
Using Classifier-Based Nominal Imputation to
Improve Machine Learning

Xiaoyuan Su1, Russell Greiner2, Taghi M. Khoshgoftaar1,
and Amri Napolitano1

1 Computer and Electrical Engineering and Computer Science,
Florida Atlantic University, Boca Raton, FL 33431, USA

2 Department of Computing Science,
University of Alberta, Edmonton, AB, Canada T6G 2E8

suxiaoyuan@gmail.com, rgreiner@ualberta.ca,

taghi@cse.fau.edu, amrifau@gmail.com

Abstract. Many learning algorithms perform poorly when the train-
ing data are incomplete. One standard approach involves first imputing
the missing values, then giving the completed data to the learning algo-
rithm. However, this is especially problematic when the features are nom-
inal. This work presents “classifier-based nominal imputation” (CNI),
an easy-to-implement and effective nominal imputation technique that
views nominal imputation as classification: it learns a classifier for each
feature (that maps the other features of an instance to the predicted
value of that feature), then uses that classifier to predict the missing
values of that feature. Our empirical results show that learners that pre-
process their incomplete training data using CNI using support vector
machine or decision tree learners have significantly higher predictive ac-
curacy than learners that (1) do not use preprocessing, (2) use baseline
imputation techniques, or (3) use this CNI preprocessor with other clas-
sification algorithms. This improvement is especially apparent when the
base learner is instance-based. CNI is also found helpful for other base
learners, such as näıve Bayes and decision tree, on incomplete nominal
data.

Keywords: incomplete data, imputation, support vector machine, instance-
based learning, nominal data.

1 Introduction

It is often difficult to learn good classifiers when the training data are missing
attribute values. To deal with missing data in classification tasks, many learners
first use some imputation technique to fill in the missing values, before giving
the completed data to a complete-data learner. A simple imputation technique
is to replace each missing value of a real-valued attribute with the mean of the
observed values of the attribute (MEI), or a nominal attribute with its most
commonly observed value (MCI). This is used by the WEKA implementations
for many classification algorithms [4]. However, these trivial imputers generally
do not help produce high-quality classifiers for incomplete data.



Many learning algorithms have algorithm-specific built-in schemes for han-
dling missing value – e.g., näıve Bayes can simply ignore the missing attributes at
both learning and classification time, and some instance-based algorithms simply
set the distance measure to any attribute (of an instance) missing an entry to
the associated maximum value [1]. However, these simple missing data handling
methods often do not produce accurate estimates to fill in the missing values.
As we anticipate that answers based on accurately imputed data will be better
than those based on the original incomplete data and on less accurately imputed
data, we expect preprocessing the incomplete data with accurate imputers can
boost the classification performance of machine learners on incomplete data.
In general, an “imputation-helped learner” uses some imputation techniques to
fill in the missing values before training a classifier. Su et al. investigated such
imputation-helped learners in the context of numeric features, and showed that
certain numerical imputation techniques can improve classification performance
[9]. However, few existing works specifically investigate how imputation tech-
niques can improve classification performance on nominal data.

This work explores imputation-helped learners for nominal features. We first
propose an easy-to-implement algorithm for imputing nominal features, classifier-
based nominal imputation (CNI), which treats imputation as a classification task:
first learn a classifier for each feature, then use this trained classifier to impute
values for the missing entries. We let the notation “kNN-CNI(SVM)” refer to
the learning system that preprocesses the incomplete training data by learning
a SVM classifier for each attribute to impute each missing value of this attribute
(so if there are n attributes with missing values, this produces n different classi-
fiers); the resulting completed dataset from this CNI(SVM) preprocessing is then
given to the learner kNN (“k nearest neighbors” [1]) to produce a final classifier.
In general, the “B-CNI(L)” learner first uses the learner L to learn n different
classifiers for imputing values for the n attributes, then gives the completed data
to the base learner B.

We first investigate the imputation performance of our proposed CNI im-
putation using 10 machine learners as imputation classifiers, and found that
(1) each of these CNI imputers has more accurate predictions than the baseline
kNN imputation and MCI, and (2) CNI(SVM) (classifier-based nominal impu-
tation that uses support vector machine) and CNI(DT) (that uses decision tree)
perform especially well.

By applying the top-performing CNI imputers to preprocess incomplete nom-
inal data, our empirical experiments show that these imputation techniques can
significantly improve classification performance for instance-based algorithms on
incomplete nominal data with either a high or low percentage of missing values.
While imputation is not as critical for other learning algorithms, such as näıve
Bayes and decision tree, we found that our proposed B-CNI(L) approach can
still boost their classification performance when the missing ratio is at or below
20%.

Section 2 describes the framework of this paper, Section 3 provides our ex-
perimental design and results, and Section 4 contains the conclusions.



2 Framework

2.1 Imputation for Nominal Data

As many real-world datasets are missing some information, imputation tech-
niques are often used to fill in the missing values with estimated values; this
often leads to performance that is better than just using the original incomplete
data. Imputation techniques for numeric data, such as EM (expectation maxi-
mization) and BMI (Bayesian multiple imputation), involve iteratively updating
estimates of means and covariance matrices, as the data is assumed to be nor-
mally distributed [9]. This is, of course, typically not appropriate for nominal
data.

A baseline imputation for such nominal data is MCI (most common [value]
imputation), which fills the missing values with the most frequently observed
value of the attribute. However, MCI distorts the distribution of the values by
overestimating the most frequent value, which often leads to incorrect inferences.
Figure 1 shows that MCI does not produce a similar shape of attribute value
distribution as the original missing data, while our proposed CNI imputation
does; see details in the next subsection.

Another well-known nominal imputation technique is kNN imputation (kNNI)
[2], which imputes a missing value of an attribute in an instance as the most
common value of that attribute in the instance’s k nearest neighbors. However,
kNNI is not very effective because of the way that kNN selects the nearest neigh-
bors: this is based on a distance function that is problematic in the presence of
incomplete data (see Section 2.3 below).

We therefore propose an easy-to-implement nominal data imputation tech-
nique: classifier-based nominal imputation. This paper investigates whether this
nominal imputation technique can be used to improve classification performance
for machine learned classifiers on incomplete nominal data.

2.2 Classifier-based Nominal Imputation

The basic idea of classifier-based nominal imputation (CNI) is simple: treat
imputation as classification. For each attribute fi with missing values, learn a
classifier ci(. . .) that takes as input the values of the other n − 1 attributes
{fj |j 6= i} for an instance, and returns the value for fi for this instance. CNI(L)

Fig. 1: Attribute value distributions on the “date” attribute of the Soybean-large
dataset with 30% of the values missing: (from left to right) (1) the original missing
data, (2) after most common imputation (MCI), (3) after CNI using decision tree
imputation CNI(DT).



uses the learning algorithm L to learn this ci(. . .) classifier from the training
instances with observed values on fi; CNI then uses this ci(. . .) to impute the
missing values of this attribute in the remaining instances. Algorithm 1 illustrates
the CNI imputation algorithm.

After imputing incomplete data using CNI(L), B-CNI(L) passes the resulting
completed dataset to the base learner B, which produces a classifier that can
then classify (possibly incomplete) test instances. Note that the L learner must
be able to deal with incomplete data as its data sample D+

i (see Algorithm 1)
will typically have missing values, and the ci(. . .) classifier that it produces must
also be able to handle missing information. However the base learner B will only
need to deal with complete instances. The resulting classifier will predict class
labels for the original incomplete test data.

Note that the values imputed for one attribute could be used in the later
iterations of imputation. For example, if attribute f1 was the first imputed at-
tribute, its imputed values could be used when imputing values for f2 and for
all other subsequent attributes. However, to simplify the algorithm and focus on
the general techniques, we did not use the previously imputed values for any of
the later attributes in this work.

Here, we investigate the following Imputation Learners L: decision tree (C4.5),
decision table (dTable), lazy Bayesian rules (LBR), naive Bayes (NB), one rule
(OneR), decision list (DecList), random forest (RF), support vector machine
(SVM), radial basis function neural networks (RBF), and multilayer perceptron
neural network (MLP). Each of the learners and the CNI technique are imple-
mented within the WEKA [4] framework, and use WEKA’s default approach for
dealing with missing values, at both learning and performance time. When there
are too few observed feature values to train reasonable classifiers (here, under
three instances with observed values for attribute fi in D+

i ), we simply use MCI
to impute a value for that attribute. For comparison, we also implement the
baseline nominal imputation techniques kNNI and MCI.

Algorithm 1 CNI(ImputationLearner L)

for t = 1 . . . n do % over each feature (attribute column of dataset D)
% View feature fi as the class and the other columns as features
Divide instances D = D+

i + D−i
where training set D+

i contains the instances with observed values of attribute
fi, and test set D−i contains the instances that miss values of attribute fi

Let ci(. . .) = L(D+
i ) be classifier trained using learner L on D+

i

using L’s default approach to handle missing data, as necessary
for each instance d ∈ D−i do

Let d−i be the n− 1 “non-fi” values in d
Impute the “fi” value of d as ci(d−i)

% Move on to the next attribute

% return the resulting completed dataset D′



Fig. 2: The B-CNI(L) framework of improving the classification performance of ma-
chine learning algorithm B using L imputation as the preprocessor for the nominal
training data.

As these classifiers are well-known, we do not provide detailed descriptions
for each of them here. We use default parameter settings of WEKA for L and B
learners unless they are explicitly specified otherwise. For the imputation learner
L=SVM, we use the linear kernel [7].

2.3 Using CNI to Improve Classification Performance of Machine
Learned Classifiers

Figure 2 shows the general B-CNI(L) framework, which first uses some nominal
learner L for imputing the missing nominal values in the training set to generate
an imputed training dataset, then gives the completed dataset to a learning
algorithm B (e.g., kNN) to learn a classifier. We then use this classifier to classify
the (possibly incomplete) test instances.

Although it is legitimate to impute training data together with test data
(excluding the labels of the test data), our imputers only work on the training
data, and use the original incomplete test data for evaluation. (When predicting
class labels for each incomplete test instance, we use the missing data handling
strategy of the classifier associated with the base learner B). We use this imputa-
tion scenario for dealing with incomplete training/test data because, in practice,
training data and test data often come in different times. Therefore, it would be
impractical to impute training data and test data together in many cases.

We investigate how our proposed CNI imputation can help machine learners
such as instance-based learning algorithms, näıve Bayes, decision tree, and neural
network.

Instance-based learning is a kind of “lazy learning” that assigns a label to
a new unlabeled instance based on the “closest” labeled instances appearing
in the training set. A commonly used instance-based learning algorithm is the
k-nearest neighbor algorithm, which first identifies the k neighbors nearest to
the “to be labeled instance” (based on the distance values calculated between
this new instance with each of the instances in the training set) and returns
the majority class over these neighbors, or perhaps some variant that weights
the labels of these neighbors. The distance function in instance-based learning
is usually defined as [1]:



Dis(x, y) =

√√√√ n∑
i=1

f(x, y) (1)

where x = (x1, . . . , xn) and y = (y1, . . . , yn) are instances, each over n attributes.
For numeric attributes, f(xi, yi) = (xi − yi)2, and for Boolean and nominal
attributes, f(xi, yi) = I(xi 6= yi) which is 0 if xi = yi and is 1 otherwise. The
nearest neighbor for an instance x is argminyDis(x, y) over all instances y in
the training set.

Of course, Equation 1 is not defined if any f(xi, yi) value is undefined. How-
ever, as f(. . .) must return an answer even if either xi or yi is missing, many
nearest-neighbor systems will use extreme values – ie, set f(xi, yi) to the maxi-
mum value if either xi or yi is missing [1]. As this simple approach often leads to
biased distance values, we suspect that a reasonable estimate of missing values
in the training set will improve the resulting classifier.

The best value of k often depends on the dataset. In general, a larger k value
reduces noise on the classification, but can impair performance if it is too big.
A good k can be selected by using various techniques, such as cross-validation
or some heuristic. We often consider k > 1 nearest neighbors and set k to an
odd value to prevent ties for binary classification. (For multiple classes, we use
the plurality of the votes.) Some instance-based classifiers will also weight each
neighbor in this vote by using 1/Distance or 1 −Distance, both of which give
higher weights to nearer neighbors [4].

When using imputation to help instance-based algorithms, imputing the
training set will replace the missing values for the instances in the training set,
while the missing values that have penalized distance values in the test instances
are still present. Imputation reduces the number of times where instance-based
learning algorithms will use the maximized distance values.

Many other learning algorithms deal naturally with incomplete data, and
therefore imputation may not be so critically helpful. For example, näıve Bayes
makes classifications based on only observed values [6], while C4.5, a well-known
decision tree classifier, will in effect simply disregard the missing values during
training [8].

3 Experimental Design and Results

We explored 12 nominal datasets from the UCI machine learning repository (see
dataset description in Table 1) [3]. Six of the 12 datasets have both nominal and
numeric attributes; these have italicized names in Table 1 – e.g., the dataset
“Australian” has 8 nominal attributes out of a total of 14 attributes. Most of
the nominal data have more than two attribute values. Here, when corrupting
the data by removing values, we only remove some of the nominal attributes,
and leave all of the numeric attributes.

To investigate the performance on datasets with different missing ratios, we
generate five incomplete datasets for each of the above datasets by randomly



deleting 10%, 20%, 30%, 40%, and 50% of the observed values – this is done by
removing each [instance, attribute] independently, with probably 0.1 [resp., 0.2,
. . . , 0.5].

We first evaluate our proposed CNI(L) imputation algorithms using different
machine learned classifiers L; we then pick the top two CNI imputers in terms
of their estimation accuracy (see next subsection) to impute the incomplete
nominal training sets, before applying a base learner to train a classifier on
the imputed training set, which we subsequently use to classify the incomplete
instances in the test set. The classification results reported are the average of
five cross validation folds.

We then evaluate how CNI imputation can improve the classification per-
formance for machine learners kNN, näıve Bayes, decision tree, and MLP on
incomplete nominal data.

3.1 Evaluation of CNI Imputation Algorithms

As we generated the incomplete datasets by removing values from the complete
datasets, we have the ground truth for each missing value. Therefore, our nominal
imputation algorithms can be evaluated in terms of the estimation accuracy by
checking the imputed values against their respective ground truth values.

Accuracy =
1
N

N∑
i=1

I(Pi = Ri) (2)

where Pi is the estimated value produced by the imputer (for some [instance,
attribute] pair), Ri is the ground truth value, and N is the total number of the
imputed values.

Figure 3 illustrates the imputation performance of the CNI imputers L ∈
{SVM, C4.5, NB, RF}, kNNI and MCI, when 30% of the data is missing.

Table 1: Datasets from the UCI Machine Learning Repository

dataset #instances
#attributes average

#classes
(nominal/all) attribute values

Chess 3196 35 2.03 2
Corral 128 6 2 2
Flare 1066 10 3.3 2
Mofn-3-7-10 1324 10 2 2
Soybean-large 562 35 2.86 19
Vote 435 16 3 2
Australian 690 8/14 4.63 2
Cleve 296 7/13 2.71 2
Crx 653 9/15 4.56 2
German 1000 13/20 4.31 2
Hepatitis 80 13/19 2 2
Lymphography 148 15/18 2.93 4



Fig. 3: Estimation accuracies of the CNI imputers, kNNI, and MCI on the datasets
with a missing ratio of 30%.

Our proposed nominal imputation algorithm – classifier-based nominal impu-
tation (CNI) – performs significantly better than the commonly used nominal im-
puters, kNNI and MCI. While each CNI(L) imputer (that uses the learner L) we
investigated outperforms kNNI and MCI, each of the top performers CNI(SVM)
and CNI(C4.5) has more than 7% and 15% higher average estimation accuracies
over kNNI and MCI respectively. Statistically, CNI(SVM) and CNI(C4.5) out-
perform kNNI with 1-sided t-test p < 2×10−8 and p < 1×10−8 respectively, and
even the worst performing CNI(RBF) and CNI(MLP) still slightly outperform
kNNI, albeit with p < 0.01 and p < 0.1. As expected, the estimation accuracies
of the imputers decrease as the missing ratio of the datasets increases.

For all of the 10 nominal imputers we investigated, the ranking of the nominal
imputers in terms of their average estimation accuracies over the 12×5 datasets
(five datasets with different missing ratios between 10% and 50% generated from
each of 12 base datasets) is: CNI(SVM), CNI(C4.5), CNI(DecList), CNI(NB),
CNI(LBR), CNI(RF), CNI(OneR), CNI(dTable), CNI(RBF), CNI(MLP), kNNI,
and MCI. We will therefore use the best two, CNI(SVM) and CNI(C4.5), as
nominal imputers in the investigations below.

3.2 The Impact of Nominal Imputers on the Classification
Performance for Instance-based Learning Algorithms

Now we evaluate how much nominal imputers can improve the classification
performance for instance-based learning algorithms.

We work on instance-based algorithms with different weighting schemes.
Rather than setting the best k value for each different dataset, different nominal
imputer and distance weighting scheme, we will instead simply use k = 5 for all
cases.

Table 2 is a summary of the classification results, with cells that record the av-
erage classification accuracy over the 12 nominal datasets. Figure 4(a) illustrates



how nominal imputers improve the classification performance of instance-based
algorithms on the dataset “Australian” over various different missing ratios.

Table 2 and Figure 4(a) show that instance-based algorithms decrease their
classification accuracy fast with the increase of the missing ratio of data. With
the help of nominal imputers, kNN can achieve a statistically significant improve-
ment of classification accuracy (here, this is based on a 1-sided paired t-test, with
p < 0.05; note all statistical claims are based on this test). This is true for all
the datasets with all missing ratios we investigated (in the range of 10% and
50%), and for different distance weighting schemes of instance-based algorithms,
including (1-distance) weighting, inverse distance weighting, and no weighting.

We anticipate a more accurate imputation technique will further improve
the classification performance. Over the 12 datasets, kNN-CNI(SVM) and kNN-
CNI(C4.5) each achieve about 2–4% higher average classification accuracies than
kNN on the original incomplete datasets, with 1-sided paired t-test p < 0.0006

Table 2: Average Classification accuracy over the 12 datasets for instance-based algo-
rithms using different nominal imputers as preprocessors (from top to bottom, bolded
are best values) (a) kNN using (1-distance) weighting, (b) kNN using 1/distance
weighting, (c) kNN without distance weighting.

Missing Original kNN- kNN- kNN- biggest-
Ratio(%) kNN MCI CNI(C4.5) CNI(SVM) lift (%)

10 83.02 83.94 84.27 84.55 1.85
20 80.72 81.35 83.37 83.06 3.28
30 78.48 80.01 80.83 81.36 3.67
40 76.14 78.11 78.57 78.92 3.65
50 74.14 75.54 76.00 75.86 2.51

average 78.5 79.79 80.61 80.75 2.99

Missing Original kNN- kNN- kNN- biggest-
Ratio(%) kNN MCI CNI(C4.5) CNI(SVM) lift (%)

10 82.44 83.99 84.36 84.55 2.57
20 81.21 82.06 83.32 82.92 2.6
30 79.2 79.97 80.82 81.37 2.74
40 76.6 78.03 78.57 78.93 3.04
50 73.89 75.57 76.02 75.9 2.88

average 78.67 79.93 80.62 80.73 2.76

Missing Original kNN- kNN- kNN- biggest-
Ratio(%) kNN MCI CNI(C4.5) CNI(SVM) lift (%)

10 82.67 83.72 83.97 84.78 2.56
20 80.57 81.94 83.13 82.38 3.17
30 78.34 79.61 80.77 81.39 3.9
40 76.17 77.88 78.64 78.90 3.58
50 73.73 75.34 75.72 75.7 2.7

average 78.3 79.7 80.44 80.63 3.18



Fig. 4: (from left to right) (a) Case study on the dataset “Australian”: using nomi-
nal imputers to preprocess incomplete training data helps improve the classification
performance; and a better imputer (such as CNI(SVM)) will give a bigger lift of the
classification accuracy. (b) The average classification accuracy of MLP, and MLP using
MCI and CNI(SVM) as preprocessor for incomplete training data over all 12 datasets.

and p < 0.001 respectively. KNN using MCI as the preprocessor slightly outper-
forms the original kNN by 1–2% on average, with p < 0.01.

3.3 The Impact of Nominal Imputers on Other Machine Learned
Classifiers

We have shown that using high-quality imputation techniques to preprocess in-
complete data will increase the classification performance for instance-based al-
gorithms on nominal data. We now further investigate whether nominal imputers
can help other classifiers perform better on incomplete nominal data, especially
those with better missing data handling schemes – ie, where imputation may
not be as critical.

We work on three machine learning algorithms, näıve Bayes [6], C4.5 [8], and
MLP neural network [5], on the 12 × 5 datasets. We use one baseline imputer,
MCI, and one top performer of our CNI imputers, CNI(SVM), as the nominal
imputers for the training data before learning the classifiers. We compare with
the classifiers that do not use imputation before training. Table 3 summarizes
the results, and Figure 4(b) depicts the average accuracy for MLP, MLP-MCI,
and MLP-CNI(SVM) on datasets of different missing ratios.

As Table 3 and Figure 4(b) indicate, accurate nominal imputers such as
CNI(SVM) can help improve classification accuracy when the incomplete data
has low missing ratios (e.g., at or below 20%), while using an inaccurate imputer
such as MCI may lead to worse classification performance than the classifier
that does not use any imputation for training data. When the missing ratio goes
higher (i.e., missing ratio higher than 30%), neither CNI imputers nor MCI can
help the learner to improve its classification accuracy. This is partially because
many classifiers, such as NB, have more effective ways to deal with incomplete
data than using imputation for highly sparse data. When the missing ratio is



Table 3: The average classification accuracies of the machine learned classifiers NB,
C4.5, and MLP with and without using nominal imputers MCI and CNI(SVM)

10.00% 20.00% 30.00% 40.00% 50.00% average

NB 83.31 83.03 81.85 80.65 77.82 81.33
NB-MCI 82.73 81.87 81.07 79.07 75.43 80.03
NB-CNI(SVM) 83.35 83.14 81.62 79.15 76.69 80.79

C4.5 83.27 80.51 78.85 75.96 71.25 77.97
C4.5-MCI 83.31 81.28 79.15 76.08 74.09 78.78
C4.5-CNI(SVM) 84.40 81.11 77.56 75.34 71.77 78.04

MLP 82.55 79.56 78.56 76.25 72.80 77.95
MLP MCI 81.22 79.07 77.44 71.91 70.44 76.01
MLP -CNI(SVM) 82.98 81.10 78.71 74.17 71.34 77.66

high, the nominal imputers will become less accurate (see Section 3.1), and the
benefit of using imputation will be offset by its inaccuracy.

Why are accurate nominal imputers effective for instance-based learning algo-
rithms on both high-missing-ratio data and low-missing-ratio data? We suspect
that this is partially due to the poor way that instance-based algorithms handle
missing data, as using the maximized distance calculation can lead to poor classi-
fication accuracy, while using CNI imputation to preprocess incomplete nominal
data before learning the base classifier will perform better.

As many real-world dataset are missing under 20% of the values, there is
practical significance for our finding that an accurate nominal imputer (such
as our proposed CNI imputation) can improve the classification performance
of many machine learners on such incomplete datasets, even over learners that
include effective built-in schemes for handling missing data.

4 Conclusions

Incomplete nominal data often make it difficult for learning algorithms to pro-
duce effective classifiers. Simple schemes of imputing the missing values, such as
using the most common value for nominal missing data, are often not very effec-
tive. In this paper, we explore methods for improving classification performance
for machine learning algorithms on incomplete nominal data. We first propose an
easy-to-implement and effective nominal imputation algorithm: classifier-based
nominal imputation (CNI), which fills in the missing values of attribute fi by
the values produced by a learned classifier that takes the other values in that
instance, where this classifier is learned using as the training data the instances
that contain the observed values of fi. Our empirical results show that, of the
10 classification algorithms for imputation we investigated, the support vector
machine (SVM) and C4.5 decision tree perform the best as CNI imputation
learners. Our CNI imputers have significantly higher estimation accuracy than
the commonly used nominal imputation techniques, kNN imputation (kNNI) and
most common imputation (MCI). Applying CNI imputers such as CNI(SVM)



and CNI(C4.5) as the preprocessors for incomplete nominal training data can
impressively improve the classification performance of instance-based learning
algorithms on incomplete datasets over the entire range of missing ratios that
we investigated. CNI imputers are also found helpful in improving the classifica-
tion performance of machine learners that have effective missing data schemes,
such as NB and C4.5, when the datasets have missing ratios at or below 20%.

In our future work, we plan to improve our CNI imputation algorithm by
using the previously imputed values for the later iterations of imputations, in
the order of imputations based on how dense or informative the attributes are.
We also plan to explore ways to improve the instance-based learning algorithm
using nominal imputations for other data types, such as mixed data (with both
numeric and nominal data) and ordinal data.

Acknowledgement

This work was conducted when X. Su was with Varolii Corporation. R. Greiner
was supported by the Alberta Ingenuity Centre for Machine Learning (AICML)
and Canada’s Natural Science and Engineering Research Council (NSERC). This
work was supported by the Data Mining and Machine Learning Laboratory at
Florida Atlantic University. We also thank Randall Wald for his help.

References

1. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms.
Machine Learning 6, 37–66 (1991), http://dx.doi.org/10.1007/BF00153759,
10.1007/BF00153759

2. Batista, G., Monard, M.: An analysis of four missing data treatment methods for
supervised learning. Applied Artificial Intelligence 17(5), 519–533 (2003)

3. Frank, A., Asuncion, A.: UCI machine learning repository (2010),
http://archive.ics.uci.edu/ml

4. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

5. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2nd edn. (1998)

6. John, G., Langley, P.: Estimating continuous distributions in bayesian classifiers.
In: Proceedings of the eleventh conference on uncertainty in artificial intelligence.
vol. 1, pp. 338–345. Citeseer (1995)

7. Platt, J.C.: Fast training of support vector machines using sequential min-
imal optimization, pp. 185–208. MIT Press, Cambridge, MA, USA (1999),
http://portal.acm.org/citation.cfm?id=299094.299105

8. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (1993)

9. Su, X., Khoshgoftaar, T., Greiner, R.: Using imputation techniques to help learn
accurate classifiers. In: Tools with Artificial Intelligence, 2008. ICTAI ’08. 20th IEEE
International Conference on. vol. 1, pp. 437 –444 (Nov 2008)


