
University of Alberta

Library Release Form

Name of Author: Peng Wang

Title of Thesis: Hierarchical Prediction of Protein Function In the Gene Ontology
Using Graphical Models

Degree: Master of Science

Year this Degree Granted: 2008

Permission is hereby granted to the University of Alberta Library to reproduce sin-
gle copies of this thesis and to lend or sell such copies for private, scholarly or
scientific research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis
nor any substantial portion thereof may be printed or otherwise reproduced in any
material form whatever without the author’s prior written permission.

Peng Wang
1205 - 1 Michener Park
Edmonton, AB
Canada, T6H 4N1

Date:

University of Alberta

HIERARCHICAL PREDICTION OF PROTEIN FUNCTION IN THE GENE

ONTOLOGY USING GRAPHICAL MODELS

by

Peng Wang

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful-
fillment of the requirements for the degree ofMaster of Science.

in

Department of Computing Science

Edmonton, Alberta
Spring 2008

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Grad-
uate Studies and Research for acceptance, a thesis entitledHierarchical Prediction
of Protein Function In the Gene Ontology Using Graphical Modelssubmitted
by Peng Wang in partial fulfillment of the requirements for the degree ofMaster of
Sciencein .

Dr. Russell Greiner

Dr. Duane Szafron

Dr. Warren Gallin

Dr. Csaba Szepesvari

Date:

Abstract

High-throughput functional annotation of proteins is a fundamental task in func-

tional proteomics. Protein functions are typically organized in the form of a general-

specific hierarchy, such as the Gene Ontology (GO), which describes when one

functional class is a specialization of its parent class. The hierarchical structure

indicates that if a protein belongs to one class then it also belongs to all ances-

tor classes up to the root. Most previous work on protein function prediction has

constructed independent classifiers for each function, which ignore the hierarchical

information available in the GO. We develop a framework for combining the lo-

cal independent SVM predictions with graphical models, both Bayesian networks

(BNs) and Conditional Random Fields (CRFs), which are builtupon the hierarchi-

cal structure in the GO. Our goal is to increase the overall predictive accuracy by

exploiting this hierarchical information. Compared to thebaseline technique (i.e.

independent SVM classifiers), our techniques using BN and CRF yield significant

improvement on two large data sets constructed from the Uniprot database.

Acknowledgements

I would like to thank my supervisors Russell Greiner and Duane Szafron for their

great support, indispensable guidance, and helpful comments. I also thank the entire

Proteome Analyst research group for their support and greattimes at the bioinfor-

matics lab.

Table of Contents

1 Introduction 1
1.1 Revisiting of the CHUGO System 2
1.2 Motivation for Using Graphical Models4
1.3 Summary of Thesis Work . 6
1.4 Thesis Statement . 10
1.5 Contributions . 10
1.6 Thesis Outline . 11

2 Background 13
2.1 Introduction to Protein Function13

2.1.1 Protein Sequences . 14
2.1.2 Protein Function . 15
2.1.3 Gene Ontology . 16
2.1.4 Gene Ontology Annotation 18

2.2 Review of Function Prediction Using Primary Protein Sequence Data 19
2.2.1 Homology-based Approaches 19
2.2.2 Subsequence-based Approaches 20
2.2.3 Feature-based Approaches 20

2.3 Review of Hierarchical Function Prediction 22
2.4 Review of Hierarchical Classification 24

3 Introduction to Graphical Models 28
3.1 Directed Graphical Model . 28
3.2 Undirected Graphical Model . 30
3.3 Inference Algorithms . 31

3.3.1 Variable Elimination Algorithm 32
3.3.2 Belief Propagation Algorithm 33
3.3.3 Junction Tree Algorithm 34

3.4 GO Hierarchy Vs. Dependencies in Function Labels 38

4 Function Prediction Using Local SVM Predictors 39
4.1 Support Vector Machines . 39
4.2 Probabilistic Support Vector Machines 41
4.3 Fitting Local SVM Outputs Using a Laplace Mixture Model 42

5 Hierarchical Prediction of GO Function Using Graphical Models 49
5.1 Hierarchical Prediction Using Bayesian Networks 49

5.1.1 Model: Bayesian Networks 49
5.1.2 Parameter Estimation and Inference 51

5.2 Hierarchical Prediction Using Conditional Random Fields 52
5.2.1 Model: Conditional Random Fields 52
5.2.2 Parameter Estimation and Inference 53

6 Experiments for Hierarchical Protein Function Prediction 55
6.1 Evaluation . 55
6.2 Data Set . 57
6.3 Experimental Results . 58
6.4 Discussion . 60

7 Future Work and Conclusion 69
7.1 Future Work . 69
7.2 Summary . 70

Bibliography 71

List of Tables

6.1 Complexity of GO hierarchies in terms of the hierarchy depth, num-
ber of parents and number of children. 59

6.2 Experimental results by using SVM LOCAL, SVM UP, BN, and CRF. 60
6.3 Number of nodes whose F-measures have been increased, decreased

or unchanged by using SVM UP, BN and CRF than using SVM LO-
CAL. 61

List of Figures

1.1 Feature extraction using the PA tool. 2
1.2 The CHUGO function prediction system. 3
1.3 A subgraph of pruned GO hierarchy used in our experiments. . . . 5
1.4 A framework for hierarchical function prediction usinggraphical

models. During training, two sets of parameters are learned: pa-
rameters for hierarchy consistency and parameters for SVM outputs
distributions. Given an unknown sequence, the graphical model can
make consistent function predictions. 7

1.5 An abstract Gene Ontology hierarchy. EachVi represents a GO
term, and a directed edge indicate a parent-child relationship. 8

1.6 The graphical models of the hierarchy. Graphical modelsconverted
from the hierarchy in Figure 1.5. Eachyi represents a GO term
whose value is either+1 or−1, and eachxi represents a local SVM
output whose value is inR. 9

2.1 The Central Dogma of Molecular Biology. A schematic representa-
tion of the Central Dogma of showing the flow of information from
DNA to RNA (transcription), and from RNA to protein (transla-
tion). Image Courtesy of [2]. 14

2.2 A protein sequence segment in FastA format from SWISS-PROT . . 15
2.3 The pruned Gene Ontology used in Proteome Analyst function pre-

diction. 22

3.1 Two examples of graphical models. 29
3.2 Message passing in a four-node tree.33
3.3 The Junction Tree algorithm . 36

4.1 A linear Support Vector Machine. Each +/- point represents a train-
ing instance. Points (+) are labeled with one class, and points (-)
are labeled with the other.di is the distance from a data pointi to
the hyperplane. Circled +/- points are misclassified. 40

4.2 The histograms of SVM outputs obtained frompositivetraining in-
stances. SVM outputs obtained from positive examples concentrate
at +1 and -1. Both the Laplace and Gaussian mixtures are parame-
terized byθ1 = (π1, µ1, σ1) andθ2 = (π2, µ2, σ2) whereπ denotes
the weight of a particular component,µ denotes the location param-
eter,σ denotes the scale parameter. Note the y-axis has different
scales based on the number of instances in different classes. 43

4.3 The histograms of SVM outputs obtained fromnegativetraining
instances. SVM outputs obtained from negative examples arecen-
tered at -1. Both the Laplace and Gaussian are parameterizedby
θ = (µ, σ). Note the y-axis has different scales based on the num-
ber of instances in different classes. 44

4.4 An EM algorithm for mixing of two Laplaces.48

6.1 Two-phase 5-fold cross validation. Fold1 is held out as atest set
for predicting functions globally using graphical models.The other
four folds are combined as a training set, in which Fold2 is held
out for testing the SVMs trained on the other three folds. Thelo-
cal cross validation continues until every fold in traininghas been
tested. 56

6.2 Data set 1: F-score of BN and CRF Vs. F-score of SVM local . .. 63
6.3 Data set 2: F-score of BN and CRF Vs. F-score of SVM local . .. 64
6.4 Data set 1: F-score difference between BN/CRF and SVM local

with respect to the number of proteins belonging to each GO class.
The x-axis is scaled based on a natural logarithm. 65

6.5 Data set 2: F-score differences between BN/CRF and SVM local
with respect to the number of proteins belonging to each GO class.
The x-axis is scaled based on a natural logarithm. 66

6.6 F-measure difference between BN and local SVM with respect to
the hierarchy depth and the number of parents. Error bars: mean±
1 standard deviation. 67

6.7 F-measure difference between CRF and local SVM with respect to
the hierarchy depth and the number of parents. Error bars: mean±
1 standard deviation. 68

Chapter 1

Introduction

Thanks to rapid advancement in genome sequencing technology, a large quantity

and variety of genomic and proteomic information has recently become available.

The ever-increasing flood of diverse biological data from high-throughput pro-

cesses, such as genomic and proteomic sequencing, and gene expression, can be

used to study the characteristics and interactions of cellular components. It also

pushes the elucidation of protein function to the center stage in computational bi-

ology. However, this remarkable speed of discovery has madeit impossible to ex-

perimentally determine the function for most new proteins,and made it difficult to

keep up with the influx of data produced by human-curated annotation. Thus, sci-

entists have been turning to sophisticated computational approaches for annotating

the huge amount of proteomic sequence data being produced. Since the protein’s

sequence characterizes its function, it is essential to design effective computational

approaches to predict the protein functions based on protein sequence.

To better characterize protein functions, biologists havedefined a hierarchy

of protein functions, i.e the Gene Ontology (GO). Previously, a number of ap-

proaches had been proposed to automatically predicting function using the GO

hierarchy. Some of them [1, 16, 40, 59] treat the hierarchy asa flat ontology in

which the functional classes have are not interrelated, while others utilize some of

the hierarchical information encoded in the GO (only the parent-child dependencies

[9, 30, 43, 55, 62] or only used to construct data sets [29]). Since protein functions

are naturally organized as a hierarchy, the hierarchical structure presented by the

GO should be exploited when computational function prediction is performed.

1

Sequence BLAST Homologs

SwissProt

Features

Figure 1.1: Feature extraction using the PA tool.

From a machine learning perspective, hierarchical proteinfunction prediction

is a task in which one tries to predict the labels in a structured graph for unknown

instances given some observed evidence. This is a typical example of a problem

that can be solved using graphical models. In fact, the hierarchical function predic-

tion problem is similar to other prediction tasks with particular structures, such as

information extraction from webpages with hyperlinks or image labeling on grids

of pixels, which have been extensively studied by using graphical models, such as

Bayesian networks (BNs) or Conditional Random Fields (CRFs). Graphical models

prove to be one of the most effective tools for this kind of problems.

In this dissertation, we develop a framework, based upon CHUGO (Classifica-

tion in a Hierarchy Under Gene Ontology), proposed by Eisneret al. [29], to predict

a protein’s set of functions within the GO hierarchy, using graphical models. Before

introducing our framework, it is necessary to review the CHUGO system.

1.1 Revisiting of the CHUGO System

CHUGO constructs a function hierarchy by pruning the GO to include only those

nodes that have sufficient positive training instances. Features used for training and

prediction are extracted using the Proteome Analyst (PA) [59] tool, which are key

words from main entries in the Swiss-Prot database for the most similar proteins ob-

tained by using BLAST. This feature extraction process is illustrated in Figure 1.1.

To build a robust predictive system, CHUGO addresses the issue in the GO hierar-

2

Protein

Sequences

Feature

Extraction

Feature

Extraction

Binary SVM

Classifiers

Binary SVM

Predictions

Unknown

Protein Sequence

Function

Predictions

Up-propagate

positive predictions

to all ancestors

Up-propagate

positive SVM

predictions?

Yes

No

Figure 1.2: The CHUGO function prediction system.

chy from the following three aspects:

• Training set design: Since a protein annotated as a GO nodeN implicitly

inherits functions from all the ancestors ofN , functional annotation of each

protein in the training set is expanded to include nodeN and all its ancestors.

For example, if the function “neuropeptide receptor activity” is experimen-

tally assigned to a protein, then all its GO ancestors, such as neuropeptide

binding, receptor activity, etc, are also included as positive annotations. This

expansion, called theall inclusiveapproach by Eisner et al., intuitively leads

to an improvement in recall.

• Prediction model: The initial prediction for each protein is made by a set of

independent binary support vector machine (SVM) predictors, where each is

3

trained on an individual GO node. Local positive predictions are then propa-

gated up the hierarchy.

• Evaluation methodology: As in training set design, precision and recall are

calculated using expanded labels for the test set as well.

Figure 1.2 summarizes the CHUGO prediction system. These techniques are sim-

ple but effective for function prediction, as the allinclusiveapproach increases the

F-measure of hierarchical classification on a 5-fold cross-validated data set from

46% to 70%. However, the hierarchical relationship can be utilized to train a more

accurate predictive model as will be explained in Section 1.3.

1.2 Motivation for Using Graphical Models

Before revealing the potential hazard in the CHUGO system, we must be clear

about the rule of consistent labeling imposed by CHUGO. Thatis, if a protein is

annotated as a GO nodeN , then it is explicitly annotated as all the ancestors of node

N . For example, in Figure 1.3, if function GO0008188 is assigned to a protein, then

all ancestors of node GO0008188, i.e. GO0030594, GO0008528, GO0001584,

GO0004930, GO0004888 and GO0004872, are also included as positive labels.

Both training and evaluation are carried out using the extended annotations.

This rule imposed for consistent labeling in the hierarchy implies two special

properties:

1. If a node in the hierarchy has a negative label assignment,then all its descen-

dants in the hierarchy must also have negative label assignment.

2. If a node in the hierarchy has a positive label assignment,then all its ancestors

in the hierarchy must also have positive label assignment.

Either of these two properties implies that there does not exist a configuration that

a node has a positive assignment and one or more of its ancestors has a negative

assignment. These properties in the hierarchy leave us onlyone possible parent-

child configuration probability to compute from the actual data, and that is, the

probability of a node being positive given thatall its ancestors are positive.

4

0008188
neuropeptide

receptor activity

0042923
neuropeptide

binding

0030594
neurotransmitter
receptor activity

0008528
peptide receptor

activity

0001637
G-protein

chemoattractant
receptor activity

0004985
opioid receptor

activity

0004872
receptor activity

0001584
rhodopsin-like

receptor activity

0004930
G-protein coupled
receptor activity

0004888
transmembrane
receptor activity

Figure 1.3: A subgraph of pruned GO hierarchy used in our experiments

Although CHUGO constructs the training and test data using the hierarchy, it

builds an individual binary SVM classifier for each GO node and only exploits the

hierarchical information in a simple way. The final result ofthe system is simply

a combination of all binary SVM predictions plus “up-propagation” of positive re-

sults. They demonstrated that a propagation of all positivepredictions up to the root

slightly improves the result by about 0.2%. While the up-propagation approach is

simple, it has critical drawbacks that may hurt overall precision and recall.

First, CHUGO propagates positive predictions obtained from the local SVM

predictors for nodeN up to the root node. This could be problematic if nodeN ’s

SVM prediction is inaccurate. For example, if a proteinP is predicted by a local

SVM to belong to node GO0008188 (i.e. neuropeptide receptoractivity), could in

fact be an incorrect prediction. If an up-propagation is applied, this local predic-

tion error will be propagated to all ancestors of node GO0008188, as shown in Fig-

5

ure 1.3. In this particular case, a single misclassificationwould result in 8 prediction

errors, which is disastrous. If we do not propagate a positive local prediction up,

and instead, we look around the node and examine the status ofall the neighboring

nodes,i.e. classes that are connected to this node, a more accurate conclusion may

be drawn by taking the neighbors in the hierarchy into account. For instance, con-

sider a proteinP that is predicted to belong to function GO0008188 but not to any

of its three immediate parents of GO0008188. By tracing backstatistics from the

training data, one may conclude that the local SVM prediction on node GO0008188

may be more likely to be erroneous. This dependency problem between neighbors

is a perfect candidate for graphical models, which learn statistics of neighboring

nodes from the training data.

Second, CHUGO always trusts the positive local SVM predictions, and leaves

negative local prediction to be determined by the up-propagation step. This bias

is unjust since it favours positive up-propagation over negative down-propagation.

Instead, we use a probabilistic SVM model to give a confidencemeasure to the local

SVM prediction. This confidence prediction is integrated into the graphical model

for making a final prediction, and we discuss in Chapter 4 and 5.

1.3 Summary of Thesis Work

In this dissertation, we propose a framework for hierarchical function prediction us-

ing graphical models. As Figure 1.4 shows, the CHUGO system (without positive

prediction up-propagation) is integrated into this framework as a local predictive

component, which gives a prediction from the local SVM predictor for each node.

These local predictions and hierarchical information embedded in the GO are com-

bined to train a graphical model that presents a global prediction on all nodes in the

hierarchy.

During training of the graphical model, two sets of parameters are produced:

parameters for hierarchy consistency and parameters for distributions of local SVM

outputs. The former parameters ensure our final function predictions consistent to

the hierarchy, and can be estimated from proteins’ functions in the training set. By

6

Parameters for
Hierarchy
Consistency

Parameters for
Distributions of
SVM Outputs

Feature
Extraction

Local SVM
Classifiers

Global
Predictors

Function
Predictions

Training

Test

Feature
Extraction

MLQPTTCSKQQQQ...

MLWELYVFVFAAS...

... ...

Protein Sequences

1,-1,+1,+1...

1,+1,+1,-1...

... ...

Protein Functions

TLPSAARVYTD...

Unkown Protein Sequence

Probabilistic
SVM Predictions

Local SVM
Predictions

Proteins

1

2

... ...

Function
Predictions

CHUGO

Figure 1.4: A framework for hierarchical function prediction using graphical mod-
els. During training, two sets of parameters are learned: parameters for hierarchy
consistency and parameters for SVM outputs distributions.Given an unknown se-
quence, the graphical model can make consistent function predictions.

7

V1

V2

V3 V4

V5

Figure 1.5: An abstract Gene Ontology hierarchy. EachVi represents a GO term,
and a directed edge indicate a parent-child relationship.

converting CHUGO’s binary SVM predictions to real values, the latter parameters

indicate the distributions of these real-valued SVM outputs, and can be estimated

from SVM outputs for training data.

The hierarchical structure of the GO and probabilistic SVM outputs are used

to construct graphical models. The first graphical model we built was a Bayesian

network, which is a directed graphical model. The GO hierarchy was used as the

structure of the BN, in which each directed edge representeda parent-child depen-

dency, as shown in Figure 1.5. This graph was converted to a Bayesian network

(Figure 1.6(a)) in which each nodeyi represented a variable and each node in the

hierarchy was also connected to an observation nodexi which represented the lo-

cal SVM prediction for that node. The parameters of the Bayesian network were

learned from the training data and from the probabilistic SVM outputs.

The second model we built was a Conditional Random Field (CRF), which is

an undirected graphical model. The undirected graph was constructed by dropping

arrows in the directed graph and adding connections betweennodes that share the

common child, also called “spouse” nodes, and nodes that share the common par-

ent, also called “sibling” nodes. The resulting CRF graph isshown in Figure 1.6(b).

Nodesy2 andy5 are spouses, and nodesy3 andy4 are siblings. To learn the param-

eters of the CRF, two types of cliques are defined, i.e. edge cliques and node-

8

Y1

Y2

Y3 Y4

Y5

X1

X2

X3

X5

X4

(a) A Bayesian network.

Y1

Y2

Y3 Y4

Y5

X1

X2

X3

X5

X4

(b) A Conditional Random Field.

Figure 1.6: The graphical models of the hierarchy. Graphical models converted
from the hierarchy in Figure 1.5. Eachyi represents a GO term whose value is
either+1 or−1, and eachxi represents a local SVM output whose value is inR.

observation cliques. The edge clique over two connected nodes encodes the hierar-

chical structure in the GO and the node-observation clique over a node and its SVM

prediction indicates the confidence of a local SVM prediction.

Having parameters in the graphical models well defined, we can make consistent

function predictions for an unknown protein sequence, using its BLASTed features.

In our experiments, both BN and CRF have significantly improved the prediction

accuracy.

9

1.4 Thesis Statement

In this dissertation, it is hypothesized thatthe graphical models, i.e. BNs and CRFs,

based upon the GO hierarchy are effective for hierarchical function prediction.

Specifically, the graphical models can make function predictions consistent with

the hierarchy by incorporating the hierarchical information to learn the models.

Based on the thesis research, we make the following claims:

1. The BN model can capture the hierarchy structure in the GO for function

prediction.

2. The CRF model has the representation power to capture the GO hierarchy

and statistical dependencies that are not shown in the hierarchy for function

prediction.

1.5 Contributions

This thesis research makes three novel contributions:

1. Prediction accuracy is significantly improved by using the parent-child re-

lationships in the Gene Ontology to build the Bayesian networks. While

CHUGO takes the full hierarchical information into accountwhen building

the training and test data sets, it uses only the naı̈ve positive up-propagation

for prediction. Our BN approach fully exploits the parent-child relationship

for making consistent function predictions. Compared to only using local

SVMs, the BN system improves the F-measure of two data sets inour ex-

periments by 2.61% and 0.91%. Compare to naı̈ve up-propagation, the BN

system improves the F-measure of two data sets in our experiments by 2.33%

and 1.08%.

2. A Conditional Random Field model is applied for making hierarchical func-

tion prediction, and it increased the F-measure of two data sets by 2.94% and

1.19%, compared to only using local SVMs, and by 2.66% and 1.36% com-

pared to naı̈ve up-propagation. The CRFs utilize parent-child relationship in

10

the GO hierarchy, and also statistical information from theactual data that is

not shown in the hierarchy.

3. We created an approach for estimating the SVM output distribution, i.e. a

Laplace mixture distribution for SVM outputs from positiveexamples and a

single Laplace for SVM outputs from negative examples. Our approach is

more sophisticated than that proposed in Barutcuoglu et al.[9] which fits a

single Gaussian distribution to SVM outputs obtained from both positive and

negative instances. Our estimation technique for SVM outputs empirically

works, because there are significantly a smaller number of positive instances

for each functional class than that of negatives which possibly leads a negative

prediction more favorable by the SVM predictor.

1.6 Thesis Outline

In this dissertation, our primary goal is to develop an effective hierarchical machine

learning approach using graphical models for predicting protein functions in the

Gene Ontology. Guided by this research goal, the rest of the thesis is organized as

follows:

Chapter 2 introduces the necessary biological background on protein function

and explains the terminology used in computational biology. It also presents related

work in sequence-based protein function prediction. It concludes by reviewing hi-

erarchical function prediction and hierarchical classification in general.

Chapter 3 reviews two main types of graphical models, i.e. directed and undi-

rected models, and briefly describes inference approaches.

Chapter 4 revisits the binary local SVM predictors built by Eisner et al. and

reviews probabilistic SVMs. It then presents a new approachto estimating the

distribution of the local SVM outputs using a Laplace mixture and a single Laplace.

Chapter 5 applies two specific graphical models, i.e. BN and CRF, to make

hierarchical function predictions. Model construction, parameter estimation and

inference are described for each model.

Chapter 6 presents and discusses the results obtained by using the graphical

11

models on two different data sets.

Chapter 7 summarizes the thesis research and concludes the dissertation with

possible future work.

12

Chapter 2

Background

A protein is a large complex molecule made up of one or more chains of amino

acids. Accounting for the second largest segment of the cellular weight after wa-

ter, proteins serve as building blocks and functional components of a cell [48].

They perform most of the important functions in a living organism, such as con-

stitution of the organs (structural proteins), the catalysis of biochemical reactions

(enzymes), receptors for hormones and other signaling molecules (receptors), and

the maintenance of the cellular environment (transmembrane proteins). Therefore,

discovering new proteins and understanding their biological functions is crucial in

the development of new drugs and synthetic biochemicals.

Due to high-throughput techniques for various genome analyses, a huge quan-

tity of genomic information has become available. The influxof biological data

also makes manual annotation of protein function slow and tedious. This challenge

paved the way for the emergence and popularization of automated function predic-

tion.

This chapter will introduce protein function in general, and review previous

research on protein function prediction using primary protein sequence data, anno-

tation data from databases and GO hierarchy information.

2.1 Introduction to Protein Function

Before delving into the details of computational prediction, we start by describing

protein sequences, the common understanding of protein function, and a standard-

13

Figure 2.1: The Central Dogma of Molecular Biology. A schematic representa-
tion of the Central Dogma of showing the flow of information from DNA to RNA
(transcription), and from RNA to protein (translation). Image courtesy of [2].

ized vocabulary, i.e. the Gene Ontology, which is widely used for describing protein

function.

2.1.1 Protein Sequences

The Central Dogma of Molecular Biology [24] is a framework for understanding

information transfer in a cell from DNA to RNA to protein, as shown in Figure

2.1. This process produces a protein sequence, constructedfrom a combination of

20 amino acids, each of which is represented by a letter of alphabet. The primary

sequence is the most fundamental form of a protein since it determines different

characteristics of the protein such as its structure, function and subcellular localiza-

tion. An example of such a sequence is shown in Figure 2.1.1.

An enormous number of protein sequences have been identifiedby high-throughput

sequencing techniques, and information about them has beencollected and orga-

14

> P75245|ACKA_MYCPN Acetate kinase - Mycoplasma pneumonia e
MNDNKILVVNAGSSSIKFQLFDYHKKVLAKALCERIFVDGFFKLEFNEQKVEEKVAFP
DHHAAVTHFLNTLKKHKIIQELSDIILVGHRVVQGANYFKDSVIVDAEALAKIKEFIK

. . .

P75245: SWISS-PROT accession number
ACKA MYCPN: SWISS-PROT entry name

Acetate kinase: protein name
Mycoplasma pneumoniae: origin of the protein

Figure 2.2: A protein sequence segment in FastA format from SWISS-PROT

nized in various standardized databases. Among these databases, the Swiss-Prot

and TrEMBL databases [11] are most widely used, and they are together called

the UniProt database. The Swiss-Prot is a comprehensive, human-curated database

that provides a wide variety of information about proteins,such as their amino acid

sequence, functional annotation, subcellular location, and other information in the

form of keywords and features. As a supplement to Swiss-Prot, TrEMBL (Trans-

lated EMBL) is a computer-annotated protein sequence database that contains the

translations of all nucleotide sequences present in the EMBL/GenBank/DDBJ databases

[14]. As of October 2 2007, the Swiss-Prot Release 54.3 contains 285,335 entries

and the TrEMBL Release 37.3 contains 4,932,421 entries, which together comprise

the UniProt Knowledgebase Release 12.3.

2.1.2 Protein Function

The definition of “protein function” is ambiguous and highlycontext-sensitive,

since proteins are involved in more than one type of activity, such as cellular, molec-

ular and physiological activities. Bork et al. [12] have proposed categorizing pro-

tein functions into three types:

• Molecular function: The biochemical functions performed by a protein,

such as binding sites, catalytic activity and conformational changes.

• Cellular function: Many proteins co-operate to perform complex physio-

logical (cellular) functions, such as metabolism, signal transduction cascades

15

and structural association, to keep the various componentsof the organism

working well.

• Phenotypic function: The totality of the physiological subsystems, consist-

ing of various proteins performing their cellular functions, and their interplay

with various environmental stimuli determines the phenotypic properties and

behavior of the organism.

Therefore, when speaking of protein function, one must specify the context or func-

tion category, since a functional term can refer to different meanings in different

functional categories. Throughout this dissertation, we consistently use the term

“protein function” to refer tomolecular function. For example, metal ion binding,

transporter activity and kinase regulator activity are molecular functions of protein.

Since protein function assignment is somewhat subjective,different biologists

may assign the functions of proteins differently. To make functional annotation con-

sistent and available as input for computational processes, functional terms must be

well defined and organized by some standard scheme, such as the Gene Ontology.

2.1.3 Gene Ontology

The Gene Ontology [6] is a functional classification system developed by the Gene

Ontology Consortium. At the highest level, the GO controlled vocabulary is com-

posed of three disjoint functional ontologies corresponding tomolecular function,

biological process, and cellular component. Although cellular location is not a

functional aspect per se, it is included for functional annotation since proteins do

not function in a vacuum but at certain locations in the cell.Each ontology is hi-

erarchically structured and is implemented as a directed acyclic graph (DAG). This

dissertation focuses on the molecular function sub-hierarchy.

The GO DAG starts with very general classes and becomes more specific at

lower levels of the hierarchy. Each node in the DAG corresponds to a functional

term. Terms are the building blocks of the Gene Ontology. Each term has a unique

numerical identifier, which is a 7-digit sequence, and a termname, e.g. ion binding,

receptor activity or catalytic activity. Each directed edge in the DAG corresponds to

16

either anis-a or apart-of relationship. The is-a relationship is a simple inheritance

relationship, whereA is-aB means that everyA is aB. For example, “metal ion

binding” is a child of “ion binding”, since every metal ion binding protein is also

an ion binding protein. The part-of relationship is a sub-component relationship,

whereC part-ofD means that everyC is a part of aD. For example, every nucleus

is part of a cell. Since there are only 2 part-of edges (two children of GO0003720

telomerase activity) in the molecular function part of the GO, they are ignored in

our experiments.

Since the GO forms a DAG, each node may have more than one parent, which

is biologically appropriate since a specific function can bethe specialization of of

more than one general function. For example, auto transporter activity is a child of

both porin activity and protein transporter activity. Thismulti-inheritance property

is also taken into account when we build our model to make function predictions,

as will be explained in more details in Chapter 5.

Due to its sophisticated design and wide coverage, the Gene Ontology has be-

come the most popular functional classification scheme for protein function pre-

diction studies. More importantly, the GO terms and hierarchical structures are

constantly updated by the curators, who seek scientificallycorrect information to

keep the ontology up-to-date with latest research. Since the GO became public, a

large number of studies have used it for protein functional analysis. As listed on

GO’s website1, there are 1654 publications describing studies followingGO (as of

November 12, 2007). For these reasons, we used a sub graph of the Gene Ontology

in our function prediction experiments.

As the vocabulary in the GO grows and the volume of protein sequences in-

creases steadily, there is a need to have a list that maps eachprotein to its biological

functions using the GO vocabulary, and the Gene Ontology Annotation project was

created to fill this need.
1http://www.geneontology.org/cgi-bin/biblio.cgi

17

2.1.4 Gene Ontology Annotation

The mission of the Gene Ontology Annotation (GOA) project [17] within the Euro-

pean Bioinformatics Institute is to annotate proteins in the UniProt database using

the GO terms. Each of these annotations is accompanied by an evidence code, stat-

ing how the annotation was obtained. Based upon an evidence code, one can tell the

reliability of the annotation: Is it an experimentally-derived annotation with high

reliability, or is it inferred by a computational approach (possibly low reliability)?

Evidence codes are organized into the following thirteen categories:

• IC: Inferred by Curator

• IDA: Inferred from Direct Assay

• IEA: Inferred from Electronic Annotation

• IEP: Inferred from Expression Pattern

• IGC: Inferred from Genomic Context

• IGI: Inferred from Genetic Interaction

• IMP: Inferred from Mutant Phenotype

• ISS: Inferred from Sequence or Structural Similarity

• NAS: Non-traceable Author Statement

• ND: No biological Data available

• RCA: inferred from Reviewed Computational Analysis

• TAS: Traceable Author Statement

• NR: Not Recorded

GO annotations should be used with caution and based on different annotation

reliability requirements. To create a reliable data set, one should only consider

manually-curated annotations, such as IDA, IEP, IGC, IGI, IMP, and TAS, and ex-

clude electronically-curated annotations, such as IC, IEA, ISS, NAS, ND, RCA,

and NR.

18

2.2 Review of Function Prediction Using Primary Pro-
tein Sequence Data

In the domain of computational function prediction, primary protein sequence data

has been widely used since it is the most fundamental factor that determines protein

function. Specifically, automatic techniques that use primary protein sequence data

to predict function are grouped into three categories: homology-based approaches,

subsequence-based approaches and feature-based approaches.

2.2.1 Homology-based Approaches

The homology-based approach is one of the first and most-often-used techniques

for predicting protein function. It is widely believed thatsimilar proteins in dif-

ferent species mutated a common ancestor sequence during evolution. Therefore,

homology-based approaches predict function by comparing aquery sequence to

similar sequences contained in the databases that have known function and infer-

ring that function from the known functions.

BLAST [3] is an automated tool for finding homologs and it is the foundation

of most homology-based techniques. BLAST searches standard databases such as

Swiss-Prot for sequences similar to the query protein usingapproximate sequence

alignment algorithms. The result of a BLAST search is accompanied by an E-

value for each match in the database, which denotes the quality of the alignment

between the query sequence and the matched sequence. Smaller E-values mean

higher similarity between the query sequence and the sequence match from the

database. BLAST is now pervasively utilized in molecular biology, and in fact, it

is widely believed that [4] there is rarely a study in molecular biology that does not

involve BLASTing a gene or protein against a standard database.

Although homology-based methods such as BLAST have demonstrated promis-

ing results, their applicability is restricted mainly for two reasons:

• Limited protein coverage: No BLAST result will be returned if there are no

similar sequences found in the database.

• Inconsistency of function between homologues: Sometimes ahomologue

19

will have a different function in a different species in response to selective

pressure during evolution [32, 66].

2.2.2 Subsequence-based Approaches

It is believed that some sequence segments are more important for determining pro-

tein function than others, and the subsequence-based approach identifies such crit-

ical segments as features of a protein and builds a computational model to predict

function based upon those features.

The subsequence-based techniques extract features fromsequence motifs, mean-

ingful subsequences that are conserved across a set of protein sequences of a fam-

ily [13]. Although subsequence motifs may be responsible for biological charac-

teristics of a protein, it is difficult to identify these motifs that can best distinguish

function. Although various strategies have been proposed for subsequence-based

prediction [13, 37, 38, 47, 54], the results obtained so far are not as impressive as

expected.

2.2.3 Feature-based Approaches

Feature-based techniques collect biologically meaningful features from each indi-

vidual protein sequence, and use those features to construct models for predicting

protein functions. They are similar to the subsequence-based approaches in terms

of building a predictive model using features from the data,but differ in that they

focus on biologically meaningful features while subsequence-based techniques ex-

tract features from sequence motifs, based on patterns.

In recent years, feature-based approaches have been shown to be successful in

a number of studies [1, 16, 29, 40, 59], and it is widely believed that the inclusion

of physical and functional features, such as subcellular location, post-translational

modifications and residue-related features, creates a morerobust model for the func-

tion prediction task.

Currently, the most cited work in the feature-based category is Jensen et al. [40].

They proposed a method, called ProtFun, for predicting function using sequence-

derived protein features such as predicted post translational modifications (PTMs),

20

protein sorting signals and physical/chemical propertiescalculated from the amino

acid composition. The ProtFun system [41] used 14 such calculated features to

make predictions on 14 GO functions using neural networks, and achieved a sensi-

tivity of at least 50% for all classes and 70% for the best category, namely hormones

and receptors.

Another feature-based prediction tool is SVMProt [16]. SVMProt constructs its

feature space using a set of residue-specific attributes such as normalized Van der

Waals volume and polarity, and trains a binary SVM classifierfor each functional

family. The overall accuracy, defined as the proportion of true results (both true

positives and true negatives) in the population, by applying SVMProt in the function

prediction experiments ranged from 69.1 to 99.6% among 54 functional classes.

A trend of feature-based approaches is to integrate the homology-based tech-

nique such as BLAST into the feature extraction process, andProteome Analyst

[59] is one of these integrative tools. PA predicts functions of query proteins by

training binary SVM classifiers using features from the Swiss-Prot main fields as-

sociated with most similar proteins that are obtained by BLASTing. PA constructs

a function tree by selecting 14 nodes from the original GO hierarchy and makes

predictions that are consistent with the constructed tree.This hierarchy construc-

tion differs from ProtFun and SVMProt, neither of which treats GO functions as a

structured hierarchy but rather a set of independent labels, and makes a better use

of the hierarchical information for training predictive models. Figure 2.3 shows the

hierarchy of the 14 functions used in PA.

Another trend in sequence-based approaches is to produce anintegrated pre-

dictive tool by unifying various data types. For example, InterPro [69] provides

a single prediction system by integrating the commonly usedsignature databases.

Each protein run through InterPro is assigned a variety of InterPro codes, some of

which can be mapped to the GO terms if they represent functional families.

Besides protein sequence, there are a large variety of otherkinds of data that

have been used to predict function, such as protein structure, gene expression data,

phylogenetic profiles and protein interaction networks, etc. Since this dissertation

deals with sequence data only, review of other types of methods is not covered and

21

Figure 2.3: The pruned Gene Ontology used in Proteome Analyst function predic-
tion. Image courtesy of [29].

we instead refer readers to [36, 48].

2.3 Review of Hierarchical Function Prediction

As described in Section 2.1.3, the Gene Ontology is a structured ontology that re-

lates terms to each other. It is unwise to ignore these relationships since they provide

additional information that can be used to improve the classification model. This

section reviews a number of proposed computational approaches to function predic-

tion, which explicitly incorporate the GO hierarchy into the prediction algorithm.

King et al. [43] used the additional information from the hierarchy of functional

classes by simply using different decision tree models for each level of the hierar-

chy. They induced rules for predicting function using a variety of data sources,

such as residue frequencies, phylogeny and predicted structure. In another study,

Clare and King [22] proposed a modified decision tree model, in which a positive

functional annotation to a node in the decision tree was propagated to all of its

parent classes (i.e. up-propagation in Eisner et al. [29]).Their experiments onSac-

charomyces cerevisiaedata showed that the modified version was sometimes better

22

than the non-hierarchical model and sometimes worse.

Struyf et al. [55] suggested an alternative modification of using decision trees

for hierarchical prediction that used distances derived from the hierarchy to train

the model. Their approach makes use of the edge distances between nodes, which

is a useful feature for making predictions in a hierarchy andshould be considered in

our future experiments. They evaluated their approach on different datasets avail-

able forSaccharomyces cerevisiae, and showed that their model outperformed the

hierarchical model proposed by King et al. [43].

Tu et al. [62] proposed a learnability-based approach for predicting functions in

the Gene Ontology. The basic idea of their approach is to focus on the prediction of

“learnable” functional families, i.e. classes where the membership can be predicted

with a reasonable accuracy given the available features. For each learnable class, a

classifier is trained to predict the child class, which they called “further prediction”.

Through learnability-based predicting, functional annotations are made more spe-

cific. Although we do not explicitly define learnable classesin our approach, our

graphical models can possibly extend an SVM annotation to a more specific class

based on the training data, which will be discussed in Chapter 5.

Verspoor et al. [64] presented a system for functional annotation by analyz-

ing collections of GO nodes obtained from annotations of protein BLAST neigh-

borhoods. Those GO annotations are weighted according to their E-values. The

weighted GO nodes are then imported using a ranking system, POSet Ontology Cat-

egorizer (POSOC), to identify the most representative nodes as predicted functions

of the query protein. They evaluated their function-prediction method by present-

ing what they called the hierarchical precision and hierarchical recall. In fact, their

evaluation technique is equivalent to that of Eisner et al. which evaluates prediction

performance based on the expanded set of annotations.

Recently, there has been a growing interest in applying Bayesian networks to

protein function prediction. Barutcuoglu et al. [9] developed a Bayesian network

for combining a set of independent classifiers. The architecture of the GO hierar-

chy is used as the structure of the Bayesian network, and a single SVM is trained

independently for each functional class in the GO. Thus, theoutputs of individual

23

classifiers are combined in a hierarchical fashion. They fit local SVM outputs from

both positive and negative instances using the same distribution, i.e. Gaussian. (We

will show a superior model in Chapter 4.) They presented their experimental results

based on 105 functional classes using 3,465 annotated sequences, while our experi-

ments are carried out on a much larger scale, i.e. 399 classesusing 14,018 proteins,

and 792 classes using 45,956 proteins.

In a different manner from [9], Engelhardt et al. [30, 31] built a Bayesian sys-

tem to model the probability for the transfer of protein function from a parent to

a child class in a single phylogenetic tree, composed of GO terms. Given a query

protein sequence, they first constructed a phylogeny based on a set of homologous

proteins. They learn, by fitting a probabilistic model, the transition probability for

any parent-child pair in the GO hierarchy, which was constructed by taking the

union of all GO annotations associated with the proteins in the phylogeny. The

final prediction was obtained by computing the maximal posterior probability of

possible node assignments. It was reported as the best results in function prediction

via phylogenetic analysis.

2.4 Review of Hierarchical Classification

A great amount of effort has been dedicated to studying hierarchical classification in

general and to studying applications in domains where an organized ontology exists,

such as text categorization and web content extraction. Theuse of hierarchical

decomposition allows a classification problem to be addressed using a divide-and-

conquer approach, which can be solved efficiently.

Before delving into reviews of hierarchical classificationalgorithms and mea-

sures, we must be clear about the structure of a hierarchy. Ingeneral, there are

two main types of structures for a class hierarchy, a tree structure and a Directed

Acyclic Graph structure. They both consist of root class(es), internal classes, and

leaf classes. The root class(es) denote(s) the most generaldescription of all cate-

gories in the hierarchy. Each internal class has its parent and child class(es). The

main difference between these two hierarchical structuresis that each class in a tree

24

has at most one parent, while each class node in DAG can have multiple parents.

Hierarchial classification algorithms can possibly be categorized into two major

groups,big-bangandtop-down[56, 57]. In the big-bang approach, a single com-

plex model is trained from the training data, which takes theclass hierarchy into

account during a single run of the classification method. Given a test instance, the

classifier can assign it to more than one category in the category tree, and makes

assignments of classes at potentially every level of the hierarchy. The big-bang

approach has been used by several studies in text mining, such as the rule-based

classifier [52], Naive Bayes classifier [61], and methods built on association rule

mining [65].

In the top-down approach, more than one classifier is built each level of the hier-

archy during training, and each classifier functions independently as a flat classifier

at that level. A test example is first classified by the first-level classifiers, and then

is further classified by the classifiers of the lower level classes whose parent classes

have been predicted at the higher level until the example cannot be further classi-

fied. For example, Dumais and Chen [28] explored the hierarchical structure for

classifying a large collection of web content, using a top-town approach with SVM

base classifiers. Their hierarchy of the web content consisted of two levels, 13 top-

level and 150 second-level categories (for instance, sports/football, sports/soccer,

computer/hardware, and computer/software). They trainedSVM classifiers to dis-

tinguish a second-level category from other categories within the same top level. In

one of their experiment settings, a classification process continued to the second-

level categories only if the corresponding top-level category had a positive classifi-

cation. Their top-down approach using the hierarchical information was shown to

be effective and to be able to improve the overall classification performance slightly,

compared to non-hierarchical classification. The top-downapproach has been also

implemented using other base classifiers such as ACTIONs(for Automatic Classifi-

cation for Full-Text Documents) algorithm [25] and Bayesian classifiers [44].

The top-down approach has the advantage that the original big classification

problem can be divided to smaller sub-problems at each level, and it is efficient in

both training and classification phases. Compared to the top-down approach, the

25

big-bang approach builds a more complex classification model by considering the

entire class hierarchy in the training phase, but not the classification phase. The big-

bang classifiers assign the test instances to classes regardless of their locations in

the hierarchy. Another problem with the big-bang approach is that the constructed

classifier may not be flexible enough to adjust for changes to the hierarchy. The

classifier must be re-trained if the hierarchy is changed.

On the other hand, the top-down approach has the disadvantage that a classi-

fication error at a parent class may mislead classifications at all the deeper levels.

It requires some recovery procedure to reduce this kind of errors induced by the

parent classifiers. In particular, the top-down approach has to deal with a special

situation in a DAG hierarchy: for instance, given a class with two parent classes, if

a top-down classifier at the parent level classifies one parent positive and the other

negative, should the classification process continue on thenext level? A tree hierar-

chy does not have such an issue since it only has a single parent, while a DAG-like

structure may cause some contradictory predictions for thetop-down approach.The

top-down approach also requires more training instances since multiple classifiers

have to be constructed and each requires a different training data set.

We consider our hierarchical prediction system using graphical models as a top-

down approach, although it does not make classifications level by level. It takes

into account the hierarchical structure for training SVM classifiers. Although level-

based classification could be considered in our application, the issue that a protein

may belong to classes in different branches in the hierarchymust be addressed first.

The proposed graphical models serve as the remedy mechanismto recover from

incorrect classifications at the shallower levels of the hierarchy. To have adequate

training examples in our experiments, we set up a lower boundfor the number of

proteins belonging to each GO function before constructinga prediction for that

function.

Another issue in hierarchical classification is how to measure the predictive per-

formance of a classification algorithm. The performance of hierarchical classifica-

tion can be measured in several ways [10, 56, 57]. The widely-used and easily-

implemented approach is the measure for flat classification.Using this measure,

26

every classification error is assigned the same cost, regardless of the level of the

classes in the hierarchy. The most commonly used performance measures in flat

classification arePrecisionand Recall, which will be introduced in Section 6.1.

However, the uniform cost measure is usually not ideal for measuring predictive

performance in hierarchical classification tasks, becauseit ignores the fact that

classes that are closer in the category are more similar to each other than classes

that are further away. Hence, measures based on hierarchy properties are proposed.

Distance-based and semantics-based (or category-based) measures evaluate predic-

tive performance based on the distance in the hierarchy and category similarity of

the predicted class and true class. The distance can be calculated based on depth

or path in the hierarchy [10], and the category similarity can be defined by some

measure of similarity between instances belonging to each class [57]. Those two

approaches take the hierarchy properties into account for algorithm evaluation, but

they are not as well accepted as in the flat classification measures so they need fur-

ther study and discussion. Since we are most interested in measuring the accuracy

of the final classification results of our system, we adopt theuniform cost measure

for evaluations.

27

Chapter 3

Introduction to Graphical Models

Graphical models are a graph-theoretic tool for dealing with conditional probability

distribution problems. The nodes in the graph represent random variables, and the

absence of edges represent conditional independence between random variables.

The graphical model is a convenient way to represent joint probability distributions

and to answer queries about them. The graph can be either directed or undirected.

This chapter will introduce both directed and undirected graphical models, and the

inference algorithms available for these graphical models.

3.1 Directed Graphical Model

A directed graphical model, also called aBayesian Networkor Belief Network,

is based on a directed acyclic graphG = (V,E), whereV is a set of vertices,

each representing a variable, andE is a set of directed arcs in the graphG. One

can regard an arc from random variableVi to Vj as indicating thatVi “causes”

Vj. Throughout this dissertation, we will follow a standard practice of notations,

i.e. upper case letters representvariablesand low case letters representvalues. For

example,vi representsVi = vi, and in the case of binary values,+vi meansVi = +1

and−vi meansVi = −1, andv represents(v1, v2, . . . , vL) whereL is the number

of vertices in graph, .

Since the conditional dependence between random variablesis defined by the

graph, the joint probability distribution, also called theprobability mass function

in the discrete case and probability density function in thecontinuous case, can be

28

V1
V2

V3

V4

(a) An example of directed graph.

V1
V2

V3

V4

(b) An example of undirected graph.

Figure 3.1: Two examples of graphical models.

calculated as a product of the conditional probability of each variable conditioned

on its parents, i.e.

P (v) =
∏

Vi∈V

P (vi|Pa(vi)) (3.1)

wherePa(vi) denotes an instantiation of the parents ofVi in the graph, for exam-

ple, Pa(v3) = {v1, v2} in Figure 3.1(a). For a variable with no parents, the con-

ditional probability is just its unconditional priori probability. For instance, given

Figure 3.1(a), the joint probabilityP (+v1,−v2,+v3,−v4) can be computed as

P (+v1,−v2,+v3,−v4)

= P (+v1)P (−v2)P (+v3| + v1,−v2)P (−v4| + v3).

Given a BN as shown in Figure 1.6(a), one can define the joint probability

of variables in the graph. Formally, given a set of observation variablesX =

(X1, X2, . . . , XL), a Bayesian network models the joint assignment of all hidden

variablesY = (Y1, Y2, . . . , YL), whereL = 5 in this specific example. To find the

joint probabilityP (Y,X), this BN makes two independence assumptions. First,

it assumes that each stateYi is independent of all non-descendents given its direct

parent(s)Pa(Yi), i.e. nodeY3 is independent fromY1, Y4 andY5, given its parent

29

Y2, andY4 is independent fromY1 andY3, given its parentsY2 andY5. Second,

it also assumes that the observationXi is independent of other variables given the

current stateYi. With these two assumptions, the joint probability of an observation

sequencex and a state sequencey can be easily calculated as

P (x, y) =
L

∏

i=1

[P (yi|Pa(yi))P (xi|yi)]. (3.2)

3.2 Undirected Graphical Model

An undirected graphical model, also known as aMarkov Net, can also be repre-

sented by a graphG = (V,E) over a set of random variables, differing from BN

in that its edges are undirected. A clique in graphG is a set of fully connected

vertices and is denoted byc, and the set of all cliques in graphG is denoted byC.

For example, in Figure 3.1(b) nodes{V1, V2, V3} form a clique, and{V3, V4} form

another clique. Letψc(Vc) denote a nonnegative potential function associated with

possible configurations of variableVc in cliquec. For example, the potential func-

tionψ123(v123) = ψ123(v1, v2, v3). The joint probability of the random variables can

be defined as the normalized product of the potential functions over all cliques,C,

in graphG, i.e.

P (v) =
1

Z

∏

c∈C

ψc(vc), (3.3)

where the normalization factorZ =
∑

v
∏

c∈C ψc(Vc) in the discrete case orZ =
∫

v

∏

c∈C ψc(Vc) in the continuous case. This factorZ is also called thepartition

function. For example, given the undirected graph in Figure 3.1(b), the joint proba-

bility P (+v1,−v2,+v3,−v4) can be computed as

P (+v1,−v2,+v3,−v4)

=
1

Z
ψ123(+v1,−v2,+v3)ψ34(+v3,−v4),

where

Z = ψ123(−v1,−v2,−v3)ψ34(−v3,−v4)

+ ψ123(−v1,−v2,−v3)ψ34(−v3,+v4)

+ ψ123(−v1,−v2,−v3)ψ34(+v3,−v4)

30

. . .

+ ψ123(+v1,+v2,+v3)ψ34(+v3,+v4)

A Conditional Random Field(CRF) may be viewed as an undirected graphical

model conditioned upon a set of global observations. In a CRF, given a graph over

a set of observationsx and labelsy, we can define a set of cliquesC = {(Xc, Yc)}.

By the Hammersley-Clifford Theorem [34], the conditional probability of the labels

y given the observationsx can be modeled by a conditional exponential family over

cliques in the graph, i.e.

P (y|x) =
1

Z
exp

∑

c∈C

ψc(xc, yc), (3.4)

whereZ =
∑

y exp
∑

c∈C ψc(xc, yc).

We use the undirected graph shown in Figure 1.6(b) to illustrate CRFs. Different

cliques can be defined for the CRF model in this example, as long as every vertex

in the clique is connected to each other. For instance, a set of maximal cliques,

C, consists of cliques(Y1, Y2), (Y2, Y3, Y4) and(Y2, Y4, Y5), and a set of pairwise

cliques is the set of all edges, i.e.(Y1, Y2), (Y2, Y3), (Y2, Y4), (Y2, Y5), (Y3, Y4), and

(Y4, Y5). Since each observationXi is attached to its state nodeYi, cliques can be

defined over these pairs of state-observation nodes as(Xi, Yi). Given the observa-

tion sequencex = (x1, x2, . . . , xL) whereL = 5, the conditional distribution has

the form

P (y|x) =
1

Z
exp[(ψ12(y1, y2) + ψ234(y2, y3, y4) + ψ245(y2, y4, y5))

+
L

∑

i=1

ψi(xi, yi)], (3.5)

if the maximal cliques are chosen for computing. These potential functions will be

defined later in Section 5.2.2.

3.3 Inference Algorithms

Given a specific graphical model, the main goal of inference is to estimate the values

of hidden nodesY , given the values of the observed nodesX, i.e. P (y|x). To

31

compute this posterior probability, we can use Bayes’ rule:

P (y|x) =
P (y,x)
P (x)

=
P (x|y)P (y)

P (x)
. (3.6)

In general, computing the posterior using Bayes’ rule is computationally intractable,

because computing the likelihood termP (x) involves a marginalization computa-

tion, i.e.
∑

y P (x, y) which is a sum over an exponential number of terms.

By using the conditional assumptions encoded in the graph, one can speed up

the computation of the posterior probability. Since we use an exact inference al-

gorithm in our application, here we only review some of the popular exact infer-

ence algorithms. However, there is another large group of algorithms for approx-

imate inference, which each produces approximate target probabilities using more

efficient computations. Most commonly-used approximate inference algorithms

include loopy belief propagation, sampling methods and variational methods; we

refer readers to [7, 33].

Here, we present three of the many exact inference algorithms, i.e. the variable

elimination algorithm, the belief propagation (BP) algorithm, and the Junction Tree

(JT) algorithm. To keep our illustration simple, we use a four-node graph shown in

Figure 3.2(a) for introducing the variable elimination algorithm and BP algorithm.

Although the example given here is an undirected graph, the inference algorithms

also apply to directed graphs. It is easy to convert a directed graph to the counter-

part undirected graph by connecting parent nodes that sharea common child and

dropping all arrows in the graph, as will be discussed in Section 3.3.3. Also, note

all observation nodesX for SVM outputs are removed for now.

3.3.1 Variable Elimination Algorithm

The algorithm is called variable elimination because it eliminates all the irrelevant

variables using factored representation of the joint probability. Consider an example

in Figure 3.2(a). Suppose that potential functions are fixedor can be extracted

from the conditional probability table of the corresponding directed graph, then the

marginal probabilityp(y1) is

p(y1) =
1

Z

∑

y2

∑

y3

∑

y4

ψ(y1, y2)ψ(y2, y3)ψ(y2, y4)

32

Y1

Y2

Y3 Y4

m (Y)4 2m (Y)3 2

m (Y)2 1

(a) The intermediate terms that are created
by the elimination algorithm when nodes 2,
3 and 4 are eliminated in a four-node tree.

m (Y)21 1m (Y)12 2

m (Y)42 2

m (Y)23 3 m (Y)24 4

m (Y)32 2

Y1

Y3 Y4

Y2

(b) The set of all messages that are cre-
ated by the belief propagation algorithm in
a four-node tree.

Figure 3.2: Message passing in a four-node tree.

=
1

Z

∑

y2

ψ(y1, y2)
∑

y3

ψ(y2, y3)
∑

y4

ψ(y2, y4)

=
1

Z

∑

y2

ψ(y1, y2)m3(y2)m4(y2)

=
1

Z
m2(y1) (3.7)

where intermediate factorsm2, m3 andm4 are considered as “messages” passing

from the marginalized variables. The limitation of the elimination algorithm is that

it only computes a single marginal probability. In real-world applications, more

than one marginal probability is often required, and multiple runs of an elimina-

tion algorithm become very inefficient, and therefore a dynamic-programming-like

inference algorithm is desirable.

3.3.2 Belief Propagation Algorithm

Belief Propagation [49], also known as the sum-product algorithm, is a dynamic

programming form of variable elimination for calculating the marginals in a tree. It

updates the marginal (or belief) of each node iteratively bypassing messages from

the neighbors until they converge.

We will illustrate the BP algorithm by an example shown in Figure 3.2(b). The

33

marginal probabilityp(y1) can be calculated by

p(y1) =
1

Z
ψ(y1)

∏

i∈N(Y1)

mi1(y1)

=
1

Z
ψ(y1)m21(y1) (3.8)

whereN(Y1) denotes the neighborhood set of nodeY1, andmi1(y1) is the message

passed from the neighboring nodeyi to nodey1 which is given by

m21(y1) =
1

Z

∑

y2

ψ(y1, y2)ψ(y2)
∏

i∈N(Y2)\Y1

mi2(y2)

=
1

Z

∑

y2

ψ(y1, y2)ψ(y2)m32(y2)m42(y2) (3.9)

whereN(Y2)\Y1 refers to all nodes neighboringY2 exceptY1. m32(y2) andm42(y2)

can be computed following the same procedure. If marginals of the other nodesy2,

y3 andy4 are also desired, the messages that were computed for getting p(y1) can

be reused as in dynamic programming, and only messages passed in the opposite

direction need to be computed, i.e.m12(y2),m23(y3) andm24(y4). It can be shown

that the number of possible messages that BP computes is twice the number of

edges in the tree.

As a summary, the BP algorithm sends messages from all leaf nodes to the

neighboring nodes and continues sending messages in this manner until all possible

messages in the tree have been sent exactly once. Once all messages are obtained,

the marginal of a variable in the tree is simply the product ofthe incoming messages

of all its adjacent nodes. The BP algorithm is capable of handling the inference

problem in anyacyclicgraph such as a chain or a tree, but does not function well

in loopy graphs, i.e. graphs with cycles, and a more complex method is needed to

tackle this cycle issue.

3.3.3 Junction Tree Algorithm

The Junction Tree algorithm is one of the most widely used algorithms for exact

marginalization in loopy graphs. Two versions of the JT algorithm were developed

in the late 1980s. One version by Shafer and Shenoy [53], and the other was initially

34

developed by Lauritzen and Spiegelhalter [45]. The latter version was soon refined

to a message passing scheme, which is described in this section.

In essence, the JT algorithm performs belief propagation ona modified graph

called a junction tree, which is obtained by clustering cycles into single nodes.

The main steps involved in performing the JT algorithm can besummarized as

follows [7]:

1. Moralisation Given a directed graph, one can moralize it by adding a link be-

tween any pair of nodes with a common child and dropping edge orientations.

If given an undirected graph, then this step can be skipped.

2. Triangulation An undirected graph is triangulated if every cycle of length4

or more contains an edge to connect two nonadjacent nodes.

3. Form the Junction Tree Form a JT by forming a cluster representation from

cliques of the triangulated graphs.

4. Potential AssignmentAssign the potentials to the cliques on the JT and as-

sign the separator potentials on the JT to unity.

5. Message PropagationPass messages until updates have been passed along

both directions of every link on the JT.

All steps except the second are deterministic. That is, there is only one moral graph

and a unique set of cliques of the triangulated graph. There may be several junction

trees due to different ways of triangulating an undirected graph, and it is an NP-hard

problem to find the optimal triangulated graph (i.e., one which minimizes the sum

of the clique potentials) [5]. There exists a number of triangulation techniques in

the literature [39, 51, 60, 67], and good heuristics are often used in a real-world

application.

Next, we will illustrate how the JT algorithm works on a directed graph by the

example shown in Figure 3.3. Figure 3.3(a) shows a cyclic directed graph. One can

moralize the graph by connecting nodesY2 andY5, which share the same child node

Y6, and then droping all arrows. The resulted undirected graphis shown in Figure

35

Y1

Y2
Y3

Y4

Y5

Y6

(a) Original directed graph

Y1

Y6

Y5

Y4

Y3Y2

(b) Moralized graph

Y1

Y6

Y5

Y4

Y3Y2

(c) Triangulated graph

Y Y Y1 2 3

Y Y Y2 3 5

Y Y Y2 5 6

Y Y Y3 4 5

S23

S25

S35

(d) Cliques and separators in the junction
tree

Figure 3.3: The Junction Tree algorithm

36

3.3(b). One way to triangulate the moralized graph is to add edges between nodes

Y2 andY3 and nodesY3 andY5, as shown in Figure 3.3(c). Then, the cliques in the

triangulated graph arec123 = {Y1, Y2, Y3}, c235 = {Y2, Y3, Y5}, c256 = {Y2, Y5, Y6}
and c345 = {Y3, Y4, Y5}. Given the set of cliques, we can form a junction tree

by joining cliques with edges labeled by a set ofseparators, i.e. s12, s23, and

s24, labeled by the intersection of the indices of the adjacent two cliques. The

original cyclic directed graph now is transformed to a tree-like structure, and the

generated junction tree is shown in Figure 3.3(d). In a tree,marginals of nodes can

be computed in a way similar to that in a regular belief propagation algorithm. We

first set the separator potentials on the JT to unity, and assign the potentials of the

cliques as the product ofp(Yc|Pa(Yc)) in the directed graph whereYc are variables

in one clique. For example, we initialize the potential of cliquec123 as

ψc123 = p(y1)p(y2|y1)p(y3|y1), (3.10)

and potentials of all separators as 1. Then, messages start being passed between

cliques via separators. When a message is passed from cliquec123 to cliquec235

via separators12, a new separator potential is obtained by marginalizing outthe

variables in cliquec123 that are not ins12, i.e.

ψ∗
s12

=
∑

c123\s12

ψc123 =
∑

y1

p(y1)p(y2|y1)p(y3|y1), (3.11)

and a new potential for cliquec235 is obtained by

ψ∗
c235

= ψc235

ψ∗
s12

ψs12

. (3.12)

Note that in this message-passing scheme, a clique passes a message to a neighbor-

ing cluster only after it has received messages from all the other neighbors. This

message propagation procedure continues until updates have been sent along both

directions of every edge on the tree. Now, the clique potentials can be read from the

JT, and the marginal probability of each variable of interest Yi can be computed by

p(yi) =
∑

c\{Yi}

ψc, (3.13)

wherec is the cluster containingYi.

37

It is believed that there cannot be a much more efficient exactinference algo-

rithms than the Junction Tree algorithm in a general loopy graph, since every other

approach must contain a hidden triangulation [39].

3.4 GO Hierarchy Vs. Dependencies in Function La-
bels

In principle, a correct DAG is considered as a model for describing the data gen-

erating process. Specifically, given the GO hierarchy, one can assume that protein

function annotations are induced accordingly because of the rule of consistent label-

ing. For example, given the DAG in Figure 1.5, one would expect a set of function

annotationsD = {(V1), (V5), (V1, V2), (V1, V2, V3), (V1, V2, V5), (V1, V2, V4, V5),

(V1, V2, V3, V4, V5)}. The BN model has the advantage that it has a simple causal

interpretation to model the dependencies in this DAG.

However, a DAG that only partially describes the data generation process may

mislead the causality analysis. In particular, there may bespurious dependencies

that are entailed by the hidden variables. Given the above set of function labelsD,

one may find that functionsV1 andV5 always appear together. This relationship

in generating function labels is not represented in the DAG,as the GO hierarchy

is organized for biological parent-child relationships. Therefore, constructing a de-

pendency graph by learning from the actual data is the ultimate goal. However,

learning an optimal graph structure that best explains the data is anNP -Hard prob-

lem [20, 21], since the number of DAGs onL variables is super-exponential inL.

Alternatively, artificially adding some arcs into the DAG may help recover the true

data-generating relationships that are not shown in the original DAG. Under such

a circumstance, the undirected model is advantageous over the directed model, be-

cause the undirected model does not assume directions when adding edges into the

graph. This DAG issue will be taken into account when we buildour CRF model in

Section 5.2.

38

Chapter 4

Function Prediction Using Local
SVM Predictors

As reviewed in Section 1.1, for each protein, the CHUGO system produces a set

of independent binary SVM predictions, and then uses positive up-propagation to

make the final predictions. However, we show that a probabilistic SVM prediction

is more effective as an input to a graphical model. This chapter starts with a general

introduction to Support Vector Machines, illustrates how to fit the real-valued SVM

outputs using a Laplace mixture distribution and a single Laplace, and introduces

an Expectation Maximization algorithm for discovering model parameters.

4.1 Support Vector Machines

The Support Vector Machine is a learning algorithm designedto maximize the mar-

gin of confidence of a classifier on the training data set. It was first introduced

by Vapnik [63] and others [8, 15], and was inspired from theoretical concepts of

statistical learning theory. An SVM works by mapping a set oflabeled data to a

feature space, and finding the “optimal” separating hyperplane in the feature space.

This optimal plane maximizes the distances from the hyperplane to the nearest data

points i.e. support vectors, and those distances are calledmargins. In practice, even

an optimal hyperplane can not separate an arbitrary data setperfectly due to noisy

data or insufficient features. Each data point that appears in the region of a differ-

ent label is known as amisclassification. The number of misclassification can be

minimized by carefully selecting SVM parameters.

39

+

+

+

+

++

+

+

-

-

-
-

-

-

-

-
+

+

-

d

-

-

Figure 4.1: A linear Support Vector Machine. Each +/- point represents a training
instance. Points (+) are labeled with one class, and points (-) are labeled with the
other.di is the distance from a data pointi to the hyperplane. Circled +/- points are
misclassified.

Figure 4.1 shows a linear SVM, in which two classes of data areseparated by a

straight line. Formally, given a set of training data where each can be represented

by a feature vectorx, we want to classify each instance as one of two classes in

y ∈ {−1,+1}. The SVM outputs are signed distances from data points to the

hyperplane that can be calculated as:

f(x) = wT x + b (4.1)

wherew is a vector of weights andb is the offset of the hyperplane. This hyper-

plane is optimal because the margin between the separable training instances and

the hyperplane is made as large as possible. The same hyperplane can typically well

separate unseen test instances as well, if they are consistent with the training data.

SVMs can be extended to deal with non-linear boundary in the feature space by

introducing differentkernels, which find separating hyperplanes of higher dimen-

sions. The most popular non-linear kernels include polynomial kernels, radial basis

functions (RBFs) and sigmoid functions. These kernel-based SVMs perform better

on data that is not linearly separable. However, they tend toover-fit data as they ad-

just to fit outliers, and the computational cost is also significantly higher than linear

SVMs due to its higher dimensionality in the feature space. In all our experiments,

we use linear SVMs since they were shown to be efficient and successful in the

40

CHUGO system.

To make a predictiony on an unseen instance,x, using the weight vectorw

and offsetb obtained from training, one uses the sign off(x) in Equation 4.1.y

is labeled positive (+1) if(wT x + b) ≥ 0, and is negative (-1) if(wT x + b) < 0.

However, the problem with a binary SVM prediction is that every data point on

the same side of the hyperplane is treated equally. However,the original SVM

outputsf(x) indicates not only the label (+1 or -1) but also the confidenceof this

prediction, based on the value off(x). Intuitively, the larger the absolute value of

f(x), the more confident our prediction is. The next section defines a way to learn

a new distribution from the real-valued SVM outputs obtained from the training

data, and shows how to use the distribution on unseen data to estimate predictive

accuracy with a specified probability.

4.2 Probabilistic Support Vector Machines

In many cases, the posterior probabilityP (y = ±1|f) is difficult to compute di-

rectly, but instead the class-conditional densityP (f |y = ±1) is more useful for

making a probabilistic prediction based on the SVM output. To fit probabilities

to the output of an SVM, Hastie and Tibshirani [35] proposed fitting Gaussians to

the class-conditional densities, which was adopted by Barutcuoglu et al. in their

hierarchical prediction of GO functions [9]. In a separate study, Lin and Weng [46]

investigated modeling the distribution of SVM outputs by a Gaussian and a Laplace,

i.e.

P (f(x)|N (µ, σ2)) =
1√
2πσ

exp(
−(f(x) − µ)2

2σ2
) (4.2)

and

P (f(x)|L(µ, σ)) =
1

2σ
exp(−|f(x) − µ|

σ
) (4.3)

whereN (µ, σ2) andL(µ, σ) denotes a Gaussian and Laplace respectively, both

characterized by a location parameterµ and a scale parameterσ which can be

learned from the training data. Lin and Weng also showed that, in all their ex-

periments, Laplace estimation outperformed Gaussian. It is also worth noting that

Platt [50] introduced a direct approach to model the distribution of SVM outputs

41

P (y = ±1|f) using a sigmoid model.

Although those studies have chosen different models to fit SVM outputs, they

share some common assumptions and methodologies. First, they all assume that

the distribution of the target valuey depends on its inputx only through the pre-

dicted valuef(x). In theory, the distribution of SVM outputs may depend on the

input x, and the length of the predictive interval may vary with different input val-

ues. However, the assumption often works well in practice and provides a good

estimate for initial analysis. Second, they all assume thatthe SVM outputs,f(x),

are generated independently, and thus the class-conditional densityP (f |y = ±1)

can be modeled by simple parametric functions. These assumptions for fitting SVM

outputs also apply for this thesis work. In terms of initial estimation, they all use

histograms which give a visual representation of the SVM output distribution for

more sophisticated analysis.

4.3 Fitting Local SVM Outputs Using a Laplace Mix-
ture Model

Given the SVM outputs for each GO node, we want to estimate theclass-conditioned

densityP (f |y = ±1). Parameters ofP (f |y = +1) can be estimated from the posi-

tive examples of that class, and parameters ofP (f |y = −1) can be estimated from

the negative examples of that class. Figure 4.2 shows histogram plots of SVM out-

puts obtained from the positive training instances on two nodes GO0030528 and

GO0030246, and Figure 4.3 shows histogram plots of SVM outputs obtained from

the negative instances on these nodes. Since there are significantly more negative

training instances than positive instances in almost all GOclasses, SVM perfor-

mance on positive examples is consistently worse than on negatives. As the his-

tograms show, SVM outputs from positive examples tend to spread more from the

two centers, +1 and -1, than SVM outputs from negative examples. This indicates

that the SVM is more accurate for negative examples than for positive ones. The

histograms also show that a Laplace model appear to the SVM output distribution

more closely than a Gaussian distribution. However, we showthat we can model

42

−3 −2 −1 0 1 2 3
0

50

100

150

200

250

300

350

SVM margins

nu
m

be
r

of
 in

st
an

ce
s

(a) A Laplace mixture on node
GO0030528. Parameters of two
Laplaces: θ1 = (0.32,−0.87, 0.33) and
θ2 = (0.68, 0.93, 0.33).

−3 −2 −1 0 1 2 3
0

50

100

150

200

250

300

SVM margins

nu
m

be
r

of
 in

st
an

ce
s

(b) A Gaussian mixture on node
GO0030528. Parameters of two Gaus-
sians: θ1 = (0.41,−0.68, 0.44) and
θ2 = (0.59, 0.91, 0.37).

−3 −2 −1 0 1 2 3
0

5

10

15

20

25

30

35

40

SVM margins

nu
m

be
r

of
 in

st
an

ce
s

(c) A Laplace mixture on node
GO0030246. Parameters of two
Laplaces: θ1 = (0.59,−0.93, 0.25) and
θ2 = (0.41, 0.98, 0.11).

−3 −2 −1 0 1 2 3
0

5

10

15

20

25

30

35

40

45

SVM margins

nu
m

be
r

of
 in

st
an

ce
s

(d) A Gaussian mixture on node
GO0030246. Parameters of two Gaus-
sians: θ1 = (0.61,−0.72, 0.46) and
θ2 = (0.39, 1.0, 0.057).

Figure 4.2: The histograms of SVM outputs obtained frompositivetraining in-
stances. SVM outputs obtained from positive examples concentrate at +1 and -1.
Both the Laplace and Gaussian mixtures are parameterized byθ1 = (π1, µ1, σ1) and
θ2 = (π2, µ2, σ2) whereπ denotes the weight of a particular component,µ denotes
the location parameter,σ denotes the scale parameter. Note the y-axis has different
scales based on the number of instances in different classes.

43

−4 −3 −2 −1 0 1 2 3 4
0

500

1000

1500

2000

2500

3000

3500

4000

4500

SVM margins

nu
m

be
r

of
 in

st
an

ce
s

(a) A Laplace estimation on node GO0030528
with µ = −0.96 andσ = 0.145.

−4 −3 −2 −1 0 1 2 3 4
0

500

1000

1500

2000

2500

3000

3500

4000

4500

SVM margins

nu
m

be
r

of
 in

st
an

ce
s

(b) A Gaussian estimation on node
GO0030528 withµ = −0.98 andσ = 0.125.

−4 −3 −2 −1 0 1 2 3 4
0

1000

2000

3000

4000

5000

6000

7000

SVM margins

nu
m

be
r

of
 in

st
an

ce
s

(c) A Laplace estimation on node GO0030246
with µ = −0.97 andσ = 0.105.

−4 −3 −2 −1 0 1 2 3 4
0

1000

2000

3000

4000

5000

6000

7000

SVM margins

nu
m

be
r

of
 in

st
an

ce
s

(d) A Gaussian estimation on node
GO0030246 withµ = −0.98 andσ = 0.115.

Figure 4.3: The histograms of SVM outputs obtained fromnegativetraining in-
stances. SVM outputs obtained from negative examples are centered at -1. Both
the Laplace and Gaussian are parameterized byθ = (µ, σ). Note the y-axis has
different scales based on the number of instances in different classes.

44

the output more accurately by using a mixture of two Laplace distributions for SVM

positive outputs and a single Laplace distribution for negative outputs. In our ex-

periment, we did implement a system with a Gaussian mixture but the result was

worse than a Laplace mixture.

It is simple to model a single Laplace, as defined by Equation 4.3 from the neg-

ative samples. GivenN SVM outputs(x1, x2, . . . , xN) from negative training ex-

amples for the same class, location parameterµ is the median of these samples [42]

and the estimator of the scale parameterσ is

σ =
1

N

N
∑

i=1

|xi − µ|. (4.4)

It becomes somewhat complicated to model a Laplace mixture distribution.

Given a mixture ofK Laplaces, the goal is to estimate a set of unknown parame-

tersθ = {(π1, µ1, σ1), . . . , (πK , µK , σK)} whereπk denote the proportion or weight

of thekth Laplacian of the mixture. We use the Expectation Maximization (EM)

algorithm for the maximum likelihood estimate of the parameters.

The EM algorithm was well described by Dempster et al. in 1977[27], and

it has been frequently used for data clustering in machine learning. EM alternates

between performing an expectation (E) step, which computesan expectation of the

likelihood, and a maximization (M) step, which computes themaximum likelihood

estimates of the parameters by maximizing the expected likelihood discovered on

the E step. Then the parameters found on the M step are used to start another E

step. EM iterates until the likelihood converges to a local maximal.

As we are using a mixture of two Laplaces to fit the distribution of the SVM

outputs obtained from the positive training examples, the probability density of a

set of SVM outputsx = (x1, x2, . . . , xN) can be modeled by

P (x|θ) =
N
∏

j=1

∑

k=1,2

P (k, xj|θ), (4.5)

whereP (k, xj|θ) denotes the joint probability of sampling thekth Laplace model

and sampling a particular SVM outputxj from this Laplace component, i.e.

P (k, xj|θ) = P (k|θ)P (xj|k, θ) = πkP (xj|k, θ). (4.6)

45

Given an initialθ0 = {(π1, µ1, σ1), (π2, µ2, σ2)} 1, EM tries to findθi+1 that maxi-

mizes the expected value of the log-likelihood of Equation 4.5 given the datax and

the parameterθi from a previous iteration, i.e.

θi+1 = arg max
θ
Q(θ|x, θi), (4.7)

where

Q(θ|x, θi) = E
[

logP (x|θ)| x, θi
]

= E

 log
N
∏

j=1

∑

k=1,2

P (k, xj|θ)
∣

∣

∣

∣

∣

∣

x, θi

= E

N
∑

j=1

log
∑

k=1,2

P (k, xj|θ)
∣

∣

∣

∣

∣

∣

x, θi

=
N

∑

j=1

E

 log
∑

k=1,2

P (k, xj|θ)
∣

∣

∣

∣

∣

∣

xj , θ
i

=
N

∑

j=1

∑

k=1,2

P (k|xj, θ
i) logP (k, xj |θ)

=
N

∑

j=1

∑

k=1,2

P (k|xj, θ
i) log[πkP (xj|k, θ))]. (4.8)

The likelihoodP (xj|k, θ) can be calculated by the Laplace density function as

shown in Equation 4.3. The probability thatxj comes from thekth Laplace of

the mixtureP (k|xj , θ
i) can be estimated by

P (k|xj, θ
i) =

πkP (xj|k, θi)
∑

k=1,2 πkP (xj|k, θi)
. (4.9)

Using Equation 4.9 to replaceP (k|xj, θ
i)) in Equation 4.8, we can optimizeQ(θ)

by taking partial derivatives of Equation 4.8 subject toπ1 + π2 = 1.

As the sample median is the maximum likelihood estimator of location param-

eterµ in a single Laplace, the maximum likelihood estimator ofµ for a mixture of

two Laplaces is a weighted median [23, 68]. The weighted median is the valueβ

that minimizes the following expression

J(β) =
N

∑

i=1

wi|xi − β|, (4.10)

1Parameters estimated at theith iteration are denoted by a superscripti.

46

where weightwi = P (k|xi, θ). Then, the weighted median is selected based on the

following two situations:

β =

{

xM , if
∑M

i=1wi >
1
2

∑N
i=1wi

1
2
(xM + xM+1), if

∑M
i=1wi = 1

2

∑N
i=1wi

}

(4.11)

For example, consider a set of SVM outputsx = [0.7, 0.9, 0.24, 1.1, 0.8] associated

with weightsw = [0.1, 0.2, 0.3, 0.2, 0.1]. After sorting thex vector, we obtain the

sorted SVM outputs with the corresponding weights.

x 1.1 0.9 0.8 0.7 0.24
w 0.2 0.2 0.1 0.1 0.3

Starting from the left, add the weights until the sum is greater than or equal to
1
2

∑5
i=1wi = 0.45. By adding the weights of the first three outputs (i.e.M = 3),

the sum is 0.5 exceeding 0.45. The weighted median is therefore 0.8. Figure 4.4

summarizes the EM algorithm for a mixing of two Laplaces.

47

(Note: Parameters estimated at theith iteration are denoted by a superscripti.)

Input: datax = (x1, x2, . . . , xN).

Output: parameters for two Laplacesθi+1
1 = (πi+1

1 , µi+1
1 , σi+1

1) and θi+1
2 =

(πi+1
2 , µi+1

2 , σi+1
2).

Initialization: θ0
1 andθ0

2.

While θi+1
1 − θi

1 > α or θi+1
2 − θi

2 > α whereα is a pre-defined threshold, do

• E-step: Compute the posterior probabilities for allk = 1, 2 and j =
1, . . . , N :

P i(k|xj , θ
i) =

πi
kP (xj|k, θi)

∑

k π
i
kP (xj|k, θi)

(4.12)

whereP (xj|k, θi) = 1
2σi

k

exp(
|x−µi

k
|

σi
k

).

• M-step

µi+1
k = arg min

β

N
∑

j=1

P i(k|xj , θ
i)|xi − β| (4.13)

σi+1
k =

1

2

N
∑

j=1

P i(k|xj , θ
i)|xj − µi+1

k |, (4.14)

πi+1
k =

1

N

N
∑

j=1

P i(k|xj, θ
i). (4.15)

Figure 4.4: An EM algorithm for mixing of two Laplaces.

48

Chapter 5

Hierarchical Prediction of GO
Function Using Graphical Models

The hierarchical relationship in the GO provides valuable knowledge for construct-

ing a model to make consistent function prediction. We buildtwo graphical mod-

els, Bayesian network and Conditional Random Fields, each of which augment

structural information of the hierarchy to make local SVM predictions with more

globaly consistent function prediction. This chapter illustrates how each model is

constructed from the hierarchy, and describes approaches for parameter estimation

and inference methods.

5.1 Hierarchical Prediction Using Bayesian Networks

5.1.1 Model: Bayesian Networks

Since the GO hierarchy is organized as a DAG, it is natural andconvenient to induce

a dependency graph based on the parent-child relationshipsin the hierarchy. We use

the hierarchical structure of the GO illustrated in Figure 1.5 to construct a Bayesian

network as illustrated in Figure 1.6(a). The network spans two sets of variables, i.e.

Y = (Y1, Y2, . . . , YL) andX = (X1, X2, . . . , XL). Each nodeYi represents a GO

function and has two possible states, +1 for positive and -1 for negative. Each node

Yi represents an output from the local SVM predictor which is a real number. Node

Yi is conditioned on its parent classes, and local observed nodeXi is conditioned on

the directly connected nodeYi. The edges betweenY nodes encourage hierarchical

consistency in the graph. By arranging entries in the CPT, wecan ensure that a node

49

is guaranteed to be positive if any of its children is positive (+1) and to be negative if

any of its parents is negative (-1). The edge from eachYi to the corresponding local

observationXi represents the predictive accuracy of the local SVM classifier. The

constructed Bayesian network is able to make hierarchical prediction compatible

with the consistent-labeling rule by considering the parent-child relationship in the

hierarchy, and to provide more accurate predictions by integrating the probabilistic

outputs from the local predictors.

Two assumptions have been made by this particular Bayesian network structure.

First, each local predictionXi is independent from the other local predictions and

the other GO nodes, given its direct parentYi. Second, each GO nodeYi is con-

ditionally independent from all non-descendants, given its immediate parents. As

discussed in Section 3.4, the second assumption is not validbecause the GO hier-

archy may not be the true dependency model that is used to generate the function

labels. However, it is reasonable to believe that the GO hierarchy is part of the true

dependency graph, and more likely forms the fundamental structure of the graph.

Therefore, the GO hierarchy is used to build the Bayesian network in this research.

For this network structure, our goal is to find the maximal joint probability dis-

tribution, also known as the most probable explanation (MPE), given a set of local

SVM outputsx for a query protein. Mathematically, given a set of observationsx,

we want to find a set of labelsy∗ so that

y∗ = arg max
y

P (y|x). (5.1)

By Bayes’ rule, the joint conditional probability can be written as

P (y|x) =
1

Z
P (y)P (x|y), (5.2)

where the normalization factor isZ =
∑

y P (y)P (x|y). Due to the assumptions on

our Bayesian network, the two terms in Equation 5.2 can be simplified as

P (y) =
L

∏

i=1

P (yi|Pa(yi)) (5.3)

wherePa(yi) denotes all parent nodes ofyi, and

P (x|y) =
L

∏

i=1

P (xi|yi). (5.4)

50

Next, let us denoteP (yi|Pa(yi)) andP (xi|yi) as parametersθyi|Pa(yi) and θxi|yi

respectively, and we will discuss how to estimate these parameters from the training

data in the next section.

5.1.2 Parameter Estimation and Inference

The parameterθyi|Pa(yi) represents hierarchical structure imposed by the graph, and

indicates how likely a nodeyi will be labeled as positive or negative given the as-

signment of all its parent nodes. We construct a conditionalprobability table (CPT)

at each node to enforce the inheritance properties of the GO hierarchy. As described

in Section 1.2, the rule of consistent labeling in the hierarchy simplifies the CPTs in

the Bayesian network, and only one parent-child configuration, in whichyi is pos-

itive given all its parents being positive, needs to be computed from the true labels

of training data. The CPT entries for all the other parent-child configurations, i.e.

yi is positive given thatanyof its parents is negative, are merely 0’s. For example,

given the BN in Figure 1.6(a), the CPT at nodeY4 would be:

y2 y5 +y4 −y4

− − 0 1
− + 0 1
+ − 0 1
+ + α 1 − α

whereY2 andY5 are parents ofY4, andα is a probability computed from the training

data. This CPT encodes the fact that a negative label for either Y2 or Y5 implies a

negative label forY4.

The other parameterθxi|yi
represents the predictive accuracy of the local SVM

classifier, and represents reliability of an SVM predictiongiven the knowledge of

the true labelyi. Given the assumption that local SVMs have similar performance

on the training data and the test data,P (xi|yi) can be estimated by aggregating SVM

cross-validation results on the training data. For binary SVM outputs,P (xi|yi)

can be estimated using the confusion matrices from cross validation. For exam-

ple,P (+xi| + yi) represents the ratio of positive instances predicted correctly, i.e.

TP/(TP+FN) where TP, true positives, refers to positive instances classified cor-

rectly and FN, false negatives, refers to positive instances classified incorrectly.

51

Since our local SVM prediction was modified to output the raw SVM margins,xi

is a real number rather than a binary bit, and therefore the estimation technique

described in Section 4.3 is used for fitting the likelihood term P (xi| ± yi).

The Junction Tree algorithm described in Section 3.3.3 is utilized for inference

in the BN.

5.2 Hierarchical Prediction Using Conditional Ran-
dom Fields

The Bayesian network models dependencies among GO terms using the arrows in

the original GO graph. To generalize the second assumption made by the BN, i.e.

function annotations are only generated according to the GOhierarchy, we would

like to take the GO hierarchy and add edges between spouse nodes who share a

common child term and between sibling nodes who share a common parent node.

We cannot use a BN for this generalization, so to model the parent-child, spouse-

spouse and sibling-sibling dependencies, we use an undirected graphical model, the

Conditional Random Field (CRF). This model has been widely used for studies of

complex graph dependencies.

5.2.1 Model: Conditional Random Fields

The undirected graph is constructed by taking the Bayesian network, adding edges

to all pairs of spouse nodes and sibling nodes, and dropping arrows in the directed

graph. An undirected graph is shown in Figure 1.6(b), and it is converted from the

corresponding BN in Figure 1.6(a). Given the undirected graphG = (V,E), two

types of cliques are defined: edge cliquesCE and vertex cliquesCV . Edge cliques

CE, the local-consistency factor, includes all edges, i.e. parent-child, spouse-spouse

and sibling-sibling edges in the proposed undirected graph. Node cliquesCV is

defined to capture dependencies between the local predictions and the class labels.

For simplicity, a pairwise neighborhood system is adopted for modeling the label

consistency structure. For example, for Figure 1.6(b), edge cliquesCE = {(Y1, Y2),

(Y2, Y3), (Y2, Y4), (Y2, Y5), (Y3, Y4), (Y4, Y5)}, and vertex cliquesCV = {(X1, Y1),

52

(X2, Y2), (X3, Y3), (X4, Y4), (X5, Y5)}.

Given local SVM outputs, the conditional distribution overlabelsY is defined

as:

P (y|x) =
1

Z
exp{

∑

(vi,vj)∈E

ψE(yi, yj) +
∑

vi∈V

ψV (yi, xi)} (5.5)

whereψE(yi, yj), the transition function, denotes the potential over a pairof neigh-

bor nodes,ψV (yi, xi), the state-observation function, denotes the potential over

nodevi, andZ is the partition function. EachψE(yi, yj) can be expressed as a

linear function i.e.

ψE(yi, yj) =
4

∑

k=1

θkfk(yi, yj), (5.6)

wherefk(yi, yj) is the indicator function of state assignments over a pair ofnodes

(yi, yj) and consists of four possible features for each pairwise clique, i.e.f(−yi,−yj),

f(−yi,+yj), f(+yi,−yj) andf(+yi,+yj). The formulation of functionfk(yi, yj)

captures co-occurrences between labels in the hierarchy.

SinceψV (yi, xi) captures relationships between the class label and local SVM

prediction, we define the feature function as the class-conditioned density function

P (xi| ± yi) as described in Section 4.3.

5.2.2 Parameter Estimation and Inference

The proposed CRF model needs to estimate the parameters of the transition function

and state-observation function. Since parameters of the state-observation function

ψV (yi, xi) are defined by the likelihood functionP (xi|yi) of the SVM outputs, they

are computed as described in Section 4.3, i.e. parameters for a Laplace mixture and

a single Laplace.

Parameters of the transition function, i.e.θk in Equation 5.6 for each edge in the

graph, can be estimated by counting the occurrences of all possible assignments of

two nodes associated with the edge in the training data. For aspouse-spouse and

sibling-sibling edge, all four assignments of(yi, yj) are possible, while only three

assignments are possible for a parent-child edge sincef(−yi,+yj) never appears

due to the rule of consistent labeling.

53

Inference in CRFs is implemented using the same algorithm asin BNs (de-

scribed in Section 5.1.2), the Junction Tree algorithm, except there is no moralisa-

tion step since it is already an undirected graph.

54

Chapter 6

Experiments for Hierarchical Protein
Function Prediction

We conducted our experiments on two different protein data sets using SVM, BN,

and CRF classifiers. This chapter introduces the performance evaluation technique,

describes the two data sets used in the experiments, presents the experimental re-

sults, and concludes with a discussion of the results.

6.1 Evaluation

For a fair evaluation of a predictive system, part of the data, called the test set,

must be withheld from training. We use a modified 5-fold crossvalidation tech-

nique to split our data and evaluate the prediction results.Prediction performance

is evaluated based on the standard F-measure score.

Cross Validation

To evaluate the performance of our proposed models on unseendata, we perform all

our experiments using 5-fold cross validation. In a standard 5-fold cross validation,

the data is divided into five folds, and each fold of data contains a similar number of

instances for each class. Classifiers are trained on any fourfolds of data and tested

on the withheld fold. This procedure continues until every fold has been tested

using the classifier trained on the other four folds. In our task, there are two phases.

In phase 1, there is a need for estimating the local SVM outputdistribution from

the training data. In phase 2, we estimate the parameters of the graphical model. If

55

Fold1

Fold2

Fold3

Fold4

Fold5

Global Fold1
Training Set

Global Fold1
Test Set

Local Fold1
Training Set

Local Fold1
Test Set

Figure 6.1: Two-phase 5-fold cross validation. Fold1 is held out as a test set for
predicting functions globally using graphical models. Theother four folds are com-
bined as a training set, in which Fold2 is held out for testingthe SVMs trained on
the other three folds. The local cross validation continuesuntil every fold in training
has been tested.

we perform 5-fold corss validation in all the data to construct the local SVMs then

all the data will be used in estimating the parameters of the graphical model and no

unused test data will be available. Therefore, we first divide the data into 5 folds for

use in phase 2. To estimate the parameters of the local SVMs, we do 4-fold cross

validation in the training data by using 3 folds for trainingand 1 fold for testing.

This leaves a fold for testing the parameters of the graphical model.

Specifically, in the four-fold training data, one fold is held out for testing the

SVM classifiers trained on the other three, called a local cross validation, and then

it is put back to the training data and another fold is pulled out for test. This process

continues until every fold in the training set has been tested. The SVM outputs of

all four SVM training folds are combined to make a distribution estimation using

the technique described in Section 4.3. The same operationsare applied to the other

global folds. In total, we have trained SVMsC5
3 = 10 times on any three folds. One

iteration of this two-phase cross validation technique is shown in Figure 6.1.

Performance Measures

The standard F-measure is adopted for performance comparison between different

models. F-measure is defined as

F −measure =
2 × Precision× Recall

P recision+Recall
(6.1)

56

where the precision measures the performance of a classifier’s positive predictions

and is defined as

Precision =
TP

TP + FP
, (6.2)

and the recall measures the percentage of the positive instances that are predicted

as positive and is defined as

Recall =
TP

TP + FN
, (6.3)

where TP is the number of true positives, FP tallies false positives and FN denotes

the number of false negatives.

6.2 Data Set

We create two protein data sets for hierarchical function prediction using different

models. As discussed in Section 2.1, each data sets consistsof three components:

protein sequences, GO hierarchy, and known protein labels -i.e. functions. To cre-

ate more confident labellings, only function labels that were derived from a biolog-

ical experiment are considered in this dissertation. That is, we only include labels

identified by evidence code IDA, IEP, IGC, IGI, IMP, and TAS, and exclude IC,

IEA, ISS, NAS, ND, RCA, and NR. Following the consistent labeling approach,

each experimentally-annotated label is propagated up to the root node. Since the

root term GO0003674molecular functionis true for all proteins, it is removed from

the label set for prediction.

To directly compare with the prediction performance obtained by Eisner et al.,

the same data set is used. The data set (data set 1) consists ofthe Uniprot release

2.0 (TrEMBL release 27 and Swiss-Prot release 44), August 28, 2004 version of the

GO molecular function ontology, and August 11, 2004 versionof the GOA mapping

file. A sufficient number of positive training instances is required to create accurate

local function predictors. To be consistent with Eisner et al [29], we also set the

minimum number of positive instances at a node after the label propagation to 20.

This leaves us 399 nodes in the pruned GO hierarchy1, and 14,018 proteins.

1There were 406 GO nodes in Eisner’s experiments. However, having confirmed with the author,
there is a bug in the code used to extract the GO terms, so 7 nodes were removed.

57

To evaluate the performance of the proposed models on a larger scale and more

recent data, we create another data set (data set 2), which includes the Uniprot

release 10.0 (TrEMBL release 35 and Swiss-Prot release 52),June 5, 2007 version

of the GO molecular function ontology, and August 17, 2007 version of the GOA.

A cutoff of 20 positive instances at each node is preserved, and the final version of

the data set contains 792 GO terms and 45,956 unique proteins.

Table 6.1 shows the complexity of the constructed GO hierarchies in terms of

hierarchy depth2, number of parents and number of children. Overall, both hierar-

chies are complex and deep.

6.3 Experimental Results

Protein similarity search and feature extraction are implemented by following the

steps in Eisner et al. Proteins in data set 1 and 2 are BLASTed against Swiss-Prot

database 44 and 49, respectively, and the cutoff of E-value is set to be10−3. PA

features for each similar protein obtained from BLASTing are extracted from the

main entries of the Swiss-Prot database, including theKeywords, SUBCELLULAR

LOCATION, andInterProfields.

The result from local SVM predictors, without propagating positive predictions

up to the root, is used as the baseline. A linear kernel is chosen for all experiments,

and the penalty parameter in SVM is set asC = 1. LibSVM [19] is adopted for the

implementation of SVM.

A Java tool for modeling Bayesian networks, SamIam [26] is adopted to imple-

ment the Bayesian networks, and a CRF tool, GRMM [58] is modified to implement

the CRF model.

Table 6.1(a) and 6.1(b) shows prediction results using SVM without up-propagation

(SVM LOCAL), SVM with up-propagation (SVM UP), BN and CRF on two data

sets, respectively. SVM UP may improve or deteriorate the overall prediction per-

formance, as the F-score has increased by 0.28% in data set 1 and decreased by

0.17% in data set 2 by simply propagating up positive local SVM predictions. The

2In case of multiple parents, the hierarchy depth is defined bythe longest path from the root to
the node.

58

(a) Number of nodes in terms of depth.

Depth in Hierarchy Number of Nodes
Data set 1 Data set 2

0 10 11
1 54 76
2 98 138
3 97 178
4 72 160
5 31 106
6 27 68
7 9 49
8 1 5
9 0 1

Total number of nodes 399 792

(b) Number of nodes in terms of number of parents.

Number of Parents Number of Nodes
Data set 1 Data set 2

0 10 11
1 330 625
2 53 141
3 4 15
4 1 0
5 1 0

Total number of nodes 399 792

(c) Number of nodes in terms of number of children.

Number of Children Number of Nodes
Data set 1 Data set 2

0 173 384
1 132 212
2 46 88
3 21 43
4 10 23
5 8 18
6 2 7
7 2 6
> 7 5 11

Total number of nodes 399 792

Table 6.1: Complexity of GO hierarchies in terms of the hierarchy depth, number
of parents and number of children.

59

(a) Experimental results for data set 1.

TP FP FN Precision Recall F-score Std. Dev.
SVM LOCAL 44,285 12,537 25,155 0.7794 0.6377 0.7015 0.00872

SVM UP 45,008 13,357 24,432 0.7711 0.6482 0.7043 0.00665
BN 48,023 14,538 21,417 0.7676 0.6916 0.7276 0.00530
CRF 48,465 14,725 20,975 0.7670 0.6980 0.7309 0.00693

(b) Experimental results for data set 2.

TP FP FN Precision Recall F-score Std. Dev.
SVM LOCAL 171,486 62,313 72,754 0.7335 0.7021 0.7175 0.01366

SVM UP 173,438 66,953 70,802 0.7215 0.7101 0.7158 0.01463
BN 176,884 65,735 67,356 0.7291 0.7242 0.7266 0.01491
CRF 177,105 64,272 67,135 0.7337 0.7251 0.7294 0.01447

Table 6.2: Experimental results by using SVM LOCAL, SVM UP, BN, and CRF.

F-measure has increased by 2.61% and 0.91% for the two data sets, respectively, by

using the BN directed model. The increases of F-measures aredue primarily to the

improvement on the poor recalls, which raise from 63.77% and70.21% to 69.16%

and 72.42%, with a small sacrifice of the precisions (down by 1.18% and 0.44%).

By applying the proposed CRF method, the F-score has increased by 2.94% and

1.19%, respectively, and the recall has increased by 6.03% and 2.3% with a little

(down by 1.24%) or no loss of precision. The increases of F-measures on data set

1, due to BN and CRF, are both statistically significant.

Table 6.3 shows the number of GO nodes whose F-measures have been changed

due to the use of SVM UP, BN, and CRF. Clearly, the straightforward up-propagation

method has a limited influence on prediction of a small numberof nodes, while BN

and CRF can improve prediction performance on over half of the GO nodes. Fig-

ure 6.2 and 6.3 shows the F-score of BN and CRF compared to the F-score of SVM

local in two data sets, respectively.

6.4 Discussion

SVM UP is a simple and quick operation that forces the final predictions to be con-

sistent, but it is experimentally proved to be unstable and may hurt overall perfor-

mance, such as on data set 2. Given sufficient training instances, confident statistics

60

F-measure Data set 1 Data set 2
SVM UP BN CRF SVM UP BN CRF

Increased 45 219 261 53 328 493
Decreased 24 71 114 106 187 259
No change 330 109 24 633 277 40

Total 399 792

Table 6.3: Number of nodes whose F-measures have been increased, decreased or
unchanged by using SVM UP, BN and CRF than using SVM LOCAL.

can be learned from the dependencies between nodes and SVM outputs, and proba-

bilistic inferences are provided by the graphical models, i.e. BN and CRF, to make

“selective” up-propagations and down-extensions.

By using graphical models, the recalls have significant increases which con-

tributes most to the improvement of F-measures. The change of recall is deter-

mined by the number of true positives since the total number of positives is fixed

for a given data set. There are significant increases of true positives in data set 1

and 2, which is a result of two factors from the graphical models:

1. Using the estimated distribution of local SVM outputs, instead of binary val-

ues.

2. Using hierarchical information in the GO to extend a positive prediction to

its children.

As discussed in Section 4, a binary SVM predictor treats SVM outputs on the same

side of the hyperplane equally, while an estimated SVM output distribution inte-

grates the confidence of making such a local prediction. The Laplace Mixture esti-

mation model we built, based on the positive instances, could turn some former FN

predictions to be “less” negative for having some probability of being positive. It

works even better when there is a larger number of FNs, i.e. poorer recall, such as in

data set 1. The second factor makes additional TPs possible because the probability

P (+yi|+Pa(yi)) in BN orP (+yi,+Pa(yi)) in CRF learned from training data on

a query node may indicate it is very likely that the node is positive given that all its

parents are positive.

61

Figures 6.4 and 6.5 shows the F-score difference between BN/CRF and SVM

local in terms of the number proteins belonging to each classin the two data sets,

respectively. Note, the x-axis is scaled logarithmically on the number of proteins.

From those figures, one can tell that most changes (increase or decrease) of the

F-measures occur at node classes that have fewer training instances, and so pre-

sumably are (typically) at a lower level of the graph. There are several reasons for

this observation. First, the fact that lower level nodes have a smaller number of

proteins leads to two consequences: (1) adding or removing afew TP predictions

for those classes can change the F-measure significantly; (2) statistical information,

including both the dependency relationship and SVM output estimation, collected

from a small number of training instances, may not truly represent unseen data.

Also note, the performance of our graphical models at higherlevel nodes is mostly

better or not worse than the local SVM. This observation indicates that, if given ad-

equate training instances, the hierarchical information and SVM output estimation

captured by our graphical models can almost certainly improve the result.

As we attempt to characterize GO nodes whose F-measures havebeen increased

or decreased by the graphical models, we do not find any clear evidence that can

be used to identify those nodes apriori. Figures 6.6 and 6.7 shows error bars, with

respect to the hierarchy depth and number of parents, of F-score changes between

using SVM LOCAL, and BN and CRF, respectively. There is no discernable pattern

in any of the graphs due to the large variances at each level.

Although the undirected graphical model CRF only has marginal improvement

of the F-measure over the BN model, it shows that co-occurrences between GO

terms other than parent-child pairs do exist and they are helpful in constructing a

more accurate dependency graph. This result sheds light on the future research of

learning the dependency graph from the actual data.

62

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F−score of SVM local

F
−

sc
or

e
of

 B
N

(a) F-score of BN Vs. F-score of SVM local

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F−score of SVM local

F
−

sc
or

e
of

 C
R

F

(b) F-score of CRF Vs. F-score of SVM local

Figure 6.2: Data set 1: F-score of BN and CRF Vs. F-score of SVMlocal

63

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F−score of SVM local

F
−

sc
or

e
of

 B
N

(a) F-score of BN Vs. F-score of SVM local

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F−score of SVM local

F
−

sc
or

e
of

 C
R

F

(b) F-score of CRF Vs. F-score of SVM local

Figure 6.3: Data set 2: F-score of BN and CRF Vs. F-score of SVMlocal

64

2 3 4 5 6 7 8 9
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ln (Number of proteins belonging to each GO node)

F
−

sc
or

e
di

ffe
re

nc
e

be
tw

ee
n

B
N

 a
nd

 S
V

M
 lo

ca
l

(a) F-score differences between BN and SVM local

2 3 4 5 6 7 8 9
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ln (Number of proteins belonging to each GO node)

F
−

sc
or

e
di

ffe
re

nc
e

be
tw

ee
n

C
R

F
 a

nd
 S

V
M

 lo
ca

l

(b) F-score difference between CRF and SVM local

Figure 6.4: Data set 1: F-score difference between BN/CRF and SVM local with
respect to the number of proteins belonging to each GO class.The x-axis is scaled
based on a natural logarithm.

65

2 3 4 5 6 7 8 9
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ln (Number of proteins belonging to each GO node)

F
−

sc
or

e
di

ffe
re

nc
e

be
tw

ee
n

B
N

 a
nd

 S
V

M
 lo

ca
l

(a) F-score difference between BN and SVM local

2 3 4 5 6 7 8 9
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ln (Number of proteins belonging to each GO node)

F
−

sc
or

e
di

ffe
re

nc
e

be
tw

ee
n

C
R

F
 a

nd
 S

V
M

 lo
ca

l

(b) F-score difference between CRF and SVM local

Figure 6.5: Data set 2: F-score differences between BN/CRF and SVM local with
respect to the number of proteins belonging to each GO class.The x-axis is scaled
based on a natural logarithm.

66

−2 0 2 4 6 8 10
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
BN vs. Local

Depth in the Hierarchy

D
iff

er
en

ce
 o

f F
−

sc
or

e

(a) Data set 1: F-measure difference with re-
spect to the depth.

−1 0 1 2 3 4 5 6
−0.05

0

0.05

0.1

0.15

0.2
BN vs. Local

Number of Parents

D
iff

er
en

ce
 o

f F
−

sc
or

e

(b) Data set 1: F-measure difference with re-
spect to the number of parents.

−2 0 2 4 6 8 10
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15
BN vs. Local

Depth in the Hierarchy

D
iff

er
en

ce
 o

f F
−

sc
or

e

(c) Data set 2: F-measure difference with re-
spect to the depth.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−0.1

−0.05

0

0.05

0.1

0.15
BN vs. Local

Number of Parents

D
iff

er
en

ce
 o

f F
−

sc
or

e

(d) Data set 2: F-measure difference with re-
spect to the number of parents.

Figure 6.6: F-measure difference between BN and local SVM with respect to the
hierarchy depth and the number of parents. Error bars: mean± 1 standard devia-
tion.

67

−2 0 2 4 6 8 10
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
CRF vs. Local

Depth in the Hierarchy

D
iff

er
en

ce
 o

f F
−

sc
or

e

(a) Data set 1: F-measure difference with re-
spect to the depth.

−1 0 1 2 3 4 5 6
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
CRF vs. Local

Number of Parents

D
iff

er
en

ce
 o

f F
−

sc
or

e

(b) Data set 1: F-measure difference with re-
spect to the number of parents.

−2 0 2 4 6 8 10
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
CRF vs. Local

Depth in the Hierarchy

D
iff

er
en

ce
 o

f F
−

sc
or

e

(c) Data set 2: F-measure difference with re-
spect to the depth.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
CRF vs. Local

Number of Parents

D
iff

er
en

ce
 o

f F
−

sc
or

e

(d) Data set 2: F-measure difference with re-
spect to the number of parents.

Figure 6.7: F-measure difference between CRF and local SVM with respect to
the hierarchy depth and the number of parents. Error bars: mean ± 1 standard
deviation.

68

Chapter 7

Future Work and Conclusion

7.1 Future Work

A possible extension of this work is to model function classes simultaneously using

the big-bang approach. Several studies [18, 70, 71] have shown that learning a set

of related classes at the same time will improve the overall prediction performance.

Thus, constructing a system that trains SVM classifiers at once and uses them as

an input to our graphical models may be beneficial for making consistent and more

accurate hierarchical predictions.

As the results of our experiments demonstrated, connectingsibling nodes has

marginally improved the prediction performance over usingthe directed graphical

model based on the parent-child relationship. The GO is a biological hierarchy, and

does not explicitly indicate the co-occurrences between all pairs of classes in the

graph, except connected nodes. It may be worth learning the dependency graph

purely from the training data and ignoring the GO hierarchical structure or aug-

menting it. The resulting graph should not only contain the majority of the original

GO edges but also new arcs between unrelated nodes if co-occurrences between

those nodes do exist in the training data. However, the computational cost is very

expensive for performing such a structure learning task. For an exact solution, one

would need to examine2L possible states, whereL is the number of nodes in the

hierarchy. In practice, heuristics and the consistency rule in the hierarchy can be

used to speed up the computation.

Other future areas of investigation include: using features from other domains,

69

such as protein structure, protein interaction networks, and gene expression, to im-

prove the overall accuracy; applying our approach on the other two GO categories,

i.e. biological process, and cellular component, althoughthe higher occurrence of

part-of relationships may cause problems, and exploring more useful information

from the GO hierarchy, for example the path distances between terms, to construct

more sophisticated training data set.

7.2 Summary

In this dissertation, we investigated the use of hierarchical information and SVM

output distribution to construct two graphical models, i.e. BN and CRF, in making

consistent function predictions. Since the GO hierarchy provides useful information

regarding the structure of protein function, better predictions should be achievable

by incorporating this additional information into a prediction system. To examine

this conjecture, we built our graphical models, based on a set of local SVM predic-

tors, by converting the GO hierarchy into a dependency graph. The parameters of

dependencies were learned from the true annotations of proteins in the training data,

and the parameters for SVM output distributions were estimated by some Laplace

models. Our approach provided better functional predictions in two Uniprot data

sets compared to the methods of local SVM and local SVM with up-propagation.

Although SVMs have been used as the local predictor throughout all our exper-

iments, our approach is a generic ensemble system that allows us to integrate the

local predictions from any other type of classifier into the graphical model. If a

probabilistic classifier like Naive Bayes is adopted for local prediction, there is no

need to estimate the distribution of local predictions.

The methods that have been presented here can be applied to many other areas

where a standardized hierarchy in the form of a directed acyclic graph exists, such

as web content, document classification and object categorization. Independent

classifiers for a hierarchy can violate hierarchical consistency between labels, while

our approach using graphical models may correct such inconsistencies and improve

the overall accuracy.

70

Bibliography

[1] A. Al-Shahib, R. Breitling, and D. Gilbert. FrankSum: New feature selec-
tion method for protein function prediction.International Journal of Neural
Systems, 15(4):259–275, 2005.

[2] B. Alberts, K. Roberts, J. Lewis, M. Raff, P. Walter, and A. Johnson.Molecu-
lar Biology of the Cell. Garland Pub, 2002.

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic
Local Alignment Search Tool.Journal of Molecular Biology, 215:403–410,
1990.

[4] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller,
and D. J. Lipman. Gapped blast and psi-blast: a new generation of protein
database search programs.Nucleic Acids Research, 25(17):3389–3402, 1997.

[5] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding
embeddings in k-trees.SIAM Journal of Algebraic and Discrete Methods,
8(2):277–284, 1987.

[6] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry,
A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P.
Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese,J. E. Richardson,
M. Ringwald, G. M. Rubin, and G. Sherlock. Gene ontology: tool for the uni-
fication of biology. The Gene Ontology Consortium.Nature Genetics, 25:25
– 29, 2000.

[7] D. Barber. Machine learning: a probabilistic approach.2001 - 2006.

[8] P. Bartlett and J. Shawe-Taylor. Generalization performance of support vec-
tor machines and other pattern classifiers. InAdvances in Kernel Methods:
Support Vector Learning. MIT Press, 1999.

[9] Z Barutcuoglu, R E Schapire, and O G Troyanskaya. Hierarchical multi-label
prediction of gene function.Bioinformatics, 22(7):830–836, January 2006.

[10] H. Blockeel, H. Bruynooghe, S. Dzeroski, J. Ramon, and J. Struyf. Hierar-
chical multi-classification. InProceedings of the First SIGKDD Workshop on
Multi-Relational Data Mining (MRDM-2002), 2002.

[11] B. Boeckmann, A. Bairoch, R. Apweiler, M.-C. Blatter, A. Estreicher,
E. Gasteiger, M. J Martin, K. Michoud, C. O’Donovan, I. Phan,S. Pilbout,
and M. Schneider. The SWISS-PROT protein knowledgebase andits supple-
ment TrEMBL in 2003.Nucleic Acids Research, 31(1):365–370, 2003.

71

[12] P. Bork, T. Dandekar, Y. Diaz-Lazcoz, F. Eisenhaber, M.A. Huynen, and Y.P.
Yuan. Predicting function: from genes to genomes and back.Journal of
Molecular Biology, 283(4):707–725, 1998.

[13] P. Bork and E. V. Koonin. Proteome Analyst: Custom predictions with expla-
nations in a web-based tool for high-throughput proteome annotations.Cur-
rent opinion in structural biology, 6(3):366–76, 1996.

[14] S. Brunak, A. Danchin, M. Hattori, H. Nakamura, K. Shinozaki, T. Matise,
and D. Preuss. Nucleotide sequence database policies.Science, 298, 2002.

[15] C. Burges. Geometry and invariance in kernel based methods,. InAdvances
in Kernel Methods: Support Vector Learning. MIT Press, 1999.

[16] C. Z. Cai, L. Y. Han, Z. L. Ji, X. Chen, and Y. Z. Chen. SVM-Prot: web-based
support vector machine software for functional classification of a protein from
its primary sequence.Nucleic Acids Research, 31(13):3692–3697, 2003.

[17] E. Camon, M. Magrane, D. Barrell, D. Binns, W. Fleischmann, P. Kersey,
N. Mulder, T. Oinn, J. Maslen, A. Cox, and R. Apweiler. The Gene On-
tology Annotation (GOA) Project: Implementation of GO in SWISS-PROT,
TrEMBL, and InterPro.Genome Research, 13(4):662–672, 2003.

[18] R. Caruana. Multitask learning.Machine Learning, 28:41–75, 1997.

[19] Chih-Chung Chang and Chih-Jen Lin.LIBSVM: a library for support vector
machines, 2001. Software available athttp://www.csie.ntu.edu.
tw/ ˜ cjlin/libsvm .

[20] D. Chickering.Learning Bayesian Networks is NP-Complete, pages 121–130.
Springer-Verlag, 1996.

[21] D. Chickering, C. Meek, and D. Heckerman. Large-samplelearning of
Bayesian Networks is NP-Hard.Journal of Machine Learning Research,
5:1287–1330, 2004.

[22] A. Clare and R. D. King. Predicting gene function in saccharomyces cere-
visiae. InProceedings of the European Conference on Computational Biol-
ogy, pages 42–49, 2003.

[23] A. Cord, C. Ambroise, and J. P. Cocquerez. Feature selection in robust clus-
tering based on Laplace mixture.Pattern Recognition Letters, 27(6):627–635,
2006.

[24] F. Crick. On protein synthesis.Symposium Society Experimental Biology,
12:138–163, 1958.

[25] S. D’Alessio, K. Murray, R. Schiaffino, and A. Kershenbaum. The effect of
using hierarchical classifiers in text categorization. InProc. of the 6th Int.
Conf. “Recherche d’Information Assistee par Ordinateur”, pages 302–313,
2000.

[26] A. Darwiche. SamIam - Sensitivity Analysis, Modeling,Inference and More,
2004.http://reasoning.cs.ucla.edu/samiam/ .

72

[27] A. Dempster, N. Laird, and Donald Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. InJournal of the Royal Statistical Society,
volume 39 ofB, pages 1–38. 1977.

[28] S. Dumais and H. Chen. Hierarchical classification of web content. InProc.
of the 23rd ACM Int. Conf. on Research and Development in Information Re-
trieval, pages 256–263, 2000.

[29] R. Eisner, B. Poulin, D. Szafron, P. Lu, and R. Greiner. Improving protein
function prediction using the hierarchical structure of the gene ontology. In
2005 IEEE Symposium on Computational Intelligence in Bioinformatics and
Computational Biology, November 2005.

[30] B. E. Engelhardt, M. I. Jordan, K. E. Muratore, and S. E. Brenner. Protein
molecular function prediction by bayesian phylogenomics.PLoS Comput
Biol, 1(5):e45, 2005.

[31] B. E. Engelhardt, M. I. Jordan, K. E. Muratore, and S. E. Brenner. A graphical
model for predicting protein molecular function. InProceedings of the 23rd
international conference on Machine learning, volume 148, pages 297 – 304,
2006.

[32] J. A. Gerlt and P. C. Babbitt. Can sequence determine function? Genome
Biology, 1(5):1–10, 2000.

[33] H. Guo and W. H. Hsu. A survey of algorithms for real-timebayesian net-
work inference.Working Notes of the Joint Workshop (WS-18) on Real-Time
Decision Support and Diagnosis, AAAI/UAI/KDD-2002, 2002.

[34] J. Hammersley and P. Clifford. Markov fields on finite graphs and lattices.
1971.

[35] T. Hastie and R. Tibshirani. Classification by pairwisecoupling. Technical
report, Standford University and University of Toronto, 1996.

[36] T. Hawkins and D. Kihara. Function prediction of uncharacterized proteins.
Journal of Bioinformatics and Computational Biology, 5(1):1–30, 2007.

[37] J. Y. Huang and D. L. Brutlag. The E-Motif Database.Nucleic Acids Research,
29(1):202–04, 2001.

[38] N. Hulo, A. Bairoch, V. Bulliard, L. Cerutti, E. D. Castro, P. S. Langendijk-
Genevaux, M. Pagni, and C. J. A. Sigrist. The PROSITE database. Nucleic
Acids Research, 34 (Database issue), 2006.

[39] F. V. Jensen and F. Jensen. Optimal junction trees. InProceedings of the Tenth
Conference on Uncertainty in Artificial Intelligence, 1994.

[40] L. J. Jensen, R. Gupta, N. Blom, D. Devos, J. Tamames, C. Kesmir, H. Nielsen,
H. H. Staerfeldt, K. Rapacki, C. A. F. Workman, S. Knudsen, A.Krogh,
A. Valencia, and S. Brunak. Prediction of human protein function from post-
translational modifications and localization features.Journal of Molecular
Biology, 319:1257–1265, 2002.

[41] L. J. Jensen, R. Gupta, H. H. Staerfeldt, and S. Brunak. Prediction of human
protein function according to gene ontology categories.Bioinformatics, 19(5),
2003.

73

[42] O. J. Karst and H. Polowy. Sampling properties of the median of a laplace
distribution.The American Mathematical Monthly, 70(6):628–636, 1963.

[43] R. D. King, A. Karwath, A. Clare, and L. Dehaspe. The utility of different
representations of protein sequence for predicting functional class.Bioinfor-
matics, 17(5):445–454, 2001.

[44] D. Koller and M. Sahami. Hierarchically classifying documents using very
few words. InProc. of the 14th Int. Conf. on Machine Learning, 1997.

[45] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities
on graphical structures and their application to expert systems (with discus-
sion). Journal of Royal Statistical Society, 50(2):157–224, 1988.

[46] C.-J. Lin and R. C. Weng. Simple probabilistic predictions for support vec-
tor regression. Technical report, Department of Computer Science, National
Taiwan University, 2004.

[47] A. H. Liu and A. Califano. Functional classification of proteins by pattern dis-
covery and top-down clustering of primary sequences.IBM Systems Journal,
40(2):379 – 393, 2001.

[48] G. Pandey, V. Kumar, and M. Steinbach. Computational approaches for pro-
tein function prediction: A survey. Technical report, Department of Computer
Science and Engineering, University of Minnesota, 2006.

[49] J. Pearl.Probabilistic Reasoning in Intelligent Systems: Networksof Plausible
Inference. Morgan Kaufmann, 1988.

[50] J. Platt. Probabilistic outputs for support vector machines and comparison to
regularized likelihood methods. In A. Smola, P. Bartlett, B. Scholkopf, and
D. Schuurmans, editors,Advances in Large Margin Classifiers. MIT Press,
2000.

[51] D. Rose, G. Lueker, and R. E . Tarjan. Algorithmic aspects of vertex elimina-
tion on graphs.SIAM J. Computing, 5:266–283, 1976.

[52] M. Sasaki and K. Kita. Rule-based text categorization using hierarchical cat-
egories. InProc. of the IEEE Int. Conf. on Systems, Man, and Cybernetics,
pages 2827–2830, 1998.

[53] P. P. Shenoy and G. Shafer. Propagating belief functions using local computa-
tion. IEEE Expert, 1(3):43–52, 1986.

[54] R.B. Russell S.S. Hannenhalli. Analysis and prediction of protein sub-
types from multiple sequence alignments.Journal of Molecular Biology,
303(1):61–76, 2000.

[55] J. Struyf, S. Dzeroski, H. Blockeel, and A. Clare. Hierarchical multi-
classification with predictive clustering trees. InProceedings Lecture Notes in
Computer Science, volume 3808, pages 272–283, 2005.

[56] A. Sun and E.-P. Lim. Hierarchical text classification and evaluation. Inro-
ceedings of the 1st IEEE International Conference on Data Miningg, 2001.

74

[57] A. Sun, E.-P. Lim, and W.-K. Ng. Performance measurement framework for
hierarchical text classification.Journal of the American Society for Informa-
tion Science and Technology, 54(11):1014–1028, 2003.

[58] C. Sutton. GRMM: A graphical models toolkit, 2006.http://mallet.
cs.umass.edu .

[59] D. Szafron, P. Lu, R. Greiner, D. S. Wishart, B. Poulin, R. Eisner, Z. Lu,
J. Anvik, C. Macdonell, Fyshe A, and Meeuwis D. Proteome Analyst: Cus-
tom predictions with explanations in a web-based tool for high-throughput
proteome annotations.Nucleic Acids Research, 32:W365–W371, 2004.

[60] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordal-
ity of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic
hypergraphs.SIAM J. Computing, 13:566–579, 1984.

[61] K. Toutanova, F. Chen, K. Popat, and T. Hofmann. Text classification in a
hierarchical mixture model for small training sets. InProc. of the 10th Int.
Conf. on Information and Knowledge Management, pages 105–112, 2001.

[62] K. Tu, H. Yu, Z. Guo, and X. Li. Learnability-based further prediction of gene
functions in gene ontology.Genomics, 84:922 – 928, 2004.

[63] V Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995.

[64] K. Verspoor, J. Cohn, and S. Mniszewski. A categorization approach to auto-
mated ontological function annotation.Protein Science, 15:1544–1549, 2006.

[65] K. Wang, S. Zhou, and Y. He. Hierarchical classificationof real life docu-
ments. InProc. of the 1st SIAM Int. Conf. on Data Mining, 2001.

[66] J. C. Whisstock and A. M. Lesk. Prediction of protein function from pro-
tein sequence and structure.Quarterly reviews of biophysics, 36(3):307–340,
2003.

[67] M. Yannakakis. Computing the minimal fill-in is NP-complete. SIAM J. Al-
gebraic Discrete Methods, 2:77–79, 1981.

[68] L. Yin, R. Yang, M. Gabbouj, and Y. Neuvo. Weighted median filters: A
tutorial. IEEE Transactions on Circuits and Systems, 43:157–192, 1996.

[69] E. M. Zdobnov and R. Apweiler. InterProScan–an integration platform for the
signature-recognition methods in InterPro.Bioinformatics, 17(9):847–848,
2001.

[70] J. Zhang, Z. Ghahramani, and Y. Yang. Learning multiplerelated tasks using
latent independent component analysis. InProceedings of NIPS 2005, 2005.

[71] S. Zhu, X. Ji, W. Xu, and Y. Gong. Multi-labelled classification using maxi-
mum entropy method. InSIGIR 2005: Proceedings of the 28th annual inter-
national ACM SIGIR conference on research and development in information
retrieval, pages 274 – 281, 2005.

75

