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Abstract

High-throughput functional annotation of proteins is adamental task in func-
tional proteomics. Protein functions are typically orgaaai in the form of a general-
specific hierarchy, such as the Gene Ontology (GO), whiclerdeess when one
functional class is a specialization of its parent classe Tterarchical structure
indicates that if a protein belongs to one class then it aldonys to all ances-
tor classes up to the root. Most previous work on protein tioncprediction has
constructed independent classifiers for each functionchviginore the hierarchical
information available in the GO. We develop a framework fombining the lo-

cal independent SVM predictions with graphical modelshi®ayesian networks
(BNs) and Conditional Random Fields (CRFs), which are huglin the hierarchi-
cal structure in the GO. Our goal is to increase the overallligtive accuracy by
exploiting this hierarchical information. Compared to theseline technique (i.e.
independent SVM classifiers), our techniques using BN anB @Bld significant

improvement on two large data sets constructed from therdngatabase.
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Chapter 1

Introduction

Thanks to rapid advancement in genome sequencing technadgrge quantity

and variety of genomic and proteomic information has rdgdsgcome available.

The ever-increasing flood of diverse biological data frorghkhithroughput pro-

cesses, such as genomic and proteomic sequencing, and>gereston, can be
used to study the characteristics and interactions of laeltomponents. It also
pushes the elucidation of protein function to the centegesta computational bi-

ology. However, this remarkable speed of discovery has ritangpossible to ex-

perimentally determine the function for most new proteargj made it difficult to

keep up with the influx of data produced by human-curated t@tion. Thus, sci-

entists have been turning to sophisticated computatigabaches for annotating
the huge amount of proteomic sequence data being produdece ®e protein’s

sequence characterizes its function, it is essential tigdesfective computational
approaches to predict the protein functions based on pre&gjuence.

To better characterize protein functions, biologists hdeéned a hierarchy
of protein functions, i.e the Gene Ontology (GO). Previgusl number of ap-
proaches had been proposed to automatically predictingtimusing the GO
hierarchy. Some of them [1, 16, 40, 59] treat the hierarchg #at ontology in
which the functional classes have are not interrelatedievdihers utilize some of
the hierarchical information encoded in the GO (only theep&child dependencies
[9, 30, 43, 55, 62] or only used to construct data sets [29ceSprotein functions
are naturally organized as a hierarchy, the hierarchicatiire presented by the

GO should be exploited when computational function préaticis performed.
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From a machine learning perspective, hierarchical prdigmction prediction
is a task in which one tries to predict the labels in a str@etgraph for unknown
instances given some observed evidence. This is a typieahgbe of a problem
that can be solved using graphical models. In fact, the rabi@al function predic-
tion problem is similar to other prediction tasks with peautar structures, such as
information extraction from webpages with hyperlinks oage labeling on grids
of pixels, which have been extensively studied by using lgigd models, such as
Bayesian networks (BNs) or Conditional Random Fields (QRGsaphical models
prove to be one of the most effective tools for this kind oftpems.

In this dissertation, we develop a framework, based upon GBYClassifica-
tion in a Hierarchy Under Gene Ontology), proposed by Eistat. [29], to predict
a protein’s set of functions within the GO hierarchy, usinggical models. Before

introducing our framework, it is necessary to review the @HJsystem.

1.1 Reuvisiting of the CHUGO System

CHUGO constructs a function hierarchy by pruning the GO tdude only those
nodes that have sufficient positive training instancestufes used for training and
prediction are extracted using the Proteome Analyst (P8) {&ol, which are key
words from main entries in the Swiss-Prot database for thet similar proteins ob-
tained by using BLAST. This feature extraction procesdisitated in Figure 1.1.
To build a robust predictive system, CHUGO addresses the issthe GO hierar-
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Figure 1.2: The CHUGO function prediction system.

chy from the following three aspects:

e Training set design: Since a protein annotated as a GO nbdaplicitly
inherits functions from all the ancestors &t functional annotation of each
protein in the training set is expanded to include noédand all its ancestors.
For example, if the function “neuropeptide receptor attivis experimen-
tally assigned to a protein, then all its GO ancestors, sschearopeptide
binding, receptor activity, etc, are also included as pasdnnotations. This
expansion, called thall inclusiveapproach by Eisner et al., intuitively leads

to an improvement in recall.

e Prediction model: The initial prediction for each protesmade by a set of

independent binary support vector machine (SVM) preds;stehere each is



trained on an individual GO node. Local positive predicti@ane then propa-

gated up the hierarchy.

e Evaluation methodology: As in training set design, precisand recall are

calculated using expanded labels for the test set as well.

Figure 1.2 summarizes the CHUGO prediction system. Thesaigues are sim-
ple but effective for function prediction, as the mtlusiveapproach increases the
F-measure of hierarchical classification on a 5-fold cneedated data set from
46% to 70%. However, the hierarchical relationship can bzed to train a more

accurate predictive model as will be explained in Secti@ 1.

1.2 Motivation for Using Graphical Models

Before revealing the potential hazard in the CHUGO system,must be clear
about the rule of consistent labeling imposed by CHUGO. THaf a protein is
annotated as a GO nodé then itis explicitly annotated as all the ancestors of node
N. For example, in Figure 1.3, if function GO0008188 is asstjto a protein, then
all ancestors of node GO0008188, i.e. GO0030594, GO00Q8528001584,
G0O0004930, GO0004888 and GO0004872, are also included satsvpdabels.
Both training and evaluation are carried out using the el¢drannotations.

This rule imposed for consistent labeling in the hieraranplies two special

properties:

1. If anode in the hierarchy has a negative label assignrient,all its descen-

dants in the hierarchy must also have negative label assighm

2. Ifanode in the hierarchy has a positive label assignntiesr, all its ancestors

in the hierarchy must also have positive label assignment.

Either of these two properties implies that there does nist exconfiguration that
a node has a positive assignment and one or more of its aneéste a negative
assignment. These properties in the hierarchy leave usamdypossible parent-
child configuration probability to compute from the actuatal and that is, the

probability of a node being positive given trall its ancestors are positive.

4
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Although CHUGO constructs the training and test data udiweghierarchy, it
builds an individual binary SVM classifier for each GO node anly exploits the
hierarchical information in a simple way. The final resulttloé system is simply
a combination of all binary SVM predictions plus “up-propdéign” of positive re-
sults. They demonstrated that a propagation of all pogttigdictions up to the root
slightly improves the result by about 0.2%. While the upgagation approach is
simple, it has critical drawbacks that may hurt overall gien and recall.

First, CHUGO propagates positive predictions obtainednhftbe local SVM
predictors for nodéV up to the root node. This could be problematic if nadis
SVM prediction is inaccurate. For example, if a protéins predicted by a local
SVM to belong to node GO0008188 (i.e. neuropeptide recegutivity), could in
fact be an incorrect prediction. If an up-propagation isligglp this local predic-

tion error will be propagated to all ancestors of node GOQ@88as shown in Fig-



ure 1.3. In this particular case, a single misclassificationld result in 8 prediction
errors, which is disastrous. If we do not propagate a p@siteal prediction up,
and instead, we look around the node and examine the stasligtoé neighboring
nodes,i.e. classes that are connected to this node, a nanateconclusion may
be drawn by taking the neighbors in the hierarchy into actolkar instance, con-
sider a proteinP that is predicted to belong to function GO0008188 but notnip a
of its three immediate parents of GO0008188. By tracing Istakstics from the
training data, one may conclude that the local SVM prednctio node GO0008188
may be more likely to be erroneous. This dependency probktmdzn neighbors
is a perfect candidate for graphical models, which leartissiizs of neighboring
nodes from the training data.

Second, CHUGO always trusts the positive local SVM predigj and leaves
negative local prediction to be determined by the up-prapag step. This bias
IS unjust since it favours positive up-propagation overatizg down-propagation.
Instead, we use a probabilistic SVM model to give a confideneasure to the local
SVM prediction. This confidence prediction is integratewbithe graphical model

for making a final prediction, and we discuss in Chapter 4 and 5

1.3 Summary of Thesis Work

In this dissertation, we propose a framework for hierarahfienction prediction us-
ing graphical models. As Figure 1.4 shows, the CHUGO systeith@ut positive
prediction up-propagation) is integrated into this frarogwas a local predictive
component, which gives a prediction from the local SVM pcéali for each node.
These local predictions and hierarchical information edaleel in the GO are com-
bined to train a graphical model that presents a global ptiedi on all nodes in the
hierarchy.

During training of the graphical model, two sets of paramsetre produced:
parameters for hierarchy consistency and parametersditditions of local SVM
outputs. The former parameters ensure our final functiodigtiens consistent to

the hierarchy, and can be estimated from proteins’ funstiorthe training set. By
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Figure 1.5: An abstract Gene Ontology hierarchy. EBclrepresents a GO term,
and a directed edge indicate a parent-child relationship.

converting CHUGO'’s binary SVM predictions to real valudw tatter parameters
indicate the distributions of these real-valued SVM oupand can be estimated
from SVM outputs for training data.

The hierarchical structure of the GO and probabilistic SVMpaits are used
to construct graphical models. The first graphical model wi# fvas a Bayesian
network, which is a directed graphical model. The GO hidranwas used as the
structure of the BN, in which each directed edge represemftent-child depen-
dency, as shown in Figure 1.5. This graph was converted toyadan network
(Figure 1.6(a)) in which each nodg represented a variable and each node in the
hierarchy was also connected to an observation ngdaehich represented the lo-
cal SVM prediction for that node. The parameters of the Bayesetwork were
learned from the training data and from the probabilistidvBdutputs.

The second model we built was a Conditional Random Field (C®Rich is
an undirected graphical model. The undirected graph wastagarted by dropping
arrows in the directed graph and adding connections betwedes that share the
common child, also called “spouse” nodes, and nodes tha¢ $ha common par-
ent, also called “sibling” nodes. The resulting CRF grapshiswn in Figure 1.6(b).
Nodesy, andy; are spouses, and nodgsandy, are siblings. To learn the param-

eters of the CRF, two types of cliques are defined, i.e. edgeed and node-
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Figure 1.6: The graphical models of the hierarchy. Graphiwadels converted
from the hierarchy in Figure 1.5. Eagf represents a GO term whose value is
either+1 or —1, and eachx; represents a local SVM output whose value igin

observation cliques. The edge clique over two connectedsiedcodes the hierar-
chical structure in the GO and the node-observation clignee @ node and its SVM
prediction indicates the confidence of a local SVM predittio

Having parameters in the graphical models well defined, wertake consistent
function predictions for an unknown protein sequence,gig&BLASTed features.
In our experiments, both BN and CRF have significantly impobthe prediction

accuracy.



1.4 Thesis Statement

In this dissertation, it is hypothesized thlaé graphical models, i.e. BNs and CRFs,
based upon the GO hierarchy are effective for hierarchicalction prediction
Specifically, the graphical models can make function pteshs consistent with
the hierarchy by incorporating the hierarchical inforroatito learn the models.

Based on the thesis research, we make the following claims:

1. The BN model can capture the hierarchy structure in the @Qunction

prediction.

2. The CRF model has the representation power to capture @hé&i€&archy
and statistical dependencies that are not shown in therbigrdor function

prediction.

1.5 Contributions

This thesis research makes three novel contributions:

1. Prediction accuracy is significantly improved by using rarent-child re-
lationships in the Gene Ontology to build the Bayesian néta:o While
CHUGO takes the full hierarchical information into accowrdten building
the training and test data sets, it uses only the naiveiyp®sip-propagation
for prediction. Our BN approach fully exploits the parehitd relationship
for making consistent function predictions. Compared tty arsing local
SVMs, the BN system improves the F-measure of two data setsirirex-
periments by 2.61% and 0.91%. Compare to naive up-projoagdhe BN
system improves the F-measure of two data sets in our expetiby 2.33%

and 1.08%.

2. A Conditional Random Field model is applied for makingrarehical func-
tion prediction, and it increased the F-measure of two datalsy 2.94% and
1.19%, compared to only using local SVMs, and by 2.66% an@%.8om-

pared to naive up-propagation. The CRFs utilize pareitd-célationship in

10



the GO hierarchy, and also statistical information fromdbtual data that is

not shown in the hierarchy.

3. We created an approach for estimating the SVM outputiigion, i.e. a
Laplace mixture distribution for SVM outputs from positiggamples and a
single Laplace for SVM outputs from negative examples. (apreach is
more sophisticated than that proposed in Barutcuoglu g0&khich fits a
single Gaussian distribution to SVM outputs obtained frathkpositive and
negative instances. Our estimation technique for SVM dstpmpirically
works, because there are significantly a smaller number sifipe instances
for each functional class than that of negatives which phgkads a negative

prediction more favorable by the SVM predictor.

1.6 Thesis Outline

In this dissertation, our primary goal is to develop an dffechierarchical machine
learning approach using graphical models for predictinggin functions in the
Gene Ontology. Guided by this research goal, the rest ofbsg is organized as
follows:

Chapter 2 introduces the necessary biological backgronngratein function
and explains the terminology used in computational bioldigglso presents related
work in sequence-based protein function prediction. ltohates by reviewing hi-
erarchical function prediction and hierarchical clasatii@n in general.

Chapter 3 reviews two main types of graphical models, i.eeatied and undi-
rected models, and briefly describes inference approaches.

Chapter 4 revisits the binary local SVM predictors built bigrier et al. and
reviews probabilistic SVMs. It then presents a new apprdacistimating the
distribution of the local SVM outputs using a Laplace migand a single Laplace.

Chapter 5 applies two specific graphical models, i.e. BN aRdF,Go make
hierarchical function predictions. Model constructiomrgmeter estimation and
inference are described for each model.

Chapter 6 presents and discusses the results obtained iy thei graphical

11



models on two different data sets.
Chapter 7 summarizes the thesis research and concludesstestation with

possible future work.

12



Chapter 2

Background

A protein is a large complex molecule made up of one or morénshaf amino
acids. Accounting for the second largest segment of theleelveight after wa-
ter, proteins serve as building blocks and functional comepds of a cell [48].
They perform most of the important functions in a living angan, such as con-
stitution of the organs (structural proteins), the catialy$ biochemical reactions
(enzymes), receptors for hormones and other signalingaul@s (receptors), and
the maintenance of the cellular environment (transmengopaoteins). Therefore,
discovering new proteins and understanding their bioldienctions is crucial in
the development of new drugs and synthetic biochemicals.

Due to high-throughput techniques for various genome @ealya huge quan-
tity of genomic information has become available. The infidbiological data
also makes manual annotation of protein function slow adtes. This challenge
paved the way for the emergence and popularization of aueahianction predic-
tion.

This chapter will introduce protein function in generaldamview previous
research on protein function prediction using primary @rosequence data, anno-

tation data from databases and GO hierarchy information.

2.1 Introduction to Protein Function

Before delving into the details of computational prediatiave start by describing

protein sequences, the common understanding of proteatifum and a standard-

13
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Figure 2.1: The Central Dogma of Molecular Biology. A schémeaepresenta-
tion of the Central Dogma of showing the flow of informationrit DNA to RNA
(transcription), and from RNA to protein (translation).dge courtesy of [2].

ized vocabulary, i.e. the Gene Ontology, which is widelydufee describing protein

function.

2.1.1 Protein Sequences

The Central Dogma of Molecular Biology [24] is a framework tmderstanding
information transfer in a cell from DNA to RNA to protein, aBasvn in Figure

2.1. This process produces a protein sequence, constifuctec combination of
20 amino acids, each of which is represented by a letter biadgt. The primary
sequence is the most fundamental form of a protein sincetéraénes different
characteristics of the protein such as its structure, fanend subcellular localiza-
tion. An example of such a sequence is shown in Figure 2.1.1.

An enormous number of protein sequences have been idemyfieidh-throughput

sequencing techniques, and information about them has dmktted and orga-

14



> P75245|ACKA_MYCPN Acetate kinase - Mycoplasma pneumonia e
MNDNKILVVNAGSSSIKFQLFDYHKKVLAKALCERIFVDGFFKLEFNEBEKYAFP
DHHAAVTHFLNTLKKHKIQELSDIILVGHRVVQGANYFKDSVIVDAEKIKEFIK

P75245: SWISS-PROT accession number
ACKA _MYCPN: SWISS-PROT entry name
Acetate kinase: protein name
Mycoplasma pneumoniae: origin of the protein

Figure 2.2: A protein sequence segment in FastA format froviiSs-PROT

nized in various standardized databases. Among theseadatsbthe Swiss-Prot
and TrEMBL databases [11] are most widely used, and theyaayether called

the UniProt database. The Swiss-Prot is a comprehensivegmcurated database
that provides a wide variety of information about protesig;h as their amino acid
sequence, functional annotation, subcellular locatiod, @her information in the
form of keywords and features. As a supplement to Swiss-Fr&MBL (Trans-

lated EMBL) is a computer-annotated protein sequence datathat contains the
translations of all nucleotide sequences present in the Hd8nBank/DDBJ databases
[14]. As of October 2 2007, the Swiss-Prot Release 54.3 am285,335 entries

and the TrEMBL Release 37.3 contains 4,932,421 entries;wtbigether comprise

the UniProt Knowledgebase Release 12.3.

2.1.2 Protein Function

The definition of “protein function” is ambiguous and highdpntext-sensitive,
since proteins are involved in more than one type of actisitgh as cellular, molec-
ular and physiological activities. Bork et al. [12] have posed categorizing pro-

tein functions into three types:

e Molecular function: The biochemical functions performed by a protein,

such as binding sites, catalytic activity and conformadiahanges.

e Cellular function: Many proteins co-operate to perform complex physio-

logical (cellular) functions, such as metabolism, sigrahsduction cascades

15



and structural association, to keep the various comporadritee organism

working well.

e Phenotypic function: The totality of the physiological subsystems, consist-
ing of various proteins performing their cellular functgm@nd their interplay
with various environmental stimuli determines the phepayroperties and

behavior of the organism.

Therefore, when speaking of protein function, one mustig§ptee context or func-
tion category, since a functional term can refer to differ@eanings in different
functional categories. Throughout this dissertation, weststently use the term
“protein function” to refer tanolecular function For example, metal ion binding,
transporter activity and kinase regulator activity are@ealar functions of protein.
Since protein function assignment is somewhat subjedtiferent biologists
may assign the functions of proteins differently. To maketional annotation con-
sistent and available as input for computational proce$sestional terms must be

well defined and organized by some standard scheme, such &ette Ontology.

2.1.3 Gene Ontology

The Gene Ontology [6] is a functional classification systewetbped by the Gene
Ontology Consortium. At the highest level, the GO contNecabulary is com-
posed of three disjoint functional ontologies correspogdo molecular function
biological processand cellular component Although cellular location is not a
functional aspect per se, it is included for functional aation since proteins do
not function in a vacuum but at certain locations in the cElch ontology is hi-
erarchically structured and is implemented as a directgdiagraph (DAG). This
dissertation focuses on the molecular function sub-hiésar

The GO DAG starts with very general classes and becomes memsfis at
lower levels of the hierarchy. Each node in the DAG corresisaio a functional
term. Terms are the building blocks of the Gene OntologyhEamm has a unique
numerical identifier, which is a 7-digit sequence, and a teame, e.g. ion binding,

receptor activity or catalytic activity. Each directed edigthe DAG corresponds to
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either anis-a or apart-of relationship. The is-a relationship is a simple inheritanc
relationship, whered is-a B means that everyl is a B. For example, “metal ion
binding” is a child of “ion binding”, since every metal ionraing protein is also
an ion binding protein. The part-of relationship is a subponent relationship,
where(C' part-of D means that everg' is a part of aD. For example, every nucleus
is part of a cell. Since there are only 2 part-of edges (twadodm of GO0003720
telomerase activity) in the molecular function part of th®,Ghey are ignored in
our experiments.

Since the GO forms a DAG, each node may have more than onetpatech
is biologically appropriate since a specific function carthee specialization of of
more than one general function. For example, auto transpactivity is a child of
both porin activity and protein transporter activity. Thisilti-inheritance property
is also taken into account when we build our model to maketiangredictions,
as will be explained in more details in Chapter 5.

Due to its sophisticated design and wide coverage, the Gatadgy has be-
come the most popular functional classification scheme foten function pre-
diction studies. More importantly, the GO terms and hidrmal structures are
constantly updated by the curators, who seek scientificaliyect information to
keep the ontology up-to-date with latest research. Sine€5i® became public, a
large number of studies have used it for protein functiomalysis. As listed on
GO’s website', there are 1654 publications describing studies followd®@ (as of
November 12, 2007). For these reasons, we used a sub graph®éne Ontology
in our function prediction experiments.

As the vocabulary in the GO grows and the volume of proteirueeges in-
creases steadily, there is a need to have a list that mapgeztein to its biological
functions using the GO vocabulary, and the Gene Ontologyofation project was

created to fill this need.

Ihttp://www.geneontology.org/cgi-bin/biblio.cgi
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2.1.4 Gene Ontology Annotation

The mission of the Gene Ontology Annotation (GOA) proje@i \ithin the Euro-
pean Bioinformatics Institute is to annotate proteins m thmiProt database using
the GO terms. Each of these annotations is accompanied bydenee code, stat-
ing how the annotation was obtained. Based upon an evideaee one can tell the
reliability of the annotation: Is it an experimentally-ded annotation with high
reliability, or is it inferred by a computational approago$sibly low reliability)?

Evidence codes are organized into the following thirteg¢agaries:

e IC: Inferred by Curator

e IDA: Inferred from Direct Assay

e |[EA: Inferred from Electronic Annotation

e |EP: Inferred from Expression Pattern

e IGC: Inferred from Genomic Context

e IGI: Inferred from Genetic Interaction

e IMP: Inferred from Mutant Phenotype

e ISS: Inferred from Sequence or Structural Similarity
e NAS: Non-traceable Author Statement

e ND: No biological Data available

e RCA: inferred from Reviewed Computational Analysis
e TAS: Traceable Author Statement

¢ NR: Not Recorded

GO annotations should be used with caution and based ometfiffannotation
reliability requirements. To create a reliable data set should only consider
manually-curated annotations, such as IDA, IEP, IGC, I18IR]and TAS, and ex-
clude electronically-curated annotations, such as IC,, IS, NAS, ND, RCA,
and NR.
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2.2 Review of Function Prediction Using Primary Pro-
tein Sequence Data

In the domain of computational function prediction, prijmarotein sequence data
has been widely used since it is the most fundamental fataébdietermines protein

function. Specifically, automatic techniques that use prinprotein sequence data
to predict function are grouped into three categories: Hogybased approaches,

subsequence-based approaches and feature-based approach

2.2.1 Homology-based Approaches

The homology-based approach is one of the first and most-ofied techniques
for predicting protein function. It is widely believed thsitmilar proteins in dif-
ferent species mutated a common ancestor sequence dudhgi@v. Therefore,
homology-based approaches predict function by compariqgesty sequence to
similar sequences contained in the databases that havenkinoxtion and infer-
ring that function from the known functions.

BLAST [3] is an automated tool for finding homologs and it ie floundation
of most homology-based techniques. BLAST searches stdniddabases such as
Swiss-Prot for sequences similar to the query protein ugpgyoximate sequence
alignment algorithms. The result of a BLAST search is accanmgd by an E-
value for each match in the database, which denotes thetyjoélihe alignment
between the query sequence and the matched sequence. r3fadiiies mean
higher similarity between the query sequence and the sequeatch from the
database. BLAST is now pervasively utilized in moleculadgy, and in fact, it
is widely believed that [4] there is rarely a study in molesuiology that does not
involve BLASTing a gene or protein against a standard da&ba

Although homology-based methods such as BLAST have demadedtpromis-

ing results, their applicability is restricted mainly fova reasons:

e Limited protein coverage: No BLAST result will be returnddhere are no

similar sequences found in the database.
e Inconsistency of function between homologues: Sometimasraologue
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will have a different function in a different species in reape to selective

pressure during evolution [32, 66].

2.2.2 Subsequence-based Approaches

It is believed that some sequence segments are more impfataetermining pro-
tein function than others, and the subsequence-basedambpiaentifies such crit-
ical segments as features of a protein and builds a compuoghtmodel to predict
function based upon those features.

The subsequence-based techniques extract featureséeumnce motifsnean-

ingful subsequences that are conserved across a set ohpgetpiences of a fam
ily [13]. Although subsequence motifs may be responsibtebfological charac-
teristics of a protein, it is difficult to identify these mfstithat can best distinguish
function. Although various strategies have been proposedudbsequence-based
prediction [13, 37, 38, 47, 54], the results obtained so farret as impressive as

expected.

2.2.3 Feature-based Approaches

Feature-based techniques collect biologically meanirfghtures from each indi-
vidual protein sequence, and use those features to constngels for predicting
protein functions. They are similar to the subsequence¢approaches in terms
of building a predictive model using features from the data,differ in that they
focus on biologically meaningful features while subseaeebased techniques ex-
tract features from sequence motifs, based on patterns.

In recent years, feature-based approaches have been shbersticcessful in
a number of studies [1, 16, 29, 40, 59], and it is widely bagkthat the inclusion
of physical and functional features, such as subcellulzatlon, post-translational
modifications and residue-related features, creates anvloust model for the func-
tion prediction task.

Currently, the most cited work in the feature-based cateigarensen et al. [40].
They proposed a method, called ProtFun, for predictingtfanaising sequence-

derived protein features such as predicted post transkdtioodifications (PTMs),
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protein sorting signals and physical/chemical propedasulated from the amino
acid composition. The ProtFun system [41] used 14 such leaxli features to
make predictions on 14 GO functions using neural networkd zchieved a sensi-
tivity of at least 50% for all classes and 70% for the bestg@atg namely hormones
and receptors.

Another feature-based prediction tool is SVMProt [16]. SKidt constructs its
feature space using a set of residue-specific attributdsasioormalized Van der
Waals volume and polarity, and trains a binary SVM classfereach functional
family. The overall accuracy, defined as the proportion oé tresults (both true
positives and true negatives) in the population, by apglgMProt in the function
prediction experiments ranged from 69.1 to 99.6% among Bdtional classes.

A trend of feature-based approaches is to integrate the logywased tech-
nique such as BLAST into the feature extraction process,Rmteome Analyst
[59] is one of these integrative tools. PA predicts funcsiah query proteins by
training binary SVM classifiers using features from the Sw#sot main fields as-
sociated with most similar proteins that are obtained by BIA&g. PA constructs
a function tree by selecting 14 nodes from the original GOdnay and makes
predictions that are consistent with the constructed tides hierarchy construc-
tion differs from ProtFun and SVMProt, neither of which te&O functions as a
structured hierarchy but rather a set of independent labats makes a better use
of the hierarchical information for training predictive dels. Figure 2.3 shows the
hierarchy of the 14 functions used in PA.

Another trend in sequence-based approaches is to produiceegnated pre-
dictive tool by unifying various data types. For exampldagi®ro [69] provides
a single prediction system by integrating the commonly wsgdature databases.
Each protein run through InterPro is assigned a variety t@frHro codes, some of
which can be mapped to the GO terms if they represent furaitfamilies.

Besides protein sequence, there are a large variety of kithés of data that
have been used to predict function, such as protein steiajene expression data,
phylogenetic profiles and protein interaction networks, &ince this dissertation

deals with sequence data only, review of other types of nakstigonot covered and

21



Structural Signal

Molecule Transducer
Activity Activity

Catalytic

Activity

Transferase Lyase Hydrolase
Activity Activity Activity

Protein Nucleotide Nucleic Acid

Binding Binding Binding lon Binding

Figure 2.3: The pruned Gene Ontology used in Proteome Anfalgstion predic-
tion. Image courtesy of [29].

we instead refer readers to [36, 48].

2.3 Review of Hierarchical Function Prediction

As described in Section 2.1.3, the Gene Ontology is a stredtantology that re-
lates terms to each other. Itis unwise to ignore these oglsttips since they provide
additional information that can be used to improve the di@asion model. This
section reviews a number of proposed computational appesato function predic-
tion, which explicitly incorporate the GO hierarchy inteetprediction algorithm.
King et al. [43] used the additional information from theraiechy of functional
classes by simply using different decision tree models &mhdevel of the hierar-
chy. They induced rules for predicting function using a egriof data sources,
such as residue frequencies, phylogeny and predictedwsteudn another study,
Clare and King [22] proposed a modified decision tree modelvhich a positive
functional annotation to a node in the decision tree was qgafed to all of its
parent classes (i.e. up-propagation in Eisner et al. [29]gir experiments oBac-

charomyces cerevisiatata showed that the modified version was sometimes better
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than the non-hierarchical model and sometimes worse.

Struyf et al. [55] suggested an alternative modificationihg decision trees
for hierarchical prediction that used distances derivedhfthe hierarchy to train
the model. Their approach makes use of the edge distancgedrenhodes, which
is a useful feature for making predictions in a hierarchy stmould be considered in
our future experiments. They evaluated their approach fiereint datasets avail-
able forSaccharomyces cerevisiaand showed that their model outperformed the
hierarchical model proposed by King et al. [43].

Tu et al. [62] proposed a learnability-based approach fedigting functions in
the Gene Ontology. The basic idea of their approach is tosfoathe prediction of
“learnable” functional families, i.e. classes where thembership can be predicted
with a reasonable accuracy given the available featurasedah learnable class, a
classifier is trained to predict the child class, which thaled “further prediction”.
Through learnability-based predicting, functional amtioins are made more spe-
cific. Although we do not explicitly define learnable clasgesur approach, our
graphical models can possibly extend an SVM annotation t@ee rspecific class
based on the training data, which will be discussed in Chdpte

Verspoor et al. [64] presented a system for functional aatiat by analyz-
ing collections of GO nodes obtained from annotations of@noBLAST neigh-
borhoods. Those GO annotations are weighted accordingeto Eavalues. The
weighted GO nodes are then imported using a ranking syst@®efPOntology Cat-
egorizer (POSOC), to identify the most representative s@depredicted functions
of the query protein. They evaluated their function-pradic method by present-
ing what they called the hierarchical precision and hidraad recall. In fact, their
evaluation technique is equivalent to that of Eisner et &ictvevaluates prediction
performance based on the expanded set of annotations.

Recently, there has been a growing interest in applying 8apenetworks to
protein function prediction. Barutcuoglu et al. [9] devedol a Bayesian network
for combining a set of independent classifiers. The architecof the GO hierar-
chy is used as the structure of the Bayesian network, andgéessVM is trained

independently for each functional class in the GO. Thusptltputs of individual
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classifiers are combined in a hierarchical fashion. Thepéal SVM outputs from

both positive and negative instances using the same disoiy i.e. Gaussian. (We
will show a superior model in Chapter 4.) They presented #hgerimental results
based on 105 functional classes using 3,465 annotatedrssegjevhile our experi-
ments are carried out on a much larger scale, i.e. 399 classegs 14,018 proteins,
and 792 classes using 45,956 proteins.

In a different manner from [9], Engelhardt et al. [30, 31]IbaiBayesian sys-
tem to model the probability for the transfer of protein ftiao from a parent to
a child class in a single phylogenetic tree, composed of G@geGiven a query
protein sequence, they first constructed a phylogeny basedset of homologous
proteins. They learn, by fitting a probabilistic model, trensition probability for
any parent-child pair in the GO hierarchy, which was cord&d by taking the
union of all GO annotations associated with the proteindhenghylogeny. The
final prediction was obtained by computing the maximal pisterobability of
possible node assignments. It was reported as the bedsrgsfulnction prediction

via phylogenetic analysis.

2.4 Review of Hierarchical Classification

A great amount of effort has been dedicated to studying tdbieal classification in
general and to studying applications in domains where aamizgd ontology exists,
such as text categorization and web content extraction. uBeeof hierarchical
decomposition allows a classification problem to be adécksising a divide-and-
conquer approach, which can be solved efficiently.

Before delving into reviews of hierarchical classificataigorithms and mea-
sures, we must be clear about the structure of a hierarchgemeral, there are
two main types of structures for a class hierarchy, a traecttre and a Directed
Acyclic Graph structure. They both consist of root class(egernal classes, and
leaf classes. The root class(es) denote(s) the most gatesaliption of all cate-
gories in the hierarchy. Each internal class has its pamahichild class(es). The

main difference between these two hierarchical structisrdmt each class in a tree
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has at most one parent, while each class node in DAG can hatiplmparents.

Hierarchial classification algorithms can possibly be gatzed into two major
groups,big-bangandtop-down[56, 57]. In the big-bang approach, a single com-
plex model is trained from the training data, which takesdlass hierarchy into
account during a single run of the classification method eG& test instance, the
classifier can assign it to more than one category in the optdgee, and makes
assignments of classes at potentially every level of theatgchy. The big-bang
approach has been used by several studies in text mining,agithe rule-based
classifier [52], Naive Bayes classifier [61], and methoddt lmun association rule
mining [65].

In the top-down approach, more than one classifier is buih éavel of the hier-
archy during training, and each classifier functions indeleatly as a flat classifier
at that level. A test example is first classified by the firselelassifiers, and then
is further classified by the classifiers of the lower levessks whose parent classes
have been predicted at the higher level until the examplaatdme further classi-
fied. For example, Dumais and Chen [28] explored the hieraatistructure for
classifying a large collection of web content, using a toyws approach with SVM
base classifiers. Their hierarchy of the web content catst two levels, 13 top-
level and 150 second-level categories (for instance, sffodtball, sports/soccer,
computer/hardware, and computer/software). They traB\Ml classifiers to dis-
tinguish a second-level category from other categorielsivthe same top level. In
one of their experiment settings, a classification processirtued to the second-
level categories only if the corresponding top-level catgdnad a positive classifi-
cation. Their top-down approach using the hierarchicalnmiation was shown to
be effective and to be able to improve the overall classibogierformance slightly,
compared to non-hierarchical classification. The top-dapiroach has been also
implemented using other base classifiers such as ACTION&(ftomatic Classifi-
cation for Full-Text Documents) algorithm [25] and Bayes@assifiers [44].

The top-down approach has the advantage that the origigatlassification
problem can be divided to smaller sub-problems at each,landlit is efficient in

both training and classification phases. Compared to theléegm approach, the
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big-bang approach builds a more complex classification iogleonsidering the

entire class hierarchy in the training phase, but not thesdiaation phase. The big-
bang classifiers assign the test instances to classes lesgaad their locations in

the hierarchy. Another problem with the big-bang approadhat the constructed
classifier may not be flexible enough to adjust for changebddhierarchy. The

classifier must be re-trained if the hierarchy is changed.

On the other hand, the top-down approach has the disadwatitaga classi-
fication error at a parent class may mislead classificatibadi the deeper levels.
It requires some recovery procedure to reduce this kind mirgelinduced by the
parent classifiers. In particular, the top-down approachtbaleal with a special
situation in a DAG hierarchy: for instance, given a clas$wito parent classes, if
a top-down classifier at the parent level classifies one paasitive and the other
negative, should the classification process continue ondkelevel? A tree hierar-
chy does not have such an issue since it only has a singletpatgte a DAG-like
structure may cause some contradictory predictions fotajrelown approach.The
top-down approach also requires more training instancee snultiple classifiers
have to be constructed and each requires a different trpdata set.

We consider our hierarchical prediction system using gegbmodels as a top-
down approach, although it does not make classificatiorsd key level. It takes
into account the hierarchical structure for training SVisdifiers. Although level-
based classification could be considered in our applicati@issue that a protein
may belong to classes in different branches in the hieraralst be addressed first.
The proposed graphical models serve as the remedy meché&miseaover from
incorrect classifications at the shallower levels of thedrighy. To have adequate
training examples in our experiments, we set up a lower bdonthe number of
proteins belonging to each GO function before construcsimgediction for that
function.

Another issue in hierarchical classification is how to measie predictive per-
formance of a classification algorithm. The performanceiefarchical classifica-
tion can be measured in several ways [10, 56, 57]. The widegd and easily-

implemented approach is the measure for flat classificatidéging this measure,
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every classification error is assigned the same cost, regardf the level of the
classes in the hierarchy. The most commonly used perforenargasures in flat
classification aré’recisionand Recall which will be introduced in Section 6.1.
However, the uniform cost measure is usually not ideal foasneing predictive
performance in hierarchical classification tasks, becauggmores the fact that
classes that are closer in the category are more similardio @der than classes
that are further away. Hence, measures based on hierarcpgmnpes are proposed.
Distance-based and semantics-based (or category-basadures evaluate predic-
tive performance based on the distance in the hierarchy aegjary similarity of
the predicted class and true class. The distance can bdatattbased on depth
or path in the hierarchy [10], and the category similarity t& defined by some
measure of similarity between instances belonging to elds¢57]. Those two
approaches take the hierarchy properties into accountdorithm evaluation, but
they are not as well accepted as in the flat classification uneaso they need fur-
ther study and discussion. Since we are most interestedasumieg the accuracy
of the final classification results of our system, we adopuithiéorm cost measure

for evaluations.
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Chapter 3

Introduction to Graphical Models

Graphical models are a graph-theoretic tool for dealinty witnditional probability
distribution problems. The nodes in the graph represemtararnvariables, and the
absence of edges represent conditional independencedretardom variables.
The graphical model is a convenient way to represent jomibaibpility distributions
and to answer queries about them. The graph can be eithetatirer undirected.
This chapter will introduce both directed and undirectegpgical models, and the

inference algorithms available for these graphical madels

3.1 Directed Graphical Model

A directed graphical model, also calledBayesian Networlor Belief Network
is based on a directed acyclic graph= (V, E), whereV is a set of vertices,
each representing a variable, afds a set of directed arcs in the graph One
can regard an arc from random variablgto V; as indicating that/; “causes”
V;. Throughout this dissertation, we will follow a standardgiice of notations,
i.e. upper case letters represeatiablesand low case letters represemtiues For
exampley; represent¥; = v;, and in the case of binary valuesy; means/; = +1
and—v; meansV; = —1, andv represent$vy, vs, ..., v;) whereL is the number
of vertices in graph, .

Since the conditional dependence between random variagbtesfined by the
graph, the joint probability distribution, also called thebability mass function

in the discrete case and probability density function indbetinuous case, can be
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(@) An example of directed graph. (b) An example of undirected graph.

Figure 3.1: Two examples of graphical models.

calculated as a product of the conditional probability aftesariable conditioned

on its parents, i.e.
P(v) = H P(v;|Pa(v;)) (3.1)

Viev
where Pa(v;) denotes an instantiation of the parents/®in the graph, for exam-
ple, Pa(vs) = {v1,v2} in Figure 3.1(a). For a variable with no parents, the con-
ditional probability is just its unconditional priori prability. For instance, given

Figure 3.1(a), the joint probability? (+wv;, —vs, +v3, —v4) can be computed as

P<+Ulu —Va, +U37 _U4)

= P(+U1)P(—U2)P(+U3| +U1,—U2)P(—U4| —l—’Ug).

Given a BN as shown in Figure 1.6(a), one can define the joioibadility
of variables in the graph. Formally, given a set of obseovatiariablesX =
(X1, X, ..., X1), a Bayesian network models the joint assignment of all mdde
variablesY” = (Y1,Ys,...,Y,), whereL = 5 in this specific example. To find the
joint probability P(Y, X), this BN makes two independence assumptions. First,
it assumes that each stateis independent of all non-descendents given its direct

parent(s)Pa(Y;), i.e. nodeYs is independent frony;, Y, andYj, given its parent
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Y5, andY} is independent fronY; andYjs, given its parenty; andY;. Second,
it also assumes that the observatitnis independent of other variables given the
current staté;. With these two assumptions, the joint probability of aneylation

sequence and a state sequengean be easily calculated as

L

P(x,y) = H[P(yi|Pa(yi))P($z‘|yz')]- (3.2)

3.2 Undirected Graphical Model

An undirected graphical model, also known aMarkov Net can also be repre-
sented by a grapty = (V, E') over a set of random variables, differing from BN
in that its edges are undirected. A clique in graphs a set of fully connected
vertices and is denoted ly and the set of all cliques in graghis denoted by
For example, in Figure 3.1(b) nodégy, V4, V3} form a clique, and V3, V,} form
another clique. Let).(V,) denote a nonnegative potential function associated with
possible configurations of variablé in cliquec. For example, the potential func-
tion v193(v123) = 1103(v1, V2, v3). The joint probability of the random variables can
be defined as the normalized product of the potential funstaver all cliques(’,
in graphG, i.e.

:—Hm% (3.3)

CEC
where the normalization factdf = >y [I.cc ¥.(V.) in the discrete case df =

[, Teec ¥e(V2) in the continuous case. This factéris also called theartition
function For example, given the undirected graph in Figure 3.1 jaint proba-
bility P(+wvq, —vg, +v3, —v4) can be computed as

P(4v1, —vy, +vs, —vy)

1
= §¢123(+U1, —Ug, +03) 34 (+V3, —04),
where
Z = 10123( U1, — —Us)¢34(—1)37—v4)

+  Pra3(—v1, —va, —U3) V34 (—v3, +04)

+  Yro3(—v1, —v2, —U3)34(+V3, —Vy)
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+  Yro3(Hv1, +02, +03) P34 (3, +04)

A Conditional Random FieldCRF) may be viewed as an undirected graphical
model conditioned upon a set of global observations. In a, @REn a graph over
a set of observationsand labels;, we can define a set of cliqués= {(X., Y.)}.
By the Hammersley-Clifford Theorem [34], the conditionedipability of the labels
y given the observationscan be modeled by a conditional exponential family over
cliques in the graph, i.e.
L

POk =

exp Y Yele, Ye), (3.4)

ceC

whereZ = Yy exp Xcec Yel@e, Ye)-

We use the undirected graph shown in Figure 1.6(b) to ibustCRFs. Different
cliques can be defined for the CRF model in this example, ag dgrevery vertex
in the clique is connected to each other. For instance, afseagimal cliques,
C, consists of cliquesYy, Ys), (Ys,Ys,Y,) and(Ys, Yy, Ys), and a set of pairwise
cliques is the set of all edges, i1@7,Y>), (Ys,Ys), (Ya,Yy), (Y2, Y5), (Y3, Y,), and
(Y4, Ys). Since each observatioX; is attached to its state nodg cliques can be

defined over these pairs of state-observation nodéXad;). Given the observa-

tion sequenc& = (x1, s, ...,xr) WhereL = 5, the conditional distribution has
the form
1
P(ylx) = 7 exp[(V12(y1, y2) + Vo34 (Y2, Y3, Ya) + Vau5(Y2, Ya, Ys))
L
+ Z%(%, Yi))s (3.5)
i=1

if the maximal cliques are chosen for computing. These piatieianctions will be

defined later in Section 5.2.2.

3.3 Inference Algorithms

Given a specific graphical model, the main goal of inferesde estimate the values

of hidden nodes’, given the values of the observed nodé€si.e. P(y|x). To

31



compute this posterior probability, we can use Bayes’ rule:

Py = 0~ TR, 36)

In general, computing the posterior using Bayes’ rule ispotationally intractable,

because computing the likelihood tetf{x) involves a marginalization computa-
tion, i.e.>>y P(X,y) which is a sum over an exponential number of terms.

By using the conditional assumptions encoded in the graph,can speed up
the computation of the posterior probability. Since we usegact inference al-
gorithm in our application, here we only review some of theydar exact infer-
ence algorithms. However, there is another large groupgufrathms for approx-
imate inference, which each produces approximate targdighilities using more
efficient computations. Most commonly-used approximaferance algorithms
include loopy belief propagation, sampling methods andatianal methods; we
refer readers to [7, 33].

Here, we present three of the many exact inference algasithen the variable
elimination algorithm, the belief propagation (BP) alglom, and the Junction Tree
(JT) algorithm. To keep our illustration simple, we use arfoade graph shown in
Figure 3.2(a) for introducing the variable elimination@ighm and BP algorithm.
Although the example given here is an undirected graph,rtezance algorithms
also apply to directed graphs. It is easy to convert a didegtaph to the counter-
part undirected graph by connecting parent nodes that sheosenmon child and
dropping all arrows in the graph, as will be discussed inie@.3.3. Also, note

all observation nodeX for SVM outputs are removed for now.

3.3.1 Variable Elimination Algorithm

The algorithm is called variable elimination because inatiates all the irrelevant
variables using factored representation of the joint pbditg Consider an example
in Figure 3.2(a). Suppose that potential functions are fixedan be extracted
from the conditional probability table of the corresporgldirected graph, then the
marginal probabilityp(y; ) is

P = 3% S 1) ) )

Y2 Y3 Y4
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mi2(Y2) l T m21(Y'1)

mzs(Ys) m24(Y4

(a) The intermediate terms that are create@d) The set of all messages that are cre-
by the elimination algorithm when nodes 2ated by the belief propagation algorithm in
3 and 4 are eliminated in a four-node tree. a four-node tree.

Figure 3.2: Message passing in a four-node tree.

= % > Uy, y2) Z¢(y2, ys) D (Y2, ya)

— % % V(Y1 ya)ma(ya)ma(ys)

1

= §m2(y1) (3.7)

where intermediate factors,, ms andm, are considered as “messages” passing
from the marginalized variables. The limitation of the ehation algorithm is that
it only computes a single marginal probability. In real-\doapplications, more
than one marginal probability is often required, and midtiuns of an elimina-
tion algorithm become very inefficient, and therefore a dagitaprogramming-like

inference algorithm is desirable.

3.3.2 Belief Propagation Algorithm

Belief Propagation [49], also known as the sum-productrilgm, is a dynamic
programming form of variable elimination for calculatifgetmarginals in a tree. It
updates the marginal (or belief) of each node iterativelpagsing messages from
the neighbors until they converge.

We will illustrate the BP algorithm by an example shown inl¥ig 3.2(b). The
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marginal probabilityp(y,) can be calculated by

ply1) = %w(yl) T may)

teN(Y1)

= () 38)

whereN (Y7) denotes the neighborhood set of nddeandm;; (v, ) is the message

passed from the neighboring nogie¢o nodey; which is given by

mo1(y1) = %Zip(?ﬂ,m)wyz) T mo(y)

iEN(Y2)\Y1

- % > (Y1, y2) U (y2)maa(ya)mas (y2) (3.9)

whereN (Y;)\Y; refers to all nodes neighboring excepty;. mss(y2) andms(ys)
can be computed following the same procedure. If marginfaiseoother nodesg,,
y3 andy, are also desired, the messages that were computed forgyetin) can
be reused as in dynamic programming, and only messagesdpaste opposite
direction need to be computed, i7@45(y2), m23(y3) andma4(y4). It can be shown
that the number of possible messages that BP computes is thécnumber of
edges in the tree.

As a summary, the BP algorithm sends messages from all leddsnto the
neighboring nodes and continues sending messages in thisamantil all possible
messages in the tree have been sent exactly once. Once aligeesare obtained,
the marginal of a variable in the tree is simply the produ¢hefincoming messages
of all its adjacent nodes. The BP algorithm is capable of hagdhe inference
problem in anyacyclicgraph such as a chain or a tree, but does not function well
in loopy graphs, i.e. graphs with cycles, and a more complethod is needed to

tackle this cycle issue.

3.3.3 Junction Tree Algorithm

The Junction Tree algorithm is one of the most widely usedrélyns for exact
marginalization in loopy graphs. Two versions of the JT athon were developed

in the late 1980s. One version by Shafer and Shenoy [53] fenother was initially
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developed by Lauritzen and Spiegelhalter [45]. The lategsion was soon refined
to a message passing scheme, which is described in thisrsecti

In essence, the JT algorithm performs belief propagatioa arodified graph
called a junction tree, which is obtained by clustering egcinto single nodes.
The main steps involved in performing the JT algorithm carsbemarized as

follows [7]:

1. Moralisation Given a directed graph, one can moralize it by adding a link be
tween any pair of nodes with a common child and dropping edgeatations.

If given an undirected graph, then this step can be skipped.

2. Triangulation An undirected graph is triangulated if every cycle of length

or more contains an edge to connect two nonadjacent nodes.

3. Form the Junction Tree Form a JT by forming a cluster representation from

cliques of the triangulated graphs.

4. Potential AssignmentAssign the potentials to the cliques on the JT and as-

sign the separator potentials on the JT to unity.

5. Message PropagatiorPass messages until updates have been passed along

both directions of every link on the JT.

All steps except the second are deterministic. That isettseonly one moral graph
and a unique set of cliques of the triangulated graph. Theneba several junction
trees due to different ways of triangulating an undirectexgbg, and it is an NP-hard
problem to find the optimal triangulated graph (i.e., oneckilminimizes the sum
of the clique potentials) [5]. There exists a number of gialation techniques in
the literature [39, 51, 60, 67], and good heuristics arenofteed in a real-world
application.

Next, we will illustrate how the JT algorithm works on a dited graph by the
example shown in Figure 3.3. Figure 3.3(a) shows a cycleatied graph. One can
moralize the graph by connecting nodésandYs, which share the same child node

Ys, and then droping all arrows. The resulted undirected gisghown in Figure

35



|

(a) Original directed graph (b) Moralized graph

(c) Triangulated graph (d) Cliques and separators in the junction
tree

Figure 3.3: The Junction Tree algorithm
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3.3(b). One way to triangulate the moralized graph is to atigke between nodes
Y, andY3; and noded; andYs, as shown in Figure 3.3(c). Then, the cliques in the
triangulated graph ar@s; = {Y1, Y3, Y3}, coss = {Y2, Y3, Y5}, cose = {2, ¥5, Y5}
andcays = {VY3,Y,, Y5}, Given the set of cligues, we can form a junction tree
by joining cliques with edges labeled by a setsafparatorsi.e. sio, s»3, and
s94, labeled by the intersection of the indices of the adjacesat ¢liques. The
original cyclic directed graph now is transformed to a tlige-structure, and the
generated junction tree is shown in Figure 3.3(d). In a treaginals of nodes can
be computed in a way similar to that in a regular belief pratiam algorithm. We
first set the separator potentials on the JT to unity, andjaske potentials of the
cliques as the product @{Y,| Pa(Y,)) in the directed graph whefg. are variables

in one cliqgue. For example, we initialize the potential afak c,23 as

Verys = P(y1)p(W2ly1)p(ysly1), (3.10)

and potentials of all separators as 1. Then, messages siagt jpassed between
cliques via separators. When a message is passed from cligu® clique co35
via separatok;,, a new separator potential is obtained by marginalizingtbet
variables in clique o3 that are not insq,, i.e.

Uiy = D Ve = D p(y1)p(Yalyn)p(ysly), (3.11)

c123\s12 Y1

and a new potential for cliqu&ss is obtained by
/lfb;le .
Vs

Note that in this message-passing scheme, a clique passessage to a neighbor-

¢:235 = ¢C235 (312)

ing cluster only after it has received messages from all theraeighbors. This
message propagation procedure continues until updatesdesn sent along both
directions of every edge on the tree. Now, the clique paténtian be read from the

JT, and the marginal probability of each variable of inteiéxan be computed by

pyi) = > e, (3.13)
Y}

wherec is the cluster containindy;.
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It is believed that there cannot be a much more efficient exéetence algo-
rithms than the Junction Tree algorithm in a general loogphyr since every other

approach must contain a hidden triangulation [39].

3.4 GO Hierarchy Vs. Dependencies in Function La-
bels

In principle, a correct DAG is considered as a model for dbsay the data gen-
erating process. Specifically, given the GO hierarchy, @areassume that protein
function annotations are induced accordingly becauseeaitlle of consistent label-
ing. For example, given the DAG in Figure 1.5, one would expeget of function
annotationsD = {(V1), (V5), (V1,V2), (V1,V2,V3), (V1, V2, V5), (Vi, V2, Vi, Vs),
(Vi, Vo, V3, Vi, V5)}. The BN model has the advantage that it has a simple causal
interpretation to model the dependencies in this DAG.

However, a DAG that only partially describes the data gdr@rgprocess may
mislead the causality analysis. In particular, there mag&ious dependencies
that are entailed by the hidden variables. Given the abavef $enction labelsD,
one may find that functiong; andV; always appear together. This relationship
in generating function labels is not represented in the DA&the GO hierarchy
is organized for biological parent-child relationshipsiefefore, constructing a de-
pendency graph by learning from the actual data is the ulérgaal. However,
learning an optimal graph structure that best explains #ite id an’V P-Hard prob-
lem [20, 21], since the number of DAGs dnvariables is super-exponential in
Alternatively, artificially adding some arcs into the DAG yrfzelp recover the true
data-generating relationships that are not shown in thggrai DAG. Under such
a circumstance, the undirected model is advantageouslovelirected model, be-
cause the undirected model does not assume directions wldérgaedges into the
graph. This DAG issue will be taken into account when we boildCRF model in
Section 5.2.
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Chapter 4

Function Prediction Using Local
SVM Predictors

As reviewed in Section 1.1, for each protein, the CHUGO syspeoduces a set
of independent binary SVM predictions, and then uses pesitp-propagation to
make the final predictions. However, we show that a prol&tlwlEVM prediction
is more effective as an input to a graphical model. This dragiirts with a general
introduction to Support Vector Machines, illustrates hovitthe real-valued SVM
outputs using a Laplace mixture distribution and a singlplaee, and introduces

an Expectation Maximization algorithm for discovering rmbdarameters.

4.1 Support Vector Machines

The Support Vector Machine is a learning algorithm desigonedaximize the mar-
gin of confidence of a classifier on the training data set. I Wt introduced
by Vapnik [63] and others [8, 15], and was inspired from tle¢ical concepts of
statistical learning theory. An SVM works by mapping a setafifeled data to a
feature space, and finding the “optimal” separating hy@empin the feature space.
This optimal plane maximizes the distances from the hypespto the nearest data
points i.e. support vectors, and those distances are cakegins In practice, even
an optimal hyperplane can not separate an arbitrary daggesietctly due to noisy
data or insufficient features. Each data point that appeattsei region of a differ-
ent label is known as misclassification The number of misclassification can be

minimized by carefully selecting SVM parameters.
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Figure 4.1: A linear Support Vector Machine. Each +/- pogagresents a training
instance. Points (+) are labeled with one class, and points¢ labeled with the
other.d; is the distance from a data pointo the hyperplane. Circled +/- points are
misclassified.

Figure 4.1 shows a linear SVM, in which two classes of datsaparated by a
straight line. Formally, given a set of training data wheserecan be represented
by a feature vectox, we want to classify each instance as one of two classes in
y € {—1,+1}. The SVM outputs are signed distances from data points to the

hyperplane that can be calculated as:
fX)=wix+b (4.1)

wherew is a vector of weights antlis the offset of the hyperplane. This hyper-
plane is optimal because the margin between the separabienty instances and
the hyperplane is made as large as possible. The same hgqpenan typically well
separate unseen test instances as well, if they are cartsisth the training data.
SVMs can be extended to deal with non-linear boundary ingatufe space by
introducing differentkernels which find separating hyperplanes of higher dimen-
sions. The most popular non-linear kernels include polyiabkernels, radial basis
functions (RBFs) and sigmoid functions. These kernel-d&éMs perform better
on data that is not linearly separable. However, they termd¢o-fit data as they ad-
just to fit outliers, and the computational cost is also gigantly higher than linear
SVMs due to its higher dimensionality in the feature spanalllour experiments,

we use linear SVMs since they were shown to be efficient andesstul in the
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CHUGO system.

To make a predictiony on an unseen instance, using the weight vectow
and offsetb obtained from training, one uses the signfdk) in Equation 4.1.y
is labeled positive (+1) ifw” x + b) > 0, and is negative (-1) ifw” x + b) < 0.
However, the problem with a binary SVM prediction is that rigvdata point on
the same side of the hyperplane is treated equally. Howéweroriginal SVM
outputsf(x) indicates not only the label (+1 or -1) but also the confidewicthis
prediction, based on the value fx). Intuitively, the larger the absolute value of
f(x), the more confident our prediction is. The next section dsfane/ay to learn
a new distribution from the real-valued SVM outputs obtdifi®m the training
data, and shows how to use the distribution on unseen dattitnate predictive

accuracy with a specified probability.

4.2 Probabilistic Support Vector Machines

In many cases, the posterior probabilf®yfy = +1|f) is difficult to compute di-
rectly, but instead the class-conditional dendiyf|y = +1) is more useful for
making a probabilistic prediction based on the SVM outpub. fiT probabilities
to the output of an SVM, Hastie and Tibshirani [35] proposéihfi Gaussians to
the class-conditional densities, which was adopted by Baaglu et al. in their
hierarchical prediction of GO functions [9]. In a separately, Lin and Weng [46]
investigated modeling the distribution of SVM outputs byauSsian and a Laplace,

ie.
PURIN(,0%) = exp(“ T @2)

and
PI(MIL(n ) = 5o esp(~ L4 4.3)

where N (i, o) and £(u, o) denotes a Gaussian and Laplace respectively, both
characterized by a location parameteand a scale parameter which can be
learned from the training data. Lin and Weng also showed thadll their ex-
periments, Laplace estimation outperformed Gaussias.dlsio worth noting that

Platt [50] introduced a direct approach to model the digtrdn of SVM outputs
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P(y = £1|f) using a sigmoid model.

Although those studies have chosen different models to ffSMtputs, they
share some common assumptions and methodologies. Fegtathassume that
the distribution of the target valug depends on its input only through the pre-
dicted valuef(x). In theory, the distribution of SVM outputs may depend on the
inputx, and the length of the predictive interval may vary with eliéint input val-
ues. However, the assumption often works well in practiag provides a good
estimate for initial analysis. Second, they all assume tthatSVM outputs,f(x),
are generated independently, and thus the class-coralitiemsityP(f|y = +1)
can be modeled by simple parametric functions. These agsmafor fitting SVM
outputs also apply for this thesis work. In terms of initiatimation, they all use
histograms which give a visual representation of the SVMoutistribution for

more sophisticated analysis.

4.3 Fitting Local SVM Outputs Using a Laplace Mix-
ture Model

Given the SVM outputs for each GO node, we want to estimatel@ss-conditioned
densityP(f|y = £1). Parameters aP(f|y = +1) can be estimated from the posi-
tive examples of that class, and parameter8f|y = —1) can be estimated from
the negative examples of that class. Figure 4.2 shows h&toglots of SVM out-
puts obtained from the positive training instances on twdesoG0O0030528 and
G00030246, and Figure 4.3 shows histogram plots of SVM dstphbtained from
the negative instances on these nodes. Since there ar@csigtly more negative
training instances than positive instances in almost all ¢B3ses, SVM perfor-
mance on positive examples is consistently worse than oativeg. As the his-
tograms show, SVM outputs from positive examples tend teapmore from the
two centers, +1 and -1, than SVM outputs from negative examprhis indicates
that the SVM is more accurate for negative examples thandsitipe ones. The
histograms also show that a Laplace model appear to the S\{pibdistribution

more closely than a Gaussian distribution. However, we sthatvwe can model
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Laplaces: ¢, = (0.32,—0.87,0.33) and sians: 6; = (0.41,-0.68,0.44) and
6y = (0.68,0.93,0.33). 6> = (0.59,0.91,0.37).

401 451

35+ 40

N w
a S
T T

number of instances
N
o

0 0
SVM margins SVM margins

(c) A Laplace mixture on node(d) A Gaussian mixture on node
G00030246. Parameters of twoGO0030246. Parameters of two Gaus-
Laplaces: ¢, = (0.59,-0.93,0.25) and sians: 6; = (0.61,-0.72,0.46) and
62 = (0.41,0.98,0.11). 62 = (0.39,1.0,0.057).

Figure 4.2: The histograms of SVM outputs obtained frpasitivetraining in-
stances. SVM outputs obtained from positive examples curete at +1 and -1.
Both the Laplace and Gaussian mixtures are parameteriz&d-byr, 111, 01) and

0, = (ma, 2, 02) Wherer denotes the weight of a particular componentlenotes

the location parameter, denotes the scale parameter. Note the y-axis has different
scales based on the number of instances in different classes
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Figure 4.3: The histograms of SVM outputs obtained froegativetraining in-
stances. SVM outputs obtained from negative examples anteresl at -1. Both
the Laplace and Gaussian are parameterizeé by (1, o). Note the y-axis has
different scales based on the number of instances in diffetasses.
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the output more accurately by using a mixture of two Laplas&itutions for SVM
positive outputs and a single Laplace distribution for riegeoutputs. In our ex-
periment, we did implement a system with a Gaussian mixtuteéhe result was
worse than a Laplace mixture.

It is simple to model a single Laplace, as defined by Equati8rirédm the neg-
ative samples. GiveW SVM outputs(xy, s, ..., zx) from negative training ex-
amples for the same class, location parametsrthe median of these samples [42]
and the estimator of the scale parametés

1 N
U:N;‘%—M- (4.4)

It becomes somewhat complicated to model a Laplace mixtisteitdition.
Given a mixture of’ Laplaces, the goal is to estimate a set of unknown parame-
tersd = {(m, u1,01), ..., (7K, ii, o) } Wherer, denote the proportion or weight
of the kth Laplacian of the mixture. We use the Expectation Maxittnara(EM)
algorithm for the maximum likelihood estimate of the partene

The EM algorithm was well described by Dempster et al. in 1274, and
it has been frequently used for data clustering in machiamleg. EM alternates
between performing an expectation (E) step, which companesxpectation of the
likelihood, and a maximization (M) step, which computesrteximum likelihood
estimates of the parameters by maximizing the expectetindad discovered on
the E step. Then the parameters found on the M step are uséart@sother E
step. EM iterates until the likelihood converges to a locakimal.

As we are using a mixture of two Laplaces to fit the distribotad the SVM
outputs obtained from the positive training examples, ttobability density of a

set of SVM outputx = (z1, x5, . .., xy) can be modeled by

P(x|0) = HZ (k, ;6), (4.5)

j=1k=1,2

where P(k, z;|6) denotes the joint probability of sampling tkéh Laplace model

and sampling a particular SVM outpuf from this Laplace component, i.e.
P(k, x,10) = P(k|0)P(x;|k, 0) = 7 P(x)|k, 0). (4.6)
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Given an initiald® = {(my, ju1, 01), (72, 2, 02) } 1, EM tries to find9* ! that maxi-
mizes the expected value of the log-likelihood of Equatidnglven the data and

the parametef’ from a previous iteration, i.e.
0! = arg max Q(O|x, 6", (4.7)
where
QOx,0") = [log

(x|0
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The likelihood P(z;|k, ) can be calculated by the Laplace density function as
shown in Equation 4.3. The probability thaf comes from the:th Laplace of
the mixtureP(k|z;, 6") can be estimated by

e P(z|k, 0")
Dok=12 7Tkp<$j‘]€,9i).

Using Equation 4.9 to repladB(k|x;, 0")) in Equation 4.8, we can optimize(f)

P(k|z;,0") = (4.9)

by taking partial derivatives of Equation 4.8 subjectrio+ m = 1.

As the sample median is the maximum likelihood estimatoooétion param-
etery in a single Laplace, the maximum likelihood estimatoy.dbr a mixture of
two Laplaces is a weighted median [23, 68]. The weighted aredi the values

that minimizes the following expression

N
=1

lparameters estimated at thk iteration are denoted by a supersciipt
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where weightv; = P(k|z;, ). Then, the weighted median is selected based on the

following two situations:

5= { T, it M w; > %Zi]il Wi } (4.11)

sy + o), i XM w =1 5N, w;
For example, consider a set of SVM outpxts: [0.7,0.9,0.24, 1.1, 0.8] associated
with weightsw = [0.1,0.2,0.3,0.2,0.1]. After sorting thex vector, we obtain the

sorted SVM outputs with the corresponding weights.

x 1.1 09 08 0.7 0.24
w 02 02 01 01 03

Starting from the left, add the weights until the sum is geedhan or equal to
5 Y0 w; = 0.45. By adding the weights of the first three outputs (i)é. = 3),
the sum is 0.5 exceeding 0.45. The weighted median is ther€®. Figure 4.4

summarizes the EM algorithm for a mixing of two Laplaces.
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(Note: Parameters estimated at itteiteration are denoted by a supersciipt

Input: datax = (z1, 22, ..., TN).

Output: parameters for two Laplacés™ = (ni™', ui*',01"!) and 65" =
(Tré—i_lu :u22+17 O-;—i_l)'

Initialization: 9 and6.

While 67" — 0% > a or 95t — 0% > o wherea is a pre-defined threshold, do

e E-step: Compute the posterior probabilities for &ll = 1,2 andj =

1,....N:
i ; i P(x |k, 6%)
Pi(klaj,0) = <Al 4.12
s 09 = = ot Pl 67 (4.12)
aerer (s 1,) = 2 exp( 222,
k k
o M-step
. N 4 _
M;{Fl — argmﬁlnzpl(k|x]7ez)|xl —ﬁ| (413)
j=1
i+1 ENPZ]{; 92 it 4.14
oft = 52 Prlklay, )l — i, (4.14)
j=1
i+1 A .
m = 2 Pkl 09) (4.15)

1

J

Figure 4.4: An EM algorithm for mixing of two Laplaces.
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Chapter 5

Hierarchical Prediction of GO
Function Using Graphical Models

The hierarchical relationship in the GO provides valualmewdedge for construct-
ing a model to make consistent function prediction. We btvild graphical mod-
els, Bayesian network and Conditional Random Fields, edakhech augment
structural information of the hierarchy to make local SVMgictions with more
globaly consistent function prediction. This chaptersthates how each model is
constructed from the hierarchy, and describes approachgmafameter estimation

and inference methods.

5.1 Hierarchical Prediction Using Bayesian Networks

5.1.1 Model: Bayesian Networks

Since the GO hierarchy is organized as a DAG, it is naturatanglenient to induce
a dependency graph based on the parent-child relationiships hierarchy. We use
the hierarchical structure of the GO illustrated in Figuretb construct a Bayesian
network as illustrated in Figure 1.6(a). The network spamsdets of variables, i.e.
Y = (V,Ys,...,Y)and X = (X1, X, ..., X). Each nodé’; represents a GO
function and has two possible states, +1 for positive andrhégative. Each node
Y; represents an output from the local SVM predictor which isaed number. Node
Y; is conditioned on its parent classes, and local observee Kpi$ conditioned on
the directly connected nodé. The edges betweern nodes encourage hierarchical

consistency in the graph. By arranging entries in the CPTGameensure that a node
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is guaranteed to be positive if any of its children is posi{tv1) and to be negative if
any of its parents is negative (-1). The edge from €gadb the corresponding local
observationX; represents the predictive accuracy of the local SVM classilihe
constructed Bayesian network is able to make hierarchigaligtion compatible
with the consistent-labeling rule by considering the pagdmld relationship in the
hierarchy, and to provide more accurate predictions bynaténg the probabilistic
outputs from the local predictors.

Two assumptions have been made by this particular Bayestarork structure.
First, each local predictioX; is independent from the other local predictions and
the other GO nodes, given its direct parént Second, each GO nod¢ is con-
ditionally independent from all non-descendants, givenritmediate parents. As
discussed in Section 3.4, the second assumption is nothatiduse the GO hier-
archy may not be the true dependency model that is used toajertbe function
labels. However, it is reasonable to believe that the GCahiéwy is part of the true
dependency graph, and more likely forms the fundamentattstre of the graph.
Therefore, the GO hierarchy is used to build the Bayesiawarétin this research.

For this network structure, our goal is to find the maximahjgrobability dis-
tribution, also known as the most probable explanation (MBEen a set of local
SVM outputsz for a query protein. Mathematically, given a set of obseovestx,

we want to find a set of labels so that

y* = arg m}z}x P(y|x). (5.1)
By Bayes' rule, the joint conditional probability can be tign as
1
P(ylx) = Z P(y)P(x]y), (5.2)

where the normalization factor & = >_y P(y) P(x|y). Due to the assumptions on

our Bayesian network, the two terms in Equation 5.2 can beldied as

P(y) = I] P(yilPa(ys)) (5.3)

i=1

wherePa(y;) denotes all parent nodes g@f and
L
P(xly) = [T P(xily:)- (5.4)
=1
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Next, let us denote’(y;|Pa(y;)) and P(z;|y;) as parameterg,, p,,) and by,
respectively, and we will discuss how to estimate thesempeters from the training

data in the next section.

5.1.2 Parameter Estimation and Inference

The parameteft,, p,(,,) represents hierarchical structure imposed by the gragh, an
indicates how likely a nodg; will be labeled as positive or negative given the as-
signment of all its parent nodes. We construct a conditipr@bability table (CPT)

at each node to enforce the inheritance properties of thei@@rbhy. As described

in Section 1.2, the rule of consistent labeling in the higmgusimplifies the CPTs in
the Bayesian network, and only one parent-child configomnain whichy; is pos-
itive given all its parents being positive, needs to be camgirom the true labels

of training data. The CPT entries for all the other parenldotonfigurations, i.e.

y; IS positive given thaany of its parents is negative, are merely 0’s. For example,
given the BN in Figure 1.6(a), the CPT at nadewould be:

Y2 Ys | +Ys| —Ua
— =10 1

- +1 0 1

+ =10 1

+ +| a |[1—«

whereY; andY; are parents oY, anda is a probability computed from the training
data. This CPT encodes the fact that a negative label foergithor Y5 implies a
negative label fol;.

The other paramete,, |, represents the predictive accuracy of the local SVM
classifier, and represents reliability of an SVM predictgwen the knowledge of
the true label;. Given the assumption that local SVMs have similar perforoea
on the training data and the test datdy; |y;) can be estimated by aggregating SVM
cross-validation results on the training data. For bina#MSoutputs, P(x;|y;)
can be estimated using the confusion matrices from crosdat@n. For exam-
ple, P(+x;| + y;) represents the ratio of positive instances predicted ctyré.e.
TP/(TP+FN) where TP, true positives, refers to positivadanses classified cor-

rectly and FN, false negatives, refers to positive instaradassified incorrectly.
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Since our local SVM prediction was modified to output the raiivBmargins, z;
is a real number rather than a binary bit, and therefore thimmason technique
described in Section 4.3 is used for fitting the likelihooeite® (x;| £ v;).

The Junction Tree algorithm described in Section 3.3.3iiged for inference
in the BN.

5.2 Hierarchical Prediction Using Conditional Ran-
dom Fields

The Bayesian network models dependencies among GO ternp th& arrows in
the original GO graph. To generalize the second assumptaaerby the BN, i.e.
function annotations are only generated according to theh{@€archy, we would
like to take the GO hierarchy and add edges between spouss ndwb share a
common child term and between sibling nodes who share a conpan@nt node.
We cannot use a BN for this generalization, so to model therparhild, spouse-
spouse and sibling-sibling dependencies, we use an utelirgcaphical model, the
Conditional Random Field (CRF). This model has been widsbdufor studies of

complex graph dependencies.

5.2.1 Model: Conditional Random Fields

The undirected graph is constructed by taking the Bayesanark, adding edges
to all pairs of spouse nodes and sibling nodes, and droppiowa in the directed
graph. An undirected graph is shown in Figure 1.6(b), ansl ¢binverted from the
corresponding BN in Figure 1.6(a). Given the undirectegpyi@ = (V, £), two
types of cliques are defined: edge cligdgsand vertex cliques’,,. Edge cliques
CEg, the local-consistency factor, includes all edges, i.eeachild, spouse-spouse
and sibling-sibling edges in the proposed undirected grdpbde cliques’y is
defined to capture dependencies between the local pretiaiiod the class labels.
For simplicity, a pairwise neighborhood system is adoptedriodeling the label
consistency structure. For example, for Figure 1.6(b)eatiguesCr = {(Y1, Ys),
(Y2, Y3), (Y2, Y4), (Y2,Y5), (Y3, Ya), (Ya,Ys)}, and vertex cliques’y = {(Xy, Y1),
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(X27 )/2)’ (X?n )/E’))’ (X47 )/;1)’ (X57 )/:5)}
Given local SVM outputs, the conditional distribution ovabelsY” is defined

as:

P(y|z) = %exp{ Yo UYny) + D vy )} (5.5)

(vi,vj)eE v, EV
wherey g (y;, y;), the transition function, denotes the potential over a paireigh-
bor nodesyv (y;, x;), the state-observation function, denotes the potentiat ov
nodewv;, and Z is the partition function. Eaclg(y;,y;) can be expressed as a

linear function i.e.

4
k=1

where f;(y;, y;) is the indicator function of state assignments over a pairoofes
(vi, y;) and consists of four possible features for each pairwisgelii.e.f (—v;, —y;),
f(=vi, +v;), f(+vi, —y;) and f(+y;, +y;). The formulation of functioryy(v;, v;)
captures co-occurrences between labels in the hierarchy.

Sinceyy (y;, ;) captures relationships between the class label and lodsl SV
prediction, we define the feature function as the class4itioneéd density function
P(z;| +y;) as described in Section 4.3.

5.2.2 Parameter Estimation and Inference

The proposed CRF model needs to estimate the parametesestadisition function

and state-observation function. Since parameters of #ie-sbservation function
v (y;, ;) are defined by the likelihood functidf(x;|y;) of the SVM outputs, they
are computed as described in Section 4.3, i.e. parametead fiplace mixture and
a single Laplace.

Parameters of the transition function, iée.in Equation 5.6 for each edge in the
graph, can be estimated by counting the occurrences of sdilple assignments of
two nodes associated with the edge in the training data. Bpoase-spouse and
sibling-sibling edge, all four assignments (@f, y;) are possible, while only three
assignments are possible for a parent-child edge sfiiee;, +y,) never appears

due to the rule of consistent labeling.
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Inference in CRFs is implemented using the same algorithrim &Ns (de-
scribed in Section 5.1.2), the Junction Tree algorithmepkthere is no moralisa-

tion step since it is already an undirected graph.
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Chapter 6

Experiments for Hierarchical Protein
Function Prediction

We conducted our experiments on two different protein dets gsing SVM, BN,
and CRF classifiers. This chapter introduces the performawaluation technique,
describes the two data sets used in the experiments, psebenéxperimental re-

sults, and concludes with a discussion of the results.

6.1 Evaluation

For a fair evaluation of a predictive system, part of the datdled the test set,
must be withheld from training. We use a modified 5-fold creskdation tech-
nique to split our data and evaluate the prediction res#tsdiction performance

is evaluated based on the standard F-measure score.

Cross Validation

To evaluate the performance of our proposed models on useaywe perform all
our experiments using 5-fold cross validation. In a stat&afold cross validation,
the data is divided into five folds, and each fold of data cimsta similar number of
instances for each class. Classifiers are trained on anydtuls of data and tested
on the withheld fold. This procedure continues until evesidfhas been tested
using the classifier trained on the other four folds. In osktaéhere are two phases.
In phase 1, there is a need for estimating the local SVM oudsitibution from

the training data. In phase 2, we estimate the parametehng gfraphical model. If
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Global Fold1
Test Set i Fold1

Local Fold1
Fold2 Test Set
Global Fold1 Fold3
Training Set <
Local Fold1
Fold4 Training Set

.| Fold5

Figure 6.1: Two-phase 5-fold cross validation. Foldl isdhalit as a test set for
predicting functions globally using graphical models. Biieer four folds are com-
bined as a training set, in which Fold2 is held out for testimg SVMs trained on
the other three folds. The local cross validation contiruregs every fold in training
has been tested.

we perform 5-fold corss validation in all the data to consttithe local SVMs then
all the data will be used in estimating the parameters of thplgcal model and no
unused test data will be available. Therefore, we first @ttt data into 5 folds for
use in phase 2. To estimate the parameters of the local SVEIslowt-fold cross
validation in the training data by using 3 folds for trainiagd 1 fold for testing.
This leaves a fold for testing the parameters of the grapmoalel.

Specifically, in the four-fold training data, one fold is dedut for testing the
SVM classifiers trained on the other three, called a locad<r@lidation, and then
it is put back to the training data and another fold is pullatifor test. This process
continues until every fold in the training set has been testdhe SVM outputs of
all four SVM training folds are combined to make a distribuatiestimation using
the technique described in Section 4.3. The same operaterapplied to the other
global folds. In total, we have trained SVM% = 10 times on any three folds. One

iteration of this two-phase cross validation techniquénman in Figure 6.1.

Performance Measures

The standard F-measure is adopted for performance corapdetween different

models. F-measure is defined as

2 x Precision X Recall
F— = 6.1
measure Precision + Recall (6.1)
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where the precision measures the performance of a classgesitive predictions
and is defined as
TP

Precision = ————— 2
recision TP PP (6.2)

and the recall measures the percentage of the positivenocesahat are predicted

as positive and is defined as

TP
Recall = m, (63)

where TP is the number of true positives, FP tallies falsétiges and FN denotes

the number of false negatives.

6.2 Data Set

We create two protein data sets for hierarchical functi@djmtion using different
models. As discussed in Section 2.1, each data sets cooktbt®e components:
protein sequences, GO hierarchy, and known protein lab&sfunctions. To cre-
ate more confident labellings, only function labels thatergrived from a biolog-
ical experiment are considered in this dissertation. Tsiawve only include labels
identified by evidence code IDA, IEP, IGC, IGI, IMP, and TA$idaexclude IC,
IEA, ISS, NAS, ND, RCA, and NR. Following the consistent |kbg approach,
each experimentally-annotated label is propagated upetoabt node. Since the
root term GO000367dolecular functions true for all proteins, it is removed from
the label set for prediction.

To directly compare with the prediction performance olddiby Eisner et al.,
the same data set is used. The data set (data set 1) condis¢sUriprot release
2.0 (TrEMBL release 27 and Swiss-Prot release 44), Augux@®4 version of the
GO molecular function ontology, and August 11, 2004 versithe GOA mapping
file. A sufficient number of positive training instances iguged to create accurate
local function predictors. To be consistent with Eisnerlgk8], we also set the
minimum number of positive instances at a node after thd [atopagation to 20.
This leaves us 399 nodes in the pruned GO hiergianyd 14,018 proteins.

There were 406 GO nodes in Eisner’s experiments. Howeveindaonfirmed with the author,
there is a bug in the code used to extract the GO terms, so sngete removed.
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To evaluate the performance of the proposed models on a lscgke and more
recent data, we create another data set (data set 2), whikid@s the Uniprot
release 10.0 (TrEMBL release 35 and Swiss-Prot releasel62¢, 5, 2007 version
of the GO molecular function ontology, and August 17, 200/&\m of the GOA.
A cutoff of 20 positive instances at each node is preserveditlze final version of
the data set contains 792 GO terms and 45,956 unique proteins

Table 6.1 shows the complexity of the constructed GO hibrascin terms of
hierarchy depth number of parents and number of children. Overall, bothaie

chies are complex and deep.

6.3 Experimental Results

Protein similarity search and feature extraction are imygieted by following the
steps in Eisner et al. Proteins in data set 1 and 2 are BLASJauhst Swiss-Prot
database 44 and 49, respectively, and the cutoff of E-valsetito bel0—3. PA
features for each similar protein obtained from BLASTing axtracted from the
main entries of the Swiss-Prot database, includingkiyavords SUBCELLULAR
LOCATION andinterProfields.

The result from local SVM predictors, without propagatirggive predictions
up to the root, is used as the baseline. A linear kernel iserhtg all experiments,
and the penalty parameter in SVM is setas- 1. LibSVM [19] is adopted for the
implementation of SVM.

A Java tool for modeling Bayesian networks, Samlam [26] @€l to imple-
ment the Bayesian networks, and a CRF tool, GRMM [58] is medifo implement
the CRF model.

Table 6.1(a) and 6.1(b) shows prediction results using S\iiilaut up-propagation
(SVM LOCAL), SVM with up-propagation (SVM UP), BN and CRF owd data
sets, respectively. SVM UP may improve or deteriorate trexal/prediction per-
formance, as the F-score has increased by 0.28% in data st deareased by

0.17% in data set 2 by simply propagating up positive locaM)fedictions. The

2In case of multiple parents, the hierarchy depth is definethbyongest path from the root to
the node.
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(&) Number of nodes in terms of depth.
Depth in Hierarchy Number of Nodes

Data set 1) Data set 2
0 10 11
1 54 76
2 98 138
3 97 178
4 72 160
5 31 106
6 27 68
7 9 49
8 1 5
9 0 1
Total number of nodes 399 792

(b) Number of nodes in terms of number of parents.
Number of Parents Number of Nodes

Data set 1) Data set 2

0 10 11

1 330 625

2 53 141

3 4 15

4 1 0

5 1 0
Total number of nodes 399 792

(c) Number of nodes in terms of number of children.

Number of Children Number of Nodes
Data set 1) Data set 2

0 173 384

1 132 212
2 46 88
3 21 43
4 10 23
5 8 18
6 2 7
7 2 6
>7 5 11

Total number of nodes 399 792

Table 6.1: Complexity of GO hierarchies in terms of the hielng depth, number
of parents and number of children.
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(a) Experimental results for data set 1.

TP FP FN Precision| Recall | F-score| Std. Dev.
SVM LOCAL | 44,285| 12,537| 25,155| 0.7794 | 0.6377| 0.7015| 0.00872
SVM UP 45,008 13,357| 24,432 0.7711 | 0.6482| 0.7043| 0.00665
BN 48,023| 14,538 21,417| 0.7676 | 0.6916| 0.7276| 0.00530
CRF 48,465 14,725| 20,975, 0.7670 | 0.6980| 0.7309| 0.00693

(b) Experimental results for data set 2.
TP FP FN Precision| Recall | F-score| Std. Dev.
SVM LOCAL | 171,486| 62,313| 72,754| 0.7335 | 0.7021| 0.7175| 0.01366
SVM UP 173,438| 66,953| 70,802| 0.7215 | 0.7101| 0.7158| 0.01463
BN 176,884| 65,735| 67,356 0.7291 | 0.7242| 0.7266| 0.01491
CRF 177,105| 64,272| 67,135| 0.7337 | 0.7251| 0.7294 | 0.01447

Table 6.2: Experimental results by using SVM LOCAL, SVM UR Band CRF.

F-measure has increased by 2.61% and 0.91% for the two dajaespectively, by
using the BN directed model. The increases of F-measuretuarprimarily to the
improvement on the poor recalls, which raise from 63.77%#nh@1% to 69.16%
and 72.42%, with a small sacrifice of the precisions (down ig% and 0.44%).
By applying the proposed CRF method, the F-score has ireddag 2.94% and
1.19%, respectively, and the recall has increased by 6.08%28% with a little
(down by 1.249%) or no loss of precision. The increases of Bsuees on data set
1, due to BN and CRF, are both statistically significant.

Table 6.3 shows the number of GO nodes whose F-measuresdmvelanged
due to the use of SVM UP, BN, and CRF. Clearly, the straightéod up-propagation
method has a limited influence on prediction of a small nunolbeodes, while BN
and CRF can improve prediction performance on over half eGl© nodes. Fig-
ure 6.2 and 6.3 shows the F-score of BN and CRF compared tesberg of SVM

local in two data sets, respectively.

6.4 Discussion

SVM UP is a simple and quick operation that forces the finatljgtéons to be con-
sistent, but it is experimentally proved to be unstable aagt hurt overall perfor-

mance, such as on data set 2. Given sufficient training inegarconfident statistics
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F-measure Data set 1 Data set 2

SVMUP | BN | CRF| SVMUP | BN | CRF

Increased 45 219| 261 53 328 | 493

Decreased 24 71 | 114 106 187 | 259

No change| 330 109| 24 633 277 40
Total 399 792

Table 6.3: Number of nodes whose F-measures have beensadradecreased or
unchanged by using SVM UP, BN and CRF than using SVM LOCAL.

can be learned from the dependencies between nodes and SgMxand proba-
bilistic inferences are provided by the graphical modets,BN and CRF, to make
“selective” up-propagations and down-extensions.

By using graphical models, the recalls have significanteéases which con-
tributes most to the improvement of F-measures. The chahgecall is deter-
mined by the number of true positives since the total numbgositives is fixed
for a given data set. There are significant increases of togéiges in data set 1

and 2, which is a result of two factors from the graphical mede

1. Using the estimated distribution of local SVM outputstead of binary val-

ues.

2. Using hierarchical information in the GO to extend a pesiprediction to
its children.

As discussed in Section 4, a binary SVM predictor treats S\pots on the same
side of the hyperplane equally, while an estimated SVM audiistribution inte-
grates the confidence of making such a local prediction. Tdpdce Mixture esti-
mation model we built, based on the positive instances dciomh some former FN
predictions to be “less” negative for having some probgbdf being positive. It
works even better when there is a larger number of FNs, i.@gpoecall, such asin
data set 1. The second factor makes additional TPs pos&itéeibe the probability
P(+yi| + Pa(y;)) in BN or P(+y;, +Pa(y;)) in CRF learned from training data on
a query node may indicate it is very likely that the node idtpasgiven that all its

parents are positive.
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Figures 6.4 and 6.5 shows the F-score difference betwee@€BR/Aand SVM
local in terms of the number proteins belonging to each dlasise two data sets,
respectively. Note, the x-axis is scaled logarithmicaltytbe number of proteins.
From those figures, one can tell that most changes (increadecoease) of the
F-measures occur at node classes that have fewer trairstanoes, and so pre-
sumably are (typically) at a lower level of the graph. Thaeeseveral reasons for
this observation. First, the fact that lower level nodesehawmaller number of
proteins leads to two consequences: (1) adding or removiegy &P predictions
for those classes can change the F-measure significanttatistical information,
including both the dependency relationship and SVM outgtitre&ation, collected
from a small number of training instances, may not truly espnt unseen data.
Also note, the performance of our graphical models at hi¢ghesl nodes is mostly
better or not worse than the local SVM. This observationdatdis that, if given ad-
equate training instances, the hierarchical informatimth &VM output estimation
captured by our graphical models can almost certainly ivgtbe result.

As we attempt to characterize GO nodes whose F-measurebéenéncreased
or decreased by the graphical models, we do not find any cléderece that can
be used to identify those nodes apriori. Figures 6.6 andl®Ws error bars, with
respect to the hierarchy depth and number of parents, obfeshanges between
using SVM LOCAL, and BN and CRF, respectively. There is na€éisable pattern
in any of the graphs due to the large variances at each level.

Although the undirected graphical model CRF only has mailgmprovement
of the F-measure over the BN model, it shows that co-occoeemetween GO
terms other than parent-child pairs do exist and they angfileh constructing a
more accurate dependency graph. This result sheds lighteofuture research of

learning the dependency graph from the actual data.
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Figure 6.2: Data set 1: F-score of BN and CRF Vs. F-score of $aadl
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based on a natural logarithm.
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Chapter 7

Future Work and Conclusion

7.1 Future Work

A possible extension of this work is to model function classienultaneously using
the big-bang approach. Several studies [18, 70, 71] hawsrshmat learning a set
of related classes at the same time will improve the overalligtion performance.
Thus, constructing a system that trains SVM classifiers ae@nd uses them as
an input to our graphical models may be beneficial for makogsistent and more
accurate hierarchical predictions.

As the results of our experiments demonstrated, connestblimg nodes has
marginally improved the prediction performance over ushmgdirected graphical
model based on the parent-child relationship. The GO isladical hierarchy, and
does not explicitly indicate the co-occurrences betweépaats of classes in the
graph, except connected nodes. It may be worth learning éperadiency graph
purely from the training data and ignoring the GO hierarahgtructure or aug-
menting it. The resulting graph should not only contain treganity of the original
GO edges but also new arcs between unrelated nodes if corerceas between
those nodes do exist in the training data. However, the ctatipnal cost is very
expensive for performing such a structure learning task.aR@exact solution, one
would need to examing” possible states, whet is the number of nodes in the
hierarchy. In practice, heuristics and the consistenoy mlthe hierarchy can be
used to speed up the computation.

Other future areas of investigation include: using featdrem other domains,
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such as protein structure, protein interaction networnkd,gene expression, to im-
prove the overall accuracy; applying our approach on therdtho GO categories,
i.e. biological process, and cellular component, althatinghhigher occurrence of
part-of relationships may cause problems, and exploringeraseful information

from the GO hierarchy, for example the path distances betwerens, to construct

more sophisticated training data set.

7.2 Summary

In this dissertation, we investigated the use of hieraathiformation and SVM
output distribution to construct two graphical models, B& and CRF, in making
consistent function predictions. Since the GO hierarclyigies useful information
regarding the structure of protein function, better pridits should be achievable
by incorporating this additional information into a preitho system. To examine
this conjecture, we built our graphical models, based o afdecal SVM predic-
tors, by converting the GO hierarchy into a dependency graple parameters of
dependencies were learned from the true annotations @ipsdh the training data,
and the parameters for SVM output distributions were esgthay some Laplace
models. Our approach provided better functional predistim two Uniprot data
sets compared to the methods of local SVM and local SVM witprgpagation.

Although SVMs have been used as the local predictor throwiggdbour exper-
iments, our approach is a generic ensemble system thatsallewto integrate the
local predictions from any other type of classifier into thraghical model. If a
probabilistic classifier like Naive Bayes is adopted fordlogrediction, there is no
need to estimate the distribution of local predictions.

The methods that have been presented here can be applietymthar areas
where a standardized hierarchy in the form of a directedlacgaph exists, such
as web content, document classification and object categam. Independent
classifiers for a hierarchy can violate hierarchical cdesisy between labels, while
our approach using graphical models may correct such ingtensies and improve

the overall accuracy.
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