pj

If not Concordant, then Tie if

{
ti > tj and pj − pi < 1 or
ti < tj and pi − pj < 1

If not Concordant nor Tie, then Discordant

Notice that the pi and pj above are different from the pi and pj in Section 2.3.4, as here, our re-

gressors are generating survival times instead of survival probabilities (e.g., the results from Logistic

Regression or Cox proportional hazard models). Recall that the concordance index is calculated by:

CI =
number of concordant pairs + 0.5× number of ties

number of comparable pairs

Similar to the previous definition, the concordance index ranges from 0 to 1; a value of 1 indi-

cates perfect ordering, a value of 0.5 indicates that the predictor is not better than random guessing,

and a value of 0 indicates complete disagreement.

Table 3.3 shows an example of estimating CI from our data in Table 2.3 and imaginary predicted

survival times. In this example, 6 out of 11 pairs of comparable patients are concordant, so the CI in

this example is 0.55.

Patient Actual Survival Censored Time Predicted Survival
Patient0 1 - 10
Patient1 8 - 3
Patient2 - 10 5
Patient3 13 - 15
Patient4 - 18 9
Patient5 120 - 125

⇓

Patienti Patientj ti tj pi pj Result
Patient0 Patient1 1 8 10 3 Discordant
Patient0 Patient2 1 >10 10 5 Discordant
Patient0 Patient3 1 13 10 15 Concordant
Patient0 Patient4 1 >18 10 9 Discordant
Patient0 Patient5 1 120 10 125 Concordant
Patient1 Patient2 8 >10 3 5 Concordant
Patient1 Patient3 8 13 3 15 Concordant

...

Table 3.3: An example of using concordance index

3.2.4 Correlation Coefficient

Another useful measurement between predictions and survival times is the Pearson correlation co-

efficient, which measures the covariance of T and P divided by the product of their standard devia-
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tions.

Let Cov(T, P ) = covariance of T and P

µT , µP = mean of T and P

σT , σP = standard deviation of T and P

The correlation coefficient is calculated by

Corr(T, P ) =
Cov(T, P )
σT × σP

=
E[(T − µT )(P − µP )])

σT , σP

One issue in calculating correlation coefficient is that T is unknown for censored data, and there-

fore, we calculate the correlation coefficient on uncensored patients only. In general, we anticipate

that an efficient predictor (i.e., with low RAE and high CI) should have high correlation coefficient

as well. Although we do not use correlation coefficient as our main criteria in evaluating predictor,

we consider this measurement as an extra criteria to assess our predictors.

3.2.5 Combinations and Interpretations

The average relative absolute error and the concordance index have their own strengthes and weak-

nesses, and we consider interpreting the combination of these two measurements. Imagine two

predictors fA and fB such that their survival predictions rank patients in the same order, yet fB

over-estimates survival times for ALL patients. These two predictors will have the same concor-

dance index but fA will have smaller RAE. Figure 3.2 shows the visualization of fA in the left figure

and fB in the right figure.

  

  Time
(Month)

  

  Time
(Month)

Figure 3.2: Visualizations of two predictors with the same concordance index but different average
relative absolute error

Considering another situation where fA and fB have the same RAE, but fB tends to over-

estimate survival times for short survivors and under-estimate survival times for long survivors (i.e.,

consider fB makes the same prediction for each individual patient). We prefer fA over the fB since

fA is better in descriminating short survivors versus long survivors. Figure 3.3 shows the visualiza-

tion of fA in the left figure and fB in the right figure. For example, imagine a patient whose actual

survival time is 6 months, fA predicts 4 months and fB predicts 12 months. The RAE for these
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two predictors are both 0.5, but we prefer under-estimate rather than over-estimate. The reason is

that, if a patient is dying, we would rather give the patient a warning ahead of time. Image another

patient whose actual survival time is 24 months, fA predicts 48 months and fB predicts 12 months.

The RAE for these two predictors are both 0.5 again, but fA can predict that this patient will survive

longer.

  

  Time
(Month)

  

  Time
(Month)

Figure 3.3: Visualizations of two predictors with the same average relative absolute error but dif-
ferent concordance index

In our work, we define the best model as the one that achieves the minimum average relative

absolute error. If the RAE of two models are equivalent or the difference between them is not

statistically significant, we will seek the model that is higher in its concordance index. (Although CI

does not provide more information for individual patients, we will select the predictor that is more

capable in ranking patients.)

Besides the RAE and the CI, we also examine the RAE95, which measures the relative absolute

error on the testing cases that lie within the 95% confidence interval. Recall that survival prediction

problems suffer from the presence of outliers. It would be nicer if we knew which ones were outliers,

but it is generally difficult. Our studies evaluate all patients in the unseen data set. We found,

however, that a few outliers can skew our statistical analysis. In order to determine whether a

predictor is significantly affected by the outliers, we consider evaluating the subset of “presumably

normal” patients. It is a common practice in survival analysis to look at statistics within the 95%

confidence interval [39]; here, we are “borrowing” their ideas — i.e., assuming that 5% are potential

outliers and evaluating the performance of our predictors on the remaining 95% cases. Figure 3.4

illustrates the idea of eliminating the 5% of worst cases. That is, we make predictions for all patients,

but our evaluation removes the worst 5% of them (the 5% with the highest relative absolute error).

For example, assuming that we have 40 patients in our testing data. After making predictions

for each patient, we divide the testing data into the subset of under-estimated predictions (pi < ti)

versus the subset of over-estimated predictions (pi > ti). Then, we sort the patients within each

subset by their relative absolute error. For each subset, we will remove 40× 0.25 = 1 patient.

How else can we evaluate a predictor? We can look at different variations of evaluation meth-

ods that we discussed in this section. In Section 3.2.2, we mentioned that the average relative
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Figure 3.4: An illustration of 95% confidence interval

absolute error is not totally fair since it exerts large penalty for smaller predictions (see Table 3.2

for examples). Therefore, we consider evaluating the results of smaller predictions separately. In

our experiment, we also estimate the average L1 error for predictions less than 12 months and the

average relative absolute error for predictions greater or equal to 12 months.

Here is the list of statistics that we consider in evaluating survival predictors.

• Primary criteria (used to comparing different models)

– RAE: the average relative absolute error

– CI: the concordance index

• Secondary criteria

– RAE95: the average relative absolute error within the 95% confidence interval

– L1p<12: the average L1 error of predictions less than 12 months

– RAEp≥12: the average relative absolute error of predictions greater than or equal to 12
months

• Other interesting measurements

– CC: the correlation coefficient

– Accuracy: the accuracy of classification

– Sensitivity: the sensitivity of classification

– Specificity: the specificity of classification

3.3 Visualization

Another evaluation method is through visualization of some plots. For instance, Figure 3.5 shows a

plot of true survival times and the predictions over a set of test cases. The blue line indicates the true

survival times and the red points are the predicted survival times. The points will lie on the survival

curve if the predictions are perfect. Our idea is that a reasonable approximation should predict a

survival time for each patient that is not too far away from the patient’s true survival time. Notice

that this plot requires the true survival times (not available for censored patients), and therefore, we

only plot the results of uncensored patients.
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Figure 3.5: A visualization of actual survival times versus estimated survival times
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Chapter 4

Methodology
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In this work, our goal is to learn a model from historical patient data that can effectively predict

survival times for novel patients. We build this model from a database of historical records of n

patientsD = (X,T ) whereX = {X1, X2, ..., Xn} represents the feature values of these n patients,

including personal attributes, diagnostic assessments, and blood test results, and T = [t1, t2, ..., tn]

represents the actual survival times or censored times of these n patients. Then, for each new patient

with feature valuesXnew, we use the resulting model to predict a survival time pnew for this patient.

We consider the task of survival prediction as a regression problem and base our solution on a

combination of unsupervised and supervised learning.

Given a set of historical data D, our proposed framework of predicting survival times for in-

dividual patients is sketched in Figure 4.1. Our approach to this problem involves two phases, the

learning phase and the performance phase. The learning phase has two primary steps. In the first

step, we apply various grouping methods to find a set of partition rules R that segregates D into

k smaller populations D = ∪{D1, D2, ..., Dk}. In the second step, we learn a set of predictors

F = {f1, f2, ..., fk} from different regression methods — one for each sub-group such that pre-

dictor fl is for the sub-population Dl. Then, we pick the most accurate combination of a grouping

method and a regression algorithm as our final model. Algorithm 2 summarizes the procedure of the

learning phase. Our methodologies include:

• Processing Features (Section 4.5): Medical data involves many features of the patients. We

need to appropriately represent patients’ information and identify the most characterizing fea-

tures.

• Segregating Patients (Section 4.3): Different groups of patients may have different survival

patterns. We try to segregate patients into smaller groups such that the differences between

patients within the same group are minimized and the differences between patients across

different groups are maximized.

• Eliminating Outliers (Section 4.4): Here, outliers are patients who are extremely different

from the majority of patients, so outliers often exert problematic influence on the parameters

of the learned models. We therefore attempt to eliminate them from our data.

• Handling Censoring (Section 4.1): supervised learning algorithms rely on class labels for

training a predictor, but the class label of a censored patient is not the actual survival time

of this patient but a lower bound of the actual survival time (see Section 2.2.1 for informa-

tion about censoring). In order to use supervised learning algorithms, we propose several

techniques to handle censored observations.

• Learning predictors (Section 4.2): As the relationship between features and survival time is

still not understood, we consider various regression methods to learn a predictor from existing

historical patients.
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Algorithm 2 Learning a Survival Prediction Model
Input:

D: a set of patients’ historical records
Output:

R: a set of partition rules that segregate patients into k sub-populations
F = {f1, f2, ..., fk}: a set of k predictors for each sub-population

1: Pre-process D
2: Learn a set of partition rules R
3: Partition D into D = ∪{D1, D2, ..., Dk} according to R
4: for all Dl in D do
5: D′l ← Dl− outliers
6: D′′l ← D′l with treated censored data
7: Learn a predictor fl from D′′l
8: return R, F

In the performance phase, we can predict a specific value for each unseen patient with feature

values Xnew by using the final model (i.e., a set of partition rules R for grouping patients into sub-

populations and a set of predictors F , one for each sub-population) we obtained from the learning

phase. We can assign this new patient into one of the sub-population in D according to the set of

partition rules R. Then, if this patient is not an outlier (i.e., this patient is not too different from the

majority of patient in the same sub-population), we can predict a survival time pnew = fl(Xnew).

Our procedure of the performance phase is summarized in Algorithm 3.

Algorithm 3 Using a Survival Prediction Model
Input:

Xnew: feature values of a new patient
R: a set of partition rules that segregate patients into k sub-populations
F : a set of k predictors for each sub-population

Output:
pnew: the predicted survival time or -1 if unpredictable

1: Pre-process Xnew

2: l← sub-population assignment, according to R
3: if Xnew is an outlier of Dl then
4: return -1 – unpredictable
5: else
6: pnew ← fl(Xnew)
7: return pnew
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4.1 Censoring

Working with survival data is challenging as the data set is often incomplete. This is especially

problematic when the class labels (survival times) are missing since supervised learning algorithms

rely on these labels for training a predictor.

In survival analysis, missing survival times are called censoring. Even though the survival time

is unknown for a censored patient, the censored time of this patient provides us important infor-

mation about this censored patient — namely, a lower bound of the patient’s actual survival time.

Simply eliminating censored patients or treating the censored time as a survival time would bias our

predictors.

Alternatively, we could just eliminate the censored patients. However, the quality of a predictor

is highly correlated to the size of the data set, and survival data is usually insufficient for training an

accurate predictor. To minimize the amount of lost information, the censored observations should

not be eliminated.

In our framework, we apply several supervised learning algorithms. In order to use these algo-

rithms, we need to include the survival times as the class label for both censored and uncensored

patients. How could we utilize censored information effectively? We consider several approach to

handle censored observations including:

• Approximate event times for censored observations (Section 4.1.1)

• Consider censored observations are uncensored, but with “lower weights” than uncensored

observations (Section 4.1.2)

Recall our formulations of survival data in Table 2.1, we define ti to be the class label (survival

time or censored time) of the ith patient, ci to be the censored flag of the ith patient where 0 indicates

uncensored and 1 indicates censored, and <i = {Patientj |tj ≥ ti} to be the risk set at time ti.

4.1.1 Approximation of Survival Time

One approach to handle censoring is to impute a survival time t̂i for each censored observation. We

consider the following three techniques: (1) adding a constant to the class label of each censored

patient, (2) taking the average survival time of uncensored patients in the risk set, or (3) taking the

average survival time of all patients in the risk set.

Approximation by Adding Constant Time

A naive approach is to add an expected residual time on top of the censored time for each censored

patient, and consider this resulting observation as uncensored. For example, we can approximate

a survival time for a censored patient by adding 12 months to the patient’s censored time and then

treating this patient as uncensored. Table 4.1 shows the result of this approach on our example data

in Table 2.3.
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Patient ti ci t̂Ci
Patient1 1 0 -
Patient2 8 0 -
Patient3 10 1 10+12=22
Patient4 13 0 -
Patient5 18 1 18+12=30
Patient6 120 0 -

Table 4.1: An example of approximating event times by adding a constant

Approximation by Averaging over Uncensored Observations

However, approximating event times by adding a constant is not completely appropriate. Assuming

that we have a population of patients such that lots of patients die at 5 years. Imagine that we

have a patient censored at 4 years, we anticipate that this patient will survive approximately 1 year

more. Therefore, we assume that the remaining time of a censored patient is somehow related to the

survival times of the rest of the population, and we should treat each censored patient differently.

One of our approaches to approximating an event time for a censored patient is to take the

average survival time of all uncensored patients who had survived longer than this patient’s censored

time. For each censored patient Patienti who censored at time ti, the estimated survival time t̂Ui is

computed as the average time, over all uncensored times longer than the censored time ti:

t̂Ui =
1

|{j|cj = 0, tj ≥ ti}|
∑

{j|cj=0,tj≥ti}

tj

Table 4.2 is an example of approximating event time from uncensored observations for the same

data set in Table 2.3. Patient3 is censored at time ci = 10, and the survival times of Patient4 and

Patient6 are longer than Patient3, so we approximate the survival time of Patient3 by taking the

average survival time of Patient4 and Patient6. As another example, Patient5 is censored at time

ci = 18, and Patient6 is the only uncensored patient who survived longer than Patient5; hence, the

approximated survival time for Patient5 is 120.

Patient ti ci t̂Ui
Patient1 1 0 -
Patient2 8 0 -
Patient3 10 1 (13+120)/2 =66.5
Patient4 13 0 -
Patient5 18 1 120/1 = 120
Patient6 120 0 -

Table 4.2: An example of approximating event times by averaging over uncensored patients in the
risk set
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Approximation by Averaging over All Observations

Another approach is to approximate an event time by taking the average survival time of all patients

in the risk set. This is different from the last technique in that this approach includes censored pa-

tients when computing the average survival time and the class label tj of a censored patient Patientj

in the risk set is replaced by the patient’s approximated survival time t̂Aj . For each censored patient

Patienti who censored at time ti, the estimated survival time t̂Ai is computed as the average time,

over the survival times longer than the censored time ti:

t̂Ai =
1

|{j|tj ≥ ti}|

 ∑
{j|cj=0,tj≥ti}

tj +
∑

{j|cj=1,tj≥ti}

t̂Aj


Table 4.3 is an example of approximating event time from both censored and uncensored obser-

vations for our example data in Table 2.3. As the same example above, Patient3 is censored at time

ci = 10, but now the approximated time is the average over both censored and uncensored patients

who were still alive. In this example, Patient4 , Patient5, and Patient6 survived longer than 10, we

approximate the survival time of Patient3 to be the average survival time of Patient4 , Patient5 , and

Patient6.

Patient ti ci t̂Ai
Patient1 1 0 -
Patient2 8 0 -
Patient3 10 1 (13+120+120)/3 ≈ 84.33
Patient4 13 0 -
Patient5 18 1 120/1 = 120
Patient6 120 0 -

Table 4.3: An example of approximating event times by averaging over the risk set

4.1.2 Weighting Censoring

Another approach on handling censored information is to consider the censored observations as un-

censored data, but with “lower weights” than the uncensored observations. The basic concept is to

consider censored observations as unreliable information, so the effect of censored data should be

slightly smaller. Here, we assign a constant weight to each censored patient. We perform experi-

ments with different constants, including 0.1, 0.2, and 0.5, and we use the experimental results to

determine the most appropriate weight for censored data.
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4.2 Regression

In our work, our objective is to find the best predictor for each individual patient. Recall our for-

mulation in Table 2.1, given a set of n training data D = (X,T ) where X = {X1, X2, ..., Xn}

represents feature values of these n patients, and T = [t1, t2, ..., tn] represents the class labels of

these n patients, our goal is to apply a learning algorithm L(.) on the data D to produce a predictor

f = L(D). For each individual patient with feature values Xnew, the predictor f returns a survival

time pnew = f(Xnew) for this patient.

Supervised learning builds regression models given a set of feature values X and class labels

T . As mentioned before, survival data suffers from the presence of censored observations, which

should be handled differently — i.e., it is problematic to simply treat them as uncensored data. We

utilize censored data in the training phase in two ways:

1. Approximate event times for censored observations (Section 4.1) and then apply regular re-

gression algorithms (will be discussed in Section 4.2.1)

2. Modify regression algorithms to accommodate censored observations (will be discussed in

Section 4.2.2)

As the relationship between features and survival time is still not understood, we consider var-

ious algorithms to learn these models from existing historical patients. We select both linear and

nonlinear regression algorithms, including the linear regression, the support vector regression, the

regression trees, and some variations of the above. In our work, we consider the following 6 learning

algorithms and we will discuss each of them in this section:

• LIN: linear regression

• SVR: support vector regression

• RT: regression trees

• LINc: linear regression for censored targets

• SVRc: support vector regression for censored targets

• GAT: gating regression

Recall our formulation in Table 2.1, given a data set D = (X,T ) of n instances each with m

features, we define X to be a n ×m feature matrix, Xj to be the feature values of the jth feature,

Xi to be the features values of the ith patients, xji to be the feature value of the jth feature of the

ith patients, T = [t1, t2, ..., tn] to be a n-dimensional vector representing the class labels of these n

patients, P = [p1, p2, ..., pn] to be a n-dimensional vector representing the predicted survival time of

these n patients, and C = [c1, c2, ..., cn] to be a n-dimensional vector representing the censored flag

of these n patients where 0 indicates uncensored and 1 indicates censored. Also, we use 〈Xi, Xj〉

to denote the dot product of two vectors Xi and Xj .
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4.2.1 Regression Algorithms

This section covers the basic theory of the regression algorithms we considered, including the linear

regression, the support vector regression, and the regression trees. Recall that our input data contains

censored observations (i.e., the class label of a patient is a lower bound of the patient’s actual survival

time), but these learning algorithms require class labels for training a predictor. To apply these

algorithms, we first approximate class labels for censored observations using the techniques we

discussed in Section 4.1 and then uses these revised values as labels (i.e., then threat these instances

as uncensored).

Linear Regression

The linear regression method assumes that the class labels T is nicely approximated as a linear

combination of the features X . Let β0 ∈ R and β ∈ Rm be the parameters of a predictor f (i.e.,

a linear function of features X) learned from the linear regression algorithm. Here, the parameters

β =
[
β1, β2, ..., βm

]
are coefficients for feature values of each corresponding feature in X (i.e., β1

for the feature values of the 1st feature X1, β2 for the feature values of the 2nd feature X2, etc.),

and the parameter β0 is the intercept of this linear function. Given a m-dimensional feature vector

Xi, the predictor f returns a prediction pi = f(Xi) = β0 + 〈β,Xi〉.

A typical method of estimating the parameters β0 and β is to minimize the residual sum of

squares (RSS) of the prediction P from T . The RSS is calculated by:

RSS =
n∑
i=1

(ti − pi)2 (4.1)

In practice, it is more convenient to use matrix operations to express this process [21]. Recall that

X is a n×m matrix, we can add a n-dimensional column vector of 1’s to X , such that X ′ = [1 : X]

is a n × (m + 1) matrix. Then, we can combine β0 and β so that β′ =
[
β0, β1, ..., βm

]
. Given a

m-dimensional feature values of a patient Xi, the output of f can be calculated as f(Xi) = 〈X ′iβ′〉,

and Equation 4.1 can be rewrite as:

RSS = (T −X ′β′)T (T −X ′β′) (4.2)

To minimize the residual sum of squares, we set the derivative of Equation 4.2 equal to zero and

solve for β′ to obtain

β′ = (X ′TX ′)−1X ′TT

Support Vector Regression

The support vector regression (SVR) aims to find a function f such that the estimated class label

f(Xi) of a sample Xi has at most ε deviation from the class labels ti for all training instances, and

the parameters are as small as possible [55]. Here, ε is a control variable that determines the margin

of acceptable error. For example, in the left figure of Figure 4.2, the greyed-out region is called the
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ε-tube. Each point (the×) is an instance, and the distance between each× and the middle line is the

prediction error of that instance. The goal of SVR is to find a function f such that all × fall within

this ε-tube.

Figure 4.2: A visualization of the support vector regression with soft margin, extracted from [55].

This optimization problem might not be feasible (i.e., there exists no f such that all instances

satisfy these constraints), and we may want to allow some errors; hence, Cortes and Vapnik intro-

duced the slack variables ξi and ξ∗i to cope with infeasible constraints [8]. Figure 4.2 illustrates the

support vector regression with soft margin. In the left figure, a point × outside of the ε-tube is now

acceptable but will be penalized by a loss function. The right figure shows the loss function where

the x-axis is the prediction error |ti − pi|, and the y-axis is the amount of loss contributed by Xi. If

|ti − pi| < ε, the loss is 0; otherwise, the loss is the deviation of the prediction error |ti − pi| from

ε. More precisely, the slack variables are characterized by the loss function such that

ξi =

{
0 if ti − pi ≤ ε
ti − pi − ε otherwise

ξ∗i =

{
0 if pi − ti ≤ ε
pi − ti − ε otherwise

Similar to the linear regression, we define parameters β =
[
β1, β2, ..., βm

]
∈ Rm as the vector

of coefficients for feature values of each corresponding feature in X and β0 ∈ R as the intercept of

the resulting predictor. Given a m-dimensional feature vector Xi, the SVR estimates class label by:

f(Xi) = 〈β,Xi〉+ β0

The goal of the SVR with soft margin is to minimize the magnitude of the parameters β and the
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sum of losses over all instances, which can be described as a convex optimization problem:

min
β

1
2
〈β, β〉+ C

n∑
i=1

(ξi + ξ∗i )

subject to


ti − 〈β,Xi〉 − β0 ≤ ε+ ξi

〈β,Xi〉+ β0 − ti ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

Here, C is a single regularization parameter that controls the trade-off between the smoothness

of f and the amount of tolerable error larger than ε. The SVR can be solved by its dual formulation,

which will reduce the complexity of this optimization problem. Letting αi and α∗i be the Lagrange

multipliers, the dual optimization problem becomes:

min
αi,α∗i

1
2

n∑
i,j=1

(αi − α∗i )(αj − αj∗)〈Xi, Xj〉+ ε

n∑
i

(αi + α∗i )−
n∑
i

ti(αi − α∗i )

subject to

{∑n
i=1 (αi − α∗i ) = 0

αi, α
∗
i ∈ [0, C]

The next step is to estimate the parameter αi, α∗i and β0. The optimization process of SVR are

not discussed here, as the details can be found in [53]. Smola and Scholkopf also proposed the

sequential minimal optimization algorithm for optimizing the support vector regression by using

a single threshold value [53]. Shevade et al. extends the work of Smola and Scholkopf to a more

efficient implementation [50]. In our work, we use the Shevade et al.’s method to learned the SVR

predictor. Once the parameters are solved, the predicted survival time of an individual patient with

feature value Xnew can be estimated by:

pnew = f(Xnew) =
n∑
i=1

(αi − α∗i )〈Xi, Xnew〉+ β0

The linear regression and the SVR that we just discussed assume that the class labels can be

approximated as a linear combination of the features. However, it is never been proven that the sur-

vival times can be described as a linear combination of the feature values. To address the potential

problem of this assumption, the SVR algorithm can be nonlinear by incorporating a kernel method;

that is, a function that maps each training instance from m-dimensional space to a higher dimen-

sional space. (There is a large literature on the kernel method; cf. [2].) In our work, we test our SVR

with the following kernel functions:

Polynomial of degree 2 : K2(Xi, Xj) = (1 + 〈Xi, Xj〉)2

Gaussian Radial Basis : KGRB(Xi, Xj) = e−
∑m
k=1 (Xki −X

k
j )2

The learning process of the kernelized SVR is similar to that of the original SVR, except that the
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dot-product is replaced by the kernel function.

min
αi,α∗i

1
2

n∑
i,j=1

(αi − α∗i )(αj − αj∗)K(Xi, Xj) + ε

n∑
i

(αi + α∗i )−
n∑
i

ti(αi − α∗i )

subject to

{∑n
i=1 (αi − α∗i ) = 0

αi, α
∗
i ∈ [0, C]

where K(, ) is a kernel function

Once the parameter β0, αi, and α∗i are solved, the predicted survival time of an individual patient

with feature value Xnew can be estimated by:

pnew = f(Xnew) =
n∑
i=1

(αi − α∗i )K(Xi, Xnew) + β0

Regression Trees

The Classification and Regression Trees (CART) is an algorithm that generates a decision tree [4],

and the regression trees is a type of CART, which generates a decision tree and then applies regres-

sion method on the decision tree for predicting continuous class labels [44].

Given a data set D, we aim to partition D into a tree of k leaf nodes (i.e., D is divided into k

subsets {D1, D2, ..., Dk}) and train a predictor using the linear regression algorithm (as discussed

in Section 4.2.1) on each subset Di. The learning process of the regression tree consists of the

following components: (1) A set of partition rules, (2) a splitting criterion, (3) a stopping criterion,

(4) a learning algorithm, and (5) a pruning criterion. We will discuss our components in this section.

Here is a brief summary of the learning steps. This learning system produces the tree node by

node; on the root of the tree, we seek a partition ruleR1 that splitsD intoDR1,− andDR1,+. In this

splitting process, the challenge is finding the “best” partition rule, where the goodness is evaluated

by the splitting criterion. We can repeat this process recursively on each subset of D (i.e., seek

a partition rule R2 to split DR1,− and another partition rule R3 to split DR1,+) until the stopping

criterion is met. After this recursively splitting process, the partitions will form a tree-like structure.

Algorithm 4 shows the general framework of growing a tree. Then, the pruning criterion is applied

to remove some previous defined partition rules that do not contribute to regression accuracy on

unseen data. Finally, a predictor is trained using the linear regression on the subset of data within

each corresponding node.

Figure 4.3 shows an example of splitting a tree. The input data D is divided into 5 groups

D = ∪{D1, D2, D3, D4, D5} in this example. The left figure shows the partitions of the data in two

dimensional representation, and the right figure shows the tree representation. In the right figure,

each internal node is associated with a partition rule that divides the input data of that node into two

subsets. For example, at the root of the tree, the data D is divided into two subsets D− and D+ by

the partition rule R1. At the end of the splitting process, the tree has 5 leaf-nodes, each represents

the corresponding subset {D1, D2, D3, D4, D5}.
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Algorithm 4 TREE-SPLIT (D)
Input:

D: the input data set
Output:

Tree
1: if stopping criterion are met then
2: Tree← LEAF-NODE (D)
3: else
4: for Ri ∈ all possible partition rules R do
5: scorei ← Eval(D,Ri)
6: i∗ ← arg max{scorei}
7: Partition D into DRi∗ ,− and DRi∗,+ according to Ri∗
8: Tree← INTERNAL-NODE (R∗i )
9: Tree.TrueBranch← TREE-SPLIT(DRi∗ ,+)

10: Tree.FalseBranch← TREE-SPLIT(DRi∗ ,−)
11: return Tree

Figure 4.3: An example of tree splitting

Here, we will describe each component of the regression trees learning mechanism:

1. Partition Rules

A partition rule R is a question of the form ”Is Xj ≤ zj ?” where the superscript j specifies

the jth feature of an instance X . Here, the jth feature is called the splitting feature, and zj is

called the splitting value.

In our data sample D = (X,T ), X contains a mixture of discrete and continuous features.

If Xj is a discrete variable, then the splitting value zj can be an outcome of Xj . Otherwise,

a partition rule can be a binary test based on comparing the value of Xj against a threshold

value zj .

At each node Nodel, a partition rule Rl : Xj ≤ zj? divides the data Dl into subsets by using

Xj at zj — that is, Dl is divided into DRl,− and DRl,+ such that DRl,− = {(Xi, ti) ∈
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Dl|xji ≤ zj} and DRl,+ = {(Xi, ti) ∈ Dl|xji > zj}. That is, DRl,− contains all instances

∈ Dl whose feature value of the jth feature ≤ zj , and DRl,+ contains all instances whose

feature value of the jth feature > zj .

2. Splitting Criterion

A splitting criterion is designed to evaluate a partition rule. Recall that the regression trees

learning system produces the tree node by node. At each nodeNodel, given a training sample

Dl, we seek the “best” partition rule Rl to split Dl into DRl,− and DRl,+. The challenge

is to find the “best” Rl and determine whether it is “worthwhile” to split Dl. We have some

liberties in how we define “best” and “worthwhile”. The splitting criterion is designed to

evaluate each Rl at Nodel.

In our work, we used the expected reduction in error introduced by Quinlan as the splitting

criterion for our regression trees algorithm [44]. The goal of this splitting criterion is to

maximize the similarity between patients within the same subset, where “similarity” of a

group is measured by the standard deviation of the class labels in that group. At each node,

the partition rule with the highest expected reduction in error among all possible partition rules

in that node is selected. More precisely, given a data set D, we first compute σT , the standard

deviation of class labels T in Dl. For each possible partition rule that splits D into DR,−

and DR,+, we then calculate σTR,− and σTR,+ (i.e., the standard deviation of class labels of

DR,− and DR,+ respectively). The expected reduction in error, denoted by ∇error(D,R),

is defined as

∇error(D,R) = σT −
(
|DR,−|
|D|

× σTR,− +
|DR,+|
|D|

× σTR,+
)

3. Learning Algorithm

A learning algorithm L(.) can be applied at each node of the tree. Here, L(.) could be any

standard regression methods, and the linear regression method (Section 4.2.1) is used in our

work. Given a training dataDl and a learning algorithm L(.) at each nodeNodel of the tree, a

linear predictor fl = L(Dl) is constructed. Given a new patient with feature valuesXnew, this

patient is assigned to one of the leaf nodes according to the set of partition rules R. Assuming

that this patient is assigned to Nodel, the predicted survival time pnew for this patient is the

output of the corresponding predictor fl(Xnew) in Nodel.

How good is our linear model? We are often interested in the expected prediction error of a

predictor f on unseen data. Given a training set Dtraining and a testing set Dtesting , a typical

way to evaluate the performance of a predictor f = L(Dtraining) is to calculate the average

L1 error (Section 3.2), which measures the average magnitude of difference between actual

class label ti and estimated class label pi. Quinlan states that the average L1 error usually

underestimates the expected prediction error of f when the number of instances in Dtraining
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is small and the number of parameters in f is relatively large [44]. One way to address this

potential problem is to penalize linear models with large number of parameters constructed

from small training samples. Letting n be the number of instances in Dtraining and v be the

number of parameters in f , assuming that all models are restricted to n ≥ v, we multiply

the average L1 error by n+v
n−v . Given a testing set Dtesting , the expected prediction error of a

predictor f is evaluated by

EvalRT (f,Dtesting) =
n+ v

n− v
× 1
|Dtesting|

|Dtesting|∑
i=1

|ti − pi| (4.3)

Imagine two linear models f1 and f2 are constructed from the same number of training sam-

ples n such that f1 has v1 parameters and f2 has v2 parameters. If v1 > v2, then f1 will be

penalized more (by n+v
n−v ) than f2, which indicates that f2 is a better predictor.

4. Pruning Criterion

The pruning criterion is designed to evaluate a partition. The pruning process removes splits

from the initial tree that does not contribute to better regression results. This is accomplished

by comparing the performance of the linear model at each node.

In more detail, each node Nodel is associated with a data set Dl, and we want to measure

the similarity of Dl in Nodel. A 3-fold cross-validation (Section 3.1) is applied to evaluate

the performance of the linear regression learner L(.) (Section 4.2.1) on the data set Dl, and

the quality of L(.) on Dl is measured by ErrCV (L,Dl) — i.e., the average cross-validation

error. A k-fold cross-validation learns k linear predictors, and the performance of each pre-

dictor fl on each hold out set Dl,holdout in the cross-validation process is calculated using

Equation 4.3, the expected prediction error EvalRT (fl, Dl,holdout). The pruning step takes

the bottom-up approach, in which the process starts from the bottommost leaf and works to-

ward to the root. If the average CV error of an internal node is smaller than the sum of the

average CV errors of its descendent nodes (i.e., the quality of L(.) is better before splitting),

then this split will be pruned away and this internal node is turned into a leaf node. That

is, if ErrCV (L,Dl) < ( |DRl,−||Dl| ErrCV (L,DRl,−) + |DRl,+|
|Dl| ErrCV (L,DRl,+), the split at

Nodel will be removed.

Figure 4.4 shows an example of the regression trees model. This example regression tree consists

of a set of 4 partition rules R = {R1, R2, R3, R4} and a set of 5 predictors F = {f1, f2, f3, f4, f5}.

The partition rules R divide the data D into 5 regions {D1, D2, D3, D4, D5}. Each region Dl in

D is associated with a corresponding predictor fl in F which is learned using the linear regression

algorithm on the data Dl.
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Figure 4.4: An example of using the regression trees

4.2.2 Regression Algorithms for Censored data

Survival data suffers from the presence of censored observations, but most supervised learning meth-

ods require class labels for learning a predictor. Simply eliminate censored observations from our

data set or treat them as uncensored data will bias the resulting predictors. The previous section

(Section 4.2.1) discusses our approach of imputing a survival time for each censored patient before

learning a predictor. In this section, we will discuss our approach of modifying the linear regression

and the support vector regression to utilize censored data.

Linear Regression for Censored Targets

In Section 4.2.1, we discussed the linear regression method, which used predictors that estimate

the class label pi = f(Xi) = β0 + 〈β,Xi〉, based on parameters β0 and β that are estimated

by minimizing the residual sum of squared error RSS =
∑n
i=1 (ti − pi)2. Buckley and James

introduce a method to train a linear predictor that allows the class labels to be unspecified — by

eliminating the penalty on overestimating the prediction for censored data during training phase [5].

That is, the parameters β0 and β are estimated by minimizing

RSSBuckley =
∑

{i|(ci=0)or(c1=1,pi<ti)}

(ti − pi)2

We also show how to express the RSS using matrix format, such that RSS = (T −X ′β′)T (T −

X ′β′) (Equation 4.2), which meant the parameters β′ =
[
β0, β1, ..., βm

]
can be solved by β′ =

(X ′TX ′)−1X ′TT . Orbe et al. [37] introduce a method of learning the parameters β′ by weighted
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RSS. Their work assumes that there exist a linear relationship between the feature values X and

the logarithm of class labels ln(T ) and tries to minimize the weighted residual sum of squares

RSSOrbe = W (ln(T )−X ′β′)T (ln(T )−X ′β′) where W is a n× n diagonal matrix formed with

the weights of each instance. The parameter β′ can be solved by:

β′ = (X ′TWX ′)−1X ′TW ln(T )

In our work, we incorporate the ideas of Buckley and James and Orbe et al. on learning a pre-

dictor with censored data. Recall that P = [p1, p2, ..., pn] denotes the predicted survival times such

that pi = X ′iβ
′and C = [c1, c2, ..., cn] denotes the censored flag where the subscript i specifies the

ith patient. We employ a n× n diagonal matrix W such that

Wii =

{
0, if ci = 1 and pi > ci

1, otherwise

That is, if the prediction for a censored patient is longer than the patient’s censored time, we

consider this prediction to be correct. The parameters β′ can be estimated by

β′ = (X ′TWX ′)−1X ′TWY

Support Vector Regression for Censored Targets

In Section 4.2.1, we discuss the support vector regression, which aims to minimize the training error

controlled by the error margin parameter ε and the regularization parameter C. The SVR has proven

to be a robust and powerful algorithm in various applications. However, the conventional SVR cannot

handle the difference between censored and uncensored observations. Khan and Zubek introduce

a variation of the SVR, the support vector regression for censored targets (SVRc) to account this

problem [28].

First, the parameters ε and C for censored data and uncensored data are separated. Recall that

ε defines the acceptable margin of error, and C controls the amount of loss in the SVR. Khan and

Zubek asymmetrically modify the loss function by introducing new parameters to replace ε and C

in the original SVR. The SVRc uses subscript n to denote uncensored data and subscript c to denote

censored data. For example, εn defines the acceptable margin of error for uncensored data, and εc

defines the acceptable margin for censored data.

Secondly, the SVRc introduces separated parameters for underestimation and overestimation and

uses the superscript ∗ to indicate overestimation. In case of censored data, ε is replaced by ε∗c and

εc where ε∗c defines the acceptable margin when prediction is greater than the actual survival time,

and εc defines the acceptable margin when prediction is less than the actual survival time. Similarly,

C is replaced by C∗c and Cc where C∗c controls the penalty of overestimation and Cc controls the

penalty of underestimation.

The censored observations are handled by setting C∗c to be smaller than Cc and ε∗c to be larger

than εc, so the penalty is smaller when the prediction is longer than the censored time. Figure 4.5
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illustrates the modifications and parameters in the loss function of SVRc.
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Figure 4.5: A visualization of the loss function of the SVRc (extracted from [28])

The objective function has become:

min
β

1
2
〈β, β〉+

n∑
i=1

(Ciξi + C∗i ξ
∗
i )

subject to


ti − 〈β,Xi〉 − β0 ≤ εi + ξi

〈β,Xi〉+ β0 − ti ≤ ε∗i + ξ∗i
ξi, ξ

∗
i ≥ 0

where


Ci = ciCc + (1− ci)Cn
C∗i = ciC

∗
c + (1− ci)C∗n

εi = ciεc + (1− ci)εn
ε∗i = ciε

∗
c + (1− ci)ε∗n

4.2.3 Gating Regression

Since the relationship between features and survival time is still not well understood, we consider

learning several predictors from existing historical patients and selecting the best algorithm for our

task of survival prediction. Here, we assume that some learning algorithms are better for some input

data but not the others.

Therefore, the gating regression approach will learn a set of candidate predictors from a set

of learning algorithms L (including all learning algorithms that we described in the previous two

sections) and automatically select the “best” algorithm among all candidate algorithms in L for a

given data set.

First of all, we needs to define an evaluation criterion to determine the notion of the “best”

regressor. Given a data set Dtraining and a set of learning algorithm L, we perform experiments

with a 3-folds cross-validation (Section 3.1) on each learning algorithm Li(.) in L, and use the

average cross validation error ErrCV (Li, Dtraining) to rank each Li(.). Since there is no single
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best way to evaluate survival predictors on the hold-out set, we also try different measurements in

our experiments. The candidate evaluation methods include average L1 error, average L2 error,

average relative absolute error, and correlation coefficient (see Section 3.2 for details on these error

functions).

Figure 4.6 illustrates the process of the gating regression. Given an input data setDtraining, and

a set of candidate learning algorithms L = {L1(.), L2(.), ..., L5(.)}, the gating regression finds the

learning algorithm with the lowest average CV error and returns a predictor fbest constructed from

that algorithm. Algorithm 5 shows the pseudo-code of the gating regression
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Figure 4.6: The gating regression algorithm
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Algorithm 5 The gating regression
Input:

Dtraining: data set
L = {L1(.), L2(.), ..., Lp(.)}: a set of p learning algorithms
k: the number k of folds in a k-fold cross-validation

Output:
fbest: the best predictor

1: Divide Dtraining into k folds Dtraining = ∪{D1, D2, ..., Dk}
2: for all Li(.) in L do
3: for all Dj in Dtraining do
4: Dtesting,j ← Dj

5: Dtraining,j ← Dtraining −Dj

6: f ← Li(Dtraining,j)
7: scorei,j ← eval(f,Dtesting,j)
8: ErrCV (Li, Dtraining)← 1

k

∑k
j=1 scorei,j

9: i∗ ← arg miniErrCV (Li, Dtraining)
10: fbest ← Li∗(Dtraining)
11: return fbest
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4.3 Grouping

One of the challenges in survival prediction is that patients are heterogeneous, with different survival

patterns for different subgroups of patients. For example, the variable cigarette smoking may be an

important factor for lung cancer patient but perhaps not as critical as for pancreas cancer patients.

In order to overcome this issue of different dependency relations, we attempt to learn a predictor

for each risk group. Unfortunately, it is not known which group of patients share the same survival

pattern. Therefore, in this thesis, a major task is to design an appropriate method that can effectively

“group” patients — i.e., segregate patients with different survival distributions.

Given a data setD = (X,T ), whereX is the feature matrix and T is the vector of class labels, we

define (in Table 2.1) Xj represents the feature values of the jth feature over patients, Xi represents

the set of feature values of the ith patient, xji represents the feature value of the jth feature of the

ith patient, and ti represents the class label of the ith patient. The goal of segregating patients is to

partition D into k subsets {D1, D2, ..., Dk} such that the difference between patients in the same

subset is minimized, and also the difference between patients across different subsets are maximized.

This section summarizes our methods on grouping D into subcategories. We consider two types of

grouping mechanisms:

• The Classification and Regression Trees (CART), which is dependent to the class labels, will

be discussed in Section 4.3.1

• The clustering, which is independent to the class labels, will be discussed in Section 4.3.2

Recall that some patients do not have their event time (i.e., for a censored patient, the class

label is a lower bound on the patient’s actual survival time), and these censored data may bias the

result of grouping. In order to see if the presence of censored observations will affect the grouping

mechanism, we have chosen two approaches, where one requires class labels (CART) and the other

does not (clustering).

4.3.1 Classification and Regression Tree

The Classification and Regression Trees (CART) is an algorithm that generates a decision tree [4].

Given a data set D, we aim to partition D into a tree of k leaf nodes (i.e., D is divided into k subsets

{D1, D2, ..., Dk}).

In Section 4.2.1, we discussed the regression trees algorithm, a type of CART that is designed

for predicting continuous class labels. Similar to the learning process of the regression trees, the

learning process of the CART requires (1) a set of partition rules, (2) a splitting criterion, (3) a

stopping criterion, and (4) a pruning criterion. The CART is different with the regression tree in

that the CART is a generalization of the regression trees and the CART does not necessarily apply any

regression models. Here, our goal of using CART is to partition D into k subsets {D1, D2, ..., Dk},

and our target is to obtain the set of partition rules R to partition D.
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Splitting Criterion

Recall that the CART recursively splits the data node by node. At each node Nodel, Dl is divided

into two subsets DRl,− and DRl,+ by the best partition rule Rl among all possible partition rules

in that node. (In fact, we can partition D into more than two subsets at each node, but we consider

only binary split in our work.) The challenge is to find the “best” Rl and determine whether it is

“worthwhile” to split Dl. We have some liberties in how we define “best” and “worthwhile”. The

splitting criterion is designed to evaluate each Rl at Nodel. In our work, we test two types of

splitting criteria, including the log-rank statistics and the gain-ratio.

• Log-rank statistics

As described in Section 2.3, the Log-rank test is a hypothesis test in survival analysis method

that can quantify the difference between two risk groups. Given two populations, the null

hypothesis of Log-rank test is that these two groups are drawn from a common distribution.

A p-value close to 1 indicates that the hypothesis is likely to be true, whereas a p-value close

to 0 indicates that the hypothesis is unlikely (i.e., these two risk groups are dissimilar).

Radespiel-Troger et al. [46] use several types of measurements from the log-rank statistic as

splitting criteria for their decision trees learning algorithm. In our work, we applied their

idea and use the p-value from the log-rank test test as our splitting criterion for segregating

patients. More precisely, given data D at each node, there exists a set of different partition

rules R (i.e., different pairs of splitting attribute Xj and splitting value zj). Each Ri in R

divides D into DRi,− and DRi,+, and then, each Ri is evaluated by the p-value between the

associated pair of DRi,− and DRi,+. Their algorithm then selects the Ri with the smallest

p-value (i.e., DRi,− and DRi,+ are most heterogeneous) among all R.

Recall that the p-value of a prognostic factor less than 0.05 is considered to be significant.

Therefore, we terminate the splitting process when the p-values of all possible partition rules

are larger than 0.05, which indicates that no partition rule can effectively divide this population

into smaller homogeneous groups.

Consider our imaginary survival data that we introduced in Table 2.2 and Table 2.3 and sup-

pose that we group patients use the CART with log-rank statistic as the splitting criterion on

this data, Figure 4.7 shows an example result of segregation. The first table shows partial

estimated p-values from the first split. When we group patients D by their Xps, such that

patients in group D− have their Xps ≤ 3.5 and patients in another group D+ have their

Xps > 3.5, the p-value between these two sub-groups is the smallest (0.02) among all splits,

which indicates that these two sub-populations are most diverse. Assuming that we repeat

the same splitting process for its descendant nodes (i.e., each internal node carries out similar

tasks to find the best partition rule with the smallest p-value), in this example, these patients

are segregated into 4 disjoint subsets.
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Figure 4.7: An example of using the log-rank statistics as the splitting criterion

• Gain-ratio

Gain-ratio criterion is based on the concept of entropy in information theory [45]. Here,

we want to use the gain-ratio to evaluate each possible partition rule. Given a data set of n

patients D, we define T = [t1, t2, ..., tn] where each ti is the class label of the ith patient. In

information theory, the entropy of D measures the average amount of information needed to

identify the class label of an instance. Let Pr(ti) be the probability density of a class label ti,

the entropy is calculated by:

Entropy(D) = −
n∑
i=1

[Pr(ti)× log2 (Pr(ti))]

In order to obtain entropy of a set of observations D, we need to know the probability of

a class label ti among T . The class labels T is a continuous variable, and the probability

of T cannot be easily calculated. Hence, we applied the Gaussian-kernel-density estimator

to approximate the probability density of T [43]. Letting h be a control parameter of the

estimator where h = 1 or h = 2 are common choices. (There are many literature discussing

the parameter h, cf. [43], so the detail is not discussed here.) The probability density of the

ith class label ti can be approximated by:

Pr(ti) =
1
n

n∑
j=1

1√
2πh2

e−
1

2h2 (ti−tj)2

Consider D is partitioned into two subsets {DR,−, DR,+} by a partition rule R, the expected
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information needed can be calculated as the weighted sum over these two subsets:

EntropyR(D) =
|DR,−|
|D|

× Entropy(DR,−) +
|DR,+|
|D|

× Entropy(DR,+)

The information gain measures the information that we earn by partitioning D according to a

partition rule R.

Information Gain(D,R) = Entropy(D)− EntropyR(D)

We can use the information gain as our splitting criterion by taking the splitting rule that has

the maximum information gain. However, this measurement tends to be biased when there

are many distinct outcomes, which is often the case in medical data (e.g., consider patients’

identification number, weights, blood test results, or any feature that involves continuous mea-

surement or unique identifiers) For example, patients’ identification numbers are unique in the

data set. We can split on this attributes by grouping one patient into one subset and all other

patients into the other subset. In this case, EntropyR(D) = 0, and Information Gain(D,R)

is large. Nevertheless, using patients’ id numbers is unlikely to be a useful split. Quinlan sug-

gests that we normalize the information gain by the split information, which represents the

information generated by dividing D into {D−, D+} [45].

Split Info (D,R) = −|DR,−|
|D|

× log2

(
|DR,−|
|D|

)
− |DR,+|
|D|

× log2

(
|DR,+|
|D|

)
Finally, the gain ratio of the partition rule R is the normalized information gain:

Gain Ratio (D,R) =
Information Gain(D,R)

Split Info(D,R)

Pruning Criterion

Recall that the pruning process removes splits from the initial tree that does not contribute to better

classification or regression results (Section 4.2.1). This is accomplished by comparing the expected

prediction error of the unseen data that will be experienced at each node.

Similar to the pruning process of the regression trees (Section 4.2.1), this process takes a bottom-

up approach, in which the process starts from the bottommost leaf and works toward to the root. At

each Nodel, we incorporate a 3-fold cross-validation to obtain the average cross-validation error

using an algorithm L(.) on the data Dl, denoted by ErrCV (L,Dl) (see Algorithm 1 for details).

Here, L(.) can be any regression algorithms, and the linear regression (Section 4.2.1) is applied in

our work.

The cross-validation error of a predictor on each hold-out set is evaluated by the expected pre-

diction error. There are many ways to calculate the expected prediction error, and there is no single

best measurement for the pruning process. In our work, we tested several of them in our experi-

ments, including the average L1 error, the average L2 error, and the average relative absolute error

(Section 3.2).
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We also make some minor modification on each of the conventional measurement when censored

observations are encountered. For a censored patient, since we only know a lower bound of this

patient’s survival time, we do not add any penalty to the error function if the predicted survival time

is longer than the patient’s censored time. Given a data sample D with n patients, we define that ti

to be the actual survival time of the ith patient, pi to be the predicted survival time of the ith patient,

ci to be the censored flag of the ith patient where 0 indicates uncensored and 1 indicates censored.

The average L1 error is defined as 1
n

∑n
i=1 |pi − ti|, and the modified average L1 error is calculated

by:

1
|{i|(ci = 0) or (ci = 1 and pi < ti)}|

 ∑
{i|ci=0}

|pi − ti|+
∑

{i|ci=1,pi<ti}

|pi − ti|


By using the same idea (no penalty for a censored data if pi > ti), the average L2 error and the

average relative absolute error can be modified similarly. Below is a list of our candidate functions

for expected prediction error.

• average L1 error

• average L2 error

• average relative absolute error

• modified average L1 error

• modified average L2 error

• modified average relative absolute error

Table 4.4 shows the result of using these measurements on our example data and predictions

(Table 2.3). Here, Patient4 is a censored patient whose censored time is 18 and predicted survival

time is 27. Therefore, this patient contributes no error to the modified L1 error, the modified L2

error, and the modified relative absolute error. The last row of Table 4.4 shows the average L1

error, the average L2 error, the average RAE, the modified average L1 error, the modified average

L2 error, and the modified average RAE.

Patienti ti ci pi L1 L2 RAE modified L1 modified L2 modified RAE
Patient0 1 0 10 9 81 0.90 9 81 0.90
Patient1 8 0 3 5 25 1.67 5 25 1.67
Patient2 10 1 5 5 25 1.00 5 25 1.00
Patient3 13 0 15 2 4 0.13 2 4 0.13
Patient4 18 1 27 9 81 1.00 0 0 0.00
Patient5 120 0 125 5 25 0.04 5 25 0.04
Average - - - 5.83 6.27 0.79 4.33 26.67 0.62

Table 4.4: An example of using candidate error functions
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4.3.2 Clustering

Clustering is an unsupervised learning algorithm, which is a common technique for grouping similar

objects into smaller subsets, where each subset is called a “cluster”. The goal of clustering is to

partition data such that instances within a cluster are closer to one another and instances across

clusters are far from each other. Several methods for clustering have been proposed, and we consider

the expectation-maximization clustering algorithm.

Expectation-Maximization

Expectation-Maximization (EM) method is a statistical method of maximum likelihood estima-

tion [13]. Here, we use EM to compute the probability density modelled as a mixture of multiple

Gaussian distributions, which is accomplished by finding parameters to optimize the log-likelihood

of this mixture model.

LetX be a n×mmatrix that represents a set of n data point in am-dimensional space whereXj

indicates the jth dimension ofX andXi indicates the ith point ofX , then the multivariate Gaussian

density function of X is calculated by:

Pr(Xi, µ,Σ) =
1√

[(2π)m]|Σ|
e(−

1
2 (Xi−µ)Σ−1(Xi−µ)T )

where µ is the m-dimensional mean vector of X

Σ is the m×m covariance matrix of X

|Σ| is the determinant of Σ

Instead of modelling X using one multivariate Gaussian distribution, assuming that we can fit

X as a mixture of k multivariate Gaussian distributions, the probability density of X is a weighted

mixture of these k distributions:

Pr(Xi; θ) =
k∑
l=1

WlPr(Xi;µl; Σl)

where θ is a set of parameters,

including


Wl is the weight of the lth Gaussian distribution
µl is the m-dimensional mean vector of the lth Gaussian distribution
Σl is the m×m covariance matrix of the lth Gaussian distribution

Figure 4.8 is an example of a uni-variate mixture model. The left figure shows the histogram of

data points, which does not follow a single Gaussian distribution (indicated by the blue curve). In

the right figure, we can see that the data seems to fit better with two separate Gaussian distributions.

The quality of a mixture model is measured by the likelihood function — i.e., the probability

that the points X is generated from k Gaussian distributions:

L(θ) =
n∏
i=1

Pr(Xi; θ)
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Figure 4.8: An example of a mixture model

In practice, it is more convenient to compute the logarithm of the likelihood function, log-

likelihood logL(θ), calculated as:

logL(θ) =
n∑
i=1

log(Pr(Xi; θ)) (4.4)

As logarithmic is monotonic, the parameter θ that maximizes logL(θ) will also maximize L(θ).

EM Clustering

Given a data set D of n patients, each with m features (recall our formulation in Table 2.1), we

define X as a n ×m feature matrix in D and Xi as the feature values of the ith patients in D, we

can consider X = {X1, X2, ..., Xn} to be n data points in m-dimensional space. The goal of using

EM clustering is to group these n data points into k clusters (i.e., partition D into k subsets such

that D = ∪Di), where each cluster Clusterl is a multivariate Gaussian distribution:

Clusterl ∼ N(µl,Σl) for l ∈ 1, 2, ..., k

EM clustering optimizes the log-likelihood of this mixture model (Equation 4.4) and estimates the

mean µl and variance σl of each cluster Clusterl.

Figure 4.9 illustrates the concept of a mixture model. The left figure shows the data points in

2-dimensional space. The right figure shows 4 clusters where each red point indicate the centre of a

cluster. Each cluster Clusterl is a Gaussian distribution with mean µl and variance Σl.

1. Determining the number of clusters k

In our work, EM is used to determine the number of clusters k for the data D. EM employes

a 5-fold cross-validation to maximize the log-likelihood. At each fold, we starts with a single

cluster and continues adding one cluster at a time until the log-likelihood of the mixture model

of the hold-out set decreases.
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Figure 4.9: An illustration of EM Clustering extracted from [31]

2. Calculating the probability of belonging to each cluster

Given a mixture model of k clusters {Cluster1, Cluster2, ..., Clusterk} and a set of n data

points X = {X1, X2, ..., Xn} in m-dimensional space where Xi denotes the values of the

ith point in X , the result of this mixture model is a set of k m-dimensional vectors of means,

k m × m covariance matrices, and k scalar weights for these k clusters. From this result

of the mixture model, we can then calculate a set of k probabilities for each point Xi, each

measuring the likelihood that Xi belongs to the corresponding cluster. More precisely, for

each Xi, the probability density under each cluster Clusterl is estimated by the Gaussian

density function of that cluster:

Pr(Xi ∈ Cluster1) = Pr(Xi;µ1,Σ1)

Pr(Xi ∈ Cluster2) = Pr(Xi;µ2,Σ2)
...

Pr(Xi ∈ Clusterk) = Pr(Xi;µk,Σk)

3. Assigning Cluster

Finally, we can choose the most likely cluster assignment

gi = argl maxPr(Xi ∈ Clusterl)

for each Xi – i.e., gi = l where Pr(Xi ∈ Clusterl) is the highest among k clusters).

Given a data set D of n patients each with m features where X is a n × m feature matrix,

Xj represents the feature values of the jth feature, and Xi represents the feature values of the

ith patient in D, EM clustering is applied to group patients with “similar” feature values — i.e.,
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patients whose feature values are similar have higher probability to be in the same cluster. Fig-

ure 4.10 shows an example of grouping patients using a EM mixture model for clustering. For ease

of visualization, assuming that we only have 2 features for each patient: age and albumin — i.e.,

X = (Xage, Xalbumin). We use EM to find 4 clusters Clusterpurple, Clusterred, Clustergreen,

and Clusterblack (as indicated by different colours in the figure). Next, we use EM to learn a mix-

ture model of 4 multivariate Gaussian distributions, and then, we can use the result of this mixture

model to estimate the likelihood that a patient belonging to each of these 4 clusters. For patient

Patienti with features Xi, the probability estimates are: Pr(Xi ∈ Clusterpurple) = 0.43, Pr(Xi ∈

Clusterred) = 0.30, Pr(Xi ∈ Clusterblack) = 0.17, and Pr(Xi ∈ Clustergreen) = 0.10. In

this case, Patienti is more likely to be similar to patients in Clusterpurple.

  

Figure 4.10: An example of EM Clustering
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4.4 Outliers

Similar to many other machine learning problems, a challenge in this work is the presence of outliers

— i.e., patients who are extremely different from the rest of the population. Given a data set D =

(X,T ) where Xi denotes the feature values of ith patients and Xj denotes the feature values of the

jth feature, an outlier is a patient whose feature values Xi are extremely different from the majority

of X . For example, consider our imaginary data in Table 2.3, assuming that only two features,

Xage and Xalbumin, are available, the feature values of Patient3 is much different with the feature

values of other 5 patients. Figure 4.11 shows a 2-dimensional visualization of this example. We

can consider the feature set of n patients each with m features, X = {X1, X2, ...., Xn}, are n data

points in a m-dimensional space. (Here, we show only Xage and Xalbumin from the data set.) If we

plot Xage on the x-axis and Xalbumin on the y-axis, we can see that Patient3 is isolated from the

rest of patients.
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Figure 4.11: A visualization of an outlier in a 2-dimensional space

In this m-dimensional space, an outlier can be characterized as a point far away from the centre

of X . Therefore, we try to detect outliers by measuring the distance between each data point Xi

and the centre of X . In Figure 4.11, the red rhombus denotes the centre of X . We can see that

the distance between Patient3 and the centre is relatively longer than the distance between any other

patient and the centre.

Outliers often exert problematic influence on the parameters and so should be excluded before

training the model. For example, if we train a predictor f using the linear regression (Section 4.2.1)

on X , we get parameters β =
[
β0, βage, βalbumin

]
= [283.5865,−1.8807,−4.3604]. Assuming

that we eliminate Patient3 from our data and train another predictor f ′, we get another parameters

β′ = [308.1640,−10.7157, 15.7457]. How well do f and f ′ perform? Table 4.5 shows the result of

predictions on the same training data. After eliminating Patient3, the average relative absolute error

over the remaining patients drops from 4.14 to 2.98.
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Xage Xalbumin ti f(Xi) f ′(Xi) RAE(β) RAE(β′)
Patient0 80 33.5 1 0.50 0.50 1.00 1.00
Patient1 70 30.7 8 18.07 41.46 0.56 0.81
Patient2 65 25.2 10 51.46 8.43 0.81 0.19
Patient4 65 27.4 18 41.86 43.08 0.57 0.58
Patient5 60 26.7 120 54.31 85.63 1.21 0.40
Average 4.14 2.98

Table 4.5: An example of experimental results with and without outliers

Detecting outliers in high-dimensional space is not trivial since one cannot rely on 2-dimensional

plots nor any other visualization methods. The complexity is magnified when there are multiple

outliers present because it will be harder to define “outliers” versus “majority”. In our work, we

attempt to eliminate outliers from our training and testing set, and we will discuss our approach

of applying the Mahalanobis distance and the minimum covariance determinant estimator in this

section.

4.4.1 Mahalanobis Distance

Our approach to handling outliers is to eliminate instances (patients) that are too far away from

the centre (average) of the data. We measure the distance between a point and the centre using

some distance-based methods such as the Euclidean distance (ED) and the Mahalanobis distance

(MD) [34]. Both methods measure the distance between two points, but the MD differs from the

ED in that it takes into account the correlations of the data. Given a set of n data points X =

{X1, X2, ..., Xn} in a m-dimensional space, the Euclidean distance and the Mahalanobis distance

of each point Xi to the centre of X , µX (the m-dimensional mean vector of X), is calculated by:

EDX(Xi) =
√

(Xi − µX)(Xi − µX)T

MDX(Xi) =
√

(Xi − µX)Σ−1
X (Xi − µX)T

where ΣX is a m×m covariance matrix of X

Using the same example (Xage and Xalbumin from Table 2.3), we can calculate:

• The arithmetic mean of X : µX =
[
µageX µalbuminX

]
=
[

60.8333 32.3000
]

• The covariance matrix of X : ΣX =
[

354.1667 −136.4000
−136.4000 86.7560

]

• The inverse covariance matrix of X : Σ−1
X =

[
0.0072 0.0113
0.0113 0.0292

]
Consider Patient0 whose X0 =

[
Xage

0 Xalbumin
0

]
=
[

80 33.5
]
, we can calculate the

distance between X0 and the centre of X .
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MDX(X0) =
√

(X0 − µX)Σ−1
X (X0 − µX)T

=

√[
80− 60.8333 33.5− 32.3000

] [ 0.0072 0.0113
0.0113 0.0292

] [
80− 60.8333

33.5− 32.3000

]
= 1.7858

Table 4.6 shows the Mahalanobis distance of each patient from the data set in Table 2.3. Recall

that Patient3 was an obvious outlier from 2-dimensional visualization (Figure 4.11); here, the result

of MD verifies that Patient3 is furthermost point from the centre.

Xage Xalbumin MDX(Xi)
Patient0 80 33.5 1.7858
Patient1 70 30.7 0.5883
Patient2 65 25.2 0.9651
Patient3 25 50.3 2.0349
Patient4 65 27.4 0.6052
Patient5 60 26.7 1.0131

Table 4.6: An example of using the Mahalanobis estimator

4.4.2 Minimum Covariance Determinant Estimator

However, conventional Mahalanobis estimator suffers from masking effect, in which the mean and

covariance are affected by the outliers. Imagine a data set consisting of a small cluster and an

outlier that is far away from any other points; here, the outlier will drag the centre of the crowd

in its direction. As a result, the outlier does not necessarily to have a large MD, and a non-outlier

might have a large MD. For example, in Table 4.6, the MD of Patient0 is relatively large and may be

considered as an outlier from this statistical result. The problem is that Patient3 drags the centre of

X in its direction (see the centre of X in Figure 4.11), so that Patient0 appears to be far away from

the centre. However, if Patient3 is excluded from the data set, Figure 4.12 shows that the centre of

the data (the red diamond) is in the middle of the five remaining points, and Patient0 is not far from

the centre.

Rousseeuw and van Driessen proposed a robust method, the minimum covariance determinant

(MCD) estimator, to replace the formal Mahalanobis estimator [47]. Given a set of n data points

X = {X1, X2, ..., Xn}, recall that the Mahalanobis estimator omeasures the distance between a

data point Xi and the centre of X . A key difference between these two estimators is that the MCD

estimator considers the centre of a subset of X . More precisely, the MCD estimator finds a subset

of h data points H ⊂ X and measures the distance between a data point Xi and the centre of H .
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Figure 4.12: A visualization of an outlier in a 2-dimensional space

This robust Mahalanobis distance of each point Xi is then calculated by:

MDH(Xi) =
√

(Xi − µH)Σ−1
H (Xi − µH)T

where

{
µH is a m-dimensional mean vector of H
ΣH is a m×m covariance matrix of H

Consider our example again and assuming that we can find a subset H such that H = X −X3,

• The arithmetic mean of H : µH =
[

68.0000 28.7000
]

• The covariance matrix of H : ΣH =
[

57.5000 23.0000
23.0000 11.2450

]

• The inverse covariance matrix of H : Σ−1
H =

[
0.0956 −0.1956
−0.1956 0.4890

]
The robust Mahalanobis distance of each data point is shown in Table 4.7. The distance between

Patient3 and the centre is extremely large (27.7185), while the distances between rest of the data

points to the centre are relatively smaller ( < 2). The result supports our assumption that the MCD

estimator is more effective in differentiating outliers and non-outliers.

Xage Xalbumin MDH(Xi)
Patient0 80 33.5 1.5825
Patient1 70 30.7 0.8796
Patient2 65 25.2 1.6563
Patient3 25 50.3 27.7185
Patient4 65 27.4 0.4018
Patient5 60 26.7 1.3480

Table 4.7: An example of using the minimum covariance determinant estimator

The “optimal” subset H ⊂ X of size h is the set of data points whose covariance matrix has

the smallest determinant among all possible subsets of size h. This “optimal” H is difficult to com-

pute since it involves evaluating all
(
n
h

)
subsets of size h. Therefore, Rousseeuw and van Driessen
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proposed an efficient method to approximate H , which starts from an initial subset and gradually

“improves” it (i.e., iteratively derives a new subset with a smaller determinant of covariance ma-

trix) [47].

Here is a brief description on the process of deriving a new subset Hnew from a subset Hold.

Suppose we are given a set of data points X = {X1, X2, ..., Xn} and the subset Hold ⊂ X , and we

want to compute a subset of h data points Hnew ⊂ X such that the determinant of the covariance

matrix of Hnew is smaller than the determinant of the covariance matrix of Hold.

1. Calculate mean and the covariance matrix of Hold

µHold = the m-dimensional mean vector of Hold

ΣHold = the m×m covariance matrix of Hold

2. Calculate the Mahalanobis distance between each Xi to the centre of Hold

MDHold(Xi) =
√

(Xi − µHold)Σ−1
Hold

(Xi − µHold)T for i = 1, 2, ..., n.

3. Sort all Xi by their Mahalanobis distance MDHold(Xi)

Let π = (π1, π2, ..., πn) be the permutation of sorting such that

MDHold(π1) ≤MDHold(π2) ≤ ... ≤MDHold(πn).

4. Let Hnew = {π1, π2, ..., πh}

(i.e., the set of the first h data points with the smallest Mahalanobis distance).

We can repeat the same process until Hold and Hnew converge. (det(ΣHnew) ≤ det(ΣHold)

with equality if and only if µHnew = µHold and ΣHnew = ΣHold . )

Rousseeuw and van Driessen also suggests a method to produce an initial subset H1. Let H1 be

a set of j randomly-selected data points in X where j < h. Then H1 is extended by sequentially

adding a randomly-selected observation, one at a time, until the determinant of the covariance matrix

of H1 is strictly greater than 0.

Given a feature matrix X , Algorithm 6 shows the pseudocode for computing the subset H of the

MCD estimator:
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Algorithm 6 Subset H Approximation
Input: X: n×m feature matrix
Output: H: h×m feature matrix (subset of the rows of X)

1: k = 1
2: Hk ← {j randomly-selected data points in X}
3: repeat
4: Hk ← Hk ∪ { a randomly-selected point in Xi}
5: until det(ΣHk) > 0
6: repeat
7: for i = 1 to n do
8: MDHk(Xi)←

√
(Xi − µHk)Σ−1

Hk
(Xi − µHk)T

9: Sort X by MDHk(Xi) such that MDHk(π1) ≤MDHk(π2) ≤ ... ≤MDHk(πn)
10: π ← (π1, π2, ..., πn)
11: Hk+1 ← {π1, π2, ..., πh}
12: until |det(ΣHk)− det(ΣHk+1)| < ε
13: return Hk+1
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4.5 Preprocessing

Medical data is a large set of real world information, which usually includes a mixture of binary, dis-

crete, and continuous variables. In many machine learning problems, how information is formulated

and what features are included are critical to the quality of the learned predictors.

Given a large set of medical records of patients’ personal attributes, clinical assessments, blood

test results, survival times, and censored times, we aim to process these records to produce a data

set D = (X,T ) with feature values X and class labels T , such that X optimally characterizes T .

Here, we will discuss our feature representation in Section 4.5.1, our feature selection methods in

Section 4.5.2, and our class label representation in Section 4.5.3.

4.5.1 Feature Representation

The task of survival prediction begins by pre-processing the original survival data, and our first step

is to design an appropriate data representation with some domain specific knowledge so that the pre-

processed data is usable for our prediction framework. Survival data usually contains categorical

features. For example, “Gender” is either “male” or “female”, and “Cancer Type” can be “lung can-

cer”, “pancreas cancer”, or “colon-rectal cancer” (see the top table in Table 4.8 ). For the algorithms

that we consider in this framework (e.g., regression methods, clustering methods, etc), it is relatively

easier to use only numerical features.

Patienti Gender Age Cancer Type ... Event Time Censored Flag
Patient0 male 60 pancreas ... 1 0
Patient1 female 70 pancreas ... 8 0
Patient2 female 65 lung ... 10 1
Patient3 male 35 lung ... 13 0
Patient4 female 80 pancreas ... 18 1
Patient5 female 75 pancreas ... 120 0
Patient6 male 72 colon-rectal ... 125 1

⇓
Patienti Xgender Xage X lung Xpancreas Xcolon−rectal ... ti ci
Patient0 0 60 0 1 0 ... 1 0
Patient1 1 70 0 1 0 ... 8 0
Patient2 1 65 1 0 0 ... 10 1
Patient3 0 35 1 0 0 ... 13 0
Patient4 1 80 0 1 0 ... 18 1
Patient5 1 75 0 1 0 ... 120 0
Patient6 0 72 0 0 1 ... 125 1

Table 4.8: An example of pre-processed and post-processed survival data

If a categorical attribute has only two distinct categories, we can convert this categorical attribute

into a binary attribute by defining one category to be 0 and the other category to be 1. For example,

in Table 4.8, “Gender” is one of the characteristic of patients that contains two categories, “male”

and “female”. Without loss of generality, we can denote “male” as 0 and “female” as 1.
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If a categorical feature has more than 2 attribute values, this feature can be converted into mul-

tiple binary features. For instance, in Table 4.8, “Cancer Type” (feature values of the cancer types

of patients) has three attribute values: “pancreas”, “lung”, and “colon-rectal”. In our data represen-

tation, “Cancer Type” is expanded into three binary features X lung , Xpancreas, and Xcolon−rectal,

and “Cancer Type” is deleted from the data set.

4.5.2 Feature Selection

Some features may be irrelevant to survival times — e.g., we expect that toothache will not matter.

To improve the performance of our predictors, we attempt to eliminate irrelevant features from our

raw data. In machine learning, many sophisticated methods have been applied to identify irrelevant

features; here, we consider the following two representative feature selection approaches: subset

selection by backward wrapper and variable ranking by mutual information.

Subset Selection by Backward Wrapper

Given a data set D = (X,T ) where X represents the feature values in D, letting A be the set of fea-

tures in X , the subset selection seeks the “best” subset of features A∗ ⊂ A over many combinations

of subsets from A [32].

The wrappers method is a subset selection method that finds A∗ by comparing the performance

of a predictor on different subsets of A. Given a learning algorithm L(.), we seek a subset A∗ ⊂ A

such that the average CV error (Section 3.1) of L(.) is minimized. Since it is computationally too

complicated to evaluate all combinations of subsets, the greedy search is incorporated to approx-

imate the optimal solution. This search algorithm iteratively generates a new candidate subset of

attributes A′ ⊂ A and evaluates the predictive power of L(.) on D′ = (X ′, T ) where X ′ is the

feature values of attributes A′.

There are two “directions” on how to generate a new candidate subset: the backward elimination

and the forward selection. The backward elimination begins with the whole feature set A and se-

quentially excludes one feature at a time. At each iteration, we aim to eliminate the feature (among

all available features in that iteration) such that the average CV error is the lowest after removing

that feature. A similar approach is the forward selection, which attempts to select a subset of features

in an incremental manner. More details on these two approaches can be found in [24]. In our work,

we consider the backward elimination. Algorithm 7 shows the procedure of the subset selection by

backward wrapper algorithm.

Variable Ranking by Mutual Information

In variable ranking, the goal is to rank the “relevance” between each feature and the class label

and eliminate features that are low in their “rankings” [17]. Here, we need to define a ranking

criterion to evaluate the “relevance” between each pair of feature and class label. In our work, we
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Algorithm 7 Subset Selection by Backward Wrapper Algorithm
Input:

D: a data set with a set of features A, feature values X , and class labels T
L(.): a learning algorithm

Output:
Ak: the approximated optimal subset of features

1: k ← 1
2: Ak ← A
3: Xk ← X
4: scorek ← ErrCV (L, (Xk, T ))
5: repeat
6: for i = 1 to |Ak| do
7: Xi ← Xk with the ith feature values removed
8: scorei ← ErrCV (L, (Xi, T ))
9: i∗ ← arg minErrCV {scorei}

10: if scorei∗ < scorek then
11: Ak+1 ← Ak with the i∗ feature removed
12: Xk+1 ← Xk with the i∗ feature values removed
13: scorek+1 ← scorei∗

14: Increment k
15: until stopping criterion is met
16: return Ak

consider using the mutual information, which measures the information that two variables share, as

our ranking criterion.

Recall our formulation in Table 2.1, given a data set D = (X,T ) of n observations each with m

features where X is the n×m feature matrix, T is the n-dimensional vector of the class labels, Xj

denotes the jth feature in X , xji denotes the feature value of the jth feature of the ith patient, and ti

denotes the class label of the ith patient, the mutual information between Xj and T is defined as

MI(Xj , T ) =
∑
x∈Xj

∑
t∈T

Pr(x, t) log
(

Pr(x, t)
Pr(x)Pr(t)

)
where Pr(x, t) is the joint probability density of x and t

Pr(x) is the marginal probability density of x

Pr(t) is the marginal probability density of t

The mutual information quantifies the dependence betweenXj and T . IfXj and T are indepen-

dent, their joint probability density Pr(Xj , T ) = Pr(Xj)Pr(T ), and so their mutual information

MI(Xj , T ) = 0

This quantity is hard to compute when one of the variables is continuous; in our survival data, the

class labels T is a continuous variable and the feature values Xj is either a discrete or a continuous

variable. Here, we apply some density estimation methods to approximate the marginal probability

densities.

Similar to the idea that we used to approximate the probability density of the class labels T when
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calculating the entropy in Section 4.3.1, the marginal probability density and the joint probability

density can be approximated by the Gaussian kernel estimator [43] . Given a data set D = (X,T )

of n patients, we approximate the marginal probability density of x by

Pr(x) =
1
n

n∑
k=1

1√
2πh2

e−
1

2h2 (x−xjk)2

Here, h is a control variable of this estimator (see [43]). Similarly, the marginal probability

density of the class label of the kth patient can be approximated by

Pr(t) =
1
n

n∑
k=1

1√
2πh2

e−
1

2h2 (t−tk)2

The joint probability density of the feature value x and the survival time t can be estimated by:

Pr(x, t) =
1
n

n∑
k=1

1
2πh2

e−
1

2h2 [(x−xjk)2+(t−tk)2]

After simplification, the mutual information can be approximated by:

M̂I(Xj , T ) =
1
n

n∑
i=1

log
n
∑n
k=1 e

− 1
2h2 [(xji−x

j
k)2+(ti−tk)2]∑n

k=1 e
− 1

2h2 (xji−x
j
k)2 ∑n

k=1 e
− 1

2h2 (ti−tk)2

4.5.3 Log-Space Transformation

In survival analysis, an accelerated failure time (AFT) model is a parametric model that assumes

that the the effect of a variable is linearly related to the logarithm of the survival time [3]. More

precisely, given a data set of n patients each with m features, let T be the n-dimensional vector of

survival times and X be the n×m feature matrix, the AFT model assumes that

log(T ) ≈ β0 + βX

where β is a m-dimensional vector of parameters and β0 is a scalar parameter. Ying et al. [56]

applied the linear regression to learned the parameters β and β0 for their AFT model that predicts

the probability of survival for individual patients.

In our work, we apply the ideas of the AFT and the above work to our survival prediction prob-

lem. Here, we simply transform T into logarithmic space — i.e., use log (T ) as the class labels

for training our predictors. To test the effectiveness of this logarithmic assumption, we experimen-

tally compare the performance of predictors before and after this log-space transformation. That is,

for each learning algorithm that we discussed in Section 4.2, we will compare the performance of

using T versus using log (T ) as the class labels. To distinguish these cases, we refer the resulting

predictors as the regular (REG) predictor and the logarithmic (LOG) predictor.
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Chapter 5

Experiments
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In this work, we aim to find the best combination of techniques that we discussed in the previous

chapter (Chapter 4) for our survival prediction system. This chapter summarizes our experiments

on applying these methodologies to various prediction tasks on real data. In Section 5.1, we will

describe our experimental setups, including our data set, our implementations, and our evaluation

methods. In Section 5.2, we will list some experimental outcomes that we obtained with our survival

prediction system. (Detailed experimental results are provided in Appendix B.) In Section 5.3, we

will discuss what we learned from our experimental results.

5.1 Experimental Setups

In this section, we will describe our experimental setups, including the description of our testing

data, the methods on examining our approaches, and the evaluation of our experimental results.

5.1.1 Data Set

Our data set was based on data generously provided by the Cross Cancer Institute. This data set

contains 2402 patients, in which 1142 patients were uncensored and 1260 were censored. (See

Section 2.2.1 for information about censoring) The event times (survival times or censored times)

of these patients range from 0.03 to 71.95 months. The average event time among all patients (both

censored and uncensored) is 25.74± 19.10 months.

For each patient, we have three broad categories of data, which we refer to as the personal

attributes, clinical assessments, and blood test results. The personal attributes include gender, BMI,

date of birth, date of death, date of reference, etc. The clinical assessments include fifteen diagnosis

results such as whether the patient feels full, has no appetite, experiences problem with swallowing,

etc. The clinical assessments also include a measurement called the physician global assessment

(PGA), which is a widely used guideline in clinical trials. The PGA of a patient measures the

overall performance status of this patient, and this measurement is scored by a physician (based

on his/her impression after inspecting this patient). The blood test results include nine numerical

measurements, such as LDH serum, white blood cell counts, etc. The list of features in the raw data

is provided in Appendix A.1

However, this data set is missing numerous entries, so we selected only the attributes that are

missing relatively few values for incorporation into our data set. Also, we perform some pre-

processing work on the raw data so it is usable for our framework (Section 4.5). The resulting

pre-processed data contains 46 features; Appendix A.1 provides a list of descriptions and the his-

tograms for these features.

5.1.2 Methods

Our survival prediction system is implemented using the Java programming language on the devel-

opmental software Eclipse. We incorporate Waikato Environment for Knowledge Analysis (Weka),
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a machine learning framework developed by the University of Waikato, into our implementation [19].

Weka contains a collection of machine learning algorithms for data mining tasks, and many algo-

rithms can be applied and modified directly from Eclipse platform.

Recall that our learning phase has two major steps. In the first step, we apply various grouping

methods to segregate patients into smaller populations. In the second step, we apply different re-

gression models to each sub-population that we obtained from the first step. Besides these two steps,

we also analyze several minor techniques that we discussed in Chapter 4, such as outlier detection

methods, imputation methods, and log-space transformation methods. We use experiments to select

the best combination of techniques as our final model.

For the convenience of identifying each model, we refer these models by the mechanisms applied

on them such that each name is formatted as AA-BBB-CCC-DDDDDD-EEEE. For each model, AA

∈ {NG, LR, GR, EC } indicates its grouping method (here, NG means no grouping), BBB∈ {REG,

LOG } indicates whether log-space transformation is applied, CCC ∈ { ALL, MCD } indicates

whether outliers are eliminated, DDDDDD ∈ { AVE050, AVE100, CEN050, CEN100 } shows the

methods on handling censored data, and EEEE ∈ {MED, AVE, LIN, SVR, RT, LINc, SVRc, GAT }

specifies the learning algorithm. For example, LR-REG-MCD-AVE050-LINc refers to the learning

system that (1) segmented the patients using CART with log-rank statistics as the splitting criterion,

(2) used the original data (not the log-transformed version), (3) eliminated the potential outliers

using the MCD estimator, (4) set the class labels of censored data to be the average survival times of

uncensored patients in the risk set, (5) weighted each censored patient as 50% of uncensored patient,

and (6) return a predictor learned using the linear regression for censored targets. The definition of

each combination can be found in Appendix B.1.

In our work, our goal is to make predictions for new patients — i.e., it is crucial that our models

perform well on novel data. To approximate the performance of each model on such unseen data,

we run 5-fold cross-validation in each experiment, and report the average (and variance) of these

five folds to analyze their performance.

5.1.3 Evaluation

In Section 3.2, we discussed several methods for evaluating the performance of a model and how to

estimate these measurements. In Section 3.2.5, we define the best model to be the combination of

techniques that achieves the minimum average relative absolute error. If the RAE of two models

are equivalent (i.e., the difference is not statistically significant), we seek the model that has higher

concordance index.

We also examine the relative absolute error within 95% confidence interval (see Section 3.2.5

for details and examples). Our studies evaluate all patients in the unseen data set; we found, however,

that the presence of a few outliers could skew our statistical analysis. In order to determine whether

or not a predictor is significantly affected by the outliers, we also consider the RAE95 score, which
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examines the testing cases lie within the 95% confidence interval.

In addition, we can also separate the evaluation of small predicted times versus large predicted

times. Recall that the relative error is not completely fair since it exerts large penalty to smaller

predictions (see Section 3.2.2 for details and examples). Therefore, for each experiment, we also

look at the average L1 error of predictions less than 12 months and the average relative absolute

error of predictions greater than or equal to 12 months

Through out this section, we will use the following statistics to interpret our experimental results:

• RAE: the average relative absolute error

• CI: the concordance index

• RAE95: the average relative absolute error within the 95% confidence interval

• L1p<12: the average L1 error of predictions less than 12 months

• RAEp≥12: the average relative absolute error of predictions greater than or equal to 12 months

Also, recall that we need to know the actual survival times to calculate the RAE and the L1, and

plot the visualization, which are not available for censored data; and therefore, the RAE, the RAE95,

the L1p<12, the RAEp≥12, and the visualizations shown in this section apply to uncensored data

only. The concordance index considers all comparable pairs of patients, and therefore considers

both uncensored and censored data are included. (Although, of course, it ignores the incomparable

pairs — e.g., when both are censored, etc.). For most of the results, we will focus on the RAE score;

we will mention the other measures in Section 5.3.

Besides statistical results, we will also evaluate the outcomes by visualizing the plot of actual

survival times versus the predicted survival times over a set of test patients (Section 3.3).

5.2 Experimental Results

This section describes and summarizes our experimental results on different combinations of tech-

niques. The first objective is to test whether it is advantageous to segregate patients in predicting

survival times for cancer patients. The second goal is to discover which learning algorithms can

construct the best predictors for our data. Also, we test our approaches to handling censored data,

eliminating outliers, and log-space transformation. Finally, we will find the best combination of

methods that can best predict survival times for individual patients.

5.2.1 Baseline

The naive baseline is to take the median or the average of the class labels over the whole population

as the prediction for each individual patient. Recall that our data contains censored observations —

i.e., the class label of a censored patient is the lower bound of the patient’s actual survival time. In

this experiment, we simply treat censored patients as uncensored and use their censored times as
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survival times. Notice that this idea is problematic! Later on, we will use this baseline measurement

to test if our techniques can improve the performance of predictors. Table 5.1 shows the performance

of the baseline.

Grouping Patients: NG (no grouping)
Log-space transformation: No
Outlier Detection: None
Handling Censored Data: No
Regressor RAE CI RAE95 L1p<12 RAEp>12

NG-REG-ALL-CEN100-MED 0.5891±0.01 1 0.5000±0.00 0.5638±0.01 Undefined 0.5891±0.01
NG-REG-ALL-CEN100-AVE 0.6081±0.00 0.5000±0.00 0.5875±0.00 Undefined 0.6081±0.00

Table 5.1: Experimental results on the baseline

Although one can argue that the RAE is within reasonable range, the concordance index shows

that this model is not effective. (Recall that CI = 0.5 means the predictor is not better than random

guessing) Also, L1p<12 is undefined since these two models never predict a time shorter than 12

months. Figure 5.1 plots true survival times (blue) versus predicted survival times (red), which

shows that these predictions (the horizontal line) are not precise enough for individual patients.

  

  Time
(Month)

Figure 5.1: A Visualization of true survival times versus predicted survival times

5.2.2 Handcrafted Tree

In Section 2.1, we discussed some general medical research methods. Many clinical research

projects analyzes two populations of patients, where the populations were split on one feature based
1Here and in subsequent tables, this value refers to the standard deviation of 5 folds (in a 5-fold cross-validation).
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on the researchers’ prior knowledge (NOT from learning). In Section 2.3.1, we also introduced the

most popular evaluation in survival analysis, the Kaplan-Meier estimator [27], which measures the

performance of a prognostic factor. How well do those methods work for our task, of estimating a

survival time for each individual patient?

Since we are not medical experts, we have no prior knowledge on how to split the populations.

Therefore, we decide to be generous by trying all features (with various splitting values if the fea-

ture is a continuous variable) and evaluating the resulting predictor using the best split. Notice

that this is “cheating” because we use testing data to determine the best feature (i.e., it is what an

all-knowledgeable person would do, if he/she was constrained to only one feature). Since prior

knowledge is not necessarily the best guide to segregate patients, the predictor in this experiment

should perform better or equivalent to the predictors built upon prior knowledge.

Table 5.2 shows the result of the best split, where patients with their physician global assessment

(PGA) = 4 are in one group, and the rest of patients are in another. We can see that the RAE and

concordance index both suggest that these predictions are no better than simply use the average of

the entire population.

Grouping Patients: Handcraft
Log-space transformation: No
Outlier Detection: None
Handling Censored Data: No
Regressor RAE CI RAE95 L1p<12 RAEp>12

KM-REG-ALL-CEN100-MED 0.5942±0.01 0.5090±0.01 0.5649±0.01 4.8967±1.08 0.5863±0.01
KM-REG-ALL-CEN100-AVE 0.6067±0.00 0.5090±0.01 0.5859±0.00 Undefined 0.6067±0.00

Table 5.2: Experimental results on a handcrafted tree using the Kaplan-Meier estimator

5.2.3 Learning Algorithms

In Section 4.2.1, we discussed three basic regression methods:

LIN : the linear regression

SVR: the support vector regression

RT : the regression trees

Grouping Patients: NG (no grouping)
Log-space transformation: No
Outlier Detection: None
Handling Censored Data: CEN (Use censored times as the class labels)
Regressor RAE CI RAE95 L1p<12 RAEp>12

NG-REG-ALL-CEN100-LIN 0.5592±0.02 0.7442±0.01 0.5220±0.02 4.2071±0.25 0.5403±0.01
NG-REG-ALL-CEN100-SVR 0.5582±0.03 0.7434±0.01 0.5287±0.03 4.9575±0.41 0.5434±0.02
NG-REG-ALL-CEN100-RT 0.5601±0.02 0.7483±0.02 0.5266±0.01 4.7212±0.81 0.5438±0.01

Table 5.3: Experimental results on conventional learning algorithms

In this experiment, the goal is to test the difference between conventional regression methods and

the models that simply use the median or mean survival time (such as our baseline models); no other
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techniques is applied and the class labels of censored data are the censored time. Table 5.3 shows

the result of each learning algorithm. The differences between each pair of learning algorithms are

not statistically significant, but there is a significant improvement on RAE and concordance index

when comparing each predictor to the baseline model (p < 0.05 by paired t-test).

Figure 5.2 shows the visualization of true survival times versus predicted survival times (over the

uncensored patients) of a predictor learned from the support vector regression. (Since the difference

between the results of these models are not statistically significant, and the visualization plots are

similar, we only display one of them)

  

  Time
(Month)

Figure 5.2: A Visualization of true survival times versus predicted survival times

5.2.4 Handling Censored Data

Recall that our data contains censored observations, where the class label of a censored patient is the

lower bound of the patient’s actual survival time. The result of the last experiment is problematic

since it simply treats the censored times as event times. In Section 4.1, we discussed three techniques

for approximating an event time for each censored patient. In this experiment, the estimated survival

time of each censored patient is approximated as the average survival time of all uncensored patients

in the risk set, and LIN, SVR, and RT use these revised labels for training its predictor.

We introduced two learning algorithms that were modified to accommodate censored data: LINc

(the linear regression for censored targets) and SVRc (the support vector regression for censored

targets) in Section 4.2.2. We also discuss a learning algorithm that automatically select the best

learning algorithm, the gating regression, in Section 4.2.3. From now on, we will include all six
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learning algorithms for each experiment.

Table 5.4 summarizes the results of our six learning algorithms after handling censored data.

Although there is no reduction in RAEave, RT and LINc have improved CI score (but not statistically

significant).

Grouping Patients: NG (No Grouping)
Log-space transformation: No
Outlier Detection: None
Censored Data: use estimated survival times, weight = 0.5
Regressor RAE CI RAE95 L1p<12 RAEp>12

NG-REG-ALL-AVE050-LIN 0.5524±0.02 0.7498±0.01 0.5102±0.02 4.1004±0.22 0.5257±0.01
NG-REG-ALL-AVE050-SVR 0.5538±0.04 0.7493±0.01 0.4980±0.02 4.1903±0.39 0.5152±0.02
NG-REG-ALL-AVE050-RT 0.5630±0.04 0.7517±0.01 0.5225±0.02 5.1055±1.06 0.5281±0.02
NG-REG-ALL-CEN100-LINc 0.5589±0.02 0.7445±0.01 0.5215±0.02 4.1591±0.29 0.5405±0.01
NG-REG-ALL-CEN100-SVRc 0.5751±0.03 0.7499±0.01 0.5409±0.03 4.6095±0.54 0.5590±0.03
NG-REG-ALL-AVE050-GAT 0.5622±0.02 0.7448±0.01 0.5152±0.02 4.5236±0.46 0.5274±0.02

Table 5.4: Experimental results on handling censored data

5.2.5 Grouping

We use three different grouping approaches in this work, including

LR: the CART with the log-rank statistics as its splitting criterion (Section 4.3.1)

GR: the CART with the gain-ratio as its splitting criterion (Section 4.3.1)

EC: the EM clustering (Section 4.3.2)

To evaluate the performance of our grouping approaches, we need to first consider how to predict

the survival time for each patient. Here, we first place the patient into a sub-population, then predict

that the patient will live the mean (or median) of that sub-population. More precisely, during the

training process, a subset of patients arrive at each leaf node; we then set the “label” of that node as

the mean (or median) of the survival values of those patients. Then, to predict the survival time for

a new patient, we first drop this patient into the tree to determine the relevant leaf node, and assign

that patient to the label of that node.

Figure 5.3 shows a resulting decision tree produced by the CART with the log-rank statistics as

the splitting criterion. Here, the population is divided into three sub-populations: Group 1, Group

2, and Group 3. The population is first divided by the physician global assessment (PGA) such that

patients whose PGA is 4 are one sub-population (Group 3). The rest of patients are further divided as

pancreas cancer patients (Group 2) versus other cancer patients (Group 1). For each sub-population,

the number of patients and the mean survival time is shown in its corresponding leaf node. More

resulting trees are provided in Table B.4 in Appdendix B.

Table 5.5 shows the results of the CART with the log-rank statistics and the gain-ratio as its

splitting criterion. Unfortunately, using this setting is not better than using regression algorithms

without grouping.
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Figure 5.3: Examples of decision trees split by the CART with the log-rank statistics as the splitting
criterion

Log-space transformation: No
Outlier Detection: None
Censored Data: AVE(use estimated survival times), weight = 0.5
Regressor RAE CI RAE95 L1p<12 RAEp>12

LR-REG-ALL-AVE050-MED 0.6019±0.01 0.5251±0.01 0.5693±0.01 - 0.6019±0.01
LR-REG-ALL-AVE050-AVE 0.6120±0.01 0.5252±0.01 0.5887±0.01 - 0.6120±0.01
GR-REG-ALL-AVE050-MED 0.5897±0.00 0.5576±0.02 0.5642±0.00 - 0.5897±0.00
GR-REG-ALL-AVE050-AVE 0.6075±0.00 0.5823±0.01 0.5873±0.00 - 0.6075±0.00

Table 5.5: Experimental results on grouping methods

5.2.6 Combination of CART and Regressions

In this experiment, we first group the patients using the classification and regression trees with the

log-rank statistics as the splitting criterion. At each node of the resulting decision tree, we consider

applying our six learning algorithms. Table 5.6 shows the result of each of these learners.

Again, there exists no statistical difference between different learning algorithms in this exper-

iment. After applying this grouping method, unfortunately, we did not get any improvement. On

the other hand, the result in this experiment is better than the predictor that simply uses the mean

survival time of a sub-population as a prediction for each patient in that sub-population. By using

paired t-test on each regressor against the predictors that use median survival time or average sur-

vival time, the models trained using the linear regression , regression trees, em linear regression for

censored targets, and gating regression are statistically better with p < 0.05.

5.2.7 Outliers Detection

Can we do better? Recall that outliers are patients who are extremely different from the majority;

these outliers often exert problematic affect on the resulting models. In this experiment, we applied
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Grouping Patients: LR (CART with log-rank statistics)
Log-space transformation: No
Outlier Detection: None
Censored Data: AVE (use estimated survival times), weight = 0.5
Regressor RAE CI RAE95 L1p<12 RAEp>12

LR-REG-ALL-AVE050-LIN 0.5598±0.02 0.7421±0.01 0.5168±0.02 4.1554±0.32 0.5307±0.01
LR-REG-ALL-AVE050-SVR 0.5746±0.04 0.7400±0.01 0.5107±0.01 4.3420±0.19 0.5157±0.03
LR-REG-ALL-AVE050-RT 0.5679±0.02 0.7470±0.02 0.5265±0.02 5.1883±0.60 0.5297±0.02
LR-REG-ALL-CEN100-LINc 0.5618±0.02 0.7410±0.01 0.5252±0.02 3.9586±0.41 0.5480±0.01
LR-REG-ALL-CEN100-SVRc 0.5907±0.03 0.7424±0.01 0.5404±0.02 4.4074±0.40 0.5465±0.02
LR-REG-ALL-AVE050-GET 0.5705±0.01 0.7476±0.02 0.5213±0.01 4.6896±0.24 0.5300±0.02

Table 5.6: Experimental results on combining CART with log-rank statistics and regressions

the outlier detection and elimination techniques that we discussed in Section 4.4 to remove potential

outliers from both training and testing data. That is, we choose to tell some patients that he/she

cannot be evaluated. In average, this meant removing around 3% of the testing samples.

To estimate the RAE95, we first eliminate 3% instances that have relatively larger Mahalanobis

distance and then remove 5% instances from the remaining 97% that have the worst relative ab-

solute error. Notice that this two mechanisms are different. We do not know whether or not the

removed outliers have higher prediction error (we could have made adequate predictions for them).

In contrast, we know that our predictor makes less decent predictions for the instances outside of

the confidence interval. Therefore, the removal process of confidence interval is not as practical as

that of the outlier detections since we do not know whether or not a new patient is in the confidence

interval at the time of prediction.

Table 5.7 summarizes the result after applying our six learning algorithms and eliminating out-

liers at each node of the decision tree. Even through the improvement is not statistically significant

when compared to the result that does not eliminate outliers, we will keep this setting (i.e., removing

outliers from both training data and testing data).

Grouping Patients: NG (No Grouping)
Log-space transformation: No
Outliers Detection: MCD (Mahalanobis Distance with MCD estimator)
Censored Data: AVE (use estimated survival times), weight = 0.5
Regressor RAE CI RAE95 L1p<12 RAEp>12

NG-REG-MCD-AVE050-LIN 0.5506±0.03 0.7498±0.01 0.5085±0.02 4.1940±0.43 0.5227±0.02
NG-REG-MCD-AVE050-SVR 0.5503±0.04 0.7501±0.01 0.4953±0.02 4.1312±0.40 0.5125±0.03
NG-REG-MCD-AVE050-RT 0.5619±0.03 0.7552±0.01 0.5180±0.02 5.2004±0.66 0.5175±0.02
NG-REG-MCD-CEN100-LINc 0.5506±0.02 0.7518±0.01 0.5191±0.01 4.1870±0.34 0.5355±0.01
NG-REG-MCD-CEN100-SVRc 0.5766±0.02 0.7530±0.01 0.5477±0.01 4.8107±0.38 0.5621±0.01
NG-REG-MCD-AVE050-GET 0.5556±0.02 0.7502±0.01 0.5107±0.02 4.9558±0.31 0.5125±0.02

Table 5.7: Experimental results on regression methods, after eliminating 3% outliers

5.2.8 Log-space Transformation

In Section 4.5.3, we discussed the idea of log-space transformation, such that each class label ti is

replaced by log ti. Table 5.8 shows the results after using log-transformation, and here, we show

the results before and after grouping by CART with log-rank statistics. By comparing to Table 5.4
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and Table 5.6, there is a significant improvement on both the RAE and the CI after using log-space

transformation. The predictors learned using the linear regression, the support vector regression,

and the gating regression obtained a average relative absolute error around 0.53%, which is our

best result. Also, several predictors can achieve higher than 0.76 concordance index. The details of

the following models will be found in Appendix B.3.

Grouping Patients: NG (No Grouping)
Log-space transformation: Yes
Outliers Detection: Mahalanobis Distance with MCD estimator
Censored Data: AVE (use estimated survival times)
Model RAE CI RAE95 L1p<12 RAEp>12

NG-LOG-MCD-AVE100-LIN 0.5385±0.04 0.7649±0.01 0.4926±0.03 4.5260±0.46 0.5068±0.04
NG-LOG-MCD-AVE100-SVR 0.5376±0.03 0.7612±0.01 0.4955±0.03 4.3355±0.40 0.5064±0.03
NG-LOG-MCD-AVE100-RT 0.5536±0.03 0.7536±0.01 0.5073±0.02 4.6130±0.39 0.5140±0.02
NG-LOG-MCD-CEN100-LINc 0.5468±0.05 0.7650±0.01 0.4964±0.04 4.3729±0.53 0.5013±0.04
NG-LOG-MCD-CEN100-SVRc 0.5755±0.04 0.7600±0.01 0.5347±0.03 4.3591±0.41 0.5555±0.03
NG-LOG-MCD-AVE100-GAT 0.5376±0.03 0.7612±0.01 0.4955±0.03 4.3355±0.39 0.5063±0.03

Grouping Patients: LR (CART with log-rank statistics)
Log-space transformation: Yes
Outliers Detection: MCD (Mahalanobis Distance with MCD estimator)
Censored Weight: AVE (use estimated survival times)
Model RAE CI RAE95 L1p<12 RAEp>12

LR-LOG-MCD-AVE100-LIN 0.5676±0.05 0.7650±0.01 0.5085±0.04 4.5858±0.61 0.4992±0.04
LR-LOG-MCD-AVE100-SVR 0.5729±0.04 0.7582±0.01 0.5129±0.03 4.4462±0.37 0.5025±0.03
LR-LOG-MCD-AVE100-RT 0.5616±0.03 0.7533±0.01 0.5106±0.02 4.9125±0.52 0.5116±0.02
LR-LOG-MCD-CEN100-LINc 0.5601±0.04 0.7603±0.01 0.5058±0.03 4.4828±0.44 0.5007±0.04
LR-LOG-MCD-CEN100-SVRc 0.6044±0.04 0.7530±0.01 0.5507±0.02 4.6020±0.44 0.5563±0.02
LR-LOG-MCD-AVE100-GAT 0.5533±0.03 0.7577±0.01 0.5043±0.02 4.5273±0.23 0.5098±0.03

Table 5.8: Experimental results on regression methods in logarithmic space

Table 5.9 shows the results (p-value) of paired-t test between each predictor and the baseline

methods (i.e., the models which simply use the median survival time or the average survival time

of the population as the prediction for each individual patient). The predictors trained using the

support vector regression, the regression trees, and the gating regression are statistically better than

both baseline models.

Model Median Survival Time Average Survival Time
NG-LOG-MCD-AVE100-LIN 0.075 0.031 (<0.05)
NG-LOG-MCD-AVE100-SVR 0.038 (<0.05) 0.014 (<0.05)
NG-LOG-MCD-AVE100-RT 0.037 (<0.05) 0.017 (<0.05)
NG-LOG-MCD-CEN100-LINc 0.159 0.068
NG-LOG-MCD-CEN100-SVRc 0.515 0.152
NG-LOG-MCD-AVE100-GAT 0.038(<0.05) 0.014(<0.05)

Table 5.9: P-values of pair-t test

Also, Figure 5.4 plots true survival times versus predicted survival times for all patients using the

predictor learned using the linear regression. More resulting figures can be found in Appendix B.3.
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Figure 5.4: A Visualization of true survival times versus predicted survival times

5.2.9 Classification

As we mentioned in Section 2.3, many researchers in survival analysis are interested in looking at the

median survival time and determining whether a given patient will survive longer than the median.

We also use our predictors to classify each patient into “long survivor” versus “short survivor” where

the classification boundary is the median survival time of the whole population. Table 5.10 shows

the accuracy, sensitivity, and specificity of each classifier.

After log-space transformation, eliminating outliers, and handling censored data, most predictors

were able to achieve at least 70% accuracy. The gating regression, the support vector regression, the

support vector regression for censored target have slightly higher accuracy among our six learning

algorithms, but the differences are not statistically significant. We can see an improvement (statisti-

cally significant) as comparing to the baseline methods which simply use the median or the average

survival time. The confusion matrices of each classifier and other conventional classification meth-

ods are shown in Table B.8.
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Baseline
Model Accuracy Sensitivity Specificity
BASELINE-MED 0.5388 0.1954 0.7973
BASELINE-AVE 0.5705 0.0000 1.0000
Grouping Patients: NG (No Grouping)
Log-space transformation: Yes
Outliers Detection: MCD (Mahalanobis Distance with MCD estimator)
Censored Data: AVE (average survival time of uncensored data in the risk set)
Model Accuracy Sensitivity Specificity
NG-LOG-MCD-AVE100-LIN 0.7197 0.8146 0.6415
NG-LOG-MCD-AVE100-SVR 0.7387 0.7673 0.7153
NG-LOG-MCD-AVE100-RT 0.6955 0.8084 0.6025
NG-LOG-MCD-AVE100-LINc 0.7150 0.8321 0.6186
NG-LOG-MCD-AVE100-SVRc 0.7373 0.6406 0.8169
NG-LOG-MCD-AVE100-GAT 0.7392 0.7662 0.7169
Grouping Patients: LR (CART with log-rank statistics)
Log-space transformation: Yes
Outliers Detection: MCD (Mahalanobis Distance with MCD estimator)
Censored Data: AVE (average survival time of uncensored data in the risk set)
Model Accuracy Sensitivity Specificity
LR-LOG-MCD-AVE100-LIN 0.7215 0.8031 0.6553
LR-LOG-MCD-AVE100-SVR 0.7337 0.7550 0.7165
LR-LOG-MCD-AVE100-RT 0.7014 0.8199 0.6053
LR-LOG-MCD-AVE100-LINc 0.7154 0.8262 0.6256
LR-LOG-MCD-AVE100-SVRc 0.7351 0.6524 0.8022
LR-LOG-MCD-AVE100-GAT 0.7337 0.7634 0.7097

Table 5.10: Experimental results on classification

5.3 Discussion

In this work, our goal is to learn a model from historical patient data that can effectively predict

survival times for novel patients. We build this model from a data set of patients historical records,

including personal attributes, diagnostic assessments, and blood test results. We consider survival

prediction as a regression problem and base our solution on a combination of unsupervised and

supervised learning. In Chapter 4, we introduced our survival prediction framework, which includes

the following steps: (1) processing data, (2) segregating populations, (3) eliminating outliers, (4)

handling censored information, and then at performance time, (5) predicting survival times for each

individual patients. In our experiments, we tested various combinations of approaches on these

steps, with the goal of selecting the best combination for our framework. In this section, we will

discuss the results on these approaches for each step.

In our experiments, the quality of each predictor was evaluated by its average relative absolute

error (primary) and its concordance index (secondary) where these measurements are the average

results of 5-fold cross-validation. Table 5.11 shows the top 10 best models. Here, the best model

obtains an average relative absolute error of 0.5376 ± 0.03 in predicting a survival time for each

individual (uncensored) patient. For classification task, several combinations can achieve at least
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Regressor RAE CI RAE95 L1p<12 RAEp>12

NG-LOG-MCD-AVE100-GAT 0.5376±0.03 0.7612±0.01 0.4955±0.03 4.3355±0.39 0.5063±0.03
NG-LOG-MCD-AVE100-SVR 0.5376±0.03 0.7612±0.01 0.4955±0.03 4.3355±0.40 0.5064±0.03
NG-LOG-ALL-AVE100-LIN 0.5380±0.04 0.7679±0.01 0.4929±0.03 4.4588±0.42 0.4955±0.03
NG-LOG-MCD-AVE100-LIN 0.5385±0.04 0.7649±0.01 0.4926±0.03 4.5260±0.46 0.5068±0.04
NG-LOG-ALL-AVE100-GAT 0.5392±0.03 0.7640±0.01 0.4952±0.02 4.2810±0.32 0.5049±0.03
NG-LOG-ALL-AVE100-SVR 0.5393±0.03 0.7641±0.01 0.4967±0.03 4.2782±0.32 0.5055±0.03
NG-LOG-ALL-AVE100-RT 0.5418±0.03 0.7580±0.01 0.4966±0.02 4.5625±0.36 0.5014±0.04
NG-LOG-ALL-CEN100-LINc 0.5462±0.04 0.7678±0.01 0.4968±0.03 4.4718±0.49 0.4909±0.04
NG-LOG-MCD-AVE100-LINc 0.5468±0.05 0.7650±0.01 0.4964±0.04 4.3729±0.53 0.5013±0.04
NG-REG-ALL-AVE100-SVR 0.5468±0.03 0.7432±0.01 0.5092±0.02 3.9596±0.47 0.5267±0.02

Table 5.11: Top 10 models

70% accuracy. The results presented in this chapter suggest that we can effectively predict patient’s

survival times by taking the following steps:

1. Processing Data: representing raw data using numerical attributes such that categorical at-

tributes are transformed into a binary attribute or multiple binary attributes and transforming

the class labels into logarithmic space.

2. Segregating Patients: no need to segregating patients if the target is to minimize the average

relative absolute error.

3. Handling Censoring: imputing a survival time for each censored patient by taking the average

survival time of uncensored patients in the risk set of that patient.

4. Eliminating Outliers: calculating the Mahalanobis distance using the minimum covariance

estimator for each patient and removing those who are relatively too far in their distances.

5. Learning Predictors: for each sub-population, learn a predictor using the linear regression,

the support vector regression, or the variations of them.

We will briefly discuss the results of each step above. There are a few approaches that we thought

should be effective, but experimental results did not support our ideas. Here, we will provide our

assumptions about their limitations.

5.3.1 Processing Features

In Section 4.5.2, we discussed two feature selection methods, the subset selection by backward

wrapper and the variable ranking by mutual information. These two methods appear to perform

similarly on the regression accuracy (i.e., not statistically significant). One potential reason is that,

in most cases, the evaluation scores for many features are very close. We performed several experi-

ments with different control parameters, and these methods either keep almost all features or remove

too many features. Another reason might be that these two methods are not appropriate for our data

set or for survival prediction problems. Therefore, a potential future work is to test different feature

selection methods or evaluation criteria (other than the mutual information or expected prediction

errors as in our work).
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5.3.2 Segregating Patients

We tested three grouping methods, including (1) the CART with the log-rank statistics, (2) the CART

with gain-ratio, and (3) EM clustering (Section 4.3). In most experiments, (1) was the most effective

grouping method and (3) was the worst. Unfortunately, we found that even the best grouping method,

the CART with the log-rank statistics, is very competitive to the predictors without using grouping

method. We therefore suggest that we choose the simpler one — no need to grouping patients.

On the other hand, predictors built with the CART with the log-rank statistics can have better

performance in predicting survival times for short survivors. In our experiments, LOG predictors

usually achieve lower relative absolute error; we found, however, that these LOG predictors often

have larger L1p<12. Table 5.12 shows the top 5 models with the lowest L1p<12. After segregat-

ing patients using the CART with the log-rank statistics, the linear regression for censored targets

obtains the lowest L1p<12 among all models in our experiment.

Regressor RAE CI RAE95 L1p<12 RAEp>12

LR-REG-ALL-CEN100-LINc 0.5618±0.02 0.7410±0.01 0.5252±0.02 3.9586±0.41 0.5480±0.01
NG-REG-ALL-AVE050-LIN 0.5524±0.02 0.7498±0.01 0.5102±0.02 4.1004±0.22 0.5257±0.01
NG-REG-MCD-AVE050-SVR 0.5503±0.04 0.7501±0.01 0.4953±0.02 4.1312±0.40 0.5125±0.03
LR-REG-ALL-AVE050-LIN 0.5598±0.01 0.7421±0.01 0.5168±0.02 4.1554±0.32 0.5307±0.01
NG-REG-ALL-CEN100-LINc 0.5589±0.02 0.7445±0.01 0.5215±0.02 4.1591±0.29 0.5405±0.01

Table 5.12: Top 5 models with the lowest L1p<12

In reality, it is somehow more crucial to make accurate predictions for short survivors. Standard

treatments for cancer patients usually take certain amount of time; for example, the duration of

treatment is three months for lung cancer [18]. If a patient is expected to die before the end of the

treatment, it is usually not recommend to undergo the treatment (these treatments could be risky and

reduce quality of life). Therefore, if the goal of a survival prediction system is to make predicts for

short survivors, we recommend that CART with the log-rank statistics should be applied without

log-space transformation.

Here are our thoughts on the reason that log-rank statistics outperforms the gain-ratio as the

splitting criterion in CART. The gain-ratio was based on the class labels, which are not the actual

survival times for all patients. For a censored patient, the class label is a lower bound (without im-

putation) or an approximation (with imputation) of the patient’s actual survival time. This problem

will probably bias the measurement of the gain-ratio. In contrast, log-rank statistics effectively in-

corporates censored observations since this method only requires the information on the size of the

risk set and the number of deaths and each distinct time point.

The EM clustering was unfortunately not very effective in our work — indeed, the results of

using this method are worse than the results of not using it. Recall that the EM clustering groups

patients with similar feature values (Section 4.3.2). The fact that this method does not depend

on class labels may be why this is not appropriate for survival prediction problems. There are

many other clustering methods that do not use labels; and one potential future work is to verify this
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assumption by testing other clustering approaches.

5.3.3 Learning Predictors

The support vector regression for censored targets (SVRc) was shown to be effective in [28], but

the performance on regression is not exceptional in our work. However, we notice that the SVRc’s

training error is lower than other learning algorithms, which suggests that the SVRc might have been

over-fitted to the training data. The predictor may be improved by changing the control parameters

or incorporating some regularization methods. (This is future work.) Aside from the regression

results, the SVRc usually achieves the highest accuracy in the classification task, which suggests that

this combination might be a possible solution if one is interested in differentiating long survivors

versus short survivors.

Previously, we assumed that the relationship between features and survival times is not linear,

and therefore, we attempted to address this problem by incorporating the kernel methods. We tested

two kernel functions, K2 and KGRB (Section 4.2.1) for our SVR and SVRc, but their performance

are not better than those without kernels. Therefore, we assume that linear algorithms are adequate

for survival predictions.

Recall that one of our goal is to find the best learning algorithm among six algorithms (Sec-

tion 4.2) for our prediction framework. In many cases, we found that the results of several algorithms

very competitive. For example, in Table 5.11, NG-LOG-MCD-AVE100-GAT is lower in its rela-

tive error while NG-LOG-ALL-AVE100-LIN is higher in its concordance index, but the differences

between these measurements among different learning algorithms are not statistically significant

(by paired t-test). It is hard to determine which one is the best regression algorithm. Therefore,

we assume that most regression methods can be applied to obtain comparable outcome for survival

predictions.

5.3.4 Handling Censoring

In Section 4.1.1, we proposed three approaches to approximate an event time for each censored

patient, including (1) adding a constant, (2) taking the average survival time over uncensored patients

in the risk set, and (3) taking the average survival time over all patients in the risk set. Overall, we

found (1) is not as effective as (2), and (3) tends to over-estimate survival times. (Therefore, in this

section, we only show the results that use (2) to estimate survival time for censored data versus the

results that simply use censored time as the class labels.)

We also attempt to lower the “weights” of censored data (Section 4.1.2). In our experiments, we

tested two constant weights, 0.1 and 0.5, for each censored patient, and we did not see improvement

from this technique after log-space transformation. (However, we found improvement when using

regular predictors.) We can only assume that this approach was unfortunately ineffective in handling

censored observations for our best model.
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As we mentioned in Section 5.3.3, the learning algorithms that we tested are very comparable.

One interesting observation is that, the linear regression uses the estimated survival times while

the linear regression for censored targets uses the original censored times for training a predictor,

and their outcomes have no statistical difference. Hence, we assume that these two methods (either

changing the class labels or modifying the algorithm) for handling censored data are comparable.
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Chapter 6

Conclusion
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Survival prediction is the task of predicting the length of time that an individual patient will

survive; accurate predictions can give doctors better guidelines on selecting treatments and planning

futures. This differs from the standard survival analysis, which focuses on population-based studies

and tries to discover the prognostic factors and/or analyze the median survival times of different

groups of patients.

This work provides a system that predicts survival times for individual cancer patients based

on personal attributes, clinical assessments, and blood test results. We view the task of survival

predictions as a regression problem, which maps the characteristic of each patients to his/her survival

time. As the relationship between features and survival time is still not understood, we consider

various ways to learn these models from historical patient records. This is challenging due to the

presence of irrelevant features, outliers, and missing class labels in processing medical/clinical data.

This dissertation describes our approach for overcoming these, and other challenges, producing

techniques that can predicts survival times.

Our experiments show that the linear regression, the support vector regression, and the gating

regression are effective: each predictor can obtain an average relative absolute error lower than 0.54

over all of the testing instances (where the average relative absolute error of a regressor is E[ |t−p|p ]

where t is the true survival time and p is our prediction for each patient). We also use our regressors

to classify each patient into “long survivor” versus “short survivor” where the classification boundary

is the median survival time of the entire population; here, we show that several regressors can achieve

at least 70% accuracy. These experimental results verify that we can effectively predict patients’

survival times with a combination of statistical and machine learning approaches.

Many of these techniques involve first segregating patients into smaller sub-populations; we

had anticipated that this would improve the accuracy of our survival predictions; however, our ex-

perimental results did not support this expectation. Nevertheless, we found that two aspects that

we tested in this work, log-space transformation and outlier elimination by minimum covariance

estimation, could effectively improve the overall performance of our predictors.

There are several ways we might obtain more accurate results. One idea is to implement regu-

larization methods on the SVRc algorithm to address its problem of over-fitting the training samples.

Second, recalling that roughly 50% of our data set is censored, it might be useful to explore better

techniques for utilizing censored data.

Our current system, as is, is already effective. We expect that any further improvements on the

survival prediction research would pave the way towards the use of individual prognosis system in

an actual clinical setting.
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A.1 Attribute Descriptions

Table A.1: Raw Data

Feature Name Data Type Range
Personal Attributes

Date of Birth Date YYYY-MM-DD
Date of Reference Date YYYY-MM-DD
Date of Death Date YYYY-MM-DD
Gender Nominal {“Male”, “Female” }
Age Numerical R
Age Older than 65 Nominal { “age < 65”, “age ≥ 65” }
BMI Numerical R
Weight Change Numerical R

Clinical Assessments
BOX 1 Score Numerical R
BOX 2 Score Numerical R
BOX 3 Score Numerical R
BOX 4 Score Numerical R
Food Intake Nominal {“normal”, “less”, “little”, “liquid” }
No Problem Nominal {“No”, “Yes”}
No Appetite Nominal {“No”, “Yes”}
Nausea Nominal {“No”, “Yes”}
Constipation Nominal {“No”, “Yes”}
Taste Funny Nominal {“No”, “Yes”}
Smelling Problem Nominal {“No”, “Yes”}
Swallowing Problem Nominal {“No”, “Yes”}
Feel Full Nominal {“No”, “Yes”}
Feel Pain Nominal {“No”, “Yes”}
Dental Problem Nominal {“No”, “Yes”}
Vomitting Nominal {“No”, “Yes”}
Diarrhea Nominal {“No”, “Yes”}
Sore Mouth Nominal {“No”, “Yes”}
Dry Mouth Nominal {“No”, “Yes”}
Activity Nominal {0, 1, 2, 3, 4}
PS-PGA Nominal {0, 1, 2, 3, 4}
Cancer Stage Nominal {1, 2, 3, 4 }
Cancer Type Nominal {“Brunchus-Lung”, “Colon-Rectal”,“Esophagus”,

“Head/Neck’,“Pancrease’,“Stomach”, “Misc”}
Blood Test Results

Granulocytes Numerical R
LDH Serum Numerical R
Lymphocytes Numerical R
Platelet Numerical R
WBC Count Numerical R
Calcium Serum Numerical R
HGB Numerical R
Creatinine Serum Numerical R
Albumin Numerical R
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Table A.2: Pre-processed Data

Feature Name Variable Name Data Type Range
Personal Attributes

Gender Xgender Binary 0: “Male”, 1: “Female”
Age Xage Numerical R
Age Older than 65 Xage−65 Binary {0: age < 65 1: age ≥ 65 }
BMI Xbmi Numerical R
Weight Change Xwl Numerical R
BOX1 Xbox−1 Numerical R
BOX2 Xbox−2 Numerical R

Clinical Assessments
No Problem Xno−prob Binary { 0: “No”, 1: “Yes” }
No Appetite Xno−app Binary { 0: “No”, 1: “Yes” }
Nausea Xnausea Binary { 0: “No”, 1: “Yes” }
Constipation Xconst Binary { 0: “No”, 1: “Yes” }
Taste Funny Xtaste Binary { 0: “No”, 1: “Yes” }
Smelling Problem Xsmell Binary { 0: “No”, 1: “Yes” }
Swallowing Problem Xswallow Binary { 0: “No”, 1: “Yes” }
Feel Full Xfull Binary { 0: “No”, 1: “Yes” }
Feel Pain Xpain Binary { 0: “No”, 1: “Yes” }
Dental Problem Xdental Binary { 0: “No”, 1: “Yes” }
Vomitting Xvomit Binary { 0: “No”, 1: “Yes” }
Diarrhea Xdiarrhea Binary { 0: “No”, 1: “Yes” }
Sore Mouth Xsore−mouth Binary { 0: “No”, 1: “Yes” }
Dry Mouth Xdry−mouth Binary { 0: “No”, 1: “Yes” }

Physician Global Assessments
PS-PGA (0) Xps−0 Binary { 0: “No”, 1: “Yes” }
PS-PGA (1) Xps−1 Binary { 0: “No”, 1: “Yes” }
PS-PGA (2) Xps−2 Binary { 0: “No”, 1: “Yes” }
PS-PGA (3) Xps−3 Binary { 0: “No”, 1: “Yes” }
PS-PGA (4) Xps−4 Binary { 0: “No”, 1: “Yes” }

Tumour Sites and Stages
Brunchus-Lung Cancer Xdx−lung Binary { 0: “No”, 1: “Yes” }
Colon-rectal Cancer Xdx−colon Binary { 0: “No”, 1: “Yes” }
Esophagus Cancer Xdx−esop Binary { 0: “No”, 1: “Yes” }
Head/Neck Cancer Xdx−head Binary { 0: “No”, 1: “Yes” }
Pancrease Cancer Xdx−panc Binary { 0: “No”, 1: “Yes” }
Stomach Cancer Xdx−stom Binary { 0: “No”, 1: “Yes” }
Misc Cancer Xdx−misc Binary { 0: “No”, 1: “Yes” }
Cancer Stage (1) Xstage−1 Binary { 0: “No”, 1: “Yes” }
Cancer Stage (2) Xstage−2 Binary { 0: “No”, 1: “Yes” }
Cancer Stage (3) Xstage−3 Binary { 0: “No”, 1: “Yes” }
Cancer Stage (4) Xstage−4 Binary { 0: “No”, 1: “Yes” }

Blood Test Results
Granulocytes Xblood−gra Numerical R
LDH Serum Xblood−ldh Numerical R
Lymphocytes Xblood−lym Numerical R
Platelet Xblood−pla Numerical R
WBC Count Xblood−wbc Numerical R
Calcium Serum Xblood−cal Numerical R

Continued on next page
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Table A.2 – continued from previous page
Feature Name Variable Name Data Type Range
HGB Xblood−hgb Numerical R
Creatinine Serum Xblood−cre Numerical R
Albumin Xblood−alb Numerical R

Labels
Time (Event or Censored) ti Numerical R
Censored Flag ci Binary { 0: Uncensored, 1: Censored }

A.2 Histogram

  

  

Table A.3: Histograms of features
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B.1 Experiment Methods

Table B.1: A List of methods for predicting survival times
Method Name Descriptions

Grouping Patients
NG no grouping
LR classification and regression trees with log-rank statistics as the splitting criterion
GR classification and regression trees with gain-ratio as the splitting criterion
EC EM clustering

Log-space Transformation
REG regular space
LOG logarithmic space

Outlier Detection
ALL no outlier detection, keep all instances
MCD use Mahalanobis distance with MCD estimator

Handling Censored Data
CEN100 use censored time as the class label
CEN050 use censored time as the class label, and weight = 0.5
AVE100 take the average survival time of uncensored patient in the risk set
AVE050 take the average survival time of uncensored patient in the risk set, and weight = 0.5

Regression Algorithms
MED use median survival time of the population
AVE use average survival time of the population
LIN linear regression
SVR support vector regression
RT regression trees
LINc learner regression for censored targets
SVRc support vector regression for censored targets
GAT gating regression
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B.2 Detailed Experimental Results

Table B.2: Experimental Methods

Methods Log-space Outlier Class label of Censored Algorithm
Detection censored data Weights

Baseline
BASELINE-MED No No Censored Time Use median survival time
BASELINE-AVE No No Censored Time Use average survival time

Grouping Method: Handcraft tree
HANDCRAFT-LIN No No Censored Time Use median survival time
HANDCRAFT-SVR No No Censored Time Use average survival time

Grouping Method: No grouping
NG-CEN100-ALL-REG-LIN No No Censored Time linear regression
NG-CEN100-ALL-REG-SVR No No Censored Time support vector regression
NG-CEN100-ALL-REG-RT No No Censored Time regression trees
NG-REG-ALL-AVE050-MED No No Estimated time 0.5 Use median survival time
NG-REG-ALL-AVE050-AVE No No Estimated time 0.5 Use average survival time
NG-REG-ALL-AVE050-LIN No No Estimated time 0.5 linear regression
NG-REG-ALL-AVE050-SVR No No Estimated time 0.5 support vector regression
NG-REG-ALL-AVE050-RT No No Estimated time 0.5 regression trees
NG-REG-ALL-AVE050-GAT No No Estimated time 0.5 gating regression
NG-REG-ALL-CEN050-LINc No No Censored Time 0.5 linear regression for censored targets
NG-REG-ALL-CEN050-SVRc No No Censored Time 0.5 support vector regression for censored targets
NG-REG-ALL-AVE100-MED No No Estimated time 1 Use median survival time
NG-REG-ALL-AVE100-AVE No No Estimated time 1 Use average survival time
NG-REG-ALL-AVE100-LIN No No Estimated time 1 linear regression
NG-REG-ALL-AVE100-SVR No No Estimated time 1 support vector regression
NG-REG-ALL-AVE100-RT No No Estimated time 1 regression trees
NG-REG-ALL-AVE100-GAT No No Estimated time 1 gating regression
NG-REG-ALL-CEN100-LINc No No Censored Time 1 linear regression for censored targets
NG-REG-ALL-CEN100-SVRc No No Censored Time 1 support vector regression for censored targets
NG-REG-MCD-AVE050-MED No Yes Estimated time 0.5 Use median survival time
NG-REG-MCD-AVE050-AVE No Yes Estimated time 0.5 Use average survival time
NG-REG-MCD-AVE050-LIN No Yes Estimated time 0.5 linear regression
NG-REG-MCD-AVE050-SVR No Yes Estimated time 0.5 support vector regression
NG-REG-MCD-AVE050-RT No Yes Estimated time 0.5 regression trees
NG-REG-MCD-AVE050-GAT No Yes Estimated time 0.5 gating regression
NG-REG-MCD-CEN050-LINc No Yes Censored Time 0.5 linear regression for censored targets
NG-REG-MCD-CEN050-SVRc No Yes Censored Time 0.5 support vector regression for censored targets
NG-REG-MCD-AVE100-MED No Yes Estimated time 1 Use median survival time
NG-REG-MCD-AVE100-AVE No Yes Estimated time 1 Use average survival time
NG-REG-MCD-AVE100-LIN No Yes Estimated time 1 linear regression
NG-REG-MCD-AVE100-SVR No Yes Estimated time 1 support vector regression
NG-REG-MCD-AVE100-RT No Yes Estimated time 1 regression trees
NG-REG-MCD-AVE100-GAT No Yes Estimated time 1 gating regression
NG-REG-MCD-CEN100-LINc No Yes Censored Time 1 linear regression for censored targets
NG-REG-MCD-CEN100-SVRc No Yes Censored Time 1 support vector regression for censored targets
NG-LOG-ALL-AVE050-MED Yes No Estimated time 0.5 Use median survival time
NG-LOG-ALL-AVE050-AVE Yes No Estimated time 0.5 Use average survival time
NG-LOG-ALL-AVE050-LIN Yes No Estimated time 0.5 linear regression
NG-LOG-ALL-AVE050-SVR Yes No Estimated time 0.5 support vector regression
NG-LOG-ALL-AVE050-RT Yes No Estimated time 0.5 regression trees
NG-LOG-ALL-AVE050-GAT Yes No Estimated time 0.5 gating regression
NG-LOG-ALL-CEN050-LINc Yes No Censored Time 0.5 linear regression for censored targets
NG-LOG-ALL-CEN050-SVRc Yes No Censored Time 0.5 support vector regression for censored targets
NG-LOG-ALL-AVE100-MED Yes No Estimated time 1 Use median survival time
NG-LOG-ALL-AVE100-AVE Yes No Estimated time 1 Use average survival time
NG-LOG-ALL-AVE100-LIN Yes No Estimated time 1 linear regression
NG-LOG-ALL-AVE100-SVR Yes No Estimated time 1 support vector regression
NG-LOG-ALL-AVE100-RT Yes No Estimated time 1 regression trees
NG-LOG-ALL-AVE100-GAT Yes No Estimated time 1 gating regression
NG-LOG-ALL-CEN100-LINc Yes No Censored Time 1 linear regression for censored targets
NG-LOG-ALL-CEN100-SVRc Yes No Censored Time 1 support vector regression for censored targets
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NG-LOG-MCD-AVE050-MED Yes Yes Estimated time 0.5 Use median survival time
NG-LOG-MCD-AVE050-AVE Yes Yes Estimated time 0.5 Use average survival time
NG-LOG-MCD-AVE050-LIN Yes Yes Estimated time 0.5 linear regression
NG-LOG-MCD-AVE050-SVR Yes Yes Estimated time 0.5 support vector regression
NG-LOG-MCD-AVE050-RT Yes Yes Estimated time 0.5 regression trees
NG-LOG-MCD-AVE050-GAT Yes Yes Estimated time 0.5 gating regression
NG-LOG-MCD-CEN050-LINc Yes Yes Censored Time 0.5 linear regression for censored targets
NG-LOG-MCD-CEN050-SVRc Yes Yes Censored Time 0.5 support vector regression for censored targets
NG-LOG-MCD-AVE100-MED Yes Yes Estimated time 1 Use median survival time
NG-LOG-MCD-AVE100-AVE Yes Yes Estimated time 1 Use average survival time
NG-LOG-MCD-AVE100-LIN Yes Yes Estimated time 1 linear regression
NG-LOG-MCD-AVE100-SVR Yes Yes Estimated time 1 support vector regression
NG-LOG-MCD-AVE100-RT Yes Yes Estimated time 1 regression trees
NG-LOG-MCD-AVE100-GAT Yes Yes Estimated time 1 gating regression
NG-LOG-MCD-CEN100-LINc Yes Yes Censored Time 1 linear regression for censored targets
NG-LOG-MCD-CEN100-SVRc Yes Yes Censored Time 1 support vector regression for censored targets

Grouping Method: CART with log-rank statistics as splitting criterion
LR-REG-ALL-AVE050-MED No No Estimated time 0.5 Use median survival time
LR-REG-ALL-AVE050-AVE No No Estimated time 0.5 Use average survival time
LR-REG-ALL-AVE050-LIN No No Estimated time 0.5 linear regression
LR-REG-ALL-AVE050-SVR No No Estimated time 0.5 support vector regression
LR-REG-ALL-AVE050-RT No No Estimated time 0.5 regression trees
LR-REG-ALL-AVE050-GAT No No Estimated time 0.5 gating regression
LR-REG-ALL-CEN050-LINc No No Censored Time 0.5 linear regression for censored targets
LR-REG-ALL-CEN050-SVRc No No Censored Time 0.5 support vector regression for censored targets
LR-REG-ALL-AVE100-MED No No Estimated time 1 Use median survival time
LR-REG-ALL-AVE100-AVE No No Estimated time 1 Use average survival time
LR-REG-ALL-AVE100-LIN No No Estimated time 1 linear regression
LR-REG-ALL-AVE100-SVR No No Estimated time 1 support vector regression
LR-REG-ALL-AVE100-RT No No Estimated time 1 regression trees
LR-REG-ALL-AVE100-GAT No No Estimated time 1 gating regression
LR-REG-ALL-CEN100-LINc No No Censored Time 1 linear regression for censored targets
LR-REG-ALL-CEN100-SVRc No No Censored Time 1 support vector regression for censored targets
LR-REG-MCD-AVE050-MED No Yes Estimated time 0.5 Use median survival time
LR-REG-MCD-AVE050-AVE No Yes Estimated time 0.5 Use average survival time
LR-REG-MCD-AVE050-LIN No Yes Estimated time 0.5 linear regression
LR-REG-MCD-AVE050-SVR No Yes Estimated time 0.5 support vector regression
LR-REG-MCD-AVE050-RT No Yes Estimated time 0.5 regression trees
LR-REG-MCD-AVE050-GAT No Yes Estimated time 0.5 gating regression
LR-REG-MCD-CEN050-LINc No Yes Censored Time 0.5 linear regression for censored targets
LR-REG-MCD-CEN050-SVRc No Yes Censored Time 0.5 support vector regression for censored targets
LR-REG-MCD-AVE100-MED No Yes Estimated time 1 Use median survival time
LR-REG-MCD-AVE100-AVE No Yes Estimated time 1 Use average survival time
LR-REG-MCD-AVE100-LIN No Yes Estimated time 1 linear regression
LR-REG-MCD-AVE100-SVR No Yes Estimated time 1 support vector regression
LR-REG-MCD-AVE100-RT No Yes Estimated time 1 regression trees
LR-REG-MCD-AVE100-GAT No Yes Estimated time 1 gating regression
LR-REG-MCD-CEN100-LINc No Yes Censored Time 1 linear regression for censored targets
LR-REG-MCD-CEN100-SVRc No Yes Censored Time 1 support vector regression for censored targets
LR-LOG-ALL-AVE050-MED Yes No Estimated time 0.5 Use median survival time
LR-LOG-ALL-AVE050-AVE Yes No Estimated time 0.5 Use average survival time
LR-LOG-ALL-AVE050-LIN Yes No Estimated time 0.5 linear regression
LR-LOG-ALL-AVE050-SVR Yes No Estimated time 0.5 support vector regression
LR-LOG-ALL-AVE050-RT Yes No Estimated time 0.5 regression trees
LR-LOG-ALL-AVE050-GAT Yes No Estimated time 0.5 gating regression
LR-LOG-ALL-CEN050-LINc Yes No Censored Time 0.5 linear regression for censored targets
LR-LOG-ALL-CEN050-SVRc Yes No Censored Time 0.5 support vector regression for censored targets
LR-LOG-ALL-AVE100-MED Yes No Estimated time 1 Use median survival time
LR-LOG-ALL-AVE100-AVE Yes No Estimated time 1 Use average survival time
LR-LOG-ALL-AVE100-LIN Yes No Estimated time 1 linear regression
LR-LOG-ALL-AVE100-SVR Yes No Estimated time 1 support vector regression
LR-LOG-ALL-AVE100-RT Yes No Estimated time 1 regression trees
LR-LOG-ALL-AVE100-GAT Yes No Estimated time 1 gating regression
LR-LOG-ALL-CEN100-LINc Yes No Censored Time 1 linear regression for censored targets
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LR-LOG-ALL-CEN100-SVRc Yes No Censored Time 1 support vector regression for censored targets
LR-LOG-MCD-AVE050-MED Yes Yes Estimated time 0.5 Use median survival time
LR-LOG-MCD-AVE050-AVE Yes Yes Estimated time 0.5 Use average survival time
LR-LOG-MCD-AVE050-LIN Yes Yes Estimated time 0.5 linear regression
LR-LOG-MCD-AVE050-SVR Yes Yes Estimated time 0.5 support vector regression
LR-LOG-MCD-AVE050-RT Yes Yes Estimated time 0.5 regression trees
LR-LOG-MCD-AVE050-GAT Yes Yes Estimated time 0.5 gating regression
LR-LOG-MCD-CEN050-LINc Yes Yes Censored Time 0.5 linear regression for censored targets
LR-LOG-MCD-CEN050-SVRc Yes Yes Censored Time 0.5 support vector regression for censored targets
LR-LOG-MCD-AVE100-MED Yes Yes Estimated time 1 Use median survival time
LR-LOG-MCD-AVE100-AVE Yes Yes Estimated time 1 Use average survival time
LR-LOG-MCD-AVE100-LIN Yes Yes Estimated time 1 linear regression
LR-LOG-MCD-AVE100-SVR Yes Yes Estimated time 1 support vector regression
LR-LOG-MCD-AVE100-RT Yes Yes Estimated time 1 regression trees
LR-LOG-MCD-AVE100-GAT Yes Yes Estimated time 1 gating regression
LR-LOG-MCD-CEN100-LINc Yes Yes Censored Time 1 linear regression for censored targets
LR-LOG-MCD-CEN100-SVRc Yes Yes Censored Time 1 support vector regression for censored targets

Grouping Method: CART with gain-ratio as splitting criterion
GR-REG-ALL-AVE050-MED No No Estimated time 0.5 Use median survival time
GR-REG-ALL-AVE050-AVE No No Estimated time 0.5 Use average survival time
GR-REG-ALL-AVE050-LIN No No Estimated time 0.5 linear regression
GR-REG-ALL-AVE050-SVR No No Estimated time 0.5 support vector regression
GR-REG-ALL-AVE050-RT No No Estimated time 0.5 regression trees
GR-REG-ALL-AVE050-GAT No No Estimated time 0.5 gating regression
GR-REG-ALL-CEN050-LINc No No Censored Time 0.5 linear regression for censored targets
GR-REG-ALL-CEN050-SVRc No No Censored Time 0.5 support vector regression for censored targets
GR-REG-ALL-AVE100-MED No No Estimated time 1 Use median survival time
GR-REG-ALL-AVE100-AVE No No Estimated time 1 Use average survival time
GR-REG-ALL-AVE100-LIN No No Estimated time 1 linear regression
GR-REG-ALL-AVE100-SVR No No Estimated time 1 support vector regression
GR-REG-ALL-AVE100-RT No No Estimated time 1 regression trees
GR-REG-ALL-AVE100-GAT No No Estimated time 1 gating regression
GR-REG-ALL-CEN100-LINc No No Censored Time 1 linear regression for censored targets
GR-REG-ALL-CEN100-SVRc No No Censored Time 1 support vector regression for censored targets
GR-REG-MCD-AVE050-MED No Yes Estimated time 0.5 Use median survival time
GR-REG-MCD-AVE050-AVE No Yes Estimated time 0.5 Use average survival time
GR-REG-MCD-AVE050-LIN No Yes Estimated time 0.5 linear regression
GR-REG-MCD-AVE050-SVR No Yes Estimated time 0.5 support vector regression
GR-REG-MCD-AVE050-RT No Yes Estimated time 0.5 regression trees
GR-REG-MCD-AVE050-GAT No Yes Estimated time 0.5 gating regression
GR-REG-MCD-CEN050-LINc No Yes Censored Time 0.5 linear regression for censored targets
GR-REG-MCD-CEN050-SVRc No Yes Censored Time 0.5 support vector regression for censored targets
GR-REG-MCD-AVE100-MED No Yes Estimated time 1 Use median survival time
GR-REG-MCD-AVE100-AVE No Yes Estimated time 1 Use average survival time
GR-REG-MCD-AVE100-LIN No Yes Estimated time 1 linear regression
GR-REG-MCD-AVE100-SVR No Yes Estimated time 1 support vector regression
GR-REG-MCD-AVE100-RT No Yes Estimated time 1 regression trees
GR-REG-MCD-AVE100-GAT No Yes Estimated time 1 gating regression
GR-REG-MCD-CEN100-LINc No Yes Censored Time 1 linear regression for censored targets
GR-REG-MCD-CEN100-SVRc No Yes Censored Time 1 support vector regression for censored targets
GR-LOG-ALL-AVE050-MED Yes No Estimated time 0.5 Use median survival time
GR-LOG-ALL-AVE050-AVE Yes No Estimated time 0.5 Use average survival time
GR-LOG-ALL-AVE050-LIN Yes No Estimated time 0.5 linear regression
GR-LOG-ALL-AVE050-SVR Yes No Estimated time 0.5 support vector regression
GR-LOG-ALL-AVE050-RT Yes No Estimated time 0.5 regression trees
GR-LOG-ALL-AVE050-GAT Yes No Estimated time 0.5 gating regression
GR-LOG-ALL-CEN050-LINc Yes No Censored Time 0.5 linear regression for censored targets
GR-LOG-ALL-CEN050-SVRc Yes No Censored Time 0.5 support vector regression for censored targets
GR-LOG-ALL-AVE100-MED Yes No Estimated time 1 Use median survival time
GR-LOG-ALL-AVE100-AVE Yes No Estimated time 1 Use average survival time
GR-LOG-ALL-AVE100-LIN Yes No Estimated time 1 linear regression
GR-LOG-ALL-AVE100-SVR Yes No Estimated time 1 support vector regression
GR-LOG-ALL-AVE100-RT Yes No Estimated time 1 regression trees
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GR-LOG-ALL-AVE100-GAT Yes No Estimated time 1 gating regression
GR-LOG-ALL-CEN100-LINc Yes No Censored Time 1 linear regression for censored targets
GR-LOG-ALL-CEN100-SVRc Yes No Censored Time 1 support vector regression for censored targets
GR-LOG-MCD-AVE050-MED Yes Yes Estimated time 0.5 Use median survival time
GR-LOG-MCD-AVE050-AVE Yes Yes Estimated time 0.5 Use average survival time
GR-LOG-MCD-AVE050-LIN Yes Yes Estimated time 0.5 linear regression
GR-LOG-MCD-AVE050-SVR Yes Yes Estimated time 0.5 support vector regression
GR-LOG-MCD-AVE050-RT Yes Yes Estimated time 0.5 regression trees
GR-LOG-MCD-AVE050-GAT Yes Yes Estimated time 0.5 gating regression
GR-LOG-MCD-CEN050-LINc Yes Yes Censored Time 0.5 linear regression for censored targets
GR-LOG-MCD-CEN050-SVRc Yes Yes Censored Time 0.5 support vector regression for censored targets
GR-LOG-MCD-AVE100-MED Yes Yes Estimated time 1 Use median survival time
GR-LOG-MCD-AVE100-AVE Yes Yes Estimated time 1 Use average survival time
GR-LOG-MCD-AVE100-LIN Yes Yes Estimated time 1 linear regression
GR-LOG-MCD-AVE100-SVR Yes Yes Estimated time 1 support vector regression
GR-LOG-MCD-AVE100-RT Yes Yes Estimated time 1 regression trees
GR-LOG-MCD-AVE100-GAT Yes Yes Estimated time 1 gating regression
GR-LOG-MCD-CEN100-LINc Yes Yes Censored Time 1 linear regression for censored targets
GR-LOG-MCD-CEN100-SVRc Yes Yes Censored Time 1 support vector regression for censored targets

Table B.3: Experimental Results

Methods RAE CI RAE95 L1p<12 RAEp>12

BASELINE-MED 0.5891±0.01 0.5000±0.00 0.5638±0.01 undefined undefined
BASELINE-AVE 0.6081±0.00 0.5000±0.00 0.5875±0.00 undefined undefined

HANDCRAFT-LIN 0.5942±0.01 0.5090±0.01 0.5649±0.01 4.8967±1.08 0.5863±0.01
HANDCRAFT-SVR 0.6067±0.00 0.5090±0.01 0.5859±0.00 9.9984±4.00 9.7233±4.55
NG-CEN100-ALL-REG-LIN 0.5592±0.02 0.7442±0.01 0.5220±0.02 4.2071±0.25 0.5403±0.01
NG-CEN100-ALL-REG-SVR 0.5582±0.03 0.7434±0.01 0.5287±0.03 4.9575±0.41 0.5434±0.02
NG-CEN100-ALL-REG-RT 0.5601±0.02 0.7483±0.02 0.5266±0.01 4.7212±0.81 0.5438±0.01
NG-REG-ALL-AVE050-LIN 0.5524±0.02 0.7498±0.01 0.5102±0.02 4.1004±0.22 0.5257±0.01
NG-REG-ALL-AVE050-SVR 0.5538±0.04 0.7493±0.01 0.4980±0.02 4.1903±0.39 0.5152±0.02
NG-REG-ALL-AVE050-RT 0.5630±0.04 0.7517±0.01 0.5225±0.02 5.1055±1.06 0.5281±0.02
NG-REG-ALL-AVE050-MED 0.5912±0.01 0.5000±0.00 0.5667±0.01 undefined undefined
NG-REG-ALL-CEN050-LINc 0.6252±0.04 0.7497±0.01 0.5526±0.03 4.0587±0.39 0.5321±0.02
NG-REG-ALL-CEN050-SVRc 0.5890±0.03 0.7499±0.01 0.5513±0.02 4.5743±0.35 0.5661±0.02
NG-REG-ALL-AVE050-AVE 0.6114±0.00 0.5000±0.00 0.5914±0.01 undefined undefined
NG-REG-ALL-AVE050-GAT 0.5622±0.02 0.7448±0.01 0.5152±0.02 4.5236±0.46 0.5274±0.02
NG-REG-ALL-AVE100-LIN 0.5621±0.02 0.7446±0.01 0.5278±0.02 4.3505±0.20 0.5424±0.01
NG-REG-ALL-AVE100-SVR 0.5468±0.03 0.7432±0.01 0.5092±0.02 3.9596±0.47 0.5267±0.02
NG-REG-ALL-AVE100-RT 0.5717±0.03 0.7452±0.02 0.5377±0.02 5.0832±0.89 0.5510±0.02
NG-REG-ALL-AVE100-MED 0.5912±0.01 0.5000±0.00 0.5667±0.01 undefined undefined
NG-REG-ALL-CEN100-LINc 0.5589±0.02 0.7445±0.01 0.5215±0.02 4.1591±0.29 0.5405±0.01
NG-REG-ALL-CEN100-SVRc 0.5751±0.03 0.7499±0.01 0.5409±0.03 4.6095±0.54 0.5590±0.03
NG-REG-ALL-AVE100-AVE 0.6114±0.00 0.5000±0.00 0.5914±0.01 undefined undefined
NG-REG-ALL-AVE100-GAT 0.5669±0.01 0.7456±0.01 0.5315±0.01 4.5456±0.51 0.5470±0.01
NG-REG-MCD-AVE050-LIN 0.5506±0.03 0.7498±0.01 0.5085±0.02 4.1940±0.43 0.5227±0.02
NG-REG-MCD-AVE050-SVR 0.5503±0.04 0.7501±0.01 0.4953±0.02 4.1312±0.40 0.5125±0.03
NG-REG-MCD-AVE050-RT 0.5619±0.03 0.7552±0.01 0.5180±0.02 5.2004±0.66 0.5175±0.02
NG-REG-MCD-AVE050-MED 0.5893±0.00 0.5000±0.00 0.5650±0.00 undefined undefined
NG-REG-MCD-CEN050-LINc 0.6026±0.04 0.7575±0.01 0.5357±0.03 4.0014±0.36 0.5169±0.03
NG-REG-MCD-CEN050-SVRc 0.5510±0.03 0.7547±0.01 0.5137±0.03 4.1875±0.47 0.5235±0.03
NG-REG-MCD-AVE050-AVE 0.6091±0.01 0.5000±0.00 0.5888±0.01 undefined undefined
NG-REG-MCD-AVE050-GAT 0.5556±0.02 0.7502±0.01 0.5107±0.02 4.9558±0.31 0.5125±0.02
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NG-REG-MCD-AVE100-LIN 0.5586±0.02 0.7421±0.01 0.5256±0.01 4.2028±0.38 0.5454±0.01
NG-REG-MCD-AVE100-SVR 0.5479±0.03 0.7418±0.01 0.5074±0.02 3.9782±0.43 0.5267±0.02
NG-REG-MCD-AVE100-RT 0.5688±0.03 0.7452±0.02 0.5348±0.02 4.5674±0.79 0.5545±0.02
NG-REG-MCD-AVE100-MED 0.5900±0.01 0.5000±0.00 0.5654±0.01 undefined undefined
NG-REG-MCD-CEN100-LINc 0.5506±0.02 0.7518±0.01 0.5191±0.01 4.1870±0.34 0.5355±0.01
NG-REG-MCD-CEN100-SVRc 0.5766±0.02 0.7530±0.01 0.5477±0.01 4.8107±0.38 0.5621±0.01
NG-REG-MCD-AVE100-AVE 0.6114±0.01 0.5000±0.00 0.5915±0.01 undefined undefined
NG-REG-MCD-AVE100-GAT 0.5618±0.01 0.7483±0.02 0.5296±0.01 4.6106±0.59 0.5427±0.02
NG-LOG-ALL-AVE050-LIN 0.5568±0.05 0.7698±0.01 0.5010±0.04 4.4688±0.51 0.4937±0.04
NG-LOG-ALL-AVE050-SVR 0.5535±0.04 0.7658±0.01 0.5001±0.03 4.3953±0.48 0.4904±0.03
NG-LOG-ALL-AVE050-RT 0.5587±0.04 0.7591±0.01 0.5039±0.03 4.4559±0.33 0.5064±0.05
NG-LOG-ALL-AVE050-MED 0.5956±0.00 0.5000±0.00 0.5727±0.00 undefined undefined
NG-LOG-ALL-CEN050-LINc 0.6902±0.08 0.7666±0.01 0.5990±0.06 4.6232±0.68 0.5256±0.04
NG-LOG-ALL-CEN050-SVRc 0.5725±0.03 0.7629±0.01 0.5329±0.02 4.3343±0.38 0.5506±0.03
NG-LOG-ALL-AVE050-AVE 0.5841±0.01 0.5000±0.00 0.5531±0.01 undefined undefined
NG-LOG-ALL-AVE050-GAT 0.5956±0.00 0.5000±0.00 0.5727±0.00 undefined undefined
NG-LOG-ALL-AVE100-LIN 0.5380±0.04 0.7679±0.01 0.4929±0.03 4.4588±0.42 0.4955±0.03
NG-LOG-ALL-AVE100-SVR 0.5393±0.03 0.7641±0.01 0.4967±0.03 4.2782±0.32 0.5055±0.03
NG-LOG-ALL-AVE100-RT 0.5418±0.03 0.7580±0.01 0.4966±0.02 4.5625±0.36 0.5014±0.04
NG-LOG-ALL-AVE100-MED 0.5956±0.00 0.5000±0.00 0.5727±0.00 undefined undefined
NG-LOG-ALL-CEN100-LINc 0.5462±0.04 0.7678±0.01 0.4968±0.03 4.4718±0.49 0.4909±0.04
NG-LOG-ALL-CEN100-SVRc 0.5758±0.03 0.7624±0.01 0.5388±0.02 4.3558±0.33 0.5580±0.03
NG-LOG-ALL-AVE100-AVE 0.5841±0.01 0.5000±0.00 0.5531±0.01 undefined undefined
NG-LOG-ALL-AVE100-GAT 0.5392±0.03 0.7640±0.01 0.4952±0.02 4.2810±0.32 0.5049±0.03
NG-LOG-MCD-AVE050-LIN 0.5548±0.05 0.7687±0.01 0.5005±0.04 4.4726±0.60 0.4988±0.04
NG-LOG-MCD-AVE050-SVR 0.5513±0.04 0.7650±0.01 0.4979±0.03 4.3860±0.62 0.4950±0.03
NG-LOG-MCD-AVE050-RT 0.5682±0.05 0.7595±0.01 0.5153±0.04 4.6984±0.64 0.5105±0.03
NG-LOG-MCD-AVE050-MED 0.5939±0.01 0.5000±0.00 0.5707±0.01 undefined undefined
NG-LOG-MCD-CEN050-LINc 0.6870±0.09 0.7645±0.01 0.5964±0.07 4.6198±0.75 0.5329±0.05
NG-LOG-MCD-CEN050-SVRc 0.5755±0.04 0.7614±0.01 0.5335±0.03 4.3568±0.40 0.5531±0.04
NG-LOG-MCD-AVE050-AVE 0.5843±0.01 0.5000±0.00 0.5530±0.01 undefined undefined
NG-LOG-MCD-AVE050-GAT 0.5939±0.01 0.5000±0.00 0.5707±0.01 undefined undefined
NG-LOG-MCD-AVE100-LIN 0.5385±0.04 0.7649±0.01 0.4926±0.03 4.5260±0.46 0.4968±0.04
NG-LOG-MCD-AVE100-SVR 0.5376±0.03 0.7612±0.01 0.4955±0.03 4.3355±0.40 0.5064±0.03
NG-LOG-MCD-AVE100-RT 0.5536±0.03 0.7536±0.01 0.5073±0.02 4.6130±0.39 0.5140±0.02
NG-LOG-MCD-AVE100-MED 0.5956±0.01 0.5000±0.00 0.5725±0.01 undefined undefined
NG-LOG-MCD-CEN100-LINc 0.5468±0.05 0.7650±0.01 0.4964±0.04 4.3729±0.53 0.5013±0.04
NG-LOG-MCD-CEN100-SVRc 0.5755±0.04 0.7600±0.01 0.5347±0.03 4.3591±0.41 0.5555±0.03
NG-LOG-MCD-AVE100-AVE 0.5828±0.01 0.5000±0.00 0.5522±0.01 undefined undefined
NG-LOG-MCD-AVE100-GAT 0.5376±0.03 0.7612±0.01 0.4955±0.03 4.3355±0.39 0.5063±0.03

LR-REG-ALL-AVE050-LIN 0.5598±0.02 0.7421±0.01 0.5168±0.02 4.1554±0.32 0.5307±0.01
LR-REG-ALL-AVE050-SVR 0.5746±0.04 0.7400±0.01 0.5107±0.01 4.3420±0.19 0.5157±0.03
LR-REG-ALL-AVE050-RT 0.5679±0.02 0.7470±0.02 0.5265±0.02 5.1883±0.60 0.5297±0.02
LR-REG-ALL-AVE050-MED 0.6019±0.01 0.5251±0.01 0.5693±0.01 6.1599±0.65 0.5871±0.01
LR-REG-ALL-CEN050-LINc 0.6359±0.02 0.7453±0.01 0.5650±0.02 4.2453±0.43 0.5358±0.01
LR-REG-ALL-CEN050-SVRc 0.5801±0.02 0.7426±0.01 0.5307±0.01 4.2794±0.48 0.5378±0.03
LR-REG-ALL-AVE050-AVE 0.6120±0.01 0.5252±0.01 0.5887±0.01 9.1863±3.76 7.4443±5.58
LR-REG-ALL-AVE050-GAT 0.5705±0.01 0.7476±0.02 0.5213±0.01 4.6896±0.24 0.5300±0.02
LR-REG-ALL-AVE100-LIN 0.5649±0.02 0.7378±0.02 0.5312±0.02 4.0842±0.35 0.5495±0.01
LR-REG-ALL-AVE100-SVR 0.5674±0.03 0.7360±0.01 0.5238±0.02 4.0757±0.39 0.5337±0.02
LR-REG-ALL-AVE100-RT 0.5765±0.01 0.7393±0.02 0.5436±0.01 4.8189±0.39 0.5568±0.01
LR-REG-ALL-AVE100-MED 0.6019±0.01 0.5251±0.01 0.5693±0.01 6.1599±0.65 0.5871±0.01
LR-REG-ALL-CEN100-LINc 0.5618±0.02 0.7410±0.01 0.5252±0.02 3.9586±0.41 0.5480±0.01
LR-REG-ALL-CEN100-SVRc 0.5907±0.03 0.7424±0.01 0.5404±0.02 4.4074±0.40 0.5465±0.02
LR-REG-ALL-AVE100-AVE 0.6120±0.01 0.5252±0.01 0.5887±0.01 9.1863±3.76 7.4443±5.58

Continued on next page

106



Table B.3 – continued from previous page
Methods RAE CI RAE95 L1p<12 RAEp>12

LR-REG-ALL-AVE100-GAT 0.5777±0.02 0.7462±0.02 0.5405±0.02 4.8822±0.31 0.5475±0.01
LR-REG-MCD-AVE050-LIN 0.5573±0.02 0.7408±0.01 0.5138±0.01 4.1938±0.38 0.5312±0.01
LR-REG-MCD-AVE050-SVR 0.5823±0.04 0.7380±0.01 0.5135±0.02 4.3787±0.32 0.5204±0.02
LR-REG-MCD-AVE050-RT 0.5659±0.02 0.7527±0.01 0.5224±0.02 5.3885±0.82 0.5253±0.01
LR-REG-MCD-AVE050-MED 0.5963±0.01 0.5203±0.01 0.5684±0.01 7.5716±2.23 2.8711±4.56
LR-REG-MCD-CEN050-LINc 0.6248±0.03 0.7499±0.01 0.5500±0.02 4.1771±0.43 0.5213±0.03
LR-REG-MCD-CEN050-SVRc 0.5917±0.04 0.7447±0.01 0.5404±0.02 4.6512±0.52 0.5465±0.03
LR-REG-MCD-AVE050-AVE 0.6095±0.01 0.5203±0.01 0.5895±0.01 undefined undefined
LR-REG-MCD-AVE050-GAT 0.5662±0.02 0.7504±0.02 0.5189±0.01 4.9426±0.41 0.5264±0.02
LR-REG-MCD-AVE100-LIN 0.5660±0.02 0.7380±0.01 0.5308±0.02 4.1544±0.35 0.5469±0.01
LR-REG-MCD-AVE100-SVR 0.5675±0.04 0.7352±0.01 0.5179±0.02 4.0624±0.52 0.5328±0.02
LR-REG-MCD-AVE100-RT 0.5703±0.01 0.7412±0.02 0.5361±0.01 4.7079±0.60 0.5526±0.01
LR-REG-MCD-AVE100-MED 0.5955±0.01 0.5199±0.01 0.5670±0.00 7.5588±2.28 2.8694±4.57
LR-REG-MCD-CEN100-LINc 0.5595±0.02 0.7480±0.01 0.5223±0.01 4.1206±0.29 0.5364±0.01
LR-REG-MCD-CEN100-SVRc 0.5879±0.04 0.7467±0.01 0.5408±0.03 4.5890±0.67 0.5545±0.03
LR-REG-MCD-AVE100-AVE 0.6078±0.01 0.5198±0.01 0.5871±0.01 11.5172±0.97 9.7198±4.56
LR-REG-MCD-AVE100-GAT 0.5660±0.01 0.7493±0.02 0.5321±0.01 4.5930±0.72 0.5448±0.02
LR-LOG-ALL-AVE050-LIN 0.5677±0.05 0.7596±0.01 0.5087±0.04 4.4999±0.49 0.5007±0.04
LR-LOG-ALL-AVE050-SVR 0.5709±0.04 0.7540±0.02 0.5126±0.03 4.3872±0.33 0.5042±0.04
LR-LOG-ALL-AVE050-RT 0.5839±0.04 0.7575±0.01 0.5239±0.03 4.7084±0.52 0.5170±0.03
LR-LOG-ALL-AVE050-MED 0.6053±0.01 0.5251±0.01 0.5744±0.01 6.1516±0.66 0.5927±0.01
LR-LOG-ALL-CEN050-LINc 0.7093±0.08 0.7624±0.01 0.6135±0.07 4.7654±0.73 0.5297±0.03
LR-LOG-ALL-CEN050-SVRc 0.5844±0.03 0.7545±0.01 0.5400±0.02 4.4038±0.31 0.5414±0.03
LR-LOG-ALL-AVE050-AVE 0.5925±0.01 0.5253±0.01 0.5560±0.01 5.8892±0.62 0.5784±0.01
LR-LOG-ALL-AVE050-GAT 0.6016±0.01 0.5271±0.01 0.5720±0.01 4.9960±1.36 0.5924±0.01
LR-LOG-ALL-AVE100-LIN 0.5532±0.04 0.7588±0.01 0.5032±0.03 4.5052±0.44 0.5017±0.03
LR-LOG-ALL-AVE100-SVR 0.5607±0.03 0.7535±0.01 0.5095±0.02 4.3449±0.25 0.5158±0.03
LR-LOG-ALL-AVE100-RT 0.5666±0.03 0.7552±0.01 0.5145±0.02 4.7231±0.49 0.5162±0.03
LR-LOG-ALL-AVE100-MED 0.6053±0.01 0.5251±0.01 0.5744±0.01 6.1516±0.66 0.5927±0.01
LR-LOG-ALL-CEN100-LINc 0.5578±0.04 0.7635±0.01 0.5064±0.03 4.4927±0.47 0.4982±0.03
LR-LOG-ALL-CEN100-SVRc 0.5835±0.03 0.7547±0.01 0.5400±0.02 4.3538±0.28 0.5449±0.03
LR-LOG-ALL-AVE100-AVE 0.5925±0.01 0.5253±0.01 0.5560±0.01 5.8892±0.62 0.5784±0.01
LR-LOG-ALL-AVE100-GAT 0.5480±0.03 0.7591±0.01 0.5049±0.02 4.3366±0.25 0.5128±0.03
LR-LOG-MCD-AVE050-LIN 0.5676±0.05 0.7650±0.01 0.5085±0.04 4.5858±0.61 0.4992±0.04
LR-LOG-MCD-AVE050-SVR 0.5729±0.04 0.7582±0.01 0.5129±0.03 4.4462±0.37 0.5025±0.03
LR-LOG-MCD-AVE050-RT 0.5749±0.03 0.7583±0.01 0.5132±0.02 4.7314±0.29 0.5064±0.03
LR-LOG-MCD-AVE050-MED 0.6054±0.01 0.5180±0.01 0.5746±0.01 8.4429±4.26 0.5936±0.01
LR-LOG-MCD-CEN050-LINc 0.7219±0.08 0.7630±0.01 0.6175±0.06 4.9132±0.94 0.5288±0.02
LR-LOG-MCD-CEN050-SVRc 0.5952±0.04 0.7564±0.01 0.5486±0.04 4.3462±0.35 0.5584±0.04
LR-LOG-MCD-AVE050-AVE 0.5927±0.01 0.5180±0.01 0.5567±0.01 8.3889±4.48 0.5808±0.01
LR-LOG-MCD-AVE050-GAT 0.6006±0.01 0.5193±0.01 0.5700±0.01 7.8540±4.85 0.5914±0.01
LR-LOG-MCD-AVE100-LIN 0.5518±0.04 0.7581±0.01 0.4992±0.03 4.5228±0.49 0.4984±0.03
LR-LOG-MCD-AVE100-SVR 0.5626±0.04 0.7548±0.01 0.5057±0.02 4.4316±0.28 0.5108±0.03
LR-LOG-MCD-AVE100-RT 0.5616±0.03 0.7533±0.01 0.5106±0.02 4.9125±0.52 0.5116±0.02
LR-LOG-MCD-AVE100-MED 0.6007±0.01 0.5180±0.01 0.5721±0.01 7.8465±2.48 0.5917±0.00
LR-LOG-MCD-CEN100-LINc 0.5601±0.04 0.7603±0.01 0.5058±0.03 4.4828±0.44 0.5007±0.04
LR-LOG-MCD-CEN100-SVRc 0.6044±0.04 0.7530±0.01 0.5507±0.02 4.6020±0.44 0.5563±0.02
LR-LOG-MCD-AVE100-AVE 0.5878±0.01 0.5182±0.01 0.5531±0.01 7.4040±2.70 0.5772±0.01
LR-LOG-MCD-AVE100-GAT 0.5533±0.03 0.7577±0.01 0.5043±0.02 4.5273±0.23 0.5098±0.03

GR-REG-ALL-AVE050-LIN 0.5874±0.04 0.7296±0.02 0.5389±0.03 4.3272±0.81 0.5423±0.02
GR-REG-ALL-AVE050-SVR 0.6277±0.06 0.7237±0.01 0.5518±0.03 4.6823±0.85 0.5327±0.01
GR-REG-ALL-AVE050-RT 0.5689±0.02 0.7305±0.01 0.5263±0.02 5.1001±0.51 0.5312±0.01
GR-REG-ALL-AVE050-MED 0.5897±0.00 0.5576±0.02 0.5642±0.00 undefined undefined
GR-REG-ALL-CEN050-LINc 0.6826±0.05 0.7249±0.02 0.5998±0.04 4.7162±0.70 0.5484±0.02
GR-REG-ALL-CEN050-SVRc 0.6259±0.07 0.7182±0.01 0.5665±0.04 4.6510±0.90 0.5667±0.01
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GR-REG-ALL-AVE050-AVE 0.6075±0.00 0.5823±0.01 0.5873±0.00 undefined undefined
GR-REG-ALL-AVE050-GAT 0.5797±0.02 0.7266±0.02 0.5335±0.02 4.5583±0.44 0.5450±0.02
GR-REG-ALL-AVE100-LIN 0.5848±0.02 0.7267±0.02 0.5467±0.02 4.2784±0.54 0.5622±0.02
GR-REG-ALL-AVE100-SVR 0.6180±0.04 0.7183±0.01 0.5546±0.02 4.5905±0.53 0.5555±0.01
GR-REG-ALL-AVE100-RT 0.5827±0.01 0.7302±0.01 0.5464±0.01 5.2116±0.46 0.5554±0.01
GR-REG-ALL-AVE100-MED 0.5897±0.00 0.5576±0.02 0.5642±0.00 undefined undefined
GR-REG-ALL-CEN100-LINc 0.5852±0.03 0.7269±0.02 0.5445±0.02 4.2130±0.71 0.5576±0.02
GR-REG-ALL-CEN100-SVRc 0.6240±0.05 0.7190±0.01 0.5570±0.02 4.6325±0.63 0.5506±0.01
GR-REG-ALL-AVE100-AVE 0.6075±0.00 0.5823±0.01 0.5873±0.00 undefined undefined
GR-REG-ALL-AVE100-GAT 0.5822±0.02 0.7252±0.01 0.5412±0.02 4.3555±0.51 0.5630±0.01
GR-REG-MCD-AVE050-LIN 0.5811±0.03 0.7329±0.02 0.5341±0.03 4.2990±0.60 0.5405±0.02
GR-REG-MCD-AVE050-SVR 0.6260±0.07 0.7262±0.01 0.5471±0.04 4.4300±0.67 0.5358±0.02
GR-REG-MCD-AVE050-RT 0.5700±0.03 0.7309±0.01 0.5281±0.03 5.0089±0.41 0.5318±0.02
GR-REG-MCD-AVE050-MED 0.5896±0.00 0.5599±0.02 0.5643±0.00 undefined undefined
GR-REG-MCD-CEN050-LINc 0.6514±0.05 0.7356±0.02 0.5774±0.04 4.4634±0.65 0.5368±0.02
GR-REG-MCD-CEN050-SVRc 0.6122±0.05 0.7241±0.01 0.5619±0.03 4.7127±0.82 0.5564±0.02
GR-REG-MCD-AVE050-AVE 0.6072±0.00 0.5737±0.02 0.5865±0.00 undefined undefined
GR-REG-MCD-AVE050-GAT 0.5983±0.02 0.7178±0.01 0.5424±0.01 4.5478±0.60 0.5553±0.01
GR-REG-MCD-AVE100-LIN 0.5863±0.02 0.7247±0.01 0.5436±0.02 4.1399±0.60 0.5641±0.01
GR-REG-MCD-AVE100-SVR 0.6011±0.04 0.7194±0.01 0.5483±0.03 4.5700±0.76 0.5504±0.02
GR-REG-MCD-AVE100-RT 0.5829±0.01 0.7263±0.01 0.5486±0.01 5.2569±0.59 0.5577±0.01
GR-REG-MCD-AVE100-MED 0.5902±0.00 0.5595±0.02 0.5648±0.00 undefined undefined
GR-REG-MCD-CEN100-LINc 0.5859±0.04 0.7329±0.01 0.5381±0.03 4.3004±0.88 0.5558±0.02
GR-REG-MCD-CEN100-SVRc 0.6303±0.10 0.7216±0.01 0.5565±0.07 4.4155±0.96 0.5482±0.02
GR-REG-MCD-AVE100-AVE 0.6089±0.01 0.5783±0.02 0.5888±0.01 undefined undefined
GR-REG-MCD-AVE100-GAT 0.5935±0.02 0.7249±0.01 0.5485±0.01 4.4011±0.51 0.5625±0.01
GR-LOG-ALL-AVE050-LIN 0.5864±0.06 0.7545±0.02 0.5194±0.04 4.6709±0.50 0.5128±0.03
GR-LOG-ALL-AVE050-SVR 0.6022±0.07 0.7478±0.02 0.5325±0.04 4.7410±0.46 0.5132±0.03
GR-LOG-ALL-AVE050-RT 0.5804±0.05 0.7452±0.02 0.5207±0.04 4.6454±0.49 0.5170±0.03
GR-LOG-ALL-AVE050-MED 0.5918±0.00 0.5554±0.02 0.5679±0.00 undefined undefined
GR-LOG-ALL-CEN050-LINc 0.7333±0.09 0.7430±0.02 0.6355±0.07 4.9521±0.66 0.5530±0.04
GR-LOG-ALL-CEN050-SVRc 0.6470±0.08 0.7357±0.02 0.5784±0.05 4.7968±0.73 0.5678±0.03
GR-LOG-ALL-AVE050-AVE 0.5845±0.01 0.5863±0.03 0.5524±0.01 undefined undefined
GR-LOG-ALL-AVE050-GAT 0.5918±0.00 0.5554±0.02 0.5679±0.00 undefined undefined
GR-LOG-ALL-AVE100-LIN 0.5657±0.05 0.7535±0.02 0.5127±0.04 4.5285±0.48 0.5178±0.03
GR-LOG-ALL-AVE100-SVR 0.5829±0.05 0.7458±0.02 0.5258±0.03 4.5575±0.51 0.5311±0.03
GR-LOG-ALL-AVE100-RT 0.5697±0.03 0.7424±0.02 0.5179±0.03 4.7563±0.37 0.5134±0.02
GR-LOG-ALL-AVE100-MED 0.5918±0.00 0.5554±0.02 0.5679±0.00 undefined undefined
GR-LOG-ALL-CEN100-LINc 0.5776±0.05 0.7532±0.02 0.5167±0.04 4.6082±0.46 0.5172±0.03
GR-LOG-ALL-CEN100-SVRc 0.5946±0.06 0.7460±0.02 0.5299±0.04 4.6517±0.59 0.5250±0.03
GR-LOG-ALL-AVE100-AVE 0.5845±0.01 0.5863±0.03 0.5524±0.01 undefined undefined
GR-LOG-ALL-AVE100-GAT 0.6071±0.03 0.6718±0.04 0.5528±0.01 5.0383±0.42 0.5631±0.02
GR-LOG-MCD-AVE050-LIN 0.5838±0.06 0.7561±0.02 0.5190±0.04 4.7824±0.72 0.5047±0.02
GR-LOG-MCD-AVE050-SVR 0.5978±0.06 0.7449±0.01 0.5288±0.04 4.8247±0.50 0.5042±0.03
GR-LOG-MCD-AVE050-RT 0.5872±0.04 0.7430±0.02 0.5241±0.04 4.8171±0.54 0.5152±0.04
GR-LOG-MCD-AVE050-MED 0.5909±0.00 0.5596±0.02 0.5671±0.01 undefined undefined
GR-LOG-MCD-CEN050-LINc 0.7387±0.09 0.7479±0.02 0.6375±0.07 4.9236±0.83 0.5589±0.04
GR-LOG-MCD-CEN050-SVRc 0.6246±0.07 0.7387±0.02 0.5674±0.05 4.6752±0.55 0.5617±0.04
GR-LOG-MCD-AVE050-AVE 0.5826±0.01 0.5871±0.03 0.5504±0.01 undefined undefined
GR-LOG-MCD-AVE050-GAT 0.5909±0.00 0.5596±0.02 0.5671±0.01 undefined undefined
GR-LOG-MCD-AVE100-LIN 0.5593±0.04 0.7460±0.02 0.5056±0.04 4.5079±0.65 0.5196±0.03
GR-LOG-MCD-AVE100-SVR 0.5751±0.04 0.7388±0.02 0.5221±0.03 4.6645±0.64 0.5334±0.02
GR-LOG-MCD-AVE100-RT 0.5599±0.03 0.7390±0.02 0.5055±0.03 4.7115±0.47 0.5165±0.02
GR-LOG-MCD-AVE100-MED 0.5840±0.00 0.5629±0.03 0.5595±0.01 undefined undefined
GR-LOG-MCD-CEN100-LINc 0.5709±0.05 0.7468±0.02 0.5085±0.04 4.7050±0.65 0.5139±0.02
GR-LOG-MCD-CEN100-SVRc 0.5890±0.05 0.7382±0.02 0.5274±0.04 4.6331±0.58 0.5324±0.03
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Methods RAE CI RAE95 L1p<12 RAEp>12

GR-LOG-MCD-AVE100-AVE 0.5776±0.00 0.5989±0.04 0.5453±0.01 undefined undefined
GR-LOG-MCD-AVE100-GAT 0.5856±0.03 0.6689±0.04 0.5419±0.02 4.7328±0.62 0.5582±0.02
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Table B.4: A Visualization of a decision tree
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Table B.4 – continued from previous page
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B.3 Best Results

Table B.5: Top 10 models
Statistical Results of the Top 10 models

Regressor RAE CI RAE95 L1p<12 RAEp>12

NG-LOG-MCD-AVE100-GAT 0.5376±0.03 0.7612±0.01 0.4955±0.03 4.3355±0.39 0.5063±0.03
NG-LOG-MCD-AVE100-SVR 0.5376±0.03 0.7612±0.01 0.4955±0.03 4.3355±0.40 0.5064±0.03
NG-LOG-ALL-AVE100-LIN 0.5380±0.04 0.7679±0.01 0.4929±0.03 4.4588±0.42 0.4955±0.03
NG-LOG-MCD-AVE100-LIN 0.5385±0.04 0.7649±0.01 0.4926±0.03 4.5260±0.46 0.5068±0.04
NG-LOG-ALL-AVE100-GAT 0.5392±0.03 0.7640±0.01 0.4952±0.02 4.2810±0.32 0.5049±0.03
NG-LOG-ALL-AVE100-SVR 0.5393±0.03 0.7641±0.01 0.4967±0.03 4.2782±0.32 0.5055±0.03
NG-LOG-ALL-AVE100-RT 0.5418±0.03 0.7580±0.01 0.4966±0.02 4.5625±0.36 0.5014±0.04
NG-LOG-ALL-CEN100-LINc 0.5462±0.04 0.7678±0.01 0.4968±0.03 4.4718±0.49 0.4909±0.04
NG-LOG-MCD-AVE100-LINc 0.5468±0.05 0.7650±0.01 0.4964±0.04 4.3729±0.53 0.5013±0.04
NG-REG-ALL-AVE100-SVR 0.5468±0.03 0.7432±0.01 0.5092±0.02 3.9596±0.47 0.5267±0.02

Generalization of the Best Combination
Grouping Method: No grouping
Log-space Transformation: Yes
Outliers Detection: MCD (Mahalanobis Distance with MCD estimator)
Handling Censored Data: take average survival time of uncensored patients in the risk set
Learning Algorithm: gating regression, support vector regression, or linear regression
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Table B.7: Parameters

β X
Linear Regression

2.34 GENDER=FEMALE
0.65 BOX2-SCORE

-1.73 PERFORMANCE-STATUS-2
-2.87 PERFORMANCE-STATUS-3
-4.99 PERFORMANCE-STATUS-4
0.19 BMI

-1.46 NO-PROBLEM
1.5 NO-APPETITE

1.64 PAIN
2.19 DRY-MOUTH

-0.39 WEIGHT-CHANGEPOINT
-8.68 SITE-BRUNCHUS-LUNG
2.52 SITE-COLORECTAL
2.56 SITE-HEAD-AND-NECK

-4.73 SITE-PANCREAS
16.71 STAGE-1
17.89 STAGE-2
12.77 STAGE-3
-0.13 AGE

-0.8 GRANULOCYTES
0 LDH-SERUM

0.15 WBC-COUNT
0.04 HGB
0.36 ALBUMIN
8.59

Support Vector Regression
0.08 (standardized) GENDER

-0.04 (standardized) BOX1-SCORE
0.02 (standardized) BOX2-SCORE

-0.02 (standardized) PERFORMANCE-STATUS-1
-0.02 (standardized) PERFORMANCE-STATUS-2
-0.05 (standardized) PERFORMANCE-STATUS-3
-0.03 (standardized) PERFORMANCE-STATUS-4
0.06 (standardized) BMI

-0.06 (standardized) NO-PROBLEM
0.06 (standardized) NO-APPETITE

-0.01 (standardized) NAUSEA
-0.03 (standardized) CONSTIPATION

0 (standardized) SORE-MOUTH
0 (standardized) TASTE-FUNNY

0.03 (standardized) SMELL
0 (standardized) SWALLOW

-0.02 (standardized) FEEL-FULL
0.05 (standardized) PAIN

-0.01 (standardized) OTHER
0.01 (standardized) VOMIT
0.01 (standardized) DIARRHEA
0.04 (standardized) DRY-MOUTH

Continued on next page
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Table B.7 – continued from previous page
β X

0.04 (standardized) DENTAL-PROBLEM
-0.01 (standardized) AGE65
0.03 (standardized) WEIGHT-CHANGEPOINT

-0.16 (standardized) SITE-BRUNCHUS-LUNG
0.14 (standardized) SITE-COLORECTAL

0.1 (standardized) SITE-HEAD-AND-NECK
0 (standardized) SITE-ESOPHAGUS

-0.07 (standardized) SITE-PANCREAS
-0.01 (standardized) SITE-STOMACH

0 (standardized) SITE-OTHER-DIGESTIVE
0 (standardized) MISC

0.15 (standardized) STAGE-1
0.31 (standardized) STAGE-2
0.25 (standardized) STAGE-3

-0.07 (standardized) AGE
-0.12 (standardized) GRANULOCYTES
-0.09 (standardized) LDH-SERUM
-0.02 (standardized) LYMPHOCYTES
0.01 (standardized) PLATELET
0.01 (standardized) WBC-COUNT

-0.01 (standardized) CALCIUM-SERUM
0.03 (standardized) HGB

0 (standardized) CREATININE-SERUM
0.09 (standardized) ALBUMIN

-0.11
Regression Trees

G1: SITE-COLORECTAL == 0
-0.47 BOX1-SCORE
0.65 BOX2-SCORE

0 BMI
-3.53 NO-PROBLEM
3.48 DRY-MOUTH

-0.53 WEIGHT-CHANGEPOINT
0.13 SITE-COLORECTAL
6.34 SITE-HEAD-AND-NECK
0.24 STAGE-2
0.15 STAGE-3

-0.13 AGE
-0.7 GRANULOCYTES

0 LDH-SERUM
1.54 LYMPHOCYTES
0.45 ALBUMIN

10.71
G2: SITE-COLORECTAL == 1

-0.01 BOX1-SCORE
-1.06 BOX2-SCORE
0.34 BMI

-0.05 NO-PROBLEM
3.49 FEEL-FULL
0.06 DRY-MOUTH
0.18 SITE-COLORECTAL

Continued on next page
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β X

0.16 SITE-HEAD-AND-NECK
23.03 STAGE-2
22.32 STAGE-3
-0.12 AGE
-0.84 GRANULOCYTES

0 LDH-SERUM
0.01 LYMPHOCYTES

-5.62 CALCIUM-SERUM
0.05 HGB
0.43 ALBUMIN
15.8

Linear Regression for Censored Targets
3.91 GENDER=FEMALE

-2.34 PERFORMANCE-STATUS-2
-4.01 PERFORMANCE-STATUS-3
0.15 BMI

-2.99 NO-PROBLEM
2.5 PAIN

2.94 DRY-MOUTH
3.21 DENTAL-PROBLEM

-10.48 SITE-BRUNCHUS-LUNG
2 SITE-COLORECTAL

4.79 SITE-HEAD-AND-NECK
-9.27 SITE-PANCREAS
21.98 STAGE-1
19.34 STAGE-2
13.15 STAGE-3
-0.18 AGE +
-1.59 GRANULOCYTES

0 LDH-SERUM
0.46 WBC-COUNT
0.07 HGB
0.65 ALBUMIN
0.03

Linear Regression for Censored Targets
0.11 (standardized) GENDER

-0.09 (standardized) BOX1-SCORE
0.01 (standardized) BOX2-SCORE

-0.03 (standardized) PERFORMANCE-STATUS-1
-0.03 (standardized) PERFORMANCE-STATUS-2
-0.06 (standardized) PERFORMANCE-STATUS-3
-0.02 (standardized) PERFORMANCE-STATUS-4
0.08 (standardized) BMI

-0.06 (standardized) NO-PROBLEM
0.03 (standardized) NO-APPETITE

-0.01 (standardized) NAUSEA
-0.03 (standardized) CONSTIPATION

0 (standardized) SORE-MOUTH
0.01 (standardized) TASTE-FUNNY
0.02 (standardized) SMELL

Continued on next page
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Table B.7 – continued from previous page
β X

-0.02 (standardized) SWALLOW
-0.01 (standardized) FEEL-FULL
0.07 (standardized) PAIN

0 (standardized) OTHER
-0.01 (standardized) VOMIT
-0.01 (standardized) DIARRHEA
0.04 (standardized) DRY-MOUTH
0.03 (standardized) DENTAL-PROBLEM

0 (standardized) AGE65
0.08 (standardized) WEIGHT-CHANGEPOINT

-0.17 (standardized) SITE-BRUNCHUS-LUNG
0.12 (standardized) SITE-COLORECTAL
0.13 (standardized) SITE-HEAD-AND-NECK

0 (standardized) SITE-ESOPHAGUS
-0.07 (standardized) SITE-PANCREAS
-0.02 (standardized) SITE-STOMACH

0 (standardized) SITE-OTHER-DIGESTIVE
0.03 (standardized) MISC
0.16 (standardized) STAGE-1
0.35 (standardized) STAGE-2
0.21 (standardized) STAGE-3

-0.08 (standardized) AGE
-0.13 (standardized) GRANULOCYTES
-0.09 (standardized) LDH-SERUM
-0.01 (standardized) LYMPHOCYTES
-0.02 (standardized) PLATELET
0.03 (standardized) WBC-COUNT

0 (standardized) CALCIUM-SERUM
0.04 (standardized) HGB

-0.01 (standardized) CREATININE-SERUM
0.12 (standardized) ALBUMIN
0.41
Gating Regression (linear regression was selected
2.34 GENDER=FEMALE
0.65 BOX2-SCORE

-1.73 PERFORMANCE-STATUS-2
-2.87 PERFORMANCE-STATUS-3
-4.99 PERFORMANCE-STATUS-4
0.19 BMI

-1.46 NO-PROBLEM
1.5 NO-APPETITE

1.64 PAIN
2.19 DRY-MOUTH

-0.39 WEIGHT-CHANGEPOINT
-8.68 SITE-BRUNCHUS-LUNG
2.52 SITE-COLORECTAL
2.56 SITE-HEAD-AND-NECK

-4.73 SITE-PANCREAS
16.71 STAGE-1
17.89 STAGE-2
12.77 STAGE-3

Continued on next page
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Table B.7 – continued from previous page
β X

-0.13 AGE
-0.8 GRANULOCYTES

0 LDH-SERUM
0.15 WBC-COUNT
0.04 HGB
0.36 ALBUMIN
8.59
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Table B.6: Visualizations of predicted survival time versus actual survival time of the final model

linear regression support vector regression

  

  Time
(Month)

  

  Time
(Month)

regression trees linear regression for censored targets

  

  Time
(Month)

  

  Time
(Month)

support vector regression for censored targets gating regression

  

  Time
(Month)

  

  Time
(Month)
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Table B.8: Confusion matrices of classification

Methods Confusion Matrix

Baseline

Method: Median survival time

Actual
< median > median

< median 185 255
Predicted

> median 762 1033

Method: Average survival time

Actual
< median > median

< median 0 0
Predicted

> median 947 1258
Conventional Classification Methods

Method: Naive Bayesian Network

Actual
< median > median

< median 522 185
Predicted

> median 438 1038

Method: Bayesian Network

Actual
< median > median

< median 598 257
Predicted

> median 362 966

Method: Neural Network

Actual
< median > median

< median 589 339
Predicted

> median 371 884

Method: Decision Trees

Actual
< median > median

< median 587 373
Predicted

> median 322 901

Method: Logistic Regression

Actual
< median > median

< median 632 237
Predicted

> median 328 986
Our Final Models

Method: NG-LOG-MCD-AVE100-LIN

Actual
< median > median

< median 791 423
Predicted

> median 180 757

Method: NG-LOG-MCD-AVE100-SVR

Actual
< median > median

< median 745 336
Predicted

> median 226 844
Continued on next page
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Table B.8 – continued from previous page
Methods Confusion Matrix

Method: NG-LOG-MCD-AVE100-RT

Actual
< median > median

< median 785 469
Predicted

> median 186 711

Method: NG-LOG-MCD-AVE100-LINc

Actual
< median > median

< median 808 450
Predicted

> median 163 730

Method: NG-LOG-MCD-AVE100-SVRc

Actual
< median > median

< median 622 216
Predicted

> median 349 964

Method: NG-LOG-MCD-AVE100-GAT

Actual
< median > median

< median 744 334
Predicted

> median 227 846
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