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We present a directed Markov random field (MRF) model that combines n-gram models, probabilistic context-
free grammars (PCFGs), and probabilistic latent semantic analysis (PLSA) for the purpose of statistical language
modeling. Even though the composite directed MRF model potentially has an exponential number of loops and
becomes a context-sensitive grammar, we are nevertheless able to estimate its parameters in cubic time using
an efficient modified Expectation-Maximization (EM) method, the generalized inside – outside algorithm, which
extends the inside – outside algorithm to incorporate the effects of the n-gram and PLSA language models. We
generalize various smoothing techniques to alleviate the sparseness of n-gram counts in cases where there are
hidden variables. We also derive an analogous algorithm to find the most likely parse of a sentence and to calculate
the probability of initial subsequence of a sentence, all generated by the composite language model. Our experimental
results on the Wall Street Journal corpus show that we obtain significant reductions in perplexity compared to the
state-of-the-art baseline trigram model with Good – Turing and Kneser – Ney smoothing techniques.
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1. INTRODUCTION

As a subproblem for machine translation and speech recognition under the source–
channel paradigm (Jelinek 2009), statistical language modeling is essentially a density esti-
mation problem to accurately compute the probability of naturally occurring word sequences
in human natural language. The dominant motivation for language modeling has tradition-
ally come from the field of speech recognition (Jelinek 1998); however, statistical language
models have recently become more widely used in many other application areas such as
information retrieval (Croft and Lafferty 2003), machine translation (Brown et al. 1993), op-
tical character recognition, spelling correction, document classification, and bioinformatics
(Searls 1992; Durbin et al. 1998; Coin, Bateman, and Durbin 2003).

There are various kinds of language models that can be used to capture different aspects
of natural language regularity. The simplest and most successful language models are the
Markov chain (n-gram) source models, first explored by Shannon in his seminal paper
(Shannon 1948). These simple models are effective at capturing local lexical regularities in
text. Subsequently, a wide variety of smoothing methods have been developed to address the
problem of estimating rare events for these models (Chen and Goodman 1999). The resulting
smoothed n-gram language models have become a key component of state-of-the-art speech
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recognizers, by helping to resolve acoustic ambiguities by placing higher probability on more
likely word strings.

While Markov chains are efficient at encoding local word interactions, natural language
clearly has a richer structure than can be conveniently captured by an n-gram model. For
example, attempting to increase the order of an n-gram to capture longer range dependencies
in natural language immediately runs into the curse of dimensionality (Bengio et al. 2003).

Many recent approaches have been proposed to capture and exploit different aspects of
natural language regularity with the goal of outperforming the simple n-gram model. For ex-
ample, the structural language model (Chelba and Jelinek 2000; Charniak 2001; Roark 2001)
effectively exploits syntactic regularities to achieve greater accuracy than the n-gram model,
and the semantic language model (Bellegarda 2000; Hofmann 2001) exploits document-level
semantic regularities to achieve similar improvements. Unfortunately, each of these language
models only targets some specific, distinct linguistic phenomena (Rosenfeld 2000). The
key question (Roukos 1995; Pereira 2000; Bellegarda 2001; McAllester and Schapire
2002) we are investigating is how to model natural language in a way that simultaneously
accounts for the lexical information inherent in a Markov chain model, the hierarchical
syntactic structure captured in a stochastic branching process, and the semantic content
embodied by a bag-of-words mixture of log-linear models—all in a unified probabilistic
framework.

Several techniques for combining language models have been investigated. The most
commonly used method is linear interpolation (Rosenfeld 1996; Chelba and Jelinek 2000),
where each individual model is trained separately and then combined by a weighted linear
combination. The weights in this case are trained using held out data. Even though this
technique is simple and easy to implement, it does not generally yield effective combinations
because the linear additive form is too blunt to capture subtleties in each of the component
models. Another approach is based on Jaynes’ maximum entropy (ME) principle (Rosenfeld
1996; Khudanpur and Wu 2000). This approach has since become a dominant technique in
statistical natural language processing due to its several advantages over other methods for sta-
tistical modeling, such as introducing less data fragmentation, requiring fewer independence
assumptions, and exploiting a principled technique for automatic feature weighting. It is now
well known that for complete data, the ME principle is equivalent to maximum likelihood es-
timation (MLE) in an undirected Markov random field (MRF). In fact, these two problems are
exact duals of one another (Berger et al. 1996). The major weakness with ME methods, how-
ever, is that they can only model distributions over explicitly observed features, whereas in
natural language, we encounter hidden semantic (Bellegarda 2000) and syntactic information
(Chelba and Jelinek 2000). Wang et al. (2005a, 2012) proposed the latent ME (LME) princi-
ple, which extends standard ME estimation by incorporating hidden dependency structure. In
previous work (Wang et al. 2005a), we have used the LME principle for statistical language
modeling. However, the authors have been unable to incorporate PCFGs in this framework,
because the tree-structured random field component creates intractability in calculating the
feature expectations and global normalization over an infinitely large configuration space.
Previously, we had envisioned that Markov chain Monte Carlo (MCMC) sampling methods
(Mark, Miller, and Grenander 1996; Abney 1997) would have to be employed, leading to
enormous computational expense, see more explanation and analysis in Appendix A. Griffiths
et al. (2004) proposed a generative composite hidden Markov model (HMM)/latent Dirichlet
allocation (LDA) model that takes into account of both short-range syntactic dependencies
and long-range semantic dependencies between words and can be used to simultaneously
find syntactic classes and semantic topics for purposes of part-of-speech (POS) tagging and
document classification, not language modeling for density estimation of natural language,
but they have used MCMC to estimate the parameters for a much simpler model. However,
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we propose an exact estimation algorithm for a much more complicated model for language
modeling.

In this paper, instead of using an undirected MRF model, we present a unified
generative directed MRF model framework that combines n-gram models, PCFG, and
probabilistic latent semantic analysis (PLSA). Unlike undirected MRF models where there
is a global normalization factor over an infinitely large configuration space, which often
causes computational difficulty, the directed MRF model representation for the composite
n-gram/syntactic/semantic model only requires local normalization constraints. More
importantly, it satisfies certain factorization property that greatly reduces the computational
burden and makes the optimization tractable. We review the most popular language models
in Section 2 and propose the composite n-gram/syntactic/semantic language model in
Section 3. In Section 4, by exploiting the factorization properties of the composite model, we
propose a simple yet efficient and exact EM iterative optimization method, the generalized
inside–outside algorithm, which enhances the well-known inside–outside algorithm (Baker
1979; Lari and Young 1990) to incorporate the impact of the n-gram model and PLSA. To
cope with sparse data in n-gram component, we extend standard smoothing techniques to
handle hidden variables. In Section 5, we present a generalized left-to-right inside procedure
to compute the probability of an initial subsequence in the composite language model. Given
that n-gram, PCFG, and PLSA models have been well studied for several decades, it is
striking that this procedure has gone undiscovered until now. Finally, we give experimental
results in Section 6 and point out future research in Section 7.

2. A COMPOSITE TRIGRAM/SYNTACTIC/SEMANTIC LANGUAGE MODEL

Natural language encodes messages via complex, hierarchically organized sequences.
The local lexical structure of the sequence conveys surface information, while the syntac-
tic structure, encoding long-range dependencies, carries deeper semantic information; see
Figure 1.

Various models have been proposed to model each specific linguistic phenomenon.
Below, we briefly review the most popular ones.

The Markov chain source model for natural language was first explored by Shannon
(1948) to capture local lexical regularities. The commonly used trigram model, or second-
order Markov chain model, is constructed by assuming that all histories with the same
previous two words belong to the same equivalence class. The maximum likelihood estimate
of a trigram probability given a training corpus can be calculated by the relative frequency
count. Many smoothing techniques have been proposed to address the problem of rare events
for these models.

There are two approaches to modeling syntactic structure in natural language. The sim-
plest approach uses a probabilistic context-free grammar (PCFG) to express the distribution
over-word sequences (Lari and Young 1990; Mark et al. 1996; Johnson 1999). However, a
more complicated approach (Chelba and Jelinek 2000; Roark 2001) uses a parser to uncover
phrasal heads, words, and their corresponding nonterminal tags; all of which stand in an
important relation to the current word in the context of prediction.

A document can be viewed as a collection of semantically homogeneous sentences. Given
a large number of documents, LSA attempts to discover compact semantic representations
of text data that go beyond simple lexical-level word co-occurrences. This is achieved by
mapping a high-dimensional vector representation of documents (term frequency vectors) to
a lower dimensional representation in a so-called latent semantic space. Semantic relations
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FIGURE 1. The observables in natural language consist of words, sentences, and documents; whereas
the hidden data consist of sentence-level syntactic structure and document-level semantic content. The figure
illustrates a composite chain/tree/table model incorporating these aspects, where light nodes denote observed
information and dark nodes/triangles denote hidden information.

between words and documents can then be easily defined in terms of their proximity in
the semantic space by dimensionality reduction techniques (Bellegarda 2000; Hofmann
2001).

Let X denote a set of random variables (Xτ )τ∈� taking values in a (discrete) probability
spaces (Xτ )τ∈�, where � is a finite set of states. We define a (discrete) directed MRF to be a
probability distribution P which admits a recursive factorization if there exist nonnegative
functions, kτ (·, ·), τ ∈ � defined on Xτ × Xpa(τ ), such that

∑
xτ

kτ (xτ , x pa(τ )) = 1 and P has
density

p(x) =
∏
τ∈�

kτ (xτ , x pa(τ )). (1)

Here, pa(τ ) denotes the set of parent states of τ . If the recursive factorization respects to a
graph G, then we have a Bayesian network (Lauritzen 1996). However, broadly speaking, the
recursive factorization can respect to a more complicated representation other than a graph
which has a fixed set of nodes and edges.

Assume that we use a trigram Markov chain to model local lexical information, a PCFG
to model the syntactic structure and a PLSA (Hofmann 2001) to model its semantic content
of natural language. Each of these models can be represented as a directed MRF model. If
we combine these three models, we obtain a composite model that is represented by a rather
complex chain-tree-table-directed MRF model.

A context-free grammar (CFG) G is a four-tuple (�,V,R, S) (Hopcroft and Ullman
1979) that consists of: a set of nonterminal symbols � whose elements are grammatical
phrase markers; a vocabulary of V = {v1, . . . , vM} whose elements, words vi , are termi-
nal symbols of the language; a sentence “start” symbol S ∈ �; and a set of grammatical
production rules R of the form: A → γ , where A ∈ � and γ ∈ (� ∪ V)∗. A PCFG is
a CFG with a probability assigned to each rule such that the probabilities of all rules
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expanding a given nonterminal sum to 1; specifically, each right-hand side has a conditional
probability given the left-hand side of the rule. A PCFG is a branching process (Miller and
O’Sullivan 1992; Chi 1999) and its distribution can be represented in a form of (1); thus, it
can be treated as a directed MRF model even though the straightforward representation as
a complex directed graphical model is problematic (McAllester, Collins, and Pereira 2004),
since given observed leaf nodes, there are potentially exponentially many distinct parse tree
structures.

A PLSA (Hofmann 2001) is a generative probabilistic model of word-document co-
occurrences using the bag-of-words assumption that is described as follows: (1) choose a
document dk with probability θ (dk), (2) select a semantic class h with probability θ (dk → h),
and (3) pick a word w with probability θ (h → w). Since only pair of (dk, w) is being observed,
as a result, the joint probability model is a mixture of log-linear model with the expression
p(dk, w) = θ (dk)

∑
h θ (h → w)θ (dk → h). Typically, the number of documents, words in

the vocabulary, and latent class variables is on the order of 100,000, 10,000, and hundreds,
respectively. Thus, latent class variables function as bottleneck variables to constrain word
occurrences in documents. Similar generative and Bayesian models for PLSA were also
developed by Pritchard, Stephens, and Donnelly (2000) for analyzing population structure
using multilocus genotype data.

When a PCFG is combined with a trigram model and PLSA, the grammar becomes
context-sensitive. If we view each uvw trigram as uv → w , where u, v, w ∈ V , then the
composite trigram/syntactic/semantic language model can be represented as a directed MRF
model, where the generation of nonterminals remains the same as in PCFG, but the generation
of each terminal depends additionally on its surrounding context; i.e., not only its parent
nonterminal but also the preceding two words as well as its semantic content nodes. In this
case, the sentence “start” symbol generates random trees with trigrams linking leaf nodes, the
document node generates categorical table with trigrams as random walk nodes. In analogy
with an autoregressive HMM (Bilmes 2003), the combined syntactic trigram model is, in fact,
an autoregressive PCFG; the combined semantic trigram model is, in fact, an autoregressive
PLSA; see Figure 2. Just as the inside–outside algorithm for PCFGs is the natural counterpart
of the forward backward algorithm for HMMs, the generalized inside–outside algorithm for
the combined trigram/PCFG/PLSA model we derive below is the natural counterpart of the
forward–backward algorithm for autoregressive HMMs (Bilmes 2003).

An alternative approach is to combine these three models based on latent ME principle
or under the undirected MRF paradigm (Wang et al. 2012), where the features consist of
those discussed above. Appendix A illustrates the computational difficulties faced by this
approach.

3. TRAINING ALGORITHM FOR THE COMPOSITE LANGUAGE MODEL

We are interested in learning a composite trigram/syntactic/semantic model from data.
We assume that we are given a training corpus W consisting of a collection of documents D,
where each document contains a collection of sentences, and each sentence W is composed
of a sequence of words from a vocabulary V . For simplicity, but without loss of generality,
we assume that the PCFG component of the composite model is in Chomsky normal form.
That is, each rule is either of the form A → BC or A → w , where B, C ∈ �, w ∈ V . When
combined with trigram and PLSA models, the terminal production rule A → w becomes
uv Ah → w . By examining Figure 1, it should be clear that the likelihood of the observed
data under this composite model can be written as below:
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FIGURE 2. Comparing (a) HMM versus (b) autoregressive HMM, and (c) PCFG versus (d) autoregressive
PCFG models, and (e) PLSA versus (f) autoregressive PLSA. Our composite trigram/syntactic/semantic model
is, in fact, an autoregressive PCFG-PLSA.

L(W, θ ) =
∏
d∈D

(∏
l

pθ (d, Wl)

)

=
∏
d∈D

⎛
⎝∏

l

⎛
⎝∑

t

∏
u,v∈V,A→w∈R

(∑
h∈H

θ (d → h)θ (uv Ah → w)

)n(uvwA;d ,Wl ,t)

∏
A→BC∈R

θ (A → BC)n(A→BC ;d,Wl ,t)

))
,

(2)

where pθ (d, Wl) is the probability of generating sentence Wl in document d,
n(uvw A; d, Wl, t, h) is the count of trigrams uvw with nonterminal symbol A in sentence
Wl of document d with parse tree t , and n(A → BC ; d, Wl, t) is the count of nonterminal
production rule A → BC in sentence Wl of document d with parse tree t . The parameters
θ (d → h), θ (uv Ah → w), θ (A → BC) are normalized so that

∑
w∈V

θ (uv Ah → w) = 1,
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BC∈�

θ (A → BC) = 1,

∑
h∈H

θ (d → h) = 1.
(3)

Thus, we have a constrained optimization problem, and there will be a Lagrange multiplier
for uv Ah, nonterminal A, and document d.

3.1. Estimating Parameters of the Composite Model

At a first glance, it seems that estimating parameters of the composite model is intractable
since the composite directed MRF model is a kind of context-sensitive grammar (Hopcroft
and Ullman 1979) and potentially has exponential number of loops, which suggests that
loopy belief propagation (Pearl 1988; Yedidia, Freeman, and Weiss 2001) and/or variational
approximation methods (Wainwright and Jordan 2008) have to be used. It turns out that
this is not the case. It is well known that many problems for context-sensitive grammars
are NP hard (Hopcroft and Ullman 1979; Durbin et al. 1998); however, for a subclass of
context-sensitive grammars, as we will shown below, there is an efficient cubic time and
exact recursive EM iterative optimization procedure to perform this task.

To make it easier to understand the generalized inside–outside algorithm for the com-
posite trigram/syntactic/semantic model, we first briefly review the classical derivations for
PCFGs shown in Lafferty (2000). Considering the PCFG model in Chomsky normal form,
the likelihood of the observed data under the PCFG model can be written as below:

LPCFG(W, θ ) =
∏
d∈D

⎛
⎝∏

l

⎛
⎝∑

t

∏
u,v∈V,A→w∈R

(θ (A → w))n(wA;d ,Wl ,t)

∏
A→BC∈R

θ (A → BC)n(A→BC ;d,Wl ,t)

))
,

(4)

where n(wA; d ,Wl , t) is the count of nonterminal symbol A generating w in sentence
Wl of document d with parse tree t and n(A → BC ; d, Wl, t) is the count of nonterminal
production rule A → BC in sentence Wl of document d with parse tree t .

To apply the EM algorithm, we consider the auxiliary function

QPCFG(θ ′, θ ) =
∑

d

∑
l

∑
t

pθ (t |d, Wl) log
pθ ′(d, Wl, t)

pθ (d, Wl, t)
, (5)

where

pθ (d, Wl, t) =
∏

A→w∈R
θ (A → w)n(A→w ;d,Wl ,t)

∏
A→BC∈R

θ (A → BC)n(A→BC ;d,Wl ,t). (6)

Taking the derivative of QPCFG(θ ′, θ ) with regard to θ ′(A → BC) and θ (A → w), re-
spectively, gives

∂ QPCFG(θ ′, θ )

∂θ ′(A → BC)
=
∑
d∈D

∑
l

∑
t

pθ (t |d, Wl)n(A → BC ; d, Wl, t)

θ ′(A → BC)
,

∂ QPCFG(θ ′, θ )

∂θ ′(A → w)
=
∑
d∈D

∑
l

∑
t

pθ (t |d, Wl)n(A → w ; d, Wl, t)

θ ′(A → w)
.
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Thus, the reestimated parameters of the PCFG model are then the normalized conditional
expected counts:

θ ′(A → BC) =

∑
d∈D

∑
l

∑
t

pθ (t |d, Wl)n(A → BC ; d, Wl, t)

∑
B,C∈�

∑
d∈D

∑
l

∑
t

pθ (t |d, Wl)n(A → BC ; d, Wl, t)
,

θ ′(A → w) =

∑
d∈D

∑
l

∑
t

pθ (t |d, Wl)n(A → w ; d, Wl, t)

∑
w∈R

∑
d∈D

∑
l

∑
t

pθ (t |d, Wl)n(A → w ; d, Wl, t)
. (7)

It is easy to check that the following equations hold:∑
t

pθ (t |d, Wl)n(A → BC ; d, Wl, t) = θ (A → BC)

pθ (d, Wl)

∂pθ (d, Wl)

∂θ (A → BC)
;

∑
t

pθ (t |d, Wl)n(A → w ; d, Wl, t) = θ (A → w)

pθ (d, Wl)

∂pθ (d, Wl)

∂θ (A → w)
.

Suppose the position of a rule A → BC within a tree t for sentence Wl = (w1, . . . , w N )
in document d can be specified by a triple (i, j, k), i ≤ j ≤ k. The partial derivative of the
probability pθ (S → Wl in d) = pθ (d, Wl) with respect to the parameter θ (A → BC) only
involves those parse trees which use the rule A → BC . Consider the event “S → Wl in d
using A → BC in position (i, j, k).” Because of the Markov property of the PCFG model,
the probability of this event can be written as a product of four terms as follows:

pθ (S → Wl in d; using A → BC in position (i, j, k))

= θ (A → BC)pθ (B ⇒ wi . . . w j ; Wl in d)pθ (C ⇒ w j+1 . . . wk ; Wl in d)

pθ (S ⇒ w1 . . . wi−1 Awk+1 . . . w N ; Wl in d).

From this, it is not difficult to see that

∂pθ (S → Wl in d)

∂θ (A → BC)
=
∑

i≤ j≤k

pθ (B ⇒ wi . . . w j ; Wl in d) pθ (C ⇒ w j+1 . . . wk ; Wl in d)

pθ (S ⇒ w1 . . . wi−1 Awk+1 . . . w N ; Wl in d).

Thus, the conditional expected number of times that the rule A → BC is used in generating
the sentence Wl ∈ W in document d using the model θ is given by∑

t

pθ (t |d, Wl)n(A → BC ; d, Wl, t)

= θ (A → BC )

pθ (Wl in d)

⎛
⎝∑

i≤ j≤k

βik(A; Wl in d)αi j (B; Wl in d)α j+1k(C ; Wl in d)

⎞
⎠ ,

where

αi j (B; Wl in d) = pθ (B ⇒ wi . . . w j ; Wl in d),
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i.e., the inside probability that the nonterminal B derive the word subsequence wi . . . w j in
the sentence Wl of document d; and

βik(A; Wl in d) = pθ (S ⇒ w1 . . . wi−1 Awk+1 . . . w N ; Wl in d),

i.e., the outside probability that beginning with the start symbol S, we can derive the sequence
w1 . . . wi−1 Awk+1 . . . w N in the sentence Wl of document d.

Similarly, we have∑
t

pθ (t |d, Wl)n(A → w ; d, Wl, t)

= θ (A → w)

pθ (Wl in d)

∑
1≤i≤N

δw (wi )θ (d → h)βi i (A; Wl in d),

where δ is the indicator function.
Following Lafferty’s (2000) derivation of the inside–outside formulas for updating

the PCFG parameters from a general EM (Dempster, Laird, and Rubin 1977) algorithm,
we now formally derive the generalized inside–outside algorithm for the composite tri-
gram/syntactic/semantic model. For each sentence, since the actual tree used to derive each
sentence and semantic content of each word are hidden, we need to apply an iterative EM pro-
cedure to obtain a local maximum likelihood estimate for the composite model parameters.
Starting at some initial parameters θ , the generalized inside–outside algorithm reestimates
the parameters to obtain new parameters θ ′ such that L(W, θ ′) ≥ L(W, θ ). The process is
repeated until the likelihood has converged to a local maximum. It turns out that the E-step
for inside–outside algorithm for CFG needs to be generalized to take into account the trigram
model and PLSA model.

To apply the EM algorithm, we consider the auxiliary function

Q(θ ′, θ ) =
∑

d

∑
l

∑
Hl

∑
t

pθ (Hl, t |d, Wl) log
pθ ′(d, Wl, Hl, t)

pθ (d, Wl, Hl, t)
, (8)

where

pθ (d, Wl, Hl, t) =
∏
h∈H

θ (d → h)n(d,Wl ,h)
∏

u,v∈V,A→w∈R,h∈H
θ (uv Ah → w)n(uvAh→w ;d ,Wl ,t,h)

∏
A→BC∈R

θ (A → BC)n(A→BC ;d,Wl ,t),
(9)

where n(d, Wl, h) is the count of semantic content h in sentence Wl of the document d,
n(uv Ah → w ; d, Wl, t, h) is the count of trigrams uvw , the nonterminal symbol A and
semantic content h in sentence Wl of document d with parse tree t and Hl are the semantic
content sequence of the sentence Wl .

Taking the derivative of Q(θ ′, θ ) with respect to θ ′(A → BC) gives

∂ Q(θ ′, θ )

∂θ ′(A → BC)
=
∑
d∈D

∑
l

∑
Hl

∑
t

pθ (Hl, t |d, Wl)n(A → BC ; d, Wl, t)

θ ′(A → BC)
.

Similarly, taking the derivative of Q(θ ′, θ ) with respect to θ (uv Ah → w) gives

∂ Q(θ ′, θ )

∂θ ′(uvAh → w )
=
∑
d∈D

∑
l

∑
Hl

∑
t

pθ (Hl, t |d, Wl)n(uv Ah → w ; d, Wl, t, h)

θ ′(uv Ah → w)
,



658 COMPUTATIONAL INTELLIGENCE

and taking the derivative of Q(θ ′, θ ) with respect to θ ′(d → h) gives

∂ Q(θ ′, θ )

∂θ ′(d → h)
=
∑
d∈D

∑
l

∑
Hl

∑
t

pθ (Hl, t |d, Wl)n(d → h; d, Wl, h)

θ ′(d → h)
.

Because of the normalization constraints (3), the reestimated parameters of the composite
model are then the normalized conditional expected counts (10):

θ ′(A → BC ) =

∑
d∈D

∑
l

∑
Hl

∑
t

pθ (Hl, t |d, Wl)n(A → BC ; d, Wl, t)

∑
B,C∈�

∑
d∈D

∑
l

∑
Hl

∑
t

pθ (Hl, t |d, Wl)n(A → BC ; d, Wl, t)
,

θ ′(uvAh → w ) =

∑
d∈D

∑
l

∑
Hl

∑
t

pθ (Hl, t |d, Wl)n(uv Ah → w ; d, Wl, t, h)

∑
w∈R

∑
d∈D

∑
l

∑
Hl

∑
t

pθ (Hl, t |d, Wl)n(uv Ah → w ; d, Wl, t, h)
,

θ ′(d → h) =

∑
l

∑
Hl

∑
t

pθ (Hl, t |d, Wl)n(d → h; d, Wl, h)

∑
h∈H

∑
l

∑
Hl

∑
t

pθ (Hl, t |d, Wl)n(d → h; d, Wl, h)
.

(10)

This looks the same as the PCFG model (Lafferty 2000).
Thus, we need to compute the conditional expected counts:∑

d∈D

∑
l

∑
Hl

∑
t

pθ (Hl, t |d, Wl)n(A → BC ; d, Wl, t)

∑
d∈D

∑
l

∑
Hl

∑
t

pθ (Hl, t |d, Wl)n(uvAh → w ; d, Wl, t, h)

∑
l

∑
Hl

∑
t

pθ (Hl, t |d, Wl)n(d → h; d, Wl, h).

In general, the sum requires summing over an exponential number of parse trees. How-
ever, just as with standard PCFGs, it is easy to check that the following equations still
hold: ∑

Hl

∑
t

pθ (Hl, t |d, Wl)n(A → BC ; d, Wl, t) = θ (A → BC )

pθ (d, Wl)

∂pθ (d, Wl)

∂θ (A → BC )
;

∑
Hl

∑
t

pθ (Hl, t |d, Wl)n(uvAh → w ; d, Wl, t, h) = θ (uv Ah → w)

pθ (d, Wl)

∂pθ (d, Wl)

∂θ (uvAh → w)
;

∑
Hl

∑
t

pθ (Hl, t |d, Wl)n(d → h; d, Wl, h) = θ (d → h)

pθ (d, Wl)

∂pθ (d, Wl)

∂θ (d → h)
;

and it turns out that there is an efficient way of computing the partial derivative on the
right-hand side, the generalized inside–outside algorithm.
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FIGURE 3. Inside and outside probabilities for nonternimal production rule in the composite language model,
where each component is influenced by the injected trigram and PLSA models.

Let A ⇒ γ denote that, beginning with a nonterminal A, we can derive a string γ of
words and nonterminals by applying a sequence of rewrite rules from the grammar without
the flowing-out trigrams but with the flowing-in and in-between trigrams and PLSA nodes,
where flowing-in and flowing-out trigrams are those that at least one word not belong to γ ,
in-between trigrams are those that all words belong to γ , and in-between PLSA nodes are
those that the word node belongs to γ .

Suppose the position of a rule A → BC within a tree t for sentence Wl = (w1, . . . , w N )
in document d can be specified by a triple (i, j, k), i ≤ j ≤ k. The partial derivative of the
probability pθ (S → Wl in d) = pθ (d, Wl) with respect to the parameter θ (A → BC) only
involves those parse trees which use the rule A → BC . Consider the event “S → Wl in d
using A → BC in position (i, j, k).” Because of the Markov property of the directed MRF
model, the probability of this event can be written as a product of four terms, i.e., the
factorization property, as follows:

pθ (S → Wl in d; using A → BC in position (i, j, k))

= θ (A → BC)pθ (B ⇒ wi . . . w j ; Wl in d)pθ (C ⇒ w j+1 . . . wk ; Wl in d)

pθ (S ⇒ w1 . . . wi−1 Awk+1 . . . w N ; Wl in d).

See Figure 3 for an illustration. The key insight toward a solution for the composite model
is that in comparison with the PCFG model, there are additional trigrams that connect the
decomposition in position (i, j, k). These dependencies encode additional information from
the trigram model and significantly influence the parameter estimation of the nonternimal
grammatical production rules (the impact of the PLSA model is implicitly considered, this
will become clear when we derive the estimation formula for the terminal grammatical
production rules). The factorization property is the crucial constituent for the success to
derive an efficient and exact recursive algorithm.
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FIGURE 4. Inside probability αi j and outside probability βik in the composite language model.

From this, it is not difficult to see that

∂pθ (S → Wl in d)

∂θ (A → BC)
=
∑

i≤ j≤k

pθ (B ⇒ wi . . . w j ; Wl in d) pθ (C ⇒ w j+1 . . . wk ; Wl in d)

pθ (S ⇒ w1 . . . wi−1 Awk+1 . . . w N ; Wl in d).

Thus, the conditional expected number of times that the rule A → BC is used in generating
the sentence Wl ∈ W in document d using the model θ is given by∑

Hl

∑
t

pθ (Hl, t |d, Wl)n(A → BC ; d, Wl, t)

= θ (A → BC)

pθ (Wl in d)

⎛
⎝∑

i≤ j≤k

βik(A; Wl in d)αi j (B; Wl in d)α j+1k(C ; Wl in d)

⎞
⎠ ,

where

αi j (B; Wl in d) = pθ (B ⇒ wi . . . w j ; Wl in d),

i.e., the inside probability that the nonterminal B and the trigram parent nodes of wi , wi+1
and document node d derive the word subsequence wi . . . w j in the sentence Wl of document
d; and

βik(A; Wl in d) = pθ (S ⇒ w1 . . . wi−1 Awk+1 . . . w N ; Wl in d),

i.e., the outside probability that beginning with the start symbol S, trigram parent nodes of
wk+1, wk+2, and document node d, we can derive the sequence w1 . . . wi−1 Awk+1 . . . w N in
the sentence Wl of document d. See Figure 4 for illustration.

Similarly, consider the event “S → Wl using uvAh → w in d in position (i).” Because
of the Markov property of the directed MRF model, the probability of this event can be
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FIGURE 5. Inside and outside probabilities for terminal production rule in the composite language model,
where each component is influenced by the injected trigram and PLSA models.

written as a product of four terms, again the factorization property, as follows:

pθ (S → Wl in d; using uv Ah → w in position (i))

= δuvw (wi−2wi−1wi )(θ (d → h)θ (uvAh → w ))

pθ (S ⇒ w1 . . . wi−1 Awi+1 . . . w N ; Wl in d).

See Figure 5for illustration. Again, the key insight toward a solution for the composite model
is that comparing with the PCFG model, there are additional trigram and PLSA nodes which
connect the decomposition in position (i) to encode the information of both trigram and
PLSA models and make Influential impact for parameter estimation of the grammatical
production rules uv Ah → w . Again, the factorization property is the crucial constituent for
the success to derive an efficient and exact recursive algorithm.

Thus, we have

∑
Hl

∑
t

pθ (Hl, t |d, Wl)n(uv Ah → w ; d, Wl, t)

= θ (uv Ah → w)

pθ (Wl in d)

∑
1≤i≤N

δuvw (wi−2wi−1wi )θ (d → h)βi i (A; Wl in d),

where δ is the indicator function.
Similarly, consider the event “d → Wl in d using d → h in position (i).” Because of the

Markov property of the directed MRF model, the probability of this event can be written as
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a product of three terms as follows:

pθ (S → Wl in d; using d → h in position (i))

=
∑
A∈�

pθ (S ⇒ w1 . . . wi−1 Awi+1 . . . w N ; Wl in d)

(θ (d → h)θ (wi−2wi−1 Ah → wi )).

Thus, we have∑
Hl

∑
t

pθ (Hl, t |d, Wl)n(d → h; d, Wl)

= θ (d → h)

pθ (Wl in d)

∑
1≤i≤N

∑
A∈�

θ (wi−2wi−1 Ah → wi )βi i (A; Wl in d).

Just as in the PCFG case, there is an efficient recursive method for computing the αs
and βs using the CKY chart-parsing algorithm (Younger 1967). The method for doing this
is almost the same as for PCFG and is implicit in the following recursive formulas:

αi j (A; Wl in d) =
∑
BC

∑
i≤k≤ j

(θ (A → BC)αik(A; Wl in d)αk+1 j (C ; Wl in d)), (11)

αi i (A; Wl in d) =
∑

h

(θ (d → h)θ (wi−2wi−1Ah → wi )), (12)

βi j (A; Wl in d) =
⎛
⎝∑

B,C

∑
k<i

θ (B → CA)αki−1(C ; Wl in d)βk j (B; Wl in d)

+
∑
B,C

∑
k> j

θ (B → AC )α j+1k(C ; Wl in d)βik(B; Wl in d)

⎞
⎠ ,

(13)

β1N (A; Wl in d) = δS(A; Wl in d). (14)

Comparing with the case of PCFGs, we notice that the only modification is in the definition
of αi i which explicitly encode trigram and PLSA models, and then propagate their effects
to the remaining αs and βs via the above recursive formulas. The time complexity of the
algorithm is cubic in terms of the length of a sentence, as is apparent from the recursive
loops over three sequence position indices, i, j, k.

Chi and Geman (1998) and Chi (1999) proved that the maximum likelihood estimate
of production rule probabilities for a PCFG yields a proper distribution, i.e., there is no
probability mass lost to infinitely large trees (Booth and Thompson 1973). Similarly, we
can show that the maximum likelihood estimate of production rule probabilities for this
composite trigram/syntactic/semantic model always yields a proper distribution.

Theorem 1. Let � be the set of finite parse trees, p̂ be any intermediate iteration of the
EM procedure within the generalized inside–outside algorithm. Then, p̂(�) = 1.
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Proof . See Appendix B. �
It is easy to modify the algorithm to extract the most probable parse for a given sentence

under the composite model. Briefly speaking, when we add each nonterminal A to a box
(i, j) in a chart, we keep a record of which has the highest likelihood of rewriting A.
That is, we determine which nonterminals B, C , and index k maximize the probability
θ (A → BC )αik(B)αk+1, j (C). When we reach the topmost nonterminal S, we can then “trace
back” to construct the Viterbi parse. Comparing with the case of PCFGs, the only difference
is in the definition of αi i .

3.2. Smoothing Techniques of the Composite Model

One severe problem in language modeling is the so-called sparse data problem caused
by the sparseness of n-gram counts appeared in the training data. To combat the sparse data
problem in language modeling, various smoothing techniques (Chen and Goodman 1999)
have been proposed. Basically, smoothing is the technique to adjust the maximum likelihood
estimate to prevent zero probabilities with the attempt to produce more accurate estimate.
Current smoothing techniques only handle explicit counts, but in our case, there are hidden
variables A and h in parameter estimation formula for θ (uvAh → w ). In this section, we
show how to extend smoothing methods to situations where there exist hidden variables.

Notice that the sparse data problem arises from trigram counts. The Good–Turing
estimate (Good 1953) is central to combat this problem. The Good–Turing estimate states
that for any trigram that occurs n times, we should pretend that it occurs n∗ times where

n∗ = (n + 1)
rn+1

rn
, (15)

where rn is the number of trigrams that occur exactly n times in the training data. To convert
this count to a probability, we just normalize: for a trigram vuw with n counts, we take

PGT (uvw ) = n∗

N
, (16)

where N = ∑∞
n=0 rnn∗. In practice, the Good–Turing estimate is not used by itself (Katz

1987); instead, it is often enhanced by back-off technique to combine higher order models
with lower order models necessary for good performance.

A procedure of replacing a count n with a modified count n∗ is called “discount” and we
define the ratio ρn = n∗

n as a discount coefficient ρn . The ρn are calculated as follows: large
counts are taken to be reliable, so they are not discounted. In particular, Katz (1987) takes
ρn = 1 for all n ≥ k for some k. The discount ratios for the lower counts n ≤ k are derived
from the Good–Turing estimate applied to the global trigram distribution and are given as

ρn =
n∗

n
− (k + 1)rk+1

r1

1 − (k + 1)rk+1

r1

. (17)

When we use (10) to estimate θ (uv Ah → w), we use the expected count of n(uv Ah →
w), where A and h are hidden. However, when the trigram uvw has count n(uv → w) >
0, if we discount the expected count of n(uvAh → w ) by the ratio ρn(uvw), then we
discount the trigrams by the same ratio ρn(uvw) since

∑
A∈�,h∈H ρn(uvw)n(uv Ah → w) =

ρn(uvw)n(uv → w). Therefore, instead of using iterative parameter estimation of (10), we
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use smoothed iterative parameter estimation as equation (18),

θ ′
s(uvAh → w )

=
ρn(uvw )

∑
d∈D

∑
l

∑
Hl

∑
t

pθ (Hl, t |d, Wl)n(uvAh → w ; d, Wl, t, h)

∑
w∈R

ρn(uvw )
∑
d∈D

∑
l

∑
Hl

∑
t

pθ (Hl, t |d, Wl)n(uvAh → w ; d, Wl, t, h)
.

(18)

When the trigram uvw has count n(uv → w) = 0, we back off to the corresponding
bigram parameters and let

θs(uvAh → w ) = η(uvw ) · θs (vAh → w )

and

η(uvw ) =
1 −

∑
w :n(uvw )>0

θs(uvAh → w )

1 −
∑

w :n(uvw )>0

θs(vAh → w )
.

Similarly, we can use Kneser–Ney smoothing (Ney, Essen, and Kneser 1995; Ney,
Martin, and Wessel 1997), and the smoothed iterative parameter estimation as equation (19),

θ ′
s(uv Ah → w)

=
n1+(·vw)

∑
d∈D

∑
l

∑
Hl

∑
t

pθ (Hl, t |d, Wl)n(uvAh → w ; d ,Wl , t, h)

∑
w∈R

n1+(·vw)
∑
d∈D

∑
l

∑
Hl

∑
t

pθ (Hl, t |d, Wl)n(uvAh → w ; d, Wl, t, h)
,

(19)

where n1+(·vw) = |{u : c(uvw) > 0}| is the number of different words u that precede vw in
the training data.

4. COMPUTING THE PROBABILITY OF INITIAL SUBSEQUENCE
GENERATION

In automatic speech recognition or statistical machine translation, we are presented
with words one at a time in sequence. Therefore, we would like to calculate the probability
pθ (S → w1w2 . . . wk . . .); that is, the probability that an arbitrary word sequence w1w2 . . . wk
is the initial subsequence of a sentence generated by the composite trigram, syntactic, and
semantic language model. We derive the generalized left-to-right inside algorithm to perform
this computation by following the work of (Jelinek and Lafferty 1991), which assumes that
a PCFG model is used.

In the following, we basically use the same notation as in Jelinek and Lafferty (1991). Let
pθ (A � i, j) denote the sum of the probabilities of all trees with root node A and document
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node d resulting in word sequences whose initial subsequence is wi . . . w j . Thus,

pθ (A � i, j) = αi j (A) +
∑
x1∈V

pθ (A → wi . . . w j x1)

+
∑

x1x2∈V2

pθ (A → wi . . . w j x1x2) + · · ·

+
∑

x1...xn∈Vn

pθ (A → wi . . . w j x1 . . . xn) + · · ·

(20)

Using this notation, the desired probability pθ (S → w1w2 . . . wk . . .) is denoted by pθ (S �
1, k).

Let pL
θ (A → B) = ∑

B2∈� pθ (A → B1 B2) be the sum of the probabilities of all the
rules A → B1 B2 whose first left-hand side element is B1 = B. Define pL

θ (A ⇒ B) =∑
γ∈(�∪V)∗ pθ (A ⇒ Bγ ) as the sum of probabilities of all trees with root node A that produce

B as the leftmost first nonterminal. This term converges, since our underlying composite
syntactic/semantic/trigram model pθ is proper.

Using this definition, we get

pθ (A � i, i) =
∑
h∈H

pθ (wi−2wi−1 Ah → wi )pθ (d → h)

+
∑
B∈�

pL
θ (A ⇒ B)

∑
h∈H

pθ (wi−2wi−1 Bh → wi )pθ (d → h)

= αi,i (A) +
∑
B∈�

pL
θ (A ⇒ B)αi,i (B).

Define the sum of probabilities of all trees with root node A whose last leftmost produc-
tion results in leaves B1 and B2 as

pL
θ (A ⇒ B1 B2) = pθ (A → B1 B2) +

∑
C∈�

pL
θ (A ⇒ C)pθ (C → B1 B2). (21)

Obviously,

pθ (A � i, i+n) =
∑

B1,B2∈�

pθ (A→B1 B2) (αi,i (B1)pθ (B2 � i+1, i+n)

+ αi,i+1(B1)pθ (B2 � i+2, i+n) + · · ·
+ αi,i+n−1(B1 ⇒ wi . . . wi+n−1)pθ (B2 � i+n, i+n)

+ pθ (B1 � i, i+n)) ,

since to generate the initial subsequence wi wi+1 . . . wi+n , some rule A → B1 B2 must first
be applied and then the first part of the subsequence must be generated from B1 and its
remaining part from B2.

Define the function

R(B1, B2) = (αi,i (B1)pθ (B2 � i + 1, i + n) + αi,i+1(B1)pθ (B2 � i + 2, i + n) + · · ·
+ αi,i+n−1(B1 ⇒ wi . . . wi+n−1)pθ (B2 � i + n, i + n)).
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Then, following the same recursive derivation as in Jelinek and Lafferty (1991), we have

pθ (A � i, i + n)=
∑

B1,B2∈�

pθ (A → B1 B2)R(B1, B2)

+
∑
B1∈�

pL
θ (A → B1)p(B1 � i, i + n)

=
∑

B1,B2∈�

[
pθ (A → B1 B2) +

∑
C1∈�

pL
θ (A →C1)pθ (C1 → B1 B2)

]
R(B1, B2)

+
∑

C1,C2∈�

pL
θ (A →C1)pL

θ (C1 →C2)p(C2 � i, i + n)

= · · · · · ·

=
∑

B1,B2∈�

pL
θ (A ⇒ B1 B2)R(B1, B2) +

∑
C1,...,Ck∈�,k→∞

(
pL

θ (A →C1)

k∏
l=2

pL
θ (Cl−1 →Cl)p(Ck � i, i + n)

)
.

(22)

We have shown that the maximum likelihood estimate of the composite language yields a
proper distribution in Theorem 1; thus, the last term of the above equation tends to 0 as k
grows without limit. Then, using definition (21) and successive resubstitutions, we get the
final formula

pθ (A � i, i + n) =
∑

B, B2∈�

pL
θ (A ⇒ B1 B2)R(B1, B2)

=
∑

B, B2∈�

pL
θ (A ⇒ B1 B2)

⎛
⎝ n∑

j=1

αi,i+ j−1(B1)pθ (B2 � i + j, i + n)

⎞
⎠ .

(23)

Comparing with a PCFG, the only difference is the way that R(B1, B2) is recursively calcu-
lated by α, which here takes into account the impact of the trigram and PLSA models. Similar
to the observation for PCFG model in Jelinek and Lafferty (1991, p. 320), this algorithm is
very similar to that of inside probability (11), and thus the time complexity is cubic order
of n.

The desired probability p(S → w1, . . . , wn, . . .) can thus be calculated exactly in the
same recursive way as in the PCFG case, which is described in Jelinek and Lafferty (1991).

5. EXPERIMENTAL EVALUATION

5.1. Experimental Data Sets and Performance Measure

The corpus used to train our model was taken from the Wall Street Journal (WSJ)
portion of the North American business (NAB) corpus, which was composed of about
150,000 documents spanning the years 1987–1989, comprising approximately 42 million
words. The vocabulary was constructed by taking the 20,000 most frequent words of the
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TABLE 1. Data Sets Statistics.

No. of articles No. of sentences No. of words

Train 150,981 1,611,571 41,780,924
Dev 378 6,904 157,312
Test 379 6,638 153,801

training data. The PCFG production rules we use are extracted from the Sections 2–21 of
the WSJ treebank corpus. We split another separate set of data consisting of 325,000 words
taken from the year 1989 into half, one half used as development data by random selection,
another half for testing.

The statistics of the data sets are shown in Table 1.
To evaluate a language model, we use the standard definitions of perplexity and entropy

on held-out test data. That is, given a test corpus T = {d1, . . . , dL} and a language model
defining p(s), we calculate test perplexity and test entropy as

Perplexity = |T |

√
1

p(T )
= |T |

√√√√ L∏
i=1

1

p(w1 . . . w |di |, di )

= |T |

√√√√ L∏
i=1

M∏
l=1

1

p(di , Wl)

Entropy = log2 Perplexity,

where |T | = ∑L
i=1 |di | is the length of test corpus. The goal is to obtain small values of these

measures. That is, the goal of language modeling is to predict the probability of natural word
sequences; or more simply, to put high probability on word sequences that actually occur
(and low probability on word sequences that never occur).

5.2. Computation in Testing

Since the representation for a document of the test data is not contained in the original
training corpus, we use similar “fold-in” heuristic approach similar to the one used in
Hofmann (2001). The parameters corresponding to the document-semantic arcs, θ (d → h),
are reestimated by the probability of word subsequence currently seen, w1, . . . , wk , i.e., the
initial subsequence of a sentence generated by the composite language model, while holding
the other parameters fixed. The reason we use prefix at test time is because when the language
model is used in speech recognition or machine translation (particularly phrase-based), the
word string in a sentence is transcribed or translated sequentially one-by-one. When we
decode the next word wk+1, assume that we treat the history as known. Given a new test
sentence Wl , the recursive gradient update for θ (d → h) shown below is done first, and then
using the recursive formula in Section 4, we calculate the likelihood of Wl given the model.
Gildea and Hofmann (1999) used an online EM algorithm to reestimate this parameter. In
fact, Bellegarda (2000) encountered a similar situation when he used, LSA uncovers the
salient semantic relationships between words. He had to treat the document history to be
the current document so far, then map it to semantic feature space through singular value
decomposition (SVD) and compute LSA probability. This is a procedure analogous to what
we are doing here.
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In this case, we use the recursive gradient ascent to update θ (d → h).

θ (d → h)(k) = θ (d → h)(k−1) + ε
∂ log pθ (S � 1, k)

∂θ (d → h)

∣∣∣∣∣
θ(d→h)(k−1)

,

where ε is the learning rate and we find that empirically setting ε = 0.2 gives the best
perplexity reduction.

Next, we describe how to recursively calculate the gradient of log-likelihood of the initial
subsequence of a sentence with respect to the parameters of document-semantic arc. Since

∂ log pθ (S � 1, k)

∂θ (d → h)
= 1

pθ (S � 1, k)

∂pθ (S � 1, k)

∂θ (d → h)
,

pθ (S � 1, k) can be recursively calculated as described in the last section, so we only
describe how to calculate ∂pθ (S�1,k)

∂θ(d→h) .
By the formula (23), we have

∂pθ (A � i, i + n)

∂θ (d → h)

=
∑

B, B2∈�

pL
θ (A ⇒ B1 B2)

∂
(∑n

j=1 αi,i+ j−1(B1)pθ (B2 � i + j, i + n)
)

∂θ (d → h)

=
∑

B, B2∈�

pL
θ (A ⇒ B1 B2)

n∑
j=1

(
∂αi,i+ j−1(B1)

∂θ (d → h)
pθ (B2 � i + j, i + n)

+ αi,i+ j−1(B1)
∂pθ (B2 � i + j, i + n)

∂θ (d → h)

)
.

Again, this algorithm is very similar to that of inside probability, and thus the time complexity
is cubic order of n.

By the recursive formula to calculate α, we can calculate ∂αi,i+ j−1(B1)
∂θ(d→h) in bottom-up pro-

cedure by the following recursive formula:

∂αi,i+ j−1(B1)

∂θ (d → h)

=
∑
C1C2

∑
i≤k≤i+ j−1

θ (B1 → C1C2)

(
∂αi,k(C1)

∂θ (d → h)
αk+1,i+ j−1(C2) + αi,k(C1)

∂αk+1,i+ j−1(C2)

∂θ (d → h)

)

and
∂αi,i (B1)

∂θ (d → h)
= θ (wi−2wi−1 B1h → wi ).

Once all the probabilities required for the computation of ∂pθ (S�1,k)
∂θ(d→h) are computed, to get

the next probability of interest, ∂pθ (S�1,k+1)
∂θ(d→h) , we need to compute the following quantities:

1. The probabilities ∂αi,k (A)
∂θ(d→h) for i = k, k − 1, . . . , 1, in that order.

2. The probabilities ∂pθ (B�i,k+1)
∂θ(d→h) for i = k + 1, k, . . . , 2, in that order.

3. The probability ∂pθ (S�1,k+1)
∂θ(d→h) .
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TABLE 2. Perplexity Results for the Composite Syntactic Semantic Trigram Model on Development Corpus.

Perplexity Perplexity
Language model Good–Turing Kneser–Ney

Trigram (Baseline) 109 103
4-gram 105 99
5-gram 106 101
PCFG 678
Linear interpolation of PCFG & trigram 109 102
PLSA 1,487
Linear interpolation of PLSA & trigram 109 103
Linear interpolation of PLSA, PCFG, & trigram 108 102
Syntactic and semantic 598 596
Syntactic trigram 94 90
Semantic trigram 96 91
Syntactic, semantic trigram 82 79

5.3. Experimental Design

To serve as a baseline standard of performance, we use a conventional trigram model
with Good–Turing back-off and Kneser–Ney smoothing. Implementing these approaches,
we obtain perplexity scores of 109 and 103, respectively, on development data set.

When we train the PCFG model alone, the perplexity score on development data is
678. Combining the PCFG model with Good–Turing back-off and Kneser–Ney smoothing
trigram models by linear interpolation at sentence level, we obtain the test perplexity score
109 and 102, respectively. Next, we train the PLSA model alone where the number of hidden
semantic nodes h is set to be |H| = 125, we obtain perplexity score on development data
1,487. When this PLSA model is combined with Good–Turing back-off and Kneser–Ney
smoothing trigram models by linear interpolation at sentence level, we find that the test
perplexity scores remain unchanged. If we combine these three models together using linear
interpolation at sentence level, we obtain the perplexity scores on development data 108 and
102, respectively.

Next, we introduce the composite syntactic/trigram model that is equivalent to the com-
posite syntactic/semantic/trigram language model by setting the semantic node h to be a
constant. Using the generalized inside–outside algorithm to train this composite syntac-
tic/trigram model with Good–Turing back-off and Kneser–Ney smoothing trigram models,
we achieve a perplexity scores of 94 and 90 on development data of a 14% and 11% relative
reduction in perplexity, respectively.

We then introduce the composite semantic/trigram model that is equivalent to the com-
posite syntactic/semantic/trigram language model by setting the syntatic node A to be a con-
stant. We fix the number of possible hidden topics to be |H| = 125 and use the generalized
inside–outside algorithm to train the composite semantic/trigram model with Good–Turing
back-off and Kneser–Ney smoothing trigram models, here we achieve perplexity scores of
96 and 91 on development data, a 12% and 10% relative reduction in perplexity, respectively.
Since the representation for a document of the development data is not contained in the
original training corpus, during testing, we use “fold-in” heuristic approach similar to the
one used in Hofmann (2001): the document-semantic parameters are reestimated by MLE
while holding semantic word parameters fixed, where the empirical distribution is given by
the current updated document history.
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FIGURE 6. Relative perplexity reductions over baseline trigram with Good–Turing and Kneser–Ney
smoothings by various composite language models: 1) Syntactic-trigram, 2) Semantic-trigram, and 3) Syntactic-
semantic trigram.

Finally, we use the generalized inside–outside algorithm to train the composite trigram,
syntactic, semantic model with Good–Turing back-off and Kneser–Ney smoothing trigram
models and we set the number of hidden semantic node h which is again set to be |H| = 125.
Again, since the representation for a document of the development data is not contained in the
original training corpus, during testing, we use “fold-in” heuristic approach as described in
the last subsection: the document-semantic parameters are reestimated by recursive gradient
ascent of MLE of the initial subsequence of a sentence while holding semantic word and
production rule parameters fixed. This time we achieve perplexity scores of 82 and 79 on
development data, a 25% and 21% relative reduction in perplexity, respectively.

When we perform the generalized inside–outside algorithm to train the composite tri-
gram/PCFG/PLSA model, five iterations are sufficient to convergence, and it takes approx-
imately 10 hours for each iteration. During testing, we use recursive gradient ascent to
update the document-semantic parameters and the generalized left-to-right inside algorithm
to compute the perplexity, it takes approximately 25 hours.

The perplexity results are listed in Table 2 and the perplexity reductions of these results
over baseline trigram models with Good–Turing and Kneser–Ney smoothings are shown in
Figure 6. It shows that linear interpolation is too blunt to capture subtleties of PCFG and PLSA
models; however, our approach of integrating syntactic and semantic sources of nonlocal
dependency information from PCFG and PLSA models into trigram model results significant
perplexity improvement. Basically, PCFG and PLSA models carry complementary long-
range dependency structure and their gains over trigram model are almost additive. Another
observation is that the gains of using Kneser–Ney smoothing over Good–Turing smoothing
are almost additive too.
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FIGURE 7. Perplexities versus number of topics for the semantic/trigram and the syntactic/semantic/trigram
language models.

It is well known that HMM is a special case of PCFG (Durbin et al. 1998). So, we take
POS tags from the Penn Treebank as the hidden states and train a composite trigram/HMM
language model. However, we find that the composite trigram/HMM language model gives
worse perplexity result than trigram. In fact, this experiment has been done by IBM researcher
in early 1990s (Jelinek 2009).

It has been observed that the number of semantic node is critical to the final perplexity
results (Bellegarda 2000; Wang et al. 2005), so next, we study how the number of semantic
nodes influences our composite language model. We first fix the number of hidden semantic
topics, and estimate the parameters of the smoothed composite semantic trigram model, as
well as the smoothed composite syntactic/semantic/trigram model, respectively, by using
the training data. We then use the development data to test the perplexity results. Figure 7
shows how the perplexities of these estimated models with Good–Turing and Kneser–
Ney smoothings change as the number of semantic topics is increased and decreased, with
the best perplexities achieved in each case when the number of semantic topics equals
H = 125.

Once we use the development corpus to tune the optimal number of semantic topic, for the
best composite semantic/trigram model and the best composite syntactic/semantic/trigram
model, we calculate the perplexity on test corpus. The perplexity scores by the base-
line trigram models with Good–Turing and Kneser–Ney smoothings are 103 and 99,
respectively. By using the Good–Turing smoothing, we obtain 91, 92, and 80 perplexity
scores, respectively, by the composite syntactic/trigram model, semantic/trigram model, and
syntactic/semantic/trigram models. The corresponding perplexity reductions are 12%, 10%,
and 23%. When we use Kneser–Ney smoothing, we have perplexity scores 89, 90, and 78,
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TABLE 3. Perplexity Results for the Syntactic/Trigram, Semantic/Trigram as Well as Syntactic/
Semantic/Trigram Language Models on Test Corpus.

Perplexity Perplexity
Language model Good–Turing Reduction Kneser–Ney Reduction

Trigram (Baseline) 103 99
Syntactic trigram 91 12% 89 10%
Semantic trigram 92 10% 90 9%
Syntactic, semantic trigram 80 23% 78 21%

respectively, by the composite syntactic/trigram model, semantic/trigram model, and syn-
tactic/semantic/trigram models. The corresponding perplexity reductions are 10%, 9%, and
21%. Table 3 summarizes the results on test corpus by these models.

6. CONCLUSION AND DISCUSSION

We present an original approach that combines n-gram, PCFG, and PLSA to
build a sophisticated mixed chain/tree/table directed MRF model for statistical language
modeling, where various aspects of natural language— such as local word interaction,
syntactic structure, and semantic document information— can be modeled by mixtures of
exponential families with a rich expressive power that can take their interactions into account
simultaneously and automatically. The composite directed MRF model we build becomes
context-sensitive grammar, and problems induced seem to be NP hard. However, for this
particular model, we show that we can generalize the well-known inside–outside algorithm
to estimate its parameters in cubic time. To alleviate the sparseness of n-gram counts, we also
generalize various smoothing techniques to handle cases where there exist hidden variables.
The experiments we have carried out show improvement in perplexity over trigrams with
current state-of-the-art smoothing techniques. The composite language model trained in an
unsupervised setting could be used as a parser, namely, by selecting the most likely parse
by the Viberbi algorithm, where the lexical information and semantic content should help to
improve the performance.

Griffiths et al. (2004) proposed a generative composite HMM/LDA model that takes into
account of both short-range syntactic dependencies and long-range semantic dependencies
between words and can be used to simultaneously find syntactic classes and semantic topics
for purposes of POS tagging and document classification, but they have used MCMC to
estimate the parameters for a much simpler model. However, we propose an exact estimation
algorithm for a much more complicated model.

We should note that there remain several avenues to improving the quality of the language
models we are able to estimate from data. One way is to use semantic smoothing (Bellegarda
2000; Wang et al. 2005), which has been shown to be effective in improving the perplexity
results. Basically, we can introduce an additional node between each topic node and word node
to capture semantic similarity and subtle variation between words or introduce additional
node S between the topic nodes and the document node to take into account of semantic
similarity and subtopic variation within each document and among documents.

Blei, Ng, and Jordan (2003) state that PLSA is not a well-defined generative model of
documents, and there is no natural way to represent a document not seen in the original
training corpus, this is why the “fold-in” heuristic procedure has to be used during testing to
reestimate the semantic content. Blei et al. proposed LDA model to overcome this problem.
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Integrating LDA with bigrams has been investigated by Wallach (2006, 2008), where the
author used MCMC in the inference step and very small training corpora up to 100K tokens.
However, the problem becomes much complicated, harder, and challenging when adding
PCFG into n-gram/LDA since the number of parse trees grows exponentially fast with
sentence length. If we use the same variational approach as in Blei et al. (2003) for LDA
to approximate the log-likelihood of the observed data and choose variational distribution
to be a product of a Dirichlet and multinomials, what we found is that in the variational
lower bound, there is a term that is an expected conditional marginal likelihood over hidden
variables, the parse trees in PCFG model. This is completely different from previous work
using variational methods in Jordan et al. (1999). Unfortunately, these hidden variables make
the computation of this term intractable. How to handle this term becomes a new challenge of
using a variational method for inference and parameter estimation in complex probabilistic
models. An alternative approach to overcome this difficulty is to reconstruct a tractable
composite trigram/PCFG/PLSA model, and let the multinomial variational distribution play
the role of θ (d → h) in the composite trigram/PCFG/PLSA language model. This enables
us to expand the intractable term, i.e., the expected conditional marginal likelihood over
hidden variables, into two terms, and the objective we are optimizing will become a kind
of penalized log-likelihood consisting of the log-likelihood of the reconstructed composite
trigram/PCFG/PLSA model, and a regularization term that measures the divergence between
the variational distribution and the true distribution of the semantic information. It can be
further shown that maximizing this penalized log-likelihood with respect to parameters
of variational distributions is equivalent to minimizing the difference of two Kullback–
Leibler (KL) divergences; one is the KL divergence between the semantic probability and
the posterior semantic probability given the sentences, and the other is between the variational
posterior probability and the true posterior probability.

In this work, we have used a simple vanilla PCFG, further research is to use very
rich PCFG models used in (Charniak 2001; Roark 2001; Petrov et al. 2006) where the
nonterminals are annotated with lexical and nonlexical contextual information.

We have used a rather ad hoc approach to extend smoothing methods to handle hidden
variables in the composite trigram/PCFG/PLSA language model. How to smooth fractional
counts due to latent variables in Kneser–Ney’s sense in a principled way is a long-standing
open problem. Teh (2006) described a hierarchical Bayesian model consisting of Pitman–
Yor processes as a language model and derived estimation formulas for trigrams based on
this model, which are generalizations of one of the most successful smoothing techniques,
interpolated Kneser–Ney smoothing (Ney et al. 1995). It can be shown that nonparametric
Bayesian smoothing for the composite trigram/PCFG/PLSA language model is a hierarchical
extension of the Pitman–Yor process that obeys power law distribution, the hierarchy of
nonparametric priors is a lattice. By exploring the particular structures of the hierarchical
Pitman–Yor mixture composite syntactic, semantic, and lexical language model and resorting
to MCMC sampling method and variational methods such as structured mean-field variational
EM, etc., the seemingly complicated estimation and inference problems can be decomposed
into easier subproblems, where the generalized inside–outside algorithms developed in
this paper can be carried out as an internal building block. Since the model obeys power
law distribution, a long-standing open problem, smoothing fractional counts due to latent
variables in Kneser–Ney’s sense in a principled way, might be solved.
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APPENDIX A

Combine n-gram, m-SLM, and PLSA by latent ME principle or under undirected MRF
paradigm.

ME approach has been a key method for language modeling since 1990s (Rosenfeld
1996; Jelinek 1998). In this section, we illustrate how to combine n-gram, PCFG, and
PLSA using ME philosophy and what computational difficulties there are. Since the parse
tree structure and semantic string of a sentence are not observable, we apply the latent ME
principle (Wang et al. 2012). Let W, H, t , and d denote a sentence, its parse tree structure, and
semantic string of a document, respectively. We choose the features as f (uvAhw ), f (ABC ),
and f (gd ) in the composite language model formed under the directed MRF paradigm.
We denote the set of features as vectors f (uvAhw ), f (ABC ), and f (gd ), respectively.
We look at the count of each feature over W, H, t , and d, and denote the counts of the
whole set of features over W, H, t , and d as a vector # f (d, W, H, t). Under the latent
ME principle (Wang et al. 2003), we choose P(d, W, H, t) which maximizes the joint
entropy

max
p(d,W,H,t)

−
∑

d,W,H,t

p(d, W, H, t) log p(d, W, H, t) (A.1)
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subject to the following nonlinear constraints∑
d,W,H,t

p(d, W, H, t) f (uvAhw ) =
∑
d,W

p̃(d, W )
∑
H,t

p(H, t |d, W ) f (uvAhw ),

∑
d,W,H,t

p(d, W, H, t) f (ABC ) =
∑
d,W

p̃(d, W )
∑
H,t

p(H, t |d, W ) f (ABC ),

∑
d,W,H,t

P(d, W, H, t) f (gd ) =
∑
W,D

p̃(d, W )
∑
H,t

P(H, t |d, W ) f (gd ),

(A.2)

where P̃(W, D) denotes the empirical distribution of a sentence in a document over training
corpus. This is a nonconvex optimization problem due to the nonlinear constraints and there
is no closed-form solution.

Following what we have proposed in Wang et al. (2012), we restrict our solution to have
an exponential form as below, and satisfy the same constraints of (A.2)

pλ(d, W, H, t) = 1

Zλ

e<λ,# f (d,W,H,t)>, (A.3)

where Zλ = ∑
d,W,H,t e<λ,# f (d,W,H,t)> is the normalization factor to ensure a proper distri-

bution. This is reminiscent of the whole sentence model in Rosenfeld, Chen, and Zhu (2001)
if we choose f (uv Ahw), f (ABC ), and f (gd) as the features for the whole sentence model.
Thus, pλ(d, W, H, t) is a composite language model that is formed by integrating n-gram,
PCFG, and PLSA under undirected MRF paradigm. If we compare the sentence likelihood
of composite language under undirected MRF paradigm, pλ(d, W, H, t) in (A.3), with that
under directed MRF paradigm, pθ (d, W, H, t) in (9), the key difference between (A.3) and
(9) is on normalization where pλ(d, W, H, t) has only one global normalization factor and
pθ (d, W, H, t) has many local normalization factors.

To estimate unknown parameters λ, we maximize the following log-likelihood

max
λ

∑
d,W

P̃(d, W )
∑
H,t

log pλ(d, W, H, t). (A.4)

Taking derivative with respect to λ and setting to 0, we obtain the same set of constraints
shown in (A.2). Thus, the feasible solutions of ME are the stationary points of maximum
likelihood, the difference between ME and maximum likelihood is that, among a set of
feasible solutions (stationary points), ME chooses the one having the highest entropy and
maximum likelihood chooses the one having the highest likelihood (Wang et al. 2012).
Unfortunately, the training is intractable due to the following reasons: (i) The normalization
factor is intractable since the number of all possible sentences with fixed length L is |V|L

and L can be arbitrary. (ii) The feature expectation on the right-hand side of equations (A.2)
is tractable where we can use generalized inside–outside algorithm analogous to the one in
Section 3 or N -best list approximation algorithm proposed in this paper; however, the feature
expectation on the left-hand side of equations (A.2) is intractable since the number of all
possible sentences with fixed length L is |V|L and L can be arbitrary.

APPENDIX B

The proof of Theorem 1 is almost identical to the one given by Chi and Geman (1998)
and Chi (1999), which considers PCFG case. Let qA = p̂ (derivation tree rooted in A fails
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to terminate). We will show that qS = 0 (i.e., derivation trees rooted in S always terminate).
Consider Chormsky normal form, for each A ∈ �, let n(A, t) be the count of instances of A
in derivation tree t and l n̂(A, t) be the count of nonroot and nonterminal instances of A in
derivation tree t . For any A ∈ �

qA = p̂( ∪B∈� ∪B1 B2 s.t. B∈{B1,B2},(A→B1 B2)∈R ∪B=B1 {B1 fails to terminate}
∪B=B2{B2 fails to terminate}

≤
∑
B∈�

p̂( ∪B1 B2 s.t. B∈{B1,B2},(A→B1 B2)∈R ∪B=B1{B1 fails to terminate}

∪B=B2{B2 fails to terminate})

=
∑
B∈�

∑
B1 B2 s.t. B∈{B1,B2},(A→B1 B2)∈R

p̂(A → B1 B2)

p̂( ∪B=B1 {B1 fails to terminate} ∪B=B2 {B2 fails to terminate}|A → B1 B2)

≤
∑
B∈�

∑
B1 B2 s.t. B∈{B1,B2},(A→B1 B2)∈R

p̂(A → B1 B2)qB

=
∑
B∈�

qB

⎛
⎜⎜⎜⎝

∑
B1 B2 s.t. B∈{B1,B2},(A→B1 B2)∈R

∑
i

E p̂[n(A → B1 B2; ti )|ti ∈ �Wl , Wl ∈ D]

∑
B1 B2 s.t. (A→B1 B2)∈R

∑
i

E p̂[n(A → B1 B2; ti )|ti ∈ �Wl , Wl ∈ D]

⎞
⎟⎟⎟⎠

=
∑
B∈�

qB

⎛
⎜⎜⎜⎝
∑

i

∑
B1 B2 s.t. B∈{B1,B2},(A→B1 B2)∈R

E p̂[n(A → B1 B2; ti )|ti ∈ �Wl , Wl ∈ D]

∑
i

∑
B1 B2 s.t. (A→B1 B2)∈R

E p̂[n(A → B1 B2; ti )|ti ∈ �Wl , Wl ∈ D]

⎞
⎟⎟⎟⎠

=
∑
B∈�

qB

⎛
⎜⎜⎜⎝
∑

i

∑
B1 B2 s.t. B∈{B1,B2},(A→B1 B2)∈R

E p̂[n(A → B1 B2; ti )|ti ∈ �Wl , Wl ∈ D]

∑
i

E p̂[n(A; ti )|ti ∈ �Wl , Wl ∈ D]

⎞
⎟⎟⎟⎠ ,

where E p̂ is expectation under p̂ and “|D” means conditioned on t ∈ �(Wl), Wl ∈ D and
�(Wl) is the set of parse trees for sentence Wl . Thus, we have

qA

∑
i

E p̂[n(A; ti )|ti ∈ �Wl , Wl ∈ D]

≤
∑
B∈�

qB

∑
i

∑
B1 B2 s.t. B∈{B1,B2},(A→B1 B2)∈R

E p̂[n(A → B1 B2; ti )|ti ∈ �Wl , Wl ∈ D].
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Sum over A ∈ �:∑
A∈�

qA

∑
i

E p̂[n(A; ti )|ti ∈ �Wl , Wl ∈ D]

≤
∑
B∈�

qB

∑
i

∑
A∈�

∑
B1 B2 s.t. B∈{B1,B2},(A→B1 B2)∈R

E p̂[n(A → B1 B2; ti )|ti ∈ �Wl , Wl ∈ D]

=
∑
B∈�

qB

∑
i

E p̂[n(B; ti )|ti ∈ �Wl , Wl ∈ D],

i.e., ∑
A∈�

qA

∑
i

E p̂[(n̂(A; ti ) − n(A; ti ))|ti ∈ �Wl , Wl ∈ D] ≥ 0.

Clearly, for every i, n̂(A; ti ) = n(A; ti ) whenever A = S and n̂(A; ti ) < n(A; ti ). Hence, we
conclude qS = 0.


