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Abstract

Recent advances in high-throughput technologies, such as genome-wide SNP analysis and microar-

ray gene expression profiling, have led to a multitude of ranked lists, where the features (SNPs,

genes) are sorted based on their individual correlation with a phenotype. Multiple reviews have

shown that most such rankings vary considerably across different studies, even in the case of sub-

sampling from a single dataset. This motivates our interest in formally investigating the overlap of

the top ranked features in two lists sorted by correlation with an outcome.

This dissertation presents a mathematical model for better understanding lists whose entries are

ranked by Pearson correlation coefficient with an outcome. We show that our model is able to

accurately predict the expected overlap between two ranked lists based on reasonable assumptions.

We also discuss how to generalize this model to find the overlap between other forms of rankings,

provided that they satisfy mild assumptions.
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Chapter 1

Introduction

1.1 High-Throughput Technologies

According to WHO cancer factsheet1, cancer is the leading cause of death, accounting for more

than 13% of deaths worldwide. The same factsheet suggests that deaths caused by cancer are pro-

jected to rise to 11 million by 2030, of which more than 30% can be prevented. Several factors

could contribute to lowering the death-rate of cancer, including creating more effective diagnostic

and prognostic tools and drugs. The advent of high-throughput technologies, such as microarray

expression profiling and Genome-Wide Association Studies (GWAS), is an important step towards

realizing this goal.

As an “Array of Hope” [39], microarray technology has been considered as a potential source for

delivering significant discoveries and insights, a source to inspire and influence research in biology:

“Genomics aims to provide biologists with the equivalent of chemistry’s Periodic Table, an inventory

of all genes used to assemble a living creature, together with an insightful system for classifying

these building blocks ... Arrays offer the first great hope for such global views by providing a

systematic way to survey DNA and RNA variation. They seem likely to become a standard tool

of both molecular biology research and clinical diagnostics.” [39]. Microarrays are widely used

in many areas, especially in oncology to discover new relevant genes, to build both predictive and

prognostic classifiers, predict disease progression, assign genes to biological pathways, and many

more applications [8, 49, 51, 59, 65].

One of the applications of microarray technology is using microarray data in ‘Gene Signature

Profiling’, i.e., identifying genes whose high expression levels are significantly correlated with a

phenotype. Ideally, this process should produce the same lists for the same phenotype across studies.

However, researchers have found that these gene signatures vary considerably from study to study;

a fact that has led some [57] to call microarrays an ‘Array of Problems’.2 This has sometimes

led to confusion among researchers, with articles and responses published on discrepancy of gene

signatures. As an example, take the study published by Lafferty-Whyte et al. [38], providing a
1http://www.who.int/mediacentre/factsheets/fs297/en/
2The idea of contrasting ‘Array of Hope’ and ‘Array of Problems’ papers was inspired by [76].
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new gene signature, the responses of another research team reporting their inability to reproduce

the originally published signature [17], and the original paper’s authors response, claims that they

were able to reproduce the original signature, and attributes the discrepancy to “different microarray

platforms, and different probe designs” [36].

This low overlap “anomaly” has received extensive attention in the literature. As will be dis-

cussed in detail in Section 2.1, many have attributed this discrepancy to environmental factors, such

as different array platforms or different patient demographics. However, there is evidence that sug-

gests that ranked gene lists will share only a small number of genes, even in the case of very low

environmental noise. This motivates our interest in formally investigating the topic of overlap be-

tween two ranked lists, focusing on two ranked gene lists as a practical illustration. In this thesis, we

will build a model to estimate the expected overlap between two gene signatures (or, in general, two

ranked lists). That is, we will try to answer the following question: if almost all the environmental

factors were eliminated, how much will the top-ranked genes from the n-patient study A, on a given

phenotype have in common with the top-ranked genes of another n-patient study B, over the same

phenotype? We will show that the amount of overlap is highly dependent on the number of patients

n, and is far smaller than 100% in most cases. This thesis provides a framework for approximating

the overlap of two lists ranked by correlation with outcome, using gene signatures as an application.

We will derive a closed form analytical solution for estimating the expected overlap, and will also

provide a stochastic approximation framework for estimating the expected overlap.

1.2 Overview

In Chapter 2, we present background information on high throughput technologies and gene signa-

tures, review studies and meta-analyses that explore the issue of overlap between different signa-

tures, and briefly discuss the existing literature on ranking and order statistics. Chapter 3 presents

our theoretical framework for computing the expected overlap between ranked lists, reviews the

challenges associated with implementing the framework, and suggests methods for extending it to

solve a larger class of problem. In Chapter 4, we will discuss our simulation framework for stochas-

tically approximating the value of expected overlap for cases when computing the analytical solution

is not feasible. Chapter 5 shows how our framework performs on real data, using sub-sampling from

microarray datasets to empirically verify the performance of our framework. Finally, in Chapter 6,

we present concluding remarks and possible future venues for further exploring this problem.
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Chapter 2

Background

In this chapter we will present the background information necessary to describe our framework.

Section 2.1 provides a review on microarray studies, ranked gene lists, the “anomaly” of low overlap

across different gene signatures, and studies that try to explain the reasons behind the anomaly. In

Section 2.2, we will review the methodology of another study on estimating the overlap of gene

signatures, and describe why we believe that one of the assumptions used in their model may not be

accurate. Finally, in Section 2.3, we will briefly review results from overlap in rankings and order

statistics in the literature, and explain why we have picked a different approach.

2.1 Gene Expression Profiling and Gene Signatures

Recent advances in high-throughput technologies have made expression profiling less expensive

and more widely available. This has led to a multitude of studies focused on finding correlations

between the expression levels of genes with the presence/absence of a given phenotype. The aim

of such studies is to identify a list of genes that are differentially expressed across the case and

control groups, i.e., genes whose expression levels are significantly different for patients presenting

the phenotype versus those who do not. Such lists are obtained by ranking all the p genes in the

array by a criterion, and taking the top-k elements of the ranked lists, where k � p. These lists are

often called ranked gene lists or gene signatures [7].

The ranking criteria for gene signatures can be divided into three main categories [7, 47]:

• Simple metrics such as p-value, q-value, Wilcoxon’s rank sum test, or Pearson correlation

coefficient [13].

• Modifications of t-statistic for multiple testing, such as SAM [70].

• Regularization methods, such as hierarchical Bayes method, could also be used to generate a

regularized t-statistic [5, 26, 61].

Most studies then adjust the scores obtained for multiple testing, using techniques such as Bon-

ferroni correction or false discovery rate (FDR) [19, 50, 66]. Here, we will not review methods for
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multiple testing correction, or techniques for setting the threshold to determine the value of k to use

for the top-k genes, and will instead focus on the rankings obtained after sorting the list based on

the ranking criterion.

Gene signatures obtained using the aforementioned process have various applications, which can

be divided into the following two broad categories:

1. Gene signatures could be used as a preliminary step in building a prognostic or predictive

classifier, i.e., as a feature selection method. Feature selection is useful when dealing with

microarray data to avoid over-fitting. Other multivariate analyses, in addition to building

classifiers, could also use gene signatures as input.

2. Gene signatures are also often reported as the final result of the study, after verifying that a

non-trivial portion of the ranked lists is a priori known to be correlated with the phenotype.

In such cases, the rest of the genes in the signature are also assumed to be correlated with

the phenotype, thus suggesting new associations between genes and phenotypes. Hence, this

class of studies is called association studies.

Association studies can be further broken down to two categories. Some studies use a priori

biological and clinical knowledge in the process of obtaining the gene signature. This knowledge is

used in either designing the microarray, to produce an array that is optimized to probe the expression

levels of genes that are known or suspected to be associated with the phenotype, or in further filtering

the ranked list by genes present on relevant biological pathways [27,45,48,67,69]. Other studies do

not use any biological knowledge to pre-filter the genes. This latter type of association studies, also

known as top-down association studies, is our main focus.

Two of the most cited examples of top-down association studies are Van’t Veer et al. [72] and

Wang et al. [74] signatures for predicting breast cancer, sometimes referred to as the ‘Amsterdam’

and ‘Rotterdam’ signatures, respectively. The Amsterdam signature consists of 70 genes, and was

generated using samples from 96 patients; the Rotterdam signature has 76 genes, taken from samples

from 286 patients. Classifiers based on each signature achieved good predictive results on samples

from their own study1. However, the two signatures have only 3 genes in common [22]. Note that

the two studies used different microarray platforms – Amsterdam was based on Rosetta, whereas

Rotterdam used Affymetrix, meaning that the maximum possible overlap would be 55 genes – nev-

ertheless, one might expect the two signatures, both shown to have good predictive performances on

the same phenotype, to share a higher number of genes.

This “low overlap anomaly” is not limited to the above-mentioned studies. It has been observed

repeatedly for multiple studies and for various phenotypes, as pointed out by Ein-Dor et al. [21]:

“Only 17 genes appeared in both the list of 456 genes of Sorlie et al. (2001) [62] and the 231 genes

1The Amsterdam signature’s performance was later verified on a larger 295-patient study [71]. Mammaprint, a diagnostic
tool for assessing the risk of breast cancer metastasis is also based on the Amsterdam signature.

4



of vant Veer et al. (2002) [72]; merely 2 genes were shared between the sets of Sorlie et al. (2001)

and Ramaswamy et al. (2003) [53]. Such disparity is not limited to breast cancer but characterizes

other human disease datasets (Lossos et al., 2004) [3] such as schizophrenia (Miklos and Maleszka,

2004) [44].” Many other studies [7,22,37] found similar results. Table 2.1 summarizes a number of

examples of occurrences of the overlap anomaly observed in the literature.

Table 2.1: Examples of the overlap anomaly observed in the literature. kA and kB denote the size
of the top-k lists of studies A and B, respectively.

Phenotype (Study A Study B) kA kB Overlap
Breast Cancer +/- ([72] [74]) 70 76 3
Breast Cancer +/- ([62] [72]) 456 231 17
Breast Cancer +/- ([53] [62]) 128 456 2
Schizophrenia +/- ([28] [33]) 89 49 8
Schizophrenia +/- ([44]a) 138 97 8
Large B-Cell Lymphoma +/- ([2] [58]) 71 13 3
Large B-Cell Lymphoma +/- ([58] [55]) 13 17 0

aList A taken from union of two studies and B from meta-analyses. See [44]
for details

There have been a number of explanations for the lack of concordance between different gene

signatures. Many point to possible human and equipment error, errors in pre-processing and mRNA

extraction, using different chips and array technologies, and genuine differences between patients

with regards to tumour size, age and demographics. While all these environmental factors could

contribute to the lack of agreement between studies, one might wonder whether there could be little

to no overlap in the absence of such factors. Ein-Dor et al. [21] and Michiels et al. [43] have

explored that possibility, and reported that there is little overlap even in the case of sub-sampling

from a single dataset, which rules out most of the environmental factors, assuming that all samples

were taken under the same conditions. They concluded that many genes could be correlated with

the phenotype, and that any subset of those genes would produce a good prognostic classifier. This

implies that the inclusion of genes in the ranked list heavily depends on the random selection of the

patients used to obtain the ranking. They also argue that this lack of agreement is the consequence

of large confidence intervals around measured scores for each gene, which is the direct result of

(relatively) low number of instances used in measuring the scores; therefore, the ranking of genes

could change significantly in different sub-samples. Several other studies [4, 12, 35, 52, 68] have

subsequently proposed methods to check the stability of the obtained ranked lists, mostly using

sub-sampling or bootstrapping techniques.

This lack of agreement between signatures is not the only criticism raised against association

studies. Some researchers are concerned about the lack of biological meaning of the lists obtained

without biological guidance [18]. In addition, some criticize about overoptimistic results obtained

from training classifiers based on gene signatures, mostly due to information leak and overtraining
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on test data [18]; see [20, 63] for examples of this issue2. Another issue is the multiplicity of

ranking criteria. Boulesteix et al. [7] list 15 different ranking criteria used in the literature to obtain

gene signatures. Two main issues arise from this large number of of available ranking criteria: a)

Gene signatures are not stable across different ranking criteria, i.e., using different ranking criteria

may produce very different signatures [34]. b) As a corollary of point (a), there is a possibility of

publication bias, i.e., some groups may choose the ranking criterion a posteriori, based on whether

genes that they consider biologically relevant appear on a signature produced after ranking by that

specific criterion [7].

Various explanations and remedies have been proposed for the overlap anomaly. One approach

to constructing more stable ranked lists is to combine several datasets on the same phenotype into a

larger dataset, and using that new dataset to extract a more stable gene signature [32,78]. Each such

study is called a meta-analysis; see [31] for an overview and comparison of methods to generate

meta-analyses. However, meta-analyses do not address the original instability issue of ranked lists,

and therefore, we will not focus on them here.

One explanation for the low overlap issue was given by Zhang et al. [77]. Instead of measuring

the overlap by counting the number of genes shared between the lists obtained from studies A and B,

they suggest measuring the overlap by considering whether, for each gene x in study A’s signature,

the same gene x appears on study B’s signature, or a gene y that is biologically correlated with x

is present on study B’s signature. They report that by using their proposed measurement, a larger

overlap would be observed between gene signatures, compared to the more widely used approach of

counting the number of shared genes. However, as pointed out by [7], this approach is not completely

ranked based, as they use biological knowledge in computing the overlap of the two ranked lists.

Some have also suggested that genes from different signatures belong to the same underlying

biological processes and pathways, and therefore, little overlap between different signatures is not an

issue. Van’t veer et al suggested this in [73], and it has been alluded to and accepted by many others

(see [15,37,60] for examples of this). However, Dryer et al [18] have recently shown that such claims

may be exaggerated. Their enrichment analyses on Amsterdam and Rotterdam signatures showed

that only one pathway was shared between the two studies - that could pass statistical significance

tests - namely cell proliferation, which was already known to be correlated with cancer before the

advent of high-throughput profiling technologies. Thus, they concluded that proving the ‘same-

biological-processes’ claim needs more quantitative evidence.

2.2 Estimating the Expected Overlap

While there have been several studies exploring the biological ramifications of the overlap anomaly,

very few have tried to understand it from a mathematical point of view. To our knowledge, the study

2This issue is more concerned with applications of association studies in building classifiers, rather than a direct criticism
about association studies.
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by Ein-Dor et al [22] is the only attempt at building a mathematical model for the overlap of gene

signatures. In their paper, they propose a Gaussian distribution for the probability distribution of f ,

the percentage of overlap between two gene signatures, as follows:

Pn,α(f) =
1√

2πΣn
e
− (f−f∗n)2

2Σ2
n (2.1)

where α = k
p , k is the size of the top-k list and p is the number of genes in the array, n is the number

of patients, and Σn ' 1√
p for large values of p.

We are mostly interested in f∗, the expected value of percentage of overlap between the lists.

Ein-Dor et al propose an approach that involves finding the saddle point of a complex set of equa-

tions, for numerically approximating the value3 of f∗. More importantly, in their analysis they as-

sume that q(Zt), the distribution of correlation scores of genes with respect to outcome, is symmetric

and Gaussian. As proof, they present histograms of correlation scores with Gaussian distributions

fitted to the histograms, and claim that the visual fit should provide enough evidence for accepting

this assumption. Figure 2.1 shows an example of histogram of correlation scores with respect to

ER+/ER- phenotype, using the data from the Rotterdam signature study, with a normal distribution

superimposed.

While the figure does show that the correlation scores follow a distribution that resembles a

bell-curve, a visual histogram fit is not appropriate for accepting the normality assumption. To put

this assumption under scrutiny, we analyzed the distribution of correlation scores from 8 microarray

datasets [1, 10, 16, 30, 41, 46, 54, 74] for normality, using Lilliefors’ normality test [40]. For all the

datasets, we were able to reject the null hypothesis of normality with p < 0.001. This significantly

challenges one of the key assumptions of Ein-Dor et al’s analysis. In contrast, our approach, as

will be detailed in Chapter 3, does not make any assumptions about the underlying distribution of

correlation scores.

2.3 Ranked Lists and Order Statistics

The computer science literature has long studied the problem of extracting top-k lists – not just the

ones obtained by ranking by correlation score – and measuring the overlap across rankings. Many

studies focus on finding the overlap of various rankings, often to suggest methods to aggregate

different rankings. In information retrieval literature, a number of studies focus exclusively on

comparing the ranking results of search engines, see [6, 64] for recent examples. There is also an

extensive literature on algorithms and metrics for comparing top-k lists, see [23] for an overview.

However, all of the aforementioned studies focus on finding the overlap of two observed rankings,

whereas our analysis provides a model to predict the level of noise on a score, and the effect of noise

on the ranking of the elements in the list. In other words, we use this model to predict how different

3See the supplementary text on PNAS website [22].
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Figure 2.1: Histogram of correlation scores taken from the Rotterdam signature dataset, with normal
distribution superimposed. Original figure in supplementary text of [21], re-constructed using the
data from [74].
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Histogram of correlation scores with respect to ER+/ER− outcome, with MLE Gaussian fitted to the histogram

an observation of a ranking would be from an unseen and unknown underlying true ranking, as

opposed to modelling how two observations differ from each other. As such, most of the existing

literature in this domain is not applicable to our problem.

Another possibly related area is order statistics and rank statistics [14]. Specifically, results from

order statistics can be used to obtain probability density functions for the k-th smallest element of a

list. Assuming that we are given a list of n observations,X1, . . . , Xn from a probability distribution,

with cumulative distribution function F (.) and probability density function f(.), the density function

of X(k), the k-th smallest element in the list can be calculated as:

fX(k)
(x) =

n!

(k − 1)!(n− k)!
f(x)[F (x)]k−1(1− F (x))n−k (2.2)

However, there are two reasons we could not use the above model: a) We cannot integrate our

noise model into this model. Note that in the above formula, F (.) and f(.) are the cumulative

and density functions of the distribution of the correlation scores, not the noise on the observed

correlations, assuming that Xi models the observed correlation score of a gene. b) To use the above

result, we need to know the distribution of correlation scores, and as shown in Appendix B, while

we have suggestions for such a distribution, we prefer not to claim that it is, without a doubt, the

8



underlying distribution of correlation scores. More importantly, as Chapter 3 shows, our model does

not need any information about the distribution of correlation scores.
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Chapter 3

Theoretical Analysis

In this chapter we will present a theoretical framework for computing the expected overlap of the

top k genes1 of two datasets. We will start by defining the notation necessary for working on the

problem and formally define the problem, and list our assumptions in Section 3.1. We will derive

a closed form formula for the expected overlap in Section 3.2. In Section 3.3, we will discuss the

computational complexity of calculating the expected overlap, present some algorithms to efficiently

carry out the calculations and show how to address the associated challenges. Finally, in Section 3.4,

we will discuss how to generalize this formula to solve a larger class of problems.

3.1 Problem Definition and Notation

Assume that we are given a dataset A = [XA, CA], where XA is an n × p matrix of real numbers,

gene expression levels, for n patients and for p genes, and CA is an n× 1 vector, showing the status

of each patient with respect to a phenotype. We refer to genes by their column index, e.g., A1 refers

to the first gene of datasetA, gene number 1, whose expression levels are present in the first column

of matrix XA. Let LA = [rA,1 . . . rA,p] denote the absolute values of observed Pearson correlation

coefficient for genes A1, . . . ,Ap with respect to the given phenotype2. LetR(A, i) denote the rank

of rA,i after sorting LA in descending order. As an example, consider the data matrix3 presented in

Table 3.1, where a 1 in the phenotype status column shows the presence of the phenotype, and a 0

signals the absence of the phenotype. For the dataset in Table 3.1, considering only the 6 samples

and 5 genes shown in the table, we would have LA = [0.0703, 0.1399, 0.5631, 0.6056, 0.1426].

Therefore, we would haveR(A, 1) = 5,R(A, 2) = 4,R(A, 3) = 2,R(A, 4) = 1,R(A, 5) = 3.

Now consider another dataset B = (XB, CB), with |XB| = n × p, where CB shows the status

of a different set of n patients with respect to the same phenotype as that of dataset A. Continuing

the example we had for dataset A, we can compute the absolute values of correlation coefficients

1The theoretical framework presented in this chapter is not specific to genes. We only use “genes” and “patients” to help
illustrate an application of our framework.

2From this point on, we will use “correlation score” to mean absolute value of correlation score.
3The expression values in this table were not taken from real microarray datasets, instead they were generated randomly

from a uniform distribution. Expression values in real microarray datasets are not necessarily in the range [0, 1].
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Table 3.1: Example of a dataset A with p genes and n patients.

Patient ID A1 A2 A3 A4 · · · Ap Phenotype status
1 0.8147 0.2785 0.9572 0.7922 · · · 0.6787 1
2 0.9058 0.5469 0.4854 0.9595 · · · 0.7577 1
3 0.1270 0.9575 0.8003 0.6557 · · · 0.7431 0
4 0.9134 0.9649 0.1419 0.0357 · · · 0.3922 0
5 0.6324 0.1576 0.4218 0.8491 · · · 0.6555 0
...

...
...

...
...

. . .
...

...
n 0.0975 0.9706 0.9157 0.9340 · · · 0.1712 1

Table 3.2: Example of absolute values of correlation coefficients, and ranks of genes for two datasets
A and B.

Feature ID (i) rA,i R(A, i) rB,i R(B, i)
1 0.0703 5 0.1712 5
2 0.1399 4 0.4555 3
3 0.5631 2 0.7577 1
4 0.6056 1 0.6431 2
5 0.1426 3 0.3922 4

for each gene with respect to outcome, and rank the genes based on correlation scores. Table 3.2

shows an example of LB and the ranks of genes for a dataset B.

Let Ov(LA, LB, k) denote the number of shared genes, in the list of top-k genes of datasets A

and B, after ranking the genes by absolute value of correlation score. That is:

Ov(LA, LB, k) =

p∑
i=1

I(R(A, i) ≤ k ∧R(B, i) ≤ k)

where I is the indicator function. For the example shown in Table 3.2, for k = 3, we have

Ov(LA, LB, 3) = 2, i.e., 2 genes are shared between the top 3 genes of the two datasets.. Our

goal is to compute the expected value of Ov(LA, LB, k), for two n-patient studies, with the same

set of p genes, over the same phenotype.

To compute the expected overlap, we will assume that the correlation scores for the p genes of

the two datasets are two different draws of the same unknown underlying distribution. Specifically,

we assume the following:

Assumption 1 The p correlation coefficients, associated with the p features, can be modelled with

independent random variables X1, . . . , Xp, where Xi ∼ N(µi, σ
2), where µi is the true

mean of observed correlation scores for gene number i, and σ = 1√
n−3 . This holds under

mild assumptions [24, 25]. Note that the resulting Xi’s are not in the range [0, 1], but instead

lie in [0,+∞).

Assumption 2 We are given a vector ~r = [r1, . . . , rp], of observations of correlation scores for the

11



Table 3.3: A Summary of Notation. Dataset A is used as an example and the same notation applies
to any dataset.

Notation Meaning
EOv(n, k, p, ~µ) expected overlap between top-k genes of two n-patients studies with p genes, with correlation vector ~µ
LA List of absolute values of correlation coefficients for genes in dataset A
Ov(LA, LB, k) overlap between top-k genes of datasets A and B, with respect to correlation score
Ai gene number i in dataset A
Pk(ov = r) probability of having Ov(LA, LB, k) = r
Pk(ov ≥ r) probability of having Ov(LA, LB, k) ≥ r
Pn,k(X1, . . . , Xr) probability of observing genes associated with X1, . . . , Xr in top-k genes of a dataset with n samples
rA,i the correlation score of gene number i in dataset A
R(A, i) the rank of gene Ai after sorting LA in descending order

p genes for the phenotype of datasets A and B, such that µi = tanh−1(ri) could be treated

as a good estimate for the true mean of the Gaussian random variable for gene i, as stated in

Assumption 1.4

Let Pk(ov = r) be the probability of observing Ov(LA, LB, k) = r, i.e., having an overlap of

exactly size r in the top-k genes of the two studies. Similarly, let Pk(ov ≥ r) be the probability

of observing Ov(LA, LB, k) ≥ r. Let Pn,k(X1, . . . , Xr) be the probability of observing genes

associated with random variables X1, . . . , Xr in the top-k genes of a given dataset with n patients.

Since both input datasets have the same number of patients, we will suppress n from the subscripts,

and just write Pk(X1, . . . , Xr).

Our goal is to compute EOv(n, k, p, ~µ): A function that takes the number of patients n, size of

the top-k list, number of genes5 p, and a vector of true means of correlation scores ~µ as input, and

returns a number, the expected overlap between the top-k ranked genes of datasets A(X,C) and

B(X ′, C ′), which corresponds to the expected value of Ov(LA, LB, k).

Table 3.3 summarizes the notations used throughout this dissertation.

3.2 Computing the Expected Overlap

Our goal is to compute the expected overlap of top-k genes of two datasets, EOv(k), which corre-

sponds to:

EOv(k) =

k∑
r=1

r × Pk(ov = r) =

k∑
r=1

Pk(ov ≥ r) (3.1)

where

Pk(ov ≥ r) =
∑

{x1...xk}⊂{X1...Xp}

Pk(x1, . . . , xk)[

k∑
j=r

(−1)j+r
∑

{y1...yj}⊂{x1...xk}

Pk(y1, . . . , yj)]

(3.2)
4We will discuss how we can obtain such a vector in Chapter 5.
5p is also taken as input implicitly as the length of ~µ, and is only stated here for emphasis.
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To understand (3.2), consider the example from Table 3.1, with p = 5 and k = 3. We are

interested in computing P3(ov ≥ 1). We also already know that the answer should be 1, as there is

at least 1 element in common between two draws of size 3 from a dataset of size 5. We have:

P3(ov ≥ 1) =
∑

{x1,x2,x3}⊂{X1,...,X5}

P3(x1, x2, x3)[P3(x1) + P3(x2) + P3(x3)

− P3(x1, x2)− P3(x1, x3)− P3(x2, x3)

+ P3(x1, x2, x3)]

where Xi corresponds to the random variable associated with gene Ai, i ∈ {1, . . . , 5}. To sim-

plify writing the expansion of the above formula, let sp3(y1, . . . , yj) =
∑j
i=1 P3(yi) denote the

sum of probabilities of observing 3-tuples y1, . . . , yj , where each yi = (abc) for some {a, b, c} ⊂

{1, . . . , 5}. For example, sp3(123, 234) = P3(X1, X2, X3) + P3(X2, X3, X4). Therefore, focus-

ing only on the term where x1 = X1, x2 = X2, x3 = X3, the corresponding term from the above

equation would be:

P3(ov ≥ 1) = . . .+ sp3(123)[sp3(123, 124, 125, 134, 135, 145)+

sp3(123, 124, 125, 234, 235, 245) + sp3(123, 134, 135, 234, 235, 345)

− sp3(123, 124, 125)− sp3(123, 134, 135)− sp3(123, 234, 235)

+ sp3(123)]

(3.3)

since the probability of observing 3-tuples as the top 3 genes is disjoint, the above equation would

become:

P3(ov ≥ 1) = . . .+ P3(123)[1]

since
∑
x1,x2,x3⊂{X1,...,X5} P3(x1, x2, x3) = 1, P3(ov ≥ 1) = 1.

As the example shows, the signs of odd and even terms oscillate as r grows in (3.2). Substituting

Pk(ov ≥ r) in (3.1) and some simple algebra, yields:

EOv(k) =
∑

{x1...xk}⊂{X1...Xp}

Pk(x1, . . . , xk)[
∑

1≤j≤k
jis odd

∑
{y1...yj}⊂{x1...xk}

Pk(y1, . . . , yj)] (3.4)

To check the validity of 3.4, we can check EOv(1) as an example:

EOv(1) =
∑

x1⊂{X1...Xp}

P1(x1)[
∑
j≤1

jis odd

∑
y1⊂{x1}

P1(y1)] =
∑

x⊂{X1,...,Xp}

P1(x)2

which, as expected, is adding up the probabilities for each gene to appear in both datasets as the

top gene. This exploits the independence claim: the chance of a specific gene being the top gene of

dataset A is independent of it being top in dataset B.
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To compute Pk(X1, . . . , Xk), we will start with the simpler case of P1(X1) = P (X1 >

X2, X1 > X3, . . . , X1 > Xp) and then generalize the formula6. Let A = max{X2, . . . , Xp}.

Assuming that Xi ’s are independent, and Xi ∼ N(µi, σ), we can write:

P (A ≤ a) = FA(a) =

p∏
i=2

Φ(
a− µi
σ

)

fA(a) =
dFA(a)

da
= FA(a)

p∑
i=2

φ(a−µiσ )

Φ(a−µiσ )

where φ(.) and Φ(.) are normal distribution probability density and cumulative distribution functions

respectively. We will therefore have:

P1(X1) =

∫ +∞

−∞
P (X1 > a)fA(a)da

=

∫ +∞

−∞
(1− Φ(

a− µ1

σ
))fA(a)da

=

∫ +∞

−∞
fA(a)da−

∫ +∞

−∞
Φ(
a− µ1

σ
)fA(a)da

= 1−
∫ +∞

0

Φ(
a− µ1

σ
)fA(a)da

The last step is correct since the domain of a is [0,+∞), as a ranges over all possible values of

tanh−1(ri), where ri is in [0, 1].

In general, for any given set T of size k of indices of elements in {X1 . . . Xp} to consider as top

genes, we can define T ′ = {1 . . . p} − T and derive the general form for Pk(XT ) as follows:

A = max(XT ′), FA(a) =
∏
i∈T ′

Φ(
a− µi
σ

), fA(a) =
dFA(a)

da

Pk(XT ) = 1−
∫ +∞

0

∏
i∈T

Φ(
a− µi
σ

)fA(a)da (3.5)

where XT =
⋃
k∈T
{Xk}, and similarly XT ′ =

⋃
k∈T ′
{Xk}.

The final step in deriving (3.4) is computing Pk(X1, . . . , Xr) when r < k. This probabil-

ity can be computed by marginalization and summing up the probabilities of Pk({X1, . . . , Xr} ∪

{Xr+1 . . . Xk}) for all possible disjoint sets of {Xr+1 . . . Xk}.

3.3 Implementation

3.3.1 Implementation challenges

The main obstacle in the way of implementing a program to compute (3.4) is the combinatorial

nature of the problem. To get an estimate of the computational complexity of the problem, we

revisit equation (3.4):
6I am indebted to Prof. P. Hooper for this proof.
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EOv(k) =
∑

{x1...xk}⊂{X1...Xp}

Pk(x1, . . . , xk)︸ ︷︷ ︸
A

[
∑

1≤j≤k
jis odd

∑
{y1...yj}⊂{x1...xk}

Pk(y1, . . . , yj)]

︸ ︷︷ ︸
B

Part A of the above formula computes the probability of tuple [x1, . . . , xk] being in the top-k

genes of the first dataset, and part B computes the probability of [x1, . . . , xk] being in the top-k of

the second dataset. Note that all the marginal probabilities in part B can be expressed as a sum of

probabilities computed in part A. More specifically, for any Pk(y1 . . . yj), we should find all
(
k
k−j
)

sets of yr+1 . . . yk, and compute
∑
yj+1...yk

Pk(y1 . . . yj , yj+1 . . . yk). Therefore, the computational

complexity of computing EOv(k), can be estimated as:

C(k) =

(
p

k

)
× [O(p) +

(
k

1

)2

+

(
k

3

)2

+ · · ·+
(
k

k

)2

]

≤
(
p

k

)
× [O(p) +

(
2k

k

)
]

' O(pk)× [O(p) +O(4k)]

= O(pk+1)

where p is typically in the range of 20, 000 to 50, 000 for microarrays 7. As k grows, computing

EOv(k) using our analytical solution quickly becomes computationally infeasible.

3.3.2 Efficient Implementation

Even though computing EOv(k) is infeasible for large k’s, we can compute it for smaller k’s. This

will be particularly useful for validating the results of simulations. To compute EOv(k), we need

to numerically approximate the integral (3.5). We used MATLAB’s implementation of adaptive

Gauss-Kronrod quadrature method [56], which is particularly useful for approximating integrals

of form
∫ +∞
a

g(x)dx when g(x) decays rapidly, which is the case in our problem. We will use

quadrature(g(x), [a, b]) to denote the Gauss-Kronrod method to approximate the value of integrat-

ing g(x) over the interval [a, b].

As shown in the previous section, the naive implementation Algorithm 3.1 shows the pseu-

docode of the algorithm that computes EOv(2). In all the algorithms that follow, we assume that

~r = [r1, . . . , rp] is sorted in descending order. This will help to significantly cut the number of

calculations needed to estimate the value of EOv(k), since if (xi, xi+1, . . . , xj) are sorted in de-

creasing order of their mean values, µa = tanh−1(ra), the value of Pk(xi, xi+1, . . . , xj) decreases

as we move towards greater values of i. We will use two values to prune the calculations:

1. Min Value ε: As detailed in the algorithms, we are summing over a large number of proba-

bilities, Pk(.), to determine the value of EOv(k). When the result of computing the current
7In SNP studies, this number grows to ∼ 500, 000.
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Pk(.) falls below a specified minimum value, ε, we will prune the rest of the current compu-

tation. If this happens in the outer-most loop of the algorithm, the program will terminate and

return the current result. Choosing ε depends on the precision one wishes for the estimations

to have. For example, when computing EOv(1), having ε = 10−4 ignores8 adding the results

smaller than 10−8. We will specify the value of ε in each experiment that uses our analytical

solution in the chapter that follow.

2. Max Index κ: We also set a max index value, κ, to only consider the top κ genes, corre-

sponding to [r1, . . . , rκ] in ~r = [r1. . . . , rp], after sorting ~r. While a gene whose correlation is

relatively small does have a non-zero chance of having an observed value that is large enough

for it to appear in the top-k list, those who are ranked abobe κ are very unlikely to be observed

in the top-k, and therefore we can ignore them in our computations.

The following code sections review the algorithms used in computing EOv(2). We chose

EOv(2) as the code for EOv(1) may not be general enough to explain our implementation method.

Computing EOv(k) for higher values of k can be easily generalized from the algorithms we present

for EOv(2).

Although κ and ε do not ultimately affect the exponential nature of the problem, they do signif-

icantly cut the number of calculations needed. As an example, consider computing EOv(2) for a

dataset with p = 50, 000. Without using κ and ε, we would have to carry out O(p × (p + p2)) =

O(p3) computations, which is O(50, 0003) calculations. When using κ = 1000 and ε = 10−5, in

practice, we computed EOv(2) with O(20× (κ+ κ2)) = O(κ2) = O(10002) terms 9. Therefore,

we were able to speed up the computations by 8 orders of magnitude without sacrificing accuracy.

As shown previously, the runtime complexity of EOv(k) is exponential in k. Although we have

presented optimized algorithms that could compute EOv(k) for small values of k, computing the

expected overlap for large values of k is not feasible with this approach. There are a number of

possible solutions to this issue:

1. Exact solution Formula 3.4 may be solvable by finding a relation between consecutive terms

of EOv(k). That is, if there was an inductive relation between Pk(ov ≥ r) and Pk(ov ≥

r + 1) we could exploit that relation to devise a dynamic programming solution to EOv(k).

Unfortunately, we could not find an explicit inductive relation.

2. Deterministic approximations As shown in Appendix B, the distribution of ~r matches a

power-law. By leveraging this fact, we could cut the number of terms we need to compute

and calculate deterministic approximations for EOv(k). There are, however, two issues with

this approach: a) Although for most datasets, ~r follows a power-law ri ∼ ai−α with a fixed α

8Since EOv(1) =
∑

Xi
P1(Xi)

2

920 is an estimate of the average number of iterations before the outer loop reached an ε < 10−5 for the sample datasets
we used.
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Algorithm 3.1 EOv2(~r, σ, ε, κ)

Require: ~r be sorted in descending order
// Let lookup[i][j] store computed values of P2(Xi, Xj).
// Let marginal[i] store computed values of P2(Xi).
result← 0
for i = 1 . . . κ do

if i < κ then
canary ← lookup[i][i+ 1] {To see if we need to proceed further}
if canary has not been assigned then
lookup[i][i+ 1]← canary ← 1− quadrature(Integrand(x, i, i+ 1, ~r, σ, κ), [0,+∞))

end if
if canary ≤ ε then

return result
end if

end if
for j = i+ 1 . . . κ do

if lookup[i][j] does not exist then
lookup[i][j]← 1− quadrature(Integrand(x, i, j, ~r, σ, κ), [0,+∞))

end if
for all c ∈ {i, j} do

if marginal[c] does not exist then
marginal[c] ← getMarginal(c, lookup, ~r, σ, ε, κ) {getMarginal() also populates
lookup in the process}

end if
end for
current← lookup[i][j]× (marginal[i] +marginal[j])
if current ≤ ε then

break out of inner-loop, proceed to next i
end if
result← result+ current

end for
end for
return result

Algorithm 3.2 getMarginal(i, lookup, ~r, σ, ε, κ)

sum← 0
for all c ∈ [1 . . . κ]− {i} do

if lookup[i][c] does not exist then
lookup[i][c]← 1− quadrature(Integrand(x, i, c, ~r, σ, κ), [0,+∞))

end if
sum← sum+ lookup[i][c]
if lookup[i][c] ≤ ε then

break
end if

end for
return sum
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Algorithm 3.3 Integrand(x, i, j, ~r, σ, κ)

Require: ~r be sorted in descending order
for all j ∈ {1 . . . p} do
µj = tanh−1(rj)

end for
FA ← 1
sum← 0
for all c ∈ [1 : κ]− {i, j} do
cdf ← Φ( (x−µc)

σ )
FA ← FA × cdf
sum← sum+

φ( x−µcσ )

cdf
end for
fa ← FA × sum
pxi ← Φ(x−µiσ )

pxj ← Φ(
x−µj
σ )

return pxi × pxj × fa

parameter, a tends to have a wide range across datasets. b) Using this class of approximations

significantly cuts the number of calculations, which affects both the unseen constant and p in

O(pk+1), however, the runtime complexity of the solution ultimately remains exponential in

k.

3. Stochastic approximations In particular, Monte Carlo simulations can be used to stochasti-

cally approximate the value of EOv(k). This approach is the focus of Chapter 4.

3.4 Extensions

Although we made a number of assumptions in computing the expected overlap, some can be relaxed

and the derived formula can be generalized to accommodate the relaxed assumptions.

We assumed that datasetsA andB have the same number of patients, n. This assumption is better

suited for evaluating and validating the results, and as Chapter 4 shows, makes the simulations easier.

However, there is no restriction in the formula against having two different number of patients, nA

and nB. Equation (3.4) can be re-written to allow for different number of patients as follows:

EOv(k, nA, nB) =
∑

{x1...xk}⊂{X1...Xp}

PnA,k(x1, . . . , xk)︸ ︷︷ ︸
A

[
∑

1≤j≤k
jis odd

∑
{y1...yj}⊂{x1...xk}

PnB,k(y1, . . . , yj)]

︸ ︷︷ ︸
B

(3.6)

where computing PnA,k(XT ) , T ⊂ {1 . . . k}would be easily possible by changing σ in the original

equation (3.5) to σnA = 1√
nA−3

, and similarly for nB.

While relaxing this assumption would lead to a small change in the formula, it will translate to

a greater change in the implementation. We can no longer assume that the marginal probabilities in
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part B of equation (3.6) are the sum of some of the terms in partA, as the σ’s are now different. This

will adversely affect the runtime complexity of the implementation, making computing the formula

even less feasible.

We can also relax assumption 1. In fact, we can relax all the assumptions about underlying

distributions and the ranking criterion, as the formula does not depend on any of those assumptions

and is able to predict the expected overlap of any two lists ranked by the same criterion, as long as

the ranked features can be modelled with random variables Xi such that all Xi are drawn from the

same probability distribution with density function f(.) and cumulative distribution function F (.).

To generalize the formula for this relaxed assumption, equation 3.5 should be re-written as follows:

A = max(XT ′), FA(a) =
∏
i∈T ′

F (a; ri), fA(a) = FA(a)
∑
i∈T ′

f(a; ri)

F (a; ri)

Pk(XT ) = 1−
∫ +∞

−∞

∏
i∈T

F (a; ri)fA(a)da (3.7)

where F (a; ri) = P (Xi ≤ a) denotes the cumulative distribution function of the probability distri-

bution used to model Xi with parameter ri.
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Chapter 4

Simulation

In this chapter we will present a framework for stochastically approximating the expected overlap

between two lists ranked by correlation to outcome. Section 4.1 provides a brief overview of Monte

Carlo simulations. Section 4.3 describes our simulation algorithm, its parameters and workarounds

to boost its performance. In Section 4.4, we will provide a comparison of the results of our simula-

tion with the results of the analytical framework we presented in Chapter 3. Finally, in Section 4.5,

we will discuss some of the results of the simulation, compare them with what we expect from the

theoretical framework and the real overlap problem, and discuss possible curve fitting methods to

extend our analytical results.

4.1 Monte Carlo Simulations

Monte Carlo methods are a widely used class of computational algorithms used in simulating the

behaviour of systems with many degrees of freedom. Monte Carlo simulations have applications in

physics, economics, computer science and many other fields. A Monte Carlo simulation involves

playing ‘games of chance’, i.e., random draws of a complex system one wishes to model. If done

correctly and over many random draws, a Monte Carlo simulation can provide a good approximation

of models that might be impossible or infeasible to compute using analytical methods. Monte Carlo

methods are especially useful in cases for which we know the underlying probability distributions,

but cannot compute the exact answer because of the computational complexity of the calculations.

This is the case for our problem: as the underlying noise model is Gaussian, computing the exact

expected overlap proved to be infeasible. In the following sections we will describe the steps we

used to use a class of Monte Carlo simulations to stochastically approximate the value of expected

overlap.

For more background and information on Monte Carlo methods and their applications, see [29,

42].
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4.2 Generative Model

Recall from Chapter 3 that our framework models the p genes from an n-patient study with random

variables X1, . . . , Xp, where Xi ∼ N(µi, σ), where σ = 1√
n−3 . To model each Xi, we need µi,

the true mean of Xi. In this chapter, we assume that we are given a vector of observed correlation

scores, ~r = [r1, . . . , rp], such that µi = tanh−1(ri) could be regarded as a good estimate for the

mean value of Xi. The main input to our simulation algorithm is therefore ~µ = [µ1, . . . , µp], where

µi = tanh−1(ri). We will then take p random draws, ~Z = [Z1, . . . , Zp], where Zi ∼ N(µi, σ), to

get a noisy draw of Fisher transforms of correlation scores. We will then compute ~D = tanh(~Z),

called a replicate. Each replicate is a possible vector of correlation scores, that would be the result of

a study with n patients and p genes. We will repeat this procedure many times, and then calculate the

overlap of top-k genes across the replicates, to estimate the value of EOv(k). Section 4.3 describes

this procedure in detail.

4.3 Simulation Algorithm

In this section we will describe an algorithm to simulate our model for the expected overlap in the

top-k genes of two datasets A(X1, C1) and B(X2, C2), where |X1| = |X2| = n × p, and C1 and

C2 provide class labels for the same phenotype. As described in Section 4.2, we assume that we are

given ~µ = [µ1, . . . , µp], such that µi can be treated as a good estimate for the mean value of the

Gaussian noise around the measured correlation score for gene number i. Algorithm 4.1 summarizes

our simulation process.

The straightforward implementation of finding the overlap between two lists of equal size l take

O(l) to run. The runtime complexity of Algorithm 4.1 would therefore beO(Nt+Nt×Ns×k2max) =

O(Nt × Ns × k2max). However, we exploit an inductive relation between overlap in k and k + 1

top genes in two datasets to reduce the runtime to O(Nt ×Ns × kmax). For more details please see

Appendix A.

4.4 Comparison with Analytical Results

To verify that the result from the stochastic approximation and exact formula agree, we computed

EOv(n, 1) and EOv(n, 2) for several datasets with various number of patients and compared the

results of the two methods. We chose the first two terms, as we could analytically compute them

despite the exponential runtime complexity of computing the analytical solution. Table 4.1 and

Table 4.2 show the comparisons for EOv(1) and EOv(2), respectively. As the results suggest,

there is strong agreement between our simulations and theoretical analysis. For all the experiments.

except the synthesized dataset, we obtained ~r by calculating the correlation coefficients using all

the samples in the given datasets. For more information on how we synthesized a dataset, see

Appendix B.
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Algorithm 4.1 Stochastic approximation of EOv(i) for i ∈ {1, . . . , kmax}
Input: ~µ: Vector of true mean values of random variables X1, . . . , Xp, number of patients n,
number of replicates Nt, maximum number of top-k genes to consider kmax, and number of
replicates to consider for computing the overlap Ns, where Ns < Nt.
for trial ∈ {1, . . . , Nt} do

for i ∈ {1, . . . , p} do
Draw Zi ∼ N(µi,

1√
n−3 )

ρi ← | tanh(Zi)|
end for
Dtrial ← ~ρ

end for
for i ∈ {1, . . . , Nt} do
~S ← rand(Ns, [1 : Nt]− {i}) {~S stores Ns random indices from the range [1, Nt], excluding
i}
for k ∈ {1, . . . , kmax} do

Let O[i][k] store the average overlap of Di with the Ns replicates DS1
, . . . , DSNs

in the
top-k genes.

end for
end for
for k ∈ {1, . . . , kmax} do
mean[k]← average(O[1 : Nt][k])
std[k]← std(O[1 : Nt][k])

end for
return mean and std

Table 4.1: Comparison of simulation and analytical results for EOv(1).

Dataset n Analytical Result Simulation
Synthesized 250 0.5374 0.5382
Synthesized 100 0.4219 0.4209
Synthesized 50 0.3264 0.3183

GSE3744 [1] 47 0.1294 0.1262
GSE3744 150 0.2012 0.2027
GSE3744 250 0.2318 0.2317

GSE10780 [10] 185 0.0074 0.0050
GSE10780 300 0.0191 0.0441

GSE22544 [30] 20 0.0430 0.0441
GSE22544 150 0.1766 0.1723

GSE7904 [54] 62 0.1020 0.1027
GSE7904 150 0.1835 0.1819

For the experiments on EOv(1) we used the following parameters for theoretical analysis and

simulation: κ = 1000, ε = 10−4, Nt = 5, 000, Ns = 400. For experiments on EOv(2) we used

κ = 1000, ε = 10−5, Nt = 10, 000, Ns = 300.
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Table 4.2: Comparison of simulation and analytical results for EOv(2).

Dataset n Analytical Result Simulation
Synthesized 250 1.5466 1.5538
Synthesized 100 1.3464 1.3513
Synthesized 50 0.9584 0.9690

GSE3744 47 0.4469 0.4448
GSE3744 150 0.7129 0.7107
GSE3744 250 0.8151 0.8154

GSE10780 185 0.006 0.014
GSE10780 300 0.034 0.046

GSE22544 20 0.1419 0.1491
GSE22544 150 0.5579 0.5548

GSE7904 62 0.5145 0.5070
GSE7904 150 0.7129 0.7146

4.5 Analysing the Simulation Results

In this section we will present results from running the simulation on various datasets. For all

the experiments in this section, we used microarray datasets to get ~r, and then set n and kmax as

needed according to the experimental setup. The datasets used are publicly available NCBI datasets

GSE2034 [74]1, GSE3494 [46], GSE6532 [41] and GSE7390 [16]. These datasets have a number

of phenotypes; for the sake of consistency, we used the same phenotype of ER+/ER- 2 for all the

datasets.

Figure 4.1 shows the results of computing EOv(k) at n = 40, with kmax = 1000. As expected,

EOv(k) grows as k grows. The first derivative of EOv(k) also grows with k over this range, which

may describe how we can ultimately have EOv(p) = p. In addition, we observed that the variance

of EOv(k) increases as k grows over this range. This can be attributed to the higher effect of noise

on the order of lower-ranked genes, which makes the list of top-k genes less consistent – i.e., with

a lower number of shared genes among different replicates – as we move towards higher values of

k. Figure 4.4 shows the EOv(k) vs k plot for dataset GSE2034 with kmax = 100 from the same

experiment, with error bars representing one standard deviation around the mean.

Figure 4.2 shows EOv(.) as a function of n. To get this plot, we used a fixed value of k = 20.

As the figure suggests, a higher number of patients decreases the noise, which makes the top-k list

more consistent and leads to a higher overlap. However, some previous studies [37] have reported

that the increase in the size of overlap between ranked lists is linear in n. While this statement may

be true for small values of n, it does not hold for larger values, and the growth dampens as we move

1GSE2034 is the dataset from which the Rotterdam signature was generated.
2Estrogen-Receptor positive/negative.
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Figure 4.1: EOv(k) versus k with kmax = 1000 and n = 40
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towards higher values of n. This is expected, as the amount of overlap for n =∞ can not exceed k

when comparing two lists of top-k genes.

Another statistic worth measuring is Pk(X(i)), the probability of observing the top i-th gene

from the sorted ~r in the top-k genes of a noisy replicate. In order to measure Pk(X(i)), we stopped

the simulation after generating the replicates, and calculated the frequency of occurrences of gene

(i) in the top-k genes of replicates D1, . . . , DNt . We repeated this experiment for various values

of n to show the effect of noise on Pk(X(i)). Figure 4.3 shows the results of this experiment for

n = 10, 50, 100, 300 using a ~r from GSE6532. Nt was set to 10, 000 for these set of experiments. As

evident from the figure, an increase in the number of samples leads to an overall increase in the value

of Pk(X(i)). However, this increase is not uniform as the lower i’s will approach a probability of 1

faster than others. This has an implicit effect on the runtime of our implementation of the analytical

solution presented in Chapter 3: as n grows, it takes longer for values of Pk(x1, . . . , xr) to drop

below a predefined ε, which causes the algorithm to a carry out a higher number of calculations

before terminating. Needles to say, in the asymptotic case of n = ∞, all Pk(X(i)) will be equal to

1, as all noise would be removed from the model.

By observing Figure 4.1 one might wonder if the plot could be fitted to a closed-form function

of k. If such a function – f(k) – exists , it could be used as an extension of the theoretical analysis to

analytically compute and predict the value ofEOv(k), after computing the first feasibly-computable
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Figure 4.2: EOv(k) versus n for n ∈ [20, 1000] at k = 20
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terms and using the results to find the parameters of f(k). In fact, as Figure 4.5 suggests, a quadratic

function would provide a good fit to the data-points. In the example used for the figure, the first 100

points of EOv(k) were used to fit a quadratic. However, as evident from the next figure, such a fit

is not robust and will deviate from the simulation results as k grows, suggesting that EOv(k) is not

quadratic in k. One might wonder whether other degrees of polynomials, or exponential functions

would provide more robust fits for f(k). While Figure 4.6 suggests there could be a polynomial

relation between EOv(k) and k, we found the same problem of lack of robustness to be present for

other degrees of polynomials, and even exponential fits.
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Figure 4.3: Pk(X(i)) for n = 10, 50, 100, 300

Figure 4.4: EOv(k)± std. dev. with kmax = 100 and n = 40
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Figure 4.6: Log-log fit of EOv(k) vs k
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Chapter 5

Validation

In this chapter we will discuss methods to empirically validate our model for predicting the expected

overlap between two ranked gene lists. Section 5.1 describes sources to obtain ~r, the vector of

correlation scores used in our stochastic and analytical solutions as input. in Section 5.2, we describe

our evaluation method. Section 5.3 presents the empirical results of validating our predictions using

real datasets. We will show how these experiments provide strong evidence in support of our model,

and discuss cases where we may underestimate or overestimate the size of overlap. Finally, in

Section 5.4, we summarize the results of evaluating the estimations of our framework.

5.1 Sources and Robustness of ~r

Until now, we have assumed that we are given a ~r = [r1, . . . , rp] of true correlation scores for a

study on p genes, from which we compute ~µ = [µ1, . . . , µp] using µi = tanh−1(ri), as the mean

of random variable Xi for modelling the correlation score of gene number i. In this section, we will

discuss the sources we can use to get ~r, and the robustness of our approach for computing this ~r.

We will use the following terms for the rest of this chapter:

Source: The source dataset(s) used to generate ~r.

Target: The dataset(s) on which we want to estimate the expected overlap, using a ~r taken from

a source.

Let ~ρ = [ρ1, . . . , ρp] denote the observed correlation scores from a source. We need to identify

a source, such that we can assume that ~r ' ~ρ, i.e., the observed correlation scores taken from the

source are good estimates of the true correlation scores.

There are two main factors that we need to consider when choosing such a source:

1. Homogeneity of source and target: That is, the source and target distributions, ~rs and ~rt,

should be homogeneous studies on the same p genes, for the same phenotype. Datasets built

using different experimental conditions, patient demographics, etc., may produce very dif-

ferent ~ρ, even when using identical array technologies and dealing with the same phenotype.

Figure 5.1 shows the log-log plot of the first 1000 terms of ~ρ, taken from 4 microarray datasets
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on the same phenotype. As evident from the figure, for some studies the observed ~ρ’s are close

– for example GSE6532 and GSE7390 – while for others the difference is more significant.

Therefore, using ~ρ as ~r from a source dataset whose distribution is not homogeneous with the

target dataset may not produce good results. Section 5.3 shows that our model may overesti-

mate or underestimate the expected overlap in cases where the difference between ~ρ of source

and target datasets is significant.

2. Number of patients: The greater the number of patients, the closer ~µ would be to true mean

values1. Figure 5.2 shows how sub-sampling from a single dataset affects the resulting ~ρ’s. As

the figure suggests, using a subset with larger number of patients generates a ~ρ that is closer

to the ~ρ generated using all the samples in the dataset.

In other words, condition 1 states that we prefer the means of ~r and ~ρ to be close, and condition

2 ensures that the variance around the means is small.

If the above two conditions are satisfied, we will identify the observed ~ρ as ~r. Without loss

of generality, let ~r = [r1, . . . , rp] be the sorted correlation scores taken from the source. That is,

renumber the genes, such that ri is the i-th largest observed correlation score. This has no effect on

the algorithms we presented in Chapter 3 and Chapter 4, as ~r is only used to model the underlying

distribution of correlation scores, i.e., ~r would give us information about the distribution of true

means of correlation scores.

5.2 Evaluation Method

Considering the factors mentioned in Section 5.1, we will evaluate the performance of our frame-

work using three main approaches:

• Sub-sampling from a dataset: where source and target are different subsets of the same dataset.

This approach is guaranteed to satisfy the homogeneity condition, assuming that subsets of a

single dataset are homogeneous. However, the number of patients in the source dataset may

be limited due to low number of patients in any given microarray dataset.

• Using different source and target datasets: use ~r = ~rA taken from study A with p genes on

a phenotype, to estimate the overlap of sub-samples of study B, where B has p genes and

provides class labels for the same phenotype. This approach allows us to use larger number

of patients for the source dataset, but as will be shown, may not provide good results mainly

due to not satisfying condition one.

• Comparing sub-samples of two different datasets: where two sub-samples of size n are ran-

domly chosen as target from datasets A and B, and the remaining patients in the two datasets

1Assuming that observations of correlation scores would converge to true means of Xi, given infinitely large number of
patients as samples.
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Algorithm 5.1 EmpiricalOverlap(S, T1, T2): evaluate the expected overlap between top-ranked
genes of target datasets T1 and T2 using dataset S as source.

Require: size of T1 == size of T2.
Input: Nt, Ns, kmax: parameters of EOv(.), stochastic approximation of expected overlap be-
tween top 1, . . . , kmax genes of two datasets, as described in Chapter 4.
Output: Expected overlap of two target datasets e, standard deviation of expected overlap estd,
observed overlap between target datasets O.

C ← absolute value of correlation of p genes in dataset S with respect to outcome.
~r ← sort(C, ‘desending order’)
~µ← tanh−1(~r)
ntarget ← |T1|
(e, estd)← EOv(~µ, ntarget, kmax, Nt, Ns)
for i ∈ {1, . . . , kmax} do
O[i]← Observed overlap of top-i genes of T1 and T2.

end for
return e, estd, O

are used as source to generate a ~r to estimate the overlap of the two sub-samples. Section 5.3.3

describes this procedure in detail.

Algorithms 5.1 describes the general procedure used to compare the estimated and observed

overlaps of two datasets. All of our evaluation methods rely on sub-sampling to get the target

datasets of equal size. To get more accurate results, we will repeat the procedure described in

Algorithm 5.1 for different target datasets, and report the mean and standard deviation of observed

and estimated results. All our evaluation methods presented in Section 5.3 use a slightly modified

version of Algorithm 5.1.

5.3 Empirical Results

In this section we describe the empirical results of evaluating our framework. We will extensively

focus on sub-sampling from a single dataset, as this approach satisfies both the homogeneity and

number of patients conditions needed to get a good approximation for ~r.

5.3.1 Sub-sampling From a Dataset

To evaluate the results of sub-sampling from a dataset, we used the evaluation algorithm described

in Algorithm 5.2. Although we use a call to EmpiricalOverlap(S, T1, T2) in describing Algorithm

5.2, we modified Algorithm 5.1 slightly for efficiency, to avoid repeatedly estimating the expected

overlap using the same source dataset.

In order to validate our model, we used all the datasets used in Chapter 4 that have more than 50

patients; see Table 5.1.

We used repeated random sub-sampling validation instead of cross-fold validation, since the

number of folds in cross-fold validation depends on the size of the test set. As a result, for large
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Figure 5.1: Log-log plot of [r1, . . . , r1000] for four datasets with identical Affymetrix platform and
ER+/ER- phenotype.

10
0

10
1

10
2

10
3

10
−0.5

10
−0.4

10
−0.3

10
−0.

i

r(
i)

Log−log plot of r
1
,...,r

1000 for four datasets

 

 

GSE2034

GSE3494

GSE6532

GSE7390

Table 5.1: Number of patients in datasets

Dataset n
GSE2034 286
GSE3494 244
GSE6532 307
GSE7390 198
GSE7904 62

test sets one could end up with only one or two folds. The drawback of using repeated random

sub-sampling is the possibility of not including some samples, or having two highly overlapping test

folds. We can mitigate these drawbacks by doing many repetitions, i.e., choosing a higher value for

H .

For each dataset, we experimented with at least two different values of ntest
2. The values of ntest

were chosen such that they could potentially be the sample size of microarray datasets (i.e., we did

not use ntest < 20), and to maximize the possibility of having non-overlapping test sets given the

number of patients in the input dataset. Since most gene list studies report the top 20, 30, 50 or 100

genes, we chose kmax = 100, and so will include the results for top-k for k = 1, . . . , 100. In all the

experiments we used T = 30, H = 5, Nt = 10, 000, Ns = 300, unless otherwise specified.

Figure 5.3 shows a sample of the results using GSE2034 with ntest = 50. Error bars show one

2With the exception of GSE7904, because of its small sample size.
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Figure 5.2: Effects of sub-sampling on ~r using sub-samples of size n = 250, 200, 150 of GSE2034
with n = 286.
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standard deviation around the means of expected and observed overlaps. As the figure suggests, our

analytic framework is able to predict the observed overlap with a high level of accuracy. In order to

assess the quality of the predictions, we used Welch’s paired t-test [75] to test the rejection of the

null hypothesis of having equal means, at 5% significance level. Note that not being able to reject

equality does not necessarily imply that the expected and observed overlap are equal,since statistical

tests are unable to confirm that two population means are “statistically the same”. However, it

does provide us with some level of confidence in the model. Table 5.2 summarizes the results of

experiments to validate the model using sub-sampling from datasets.

Table 5.2: Summary of sub-sampling experiments

Dataset ntest t-test fails to reject H0

GSE2034 100 yes
GSE2034 80 yes
GSE2034 50 yes
GSE3494 80 yes
GSE3494 50 yes
GSE6532 100 yes
GSE6532 80 yes
GSE6532 50 yes
GSE7390 70 no
GSE7390 50 no
GSE7904 20 yes

Our experimental results in this section suggest strong agreement between the computed ex-
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Algorithm 5.2 Subsample-Evaluate(D,ntest): evaluate the expected overlap between top-ranked
genes of sub-samples of size ntest from dataset D.

Input: Nt, Ns, kmax: parameters of EOv(.), stochastic approximation of expected overlap be-
tween top 1, . . . , kmax genes of two datasets, as described in Chapter 4, the number of times to
repeat the evaluation H , and the number of second target datasets to select T .
Output: Expected overlap of top kmax genes of two target datasets ~e, variance of expected over-
lap ~estd, average observed overlap of target datasets ~O, variance of observed overlap ~Ostd.

for trial ∈ {1, . . . ,H} do
T1 ← Data for ntest patients randomly selected from dataset D.
S ← D − T1
for i ∈ {1, . . . , T} do
T2 ← Data for ntest patients randomly selected from S
ei, estdi , Oi ← EmpiricalOverlap(S, T1, T2)

end for
etrial ← mean(~e)
estdtrial ← mean( ~estd)

Otrial ← mean( ~O)

Ostdtrial ← std( ~O)
end for
return ~e, ~estd, ~O, ~Ostd

pected overlap and observed overlaps. However, in some cases, there was enough difference be-

tween our predictions and the observed overlap for t-test to reject the null hypothesis of equality.

Figure 5.4 shows an example of overestimating the overlap for GSE7390 with ntest = 50. Even

though the difference between the expected and observed overlap is large enough for t-test to reject

equality, the mean expected overlap still lies within one standard deviation of the observed overlap

for most values of k. In fact, in this example for k = 100, our model predicts an expected overlap

of 20.35, whereas subsampling shows an average observed overlap of 17.8, which is probably good

enough for a prediction. In contrast, Figure 5.5 shows an example of underestimating the overlap,

for the same dataset with ntest = 70.

These differences might be caused by having too few case and control patients in datasets. In

order to have balanced subsamples with the same case to control ratio as the original dataset, our

subsampling algorithm may be forced to take additional samples in some cases, therefore using

an inaccurate sub-sample size. Another reason could be heterogeneity of the input, which would

invalidate our assumptions of homogeneity and having near-zero environmental noise in the data.

In fact, in this particular case, GSE7390 is taken from a study titled “Strong Time Dependence

of the 76-Gene Prognostic Signature for Node-Negative Breast Cancer Patients in the TRANSBIG

Multicenter Independent Validation Series”, whose data was taken from 6 different medical centers

across Europe, using frozen samples taken from patients over the span of 18 years. Therefore, it is

reasonable to assume that sub-samples of this dataset are not homogeneous, and that our model may

not be able to accurately predict their overlap.
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Figure 5.3: Expected vs. observed overlap for k = 100 and ntest = 50
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5.3.2 Different Source and Target Datasets

For this section, we used two datasets: one dataset to generate target sub-samples from, and a differ-

ent dataset as source. Algorithm 5.3 summarizes the steps we took for evaluating the performance

of our framework with this experimental setup.

Figure 5.1 shows the ~r’s obtained from different datasets can be very different, even though they

were based on identical array technologies and provide labels for the same phenotype. Therefore,

our framework may not be able to estimate the expected overlap correctly, given a ~r from a different

dataset. To empirically test this, we did two sets of experiments: one for two datasets whose ~r

were similar, and one for two datasets whose ~r were significantly different. Note that the results of

experiments in this section are intended to be used as empirical results for measuring the robustness

of the estimations to ~r, not to provide empirical evidence to validate our framework, since we chose

the datasets a posteriori, after observing their respective ~r.

In both sets of experiments, we used GSE3494 to get the target datasets. For the first set of

experiments, we chose GSE6532 – whose ~r is somewhat similar to that of GSE3494 – as source.

For the second set, we chose GSE2034 as source, whose ~r is different from that of GSE3494. We

repeated each experiment for ntest values of 50 and 80. Figure 5.6 through Figure 5.9 show the
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Figure 5.4: Expected vs. observed overlap for k = 100 and ntest = 50 for GSE7390 – An example
of overestimating the overlap
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results of these experiments.

As the figures suggest, the estimations of our framework are sensitive to ~r as input, and having

~r come from a dataset – that appears to not be homogeneous with the target datasets – adversely

affects the estimations. As evident from the figures, our estimations were acceptable only for a

subset of cases where ~r of source and target datasets were similar, that is, for ntest = 50, when using

GSE6532 as source. Welch’s t-test rejected the null hypothesis of equality at 5% significance levels

for all cases except using GSE6532 with ntest = 50.

5.3.3 Sub-samples of Two Different Datasets

In this section, we will present the results for comparing two sub-samples of equal size, taken from

two different datasets A and B. We also used a combination of ~r taken from datasets A and B. We

considered two ways to combine the two ~rs:

1. Take the union of datasets A and B, and use the new dataset to generate ~r, i.e., source =A∪B.

2. Let ρA and ρB denote the correlation scores of datasets A and B, respectively. Take two sub-

samples of size n of datasets A and B, use the remaining patients in both datasets to compute

ρA and ρB . Let ρi = 0.5× (ρAi + ρBi) for i ∈ {1, . . . , p}. Sort ~ρ to get ~r.
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Figure 5.5: Expected vs. observed overlap for k = 100 and ntest = 70 for GSE7390 – An example
of underestimating the overlap
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We picked the second approach, as the first approach is not straightforward due to batch effects

introduced when sampling, and the bias between different datasets, and difficulties of adjusting and

removing the batch effect; see [9] for an overview and evaluation of current methods. Using this

method, we found that using this approach generally does not yield acceptable results, and t-test

is able to reject equality at 5% significance level. Figure 5.10 shows one such attempt, using sub-

samples of size n = 50 of two datasets GSE6532 and GSE7390.

5.4 Summary

In this chapter, we presented the results of empirically evaluating the performance of our framework

for estimating the overlap of top-k genes of two n-patient studies. This required using a vector

of true correlations ~r; we needed to estimate this from some source. We then used this vector as

the true means of correlation scores of genes in the target datasets. This often gave problematic

answers, mostly due to heterogeneity of microarray datasets: an ~r from the source dataset was

often inappropriate for target dataset, which meant that the source and target datasets were not

homogeneous, although they were based on similar array technologies over the same phenotype.

This hinders our ability to get a ~r that could be used to predict the expected overlaps of other datasets.

However, sub-sampling from a single dataset showed strong agreement between our estimations

and observed overlaps, showing that our model can accurately predict the expected overlap when

provided with good estimations of ~r.
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Figure 5.6: Expected vs. observed overlap for ntest = 50 on GSE3494, with GSE6532 as source.
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Algorithm 5.3 TwoDatasets-Evaluate(D1, D2, ntest): evaluate the expected overlap between top-
ranked genes of subsamples of size ntest from dataset D1, using D2 as source.

Input: Nt, Ns, kmax: parameters of EOv(.), stochastic approximation of expected overlap be-
tween top 1, . . . , kmax genes of two datasets (implicitly used in calling EmpiricalOverlap()), the
number of times to repeat the evaluation H .
Output: expected overlap of two target datasets ~e, standard deviation of estimated overlaps ~estd,
observed overlap ~O.

for i ∈ {1, . . . ,H} do
T1 ← Data for ntest patients randomly selected from D1

T2 ← Data for ntest patients randomly selected from D1

e, stde, Oi ← EmpiricalOverlap(D2, T1, T2)
end for
return ~e, ~estd, ~O
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Figure 5.7: Expected vs. observed overlap for ntest = 80 on GSE3494, with GSE6532 as source.

0 20 40 60 80 100 120
0

5

10

15

20

25

k

O
v
e
rl
a
p

Expected vs. observed overlaps for subset of size n=80 of GSE3494, with r from GSE6532

 

 

Expected overlap ± std. dev.

Observed overlap ± std. dev.

Figure 5.8: Expected vs. observed overlap for ntest = 50 on GSE3494, with GSE2034 as source.
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Figure 5.9: Expected vs. observed overlap for ntest = 80 on GSE3494, with GSE2034 as source.
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Figure 5.10: Comparing estimates and observed overlaps of sub-samples of size n = 50 from
datasets GSE6532 and GSE7390 – using average of two ~r from both datasets as source.
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Chapter 6

Conclusion

In this dissertation, we presented a mathematical model for estimating the expected overlap of two

lists ranked by correlation to label. As shown in Chapter 5, when we have accurate estimates of true

means of correlation scores ~r, there can be good agreement between our estimations of expected

overlap and the average observed overlap in the top-k genes of two datasets of the same size. How-

ever, as the performance of our model depends on the accuracy of the given ~r as an estimate of true

means of correlation scores, the output might not be robust when the given ~r is not homogeneous

with target datasets for which we want to estimate the overlap. In addition to heterogeneity, another

possible reason for this disparity between our estimates and the observed overlap might be lack of

enough data for generating ~r. One possible future venue is using publicly available datasets to build

a database of “(phenotype, microarray) → ~r tuples”, and store pre-computed values of ~r for each

phenotype and array technology pair.

Appendix B presents our suggestion for the distribution of ~r. As discussed in the appendix,

we believe that the absolute values of correlation score of top ranked genes of the gene signature

follow a power-law, specifically a Pareto distribution. Our experiments show that for the same array

technology and phenotype, the slope, the α parameter of the Pareto distributions is generally the

same, while the intercept, xm, changes for different datasets. A possible future work is to use more

datasets to get a better estimate of α and xm for various phenotypes. Doing so will enable us to use

inverse CDF sampling, with α and xm as distribution parameters for a given phenotype, to generate

~r. This will enable us to predict the overlap of two datasets without using a source dataset to generate

~r.

Our framework is able to estimate the expected overlap, with no assumption about the distribu-

tion of the elements in the list, and with minimal assumptions on the distribution of noise on ob-

servations. We developed a closed form analytical solution for estimating the overlap, and showed

how we can use stochastic approximation to efficiently calculate the overlap, which is relevant as it

is often computationally infeasible to compute the analytical solution. We used ranked gene lists,

a.k.a. gene signatures, as a practical example to illustrate an application of our framework. The re-

sults of our framework suggest that number of patients, n, is the most important determining factor
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in the overlap of two ranked gene lists. As such, one application of our framework would be to use

the analytical solution, to better understand whether the number of patients in a study is enough for

extracting gene signatures that are likely to appear in different studies.
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Guillermo, Thomas M Grogan, Thomas P Miller, Michel LeBlanc, German Ott, Stein Kvaloy,
Jan Delabie, Harald Holte, Peter Krajci, Trond Stokke, and Louis M Staudt. The use of molec-
ular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. The
New England journal of medicine, 346(25):1937–47, June 2002.

[56] L SHAMPINE. Vectorized adaptive quadrature in MATLAB. Journal of Computational and
Applied Mathematics, 211(2):131–140, February 2008.

[57] Cormac Sheridan. Third Tysabri adverse case hits drug class. Nature reviews. Drug discovery,
4(5):357–8, May 2005.

[58] Margaret A Shipp, Ken N Ross, Pablo Tamayo, Andrew P Weng, Jeffery L Kutok, Ricardo C T
Aguiar, Michelle Gaasenbeek, Michael Angelo, Michael Reich, Geraldine S Pinkus, Tane S
Ray, Margaret A Koval, Kim W Last, Andrew Norton, T Andrew Lister, Jill Mesirov, Donna S
Neuberg, Eric S Lander, Jon C Aster, and Todd R Golub. Diffuse large B-cell lymphoma
outcome prediction by gene-expression profiling and supervised machine learning. Nature
medicine, 8(1):68–74, January 2002.

[59] Richard Simon. Roadmap for developing and validating therapeutically relevant genomic clas-
sifiers. Journal of clinical oncology : official journal of the American Society of Clinical
Oncology, 23(29):7332–41, October 2005.

[60] A H Sims. Bioinformatics and breast cancer: what can high-throughput genomic approaches
actually tell us? Journal of clinical pathology, 62(10):879–85, October 2009.

[61] Gordon K Smyth. Linear models and empirical bayes methods for assessing differential ex-
pression in microarray experiments. Statistical applications in genetics and molecular biology,
3(1):Article3, January 2004.

[62] T Sø rlie, C M Perou, R Tibshirani, T Aas, S Geisler, H Johnsen, T Hastie, M B Eisen, M van de
Rijn, S S Jeffrey, T Thorsen, H Quist, J C Matese, P O Brown, D Botstein, P Eystein Lønning,
and A L Bø rresen Dale. Gene expression patterns of breast carcinomas distinguish tumor
subclasses with clinical implications. Proceedings of the National Academy of Sciences of the
United States of America, 98(19):10869–74, September 2001.

[63] Christos Sotiriou and Lajos Pusztai. Gene-expression signatures in breast cancer. The New
England journal of medicine, 360(8):790–800, February 2009.

[64] Amanda Spink, Bernard J. Jansen, Vinish Kathuria, and Sherry Koshman. Overlap among
major web search engines. Internet Research, 16(4):419–426, 2006.

46



[65] Roland B Stoughton. Applications of DNA microarrays in biology. Annual review of biochem-
istry, 74:53–82, January 2005.

[66] Korbinian Strimmer. A unified approach to false discovery rate estimation. BMC bioinformat-
ics, 9:303, January 2008.

[67] Shin Takahashi, Takuya Moriya, Takanori Ishida, Hiroyuki Shibata, Hironobu Sasano, Noriaki
Ohuchi, and Chikashi Ishioka. Prediction of breast cancer prognosis by gene expression profile
of TP53 status. Cancer science, 99(2):324–32, February 2008.

[68] Zhi Qun Tang, Lian Yi Han, Hong Huang Lin, Juan Cui, Jia Jia, Boon Chuan Low, Bao Wen
Li, and Yu Zong Chen. Derivation of stable microarray cancer-differentiating signatures us-
ing consensus scoring of multiple random sampling and gene-ranking consistency evaluation.
Cancer research, 67(20):9996–10003, October 2007.

[69] Melissa a Troester, Jason I Herschkowitz, Daniel S Oh, Xiaping He, Katherine a Hoadley,
Claire S Barbier, and Charles M Perou. Gene expression patterns associated with p53 status in
breast cancer. BMC cancer, 6:276, January 2006.

[70] V G Tusher, R Tibshirani, and G Chu. Significance analysis of microarrays applied to the
ionizing radiation response. Proceedings of the National Academy of Sciences of the United
States of America, 98(9):5116–21, April 2001.

[71] Marc J van de Vijver, Yudong D He, Laura J van’t Veer, Hongyue Dai, Augustinus a M Hart,
Dorien W Voskuil, George J Schreiber, Johannes L Peterse, Chris Roberts, Matthew J Marton,
Mark Parrish, Douwe Atsma, Anke Witteveen, Annuska Glas, Leonie Delahaye, Tony van der
Velde, Harry Bartelink, Sjoerd Rodenhuis, Emiel T Rutgers, Stephen H Friend, and René
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Appendix A

Efficient Algorithm for Finding the
Overlap Between Two Ranked Lists

Efficient algorithms for finding the size of intersection between two lists, S1 and S2 of lengths m

and n have a runtime complexity of O(m+n). Algorithm A.1 shows the simple outline for such an

algorithm:

Algorithm A.1 overlap(S1, S2)

lookup← ∅
for i = [1 : length(S1)] do
lookup[S1[i]]← True

end for
overlap← 0
for j = [1 : length(S2)] do

if lookup[S2[j]] then
overlap← overlap+ 1

end if
end for
return overlap

Let O(S1,2[k]) denote the size of overlap between the first k elements of two lists S1 and S2.

Algorithm A.1 is efficient for finding the size of overlap of two lists. However, this implementation

is not efficient if the goal is to repeatedly call the above function to find the overlap of kmax lists,

i.e., finding ∀k ∈ {1, · · · , kmax}O(S1,2[k])1. The main reason is that there is an inductive relation

between O(S1,2[k − 1]) and O(S1,2[k]). That is, we have:

O(S1,2[k]) =

 0 if k = 0;
O(S1,2[k − 1]) + 1 if S2[k] ∈ {S1[1], · · · , S1[k]};
O(S1,2[k − 1]) otherwise.

Therefore we can have a dynamic programming solution to efficiently compute the overlap for

all the first kmax substrings of S1 and S2. To do so, we would need two lookup tables, ‘lookup’ and

‘future’. ‘lookup’ has the same functionality as Algorithm A.1, but is modified to hold the index of

1Assuming that both lists have the same length of kmax.
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the occurrence of each element in S1. This will not be problematic, as each element is a gene’s index

and is guaranteed to occur only once in each ranked list in our domain. ‘future’ holds the index of

elements that will eventually be seen for some i > kcurrent ∈ [1 : kmax]. Algorithm A.2 describes

the full algorithm.

Algorithm A.2 overlap 1 k(S1, S2, kmax)

Require: both lists S1 and S2 have at least kmax elements
lookup← ∅
for i = [1 : kmax] do
lookup[S1[i]]← i

end for
overlap[1 : kmax]← 0
future← ∅
O ← 0 {O holds the overlap so far}
for k = [1 : kmax] do

if lookup[S2[k]] does not exist then
overlap[k]← O
continue to next k

end if
indexS1

← lookup[S2[k]]
if 0 < indexS1

≤ k then
O ← O + 1

else if 0 < indexS1 ≤ kmax then
future[indexS1

]← True
end if
if future[k] then
O ← O + 1

end if
overlap[k]← O

end for
return overlap

The runtime of algorithm A.2 is O(kmax). Algorithm A.2 can be easily generalized to find

the overlap in the top kmax elements of a source list S1 and target lists S2, · · · , SNs in O(Ns ×

kmax). Therefore, as mentioned in Chapter 4, we can use this algorithm to reduce the runtime of

the simulation from O(Nt ×Ns × k2max) to O(Nt ×Ns × kmax). As in most cases kmax is in the

range of 20 to 100 (and sometimes 1000), this will provide a significant speedup to the simulation.
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Appendix B

Distribution of Correlation Scores

The analytic framework we presented in this dissertation does not make any direct assumptions

about the underlying distribution of correlation scores. However, if such a distribution exists, we

could use it to synthesize datasets, and obtain ~r without using other microarray datasets, provided

that we know the parameters of the distribution.

Figure B.1 shows the histogram of absolute values of correlation scores, taken from the Rot-

terdam signature’s dataset. As the figure suggests, the frequency of low correlation scores is high,

whereas the occurrence of high correlation scores is very infrequent. Such a trend suggests that the

underlying distribution of correlation scores may be a power-law.

Figure B.1: Histogram of correlation scores taken from the Rotterdam signature’s dataset
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Power-laws are present as the underlying distribution of a wide variety of phenomena. A power-

law states that the frequency of an item is inversely proportional to its frequency rank, i.e., high

values of correlation scores are infrequent, and low values occur frequently. Power-laws are a family

of probability distributions, one of which is the Pareto distribution. A Pareto distribution is defined

by two parameters, α and xm, as follows:

P (X ≥ x) =

{
(xmx )α for x ≥ xm,

1 for x < xm.

Therefore, the probability density function of a Pareto distribution is:

fX(x) =

{
α

xαm
xα+1 for x ≥ xm,
0 for x < xm.

One of the characteristics of Pareto distributions is that their score versus rank plot appears as

a line on the log-log scale. Figure B.2 shows the first 1000 terms of ~r for four microarray datasets,

re-printed from Chapter 5, suggesting that such a linear trend exists for the microarray datasets we

observed.

Figure B.2: Log-log plot of top 1000 correlation scores for four microarray datasets.
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Assuming that we are given the α and xm parameters, we can synthesize a dataset that follows

a Pareto(α, xm), using inverse-CDF sampling. To get T , a random sample from a Pareto(α, xm)

distribution, we can use the following equation:

T =
xm

U
1
α

where U is a random number taken from the uniform distribution U [0, 1]. Using this technique

p times, we can synthesize a dataset whose p correlation scores follow a Pareto with xm and α
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Figure B.3: Probability of observing a correlation score greater than c, for c ∈ [0, 1], generated using
the Rotterdam signature’s dataset, with a Pareto fit superimposed.
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parameters.

In order to get the maximum likelihood estimations1 of α and xm, we used the method suggested

by Clauset et al. [11]. Using this method, we found that α is generally fixed, and in the range of

[12.5 − 14] for the microarray datasets we analyzed, which were based on Affymetrix platform,

with an ER+/ER- phenotype. Figure B.3 shows the distribution of the Rotterdam dataset, with a

black dotted-line showing the Pareto distribution superimposed. However, as the figure suggests,

the Pareto fit only describes the behaviour of the tail of the distribution, i.e., the larger correlation

scores. Moreover, repeating this experiment for other datasets showed that while the range of α is

almost fixed for a (array type, phenotype) pair, xm has a wider range, and therefore we may not be

able to find an underlying distribution for the correlation scores of a known phenotype and array

technology.

1Assuming that the underlying distribution is Pareto.
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