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Neuroimaging-based diagnostics could potentially assist clinicians to make more accurate
diagnoses resulting in faster, more effective treatment. We participated in the 2011
ADHD-200 Global Competition which involved analyzing a large dataset of 973 participants
including Attention deficit hyperactivity disorder (ADHD) patients and healthy controls.
Each participant’s data included a resting state functional magnetic resonance imaging
(fMRI) scan as well as personal characteristic and diagnostic data. The goal was to
learn a machine learning classifier that used a participant’s resting state fMRI scan to
diagnose (classify) that individual into one of three categories: healthy control, ADHD
combined (ADHD-C) type, or ADHD inattentive (ADHD-I) type. We used participants’
personal characteristic data (site of data collection, age, gender, handedness, performance
IQ, verbal IQ, and full scale IQ), without any fMRI data, as input to a logistic classifier
to generate diagnostic predictions. Surprisingly, this approach achieved the highest
diagnostic accuracy (62.52%) as well as the highest score (124 of 195) of any of the
21 teams participating in the competition. These results demonstrate the importance of
accounting for differences in age, gender, and other personal characteristics in imaging
diagnostics research. We discuss further implications of these results for fMRI-based
diagnosis as well as fMRI-based clinical research. We also document our tests with a
variety of imaging-based diagnostic methods, none of which performed as well as the
logistic classifier using only personal characteristic data.
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1. INTRODUCTION
Attention deficit hyperactivity disorder (ADHD) is a psychi-
atric disorder characterized by impulsiveness, inattention, and
hyperactivity. This condition affects about 5% of children and
adolescents worldwide (Polanczyk et al., 2007). ADHD imposes
substantial personal burdens on individuals as well as eco-
nomic costs to society. The Diagnostic and Statistical Manual
of Mental Disorders, Fourth Edition (DSM-IV-TR) identifies
three subtypes of ADHD: ADHD hyperactive-impulsive sub-
type (ADHD-H), ADHD inattentive subtype (ADHD-I), and
ADHD combined hyperactive-impulsive and inattentive subtype
(ADHD-C).

Previous fMRI studies have investigated the neurobiology of
ADHD (see King et al., 2003; Bush et al., 2005; Liston et al.,
2011). The majority of such studies focused on group analy-
ses, in which summary statistics computed across groups are
compared to some baseline or to each other. For example, a
given brain region’s mean fMRI activation level taken across a
group of ADHD patients might be compared to the equivalent
mean activation level taken across a group of healthy control

participants. Recent years have seen a growing interest in using
patterns of fMRI data to distinguish individuals, not just groups.
For example, machine learning (artificial intelligence) techniques
have been used to diagnose various psychiatric illnesses based
on an individual’s fMRI data (Zhu et al., 2005, 2008; Shinkareva
et al., 2006; Calhoun et al., 2008; Fu et al., 2008; Marquand et al.,
2008; Cecchi et al., 2009; Arribas et al., 2010; Nouretdinov et al.,
2011; Shen et al., 2010; Costafreda et al., 2011; Fan et al., 2011).
Such fMRI-based diagnosis has the potential to assist psychiatrists
in providing improved diagnosis and treatment for psychiatric
patients. This approach is consistent with the recent emphasis on
personalized medicine in health care delivery.

Resting state fMRI is attractive for fMRI-based diagnostics.
For a resting state fMRI scan, the participant simply rests quietly
without experiencing any stimulus presentation or performing
an overt task (Raichle et al., 2001; Greicius et al., 2003; Fox
et al., 2005). “Functional connectivity” analyses then allow one to
examine the relationships of intrinsic activity patterns in various
brain regions (see McIntosh and Gonzalez-Lima, 1994; Calhoun
et al., 2001; Friston et al., 2003). Resting state fMRI could be
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deployed on existing clinical scanners without the need for MR-
compatible task presentation hardware. It is also possible to
acquire resting state fMRI scans with patient groups who have dif-
ficulty performing more complex psychological tasks. Differences
between ADHD and control participants have previously been
demonstrated with resting state fMRI (Cao et al., 2006, 2009; Tian
et al., 2006, 2008; Zang et al., 2007; Castellanos et al., 2008; Uddin
et al., 2008; Wang et al., 2009; Fair et al., 2010; Liston et al., 2011;
Qiu et al., 2011; Sun et al., 2012). Resting state fMRI has also been
used successfully to diagnose ADHD (Zhu et al., 2005, 2008) as
well as schizophrenia (Shen et al., 2010). However, these stud-
ies included relatively small numbers of participants—20 in Zhu
et al. (2005, 2008) and 52 in Shen et al. (2010). The ADHD-200
dataset described in the next paragraph presented an important
opportunity to test diagnosis based on resting state fMRI data
with much larger participant numbers.

In summer 2011, the ADHD-200 Global Competition chal-
lenged teams to provide the best procedure for diagnosing
individuals with ADHD from their resting state fMRI scans.
Specifically, the goal was to assign each individual to one of
three categories: ADHD-C, ADHD-I, or healthy control. (The
ADHD-200 dataset contained only 11 individuals diagnosed with
ADHD-H, and the ADHD-H category was therefore not consid-
ered in the diagnosis task.) The ADHD-200 Consortium made
available a large Training Dataset that contained data from 776
participants collected at multiple institutions. Each participant’s
data included a resting state fMRI scan, a structural MRI scan,
and individual characteristics data (age, gender, handedness, and
IQ scores). The test (holdout) dataset was comprised of data
from 197 additional participants for whom diagnostic infor-
mation was not provided. Competition entrants had to build
and train a diagnostic procedure using the 776 training partic-
ipants and then submit predicted diagnostic labels for the 197
test set participants. Teams were ranked based on the accura-
cies of their predicted diagnostic labels. The ADHD-200 dataset is
the first publicly-available dataset with fMRI scans from on-the-
order-of one thousand participants, including both psychiatric
patients and healthy controls. In contrast, previous studies on
fMRI-based diagnosis (Zhu et al., 2005, 2008; Shinkareva et al.,
2006; Calhoun et al., 2008; Fu et al., 2008; Marquand et al.,
2008; Cecchi et al., 2009; Arribas et al., 2010; Nouretdinov et al.,
2011; Shen et al., 2010; Costafreda et al., 2011; Fan et al., 2011)
included 20–104 participants (median 39 across all 12 stud-
ies). The ADHD-200 dataset represents considerable effort and
time on the part of its contributors and the ADHD-200 Global
Competition organizers. As such, the competition provided an
important and thus far unique opportunity to test fMRI-based
diagnosis with a very large group of psychiatric patients and
controls.

We compared the effectiveness of diagnosis based on par-
ticipants’ personal characteristic data with diagnosis based on
participants’ resting state fMRI scans. For fMRI-based diagnosis,
we used a variety of feature extraction approaches including prin-
cipal components analysis (PCA), the Fourier transform, and the
functional connectivity (FC) analysis based on independent com-
ponents analysis (ICA) of Calhoun et al. (2001) and Erhardt et al.
(2011). A traditional group comparison was also done to identify

differences in FC between ADHD patients and controls. We tested
whether group differences in fMRI-derived features translated
into differences among individual participants that could be used
for accurate diagnosis. This paper will highlight the challenges
of fMRI-based diagnosis posed by different sources of variance
in large participant groups. We will also discuss group compar-
isons in contrast to individual differences analyses in terms of
their diagnostic utility.

2. MATERIALS AND METHODS
2.1. DATASETS
Data analyzed in this paper came from the ADHD-200 dataset,
comprising data from 973 participants (for more details, see
ADHD-200-Webpage, 2011). Each of the 973 participants was
scanned at one of eight different sites, which pooled their
data to make the ADHD-200 dataset. The eight sites were
Peking University (PekingU), Bradley Hospital/Brown University
(BrownU), Kennedy Krieger Institute (KKI), NeuroIMAGE
Sample (NeuroIMAGE), New York University Child Study
Center (NYU), Oregon Health and Science University (OHSU),
University of Pittsburgh (UPitt), and Washington University in
St. Louis (WashU); see ADHD-200-Webpage (2011). For every
participant, at least one resting state fMRI scan was provided
as well as a T1-weighted structural scan and several personal
characteristic data points (age, gender, handedness, and for most
participants one or more IQ scores). For the 2011 ADHD-200
Global Competition, the data were divided into two datasets. The
ADHD-200 Training Dataset included 776 participants, and the
holdout set (Test Release dataset) included 197 participants. For
the competition, participants’ diagnostic labels—healthy control,
ADHD-C type, or ADHD-I type—as well as medication sta-
tus and scores on various ADHD assessment instruments were
given for the training set but not the holdout set. Competition
entrants used the training set to train their diagnostic algorithms.
They then applied those algorithms to the holdout set to gen-
erate predicted diagnoses for the 197 holdout participants, and
they submitted these predicted diagnoses to the Competition
organizers.

For all experiments on diagnosis using fMRI data as input, we
used the subset of the ADHD-200 Global Competition Training
Dataset derived by excluding the 108 participants whose rest-
ing state fMRI scans were given “questionable” quality assurance
(QA) scores by the data curators. For the work described here,
we refer to this dataset as the “Training Dataset.” (We refer
to the original 776 participant ADHD-200 Training Dataset as
the “Original Training Dataset.” Note that this is a superset of
the Training Dataset). Our Training Dataset included 668 par-
ticipants, whose details are shown in Table 1 below. Note that
data from Brown University were included in the ADHD-200
Competition hold out set but not in the ADHD-200 Competition
training set.

IQ scores were provided for most Original Training Dataset
participants except for those from NeuroIMAGE. (See Table 1
for IQ data summary.) KKI used the Wechsler Intelligence
Scale for Children, Fourth Edition (WISC-IV). NYU, OHSU,
and UPitt used the Wechsler Abbreviated Scale of Intelligence
(WASI). WashU used two subtests of the WASI. PekingU used
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Table 1 | Details of Training Dataset participants.

Training set n Age (years) Gender (%) Handedness (%) Medication history (%)

Group F M Left Right Ambi. No data None Medicated No data

Control 429 12.4 ± 3.3 47.6 52.4 2.6 96.3 0.2 0.9 67.4 2.1 30.5

ADHD-C 141 11.4 ± 3.1 17.0 82.3 3.5 95.0 0.0 1.4 34.0 26.2 39.7

ADHD-I 98 12.1 ± 2.5 26.5 73.5 2.0 98.0 0.0 0.0 60.2 22.5 17.4

Training set Proportions by site (%)

Group PekingU BrownU KKI NeuroIMAGE NYU OHSU UPitt WashU

Control 27.0 0.0 13.5 5.1 21.2 8.4 15.4 9.3

ADHD-C 20.6 0.0 10.6 11.3 45.4 12.1 0.0 0.0

ADHD-I 50.0 0.0 5.1 0.0 33.7 11.2 0.0 0.0

Training set IQ scores (mean ± standard deviation)

Group Verbal IQ Performance IQ Full 2 IQ Full 4 IQ

Control 114.9 ± 13.6 110.7 ± 13.5 112.2 ± 8.3 114.3 ± 13.3

ADHD-C 110.2 ± 16.1 103.3 ± 14.0 NA 107.5 ± 13.9

ADHD-I 106.9 ± 15.2 100.6 ± 15.3 NA 104.2 ± 14.1

See section 2.1 for details and abbreviations.

the Wechsler Intelligence Scale for Chinese Children-Revised
(WISCC-R). NeuroIMAGE did not provide IQ scores for Training
Dataset participants, and no Training Dataset participants came
from BrownU. For each participant, from one to five IQ-related
data points were provided. IQ Measure was provided for every
Training Dataset participant and indicated which of the four
above-listed IQ instruments was used or whether IQ data were
absent for a given participant. The other four data points were
Verbal IQ, Performance IQ, Full 2 IQ, and Full 4 IQ. Full 2 IQ and
FULL 4 IQ were different estimations of the full scale IQ score.
PekingU, KKI, NYU, and UPitt provided Verbal IQ, Performance
IQ, and Full 4 IQ scores for their participants. UPitt also pro-
vided Full 2 IQ scores. OHSU and WashU provided Full 4 IQ
scores.

Subsequent to the competition, diagnostic and medication
data were released for the 197 ADHD-200 Holdout Dataset (“Test
Release”) participants, except for the 26 participants from the
BrownU site. In some analyses performed after the competition,
we used the subset of the ADHD-200 Holdout Dataset consisting
of the 171 participants for whom diagnostic data were released.
We refer to this subset as the “Holdout Dataset.” (We refer to
the original 197 participant holdout set as the “Original Holdout
Dataset.”) For details of Holdout Dataset participants, see Table 2
below.

IQ scores were provided for the Original Holdout Dataset
participants. (See Table 2 for IQ data summary.) IQ testing
details are identical to those for the Original Training Dataset
(described above) with two exceptions. IQ scores were provided
for NeuroIMAGE holdout participants (but not NeuroIMAGE
Training Dataset participants). For Original Holdout Dataset
participants, the NeuroIMAGE site used the Block Design and
Vocabulary subtests of the WISC or Wechsler Adult Intelligence

Scale (WAIS), depending on participant age. The use of this test-
ing regimen was reflected in the IQ Measure (indicator) data
point value for each NeuroIMAGE holdout set participant. A
Full 2 IQ score was provided for all but one NeuroIMAGE hold-
out set participants. BrownU provided Verbal IQ, Performance
IQ, and Full 4 IQ scores for its 26 participants. BrownU
did not provide IQ Measure indicator data for its partici-
pants, nor do we have details of which IQ tests were used at
BrownU.

Each data collection site used its own scanner(s) and its own
MR scanning parameters. Full details are available at ADHD-200-
Webpage (2011).

2.2. GENERAL DIAGNOSIS PROCEDURE
The ADHD-200 Global Competition required three-way diagnos-
tic classification, but we also explored binary diagnosis because
we suspected that it might be easier than three-way diagnosis.
In binary diagnosis, we classified participants as healthy con-
trol vs. ADHD, collapsing across ADHD subtype. In three-way
diagnosis, we classified participants as healthy control vs. ADHD-
C vs. ADHD-I.

Depending on the analysis, we used as input to the diagnosis
process either personal characteristic data or fMRI data. We first
preprocessed the data, applied dimensionality reduction algo-
rithms in the case of fMRI data, and then extracted a feature
vector for each participant. Personal characteristic feature vec-
tors included site of data collection, age, gender, handedness, and
IQ scores (for details see section 2.3). We tested four different
types of fMRI feature vector: mean fMRI signal intensity over
time in each voxel (spatial location), projections of voxels’ time-
courses into a PCA space, low frequency Fourier components of
voxel’s timecourses, and voxels’ weightings on FC maps derived
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Table 2 | Details of Holdout Dataset participants.

Holdout set n Age (years) Gender (%) Handedness (%) Medication history (%)

Group F M Left Right No data None Medicated No data

Control 94 12.0 ± 4.2 51.1 48.9 5.3 93.6 1.1 34.0 0.0 63.3

ADHD-C 51 11.5 ± 3.5 15.7 84.3 5.9 92.2 2.0 3.9 15.7 80.4

ADHD-I 26 12.1 ± 2.6 34.6 65.4 0.0 100.0 0.0 46.2 23.1 30.8

Holdout set Proportions by site (%)

Group PekingU BrownU KKI NeuroIMAGE NYU OHSU UPitt WashU

Control 28.7 0.0 8.5 14.9 12.8 29.8 5.3 0.0

ADHD-C 19.6 0.0 5.9 21.6 43.1 9.8 0.0 0.0

ADHD-I 53.8 0.0 0.0 0.0 26.9 3.8 15.4 0.0

Holdout set IQ scores (mean ± standard deviation)

Group Verbal IQ Performance IQ Full 2 IQ Full 4 IQ

Control 119.2 ± 12.8 108.5 ± 13.6 100.6 ± 14.4 114.6 ± 12.3

ADHD-C 109.2 ± 13.6 101.1 ± 17.0 93.3 ± 16.5 107.0 ± 14.8

ADHD-I 108.6 ± 13.1 101.5 ± 11.2 NA 106.1 ± 11.2

See section 2.1 for details and abbreviations.

from ICA. (For details of preprocessing and feature extraction, see
sections 2.4 and 2.5.) Participant feature vectors and diagnostic
labels were input into the Weka machine learning software pack-
age (Hall et al., 2009). We used Weka’s implementations of the
logistic classifier, linear support vector machine (SVM), quadratic
SVM, cubic SVM, and radial basis function (RBF) SVM classifiers.
Each classifier had free parameters that were fit to the data during
training. The trained classifier could then predict a participant’s
diagnostic category from his or her feature vector.

We will refer to a given combination of input data choice
(personal characteristic vs. fMRI data), preprocessing, feature
extraction, and learning algorithm as a “Diagnostic Pipeline.”
To test the binary and three-way diagnostic performance of
various Diagnostic Pipelines, we used 10-fold cross validation.
That is, we defined a standard set of 10-folds where each fold
included a (disjoint) subset of 66 or 67 participants from the 668
Training Dataset participants. The subsets were approximately
counterbalanced for diagnostic class, gender, age, handedness, IQ,
medication status, and site of data collection. (Perfect counter-
balancing was not possible due to the make-up of the Training
Dataset.) For each iteration i of 10-fold cross validation, we
trained a classifier on the feature vectors from participants in
all folds except fold i. The test set accuracy score for a given
fold i was defined as the proportion of participants in fold i
assigned to the correct diagnostic category by the classifier. The
classifier was not given any of the test set data during train-
ing, so testing on the test set data gave an indication of the
classifier’s ability to generalize diagnostic performance to new
participants’ data. To derive a training set accuracy score, we also
tested the trained classifier on the same data used for training—
namely all participants except for those in fold i. The training set
accuracy provided a measure of the classifier’s ability to detect

some diagnostic pattern in the data. Poor performance on the
training set indicated either that the data in question did not
contain diagnostically-useful information or that the classifier
was not able to detect diagnostically-useful information that was
present. The mean and standard deviation were computed for
the 10 test set accuracy scores and for the 10 training set accu-
racy scores for each Diagnostic Pipeline. We compared different
Diagnostic Pipelines’ accuracies from 10-fold cross validation
using one-tailed, paired samples t-tests (df = 9). We also com-
pared accuracy results to the baseline chance accuracy achieved by
guessing healthy control (i.e., the majority class) for every partici-
pant. Note that this definition of chance accuracy is different from
the one used by the ADHD-200 Global Competition organizers
(see ADHD-200-Results-Webpage, 2011).

For the ADHD-200 Global Competition, we tested various
Diagnostic Pipelines on the three-way diagnosis task using 10-
fold cross validation. We selected the best-performing Diagnostic
Pipeline, which turned out to use the logistic classifier with only
personal characteristic data as input. Since fMRI data quality did
not affect personal characteristic data, we trained the logistic clas-
sifier on all 776 participants from the Original Training Dataset.
We applied this trained classifier to the 197 ADHD-200 Global
Competition Original Holdout Dataset participants to generate
predicted diagnostic labels.

In follow-up analyses after the competition, we tested some
other Diagnostic Pipelines (see below) using 10-fold cross valida-
tion. Testing dozens of different Diagnostic Pipelines introduced
the problem of multiple comparisons and over-fitting. To address
this issue, we selected the best-performing Diagnostic Pipeline
in a given context (e.g., binary diagnosis using only personal
characteristic data as input) and trained its classifier on all 668
participants from the Training Dataset. We then tested the trained
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classifier on the 171 participants from our Holdout Dataset. For
these analyses, the Holdout Dataset was not used in any way
to select a Diagnostic Pipeline nor to train its classifier. The
Holdout Dataset was used only to test the ability of a given trained
Diagnostic Pipeline to generalize its performance to completely
new data.

2.3. DIAGNOSIS WITH PERSONAL CHARACTERISTIC DATA
We tested diagnostic classification using just personal charac-
teristic data as input with no MR imaging data. Personal char-
acteristic data were preprocessed in two steps. The selection
process selected a subset of personal characteristic data features
to include. Personal characteristic selection 1 (PCs1) included 7
features: data collection site, gender, age, handedness, Verbal IQ,
Performance IQ, and Full 4 IQ. Personal characteristic selection
2 (PCs2) was identical to PCs1 except for the addition of two
more features (IQ Measure and Full 2 IQ) as well as different pre-
processing of handedness data from the NeuroIMAGE site. PCs2
included nine features: data collection site, gender, age, handed-
ness, IQ Measure, Verbal IQ, Performance IQ, Full 2 IQ, and Full
4 IQ. Handedness data from all sites except the NeuroIMAGE
site were categorical (0 = left-handed, 1 = right-handed, 2 =
ambidextrous). NeuroIMAGE handedness values were continu-
ous scores from the Edinburgh Handedness Inventory (Oldfield,
1971). PCs1 simply took all handedness scores as they were and
treated handedness as a continuous feature. PCs2 modified the
NeuroIMAGE handedness scores to fit the 0, 1, 2 categorical
scheme by replacing all positive-valued Edinburgh Handedness
scores with a 1 (right-handed) and all negative scores with a 0
(left-handed). The second preprocessing step filled in missing
values using mean imputation for continuous (real-valued) fea-
tures and mode imputation for categorical features. After being
imported into the Weka machine learning package, feature vec-
tors were standardized such that each feature element fell in the
range 0–1 [see section G as well as Witten et al. (2011)]. We
used PCs1 in tests prior to the ADHD-200 Global Competition
deadline. Our competition submissions were also generated using
PCs1. We used both PCs1 and PCs2 in follow-up analyses after the
competition.

2.4. fMRI DATA PREPROCESSING
For the resting state fMRI data, we used our own preprocess-
ing pipeline based on the SPM8 fMRI analysis package as well
as in-house MATLAB code, as opposed to the preprocessed
data supplied by the ADHD-200 Global Competition organizers.
Preprocessing for each participant included: (1) 6 parameter rigid
body motion correction in SPM8, (2) rigid body co-registration
of functional scans to subject-specific anatomical scans in SPM8,
(3) non-linear spatial warping (estimation and interpolation) of
each subject’s anatomical volume to the MNI T1 template space
at 1 × 1 × 1 mm resolution in SPM8, (4) interpolation of fMRI
volumes into the T1 template space at 3 × 3 × 3 mm spatial res-
olution using warping parameters from step (3), (5) 8 mm full
width at half maximum (FWHM) Gaussian spatial filtering of
fMRI volumes in SPM8. At this point, all participants’ resting
state fMRI data were aligned in the MNI T1 template space, and
they had the same spatial dimensions (57 × 67 × 50 voxels) and

the same spatial resolution (3 × 3 × 3 mm voxel size). The fMRI
data still varied in temporal duration and sampling rate depend-
ing on the participant and site of data collection. Preprocessing
step (6) involved truncation of all resting state fMRI data to length
185 s and temporal linear interpolation of all fMRI scans into a
sampling rate of 2 Hz or 0.5 s volume time (see Appendix B for
details and motivation of temporal preprocessing). After step (6),
participant fMRI data had the same temporal dimensions (370
time points with a 0.5 s volume time). For the FC Analysis
(end of section 2.5), we did not use preprocessing step (6) on
the data. All other fMRI analyses included step (6). Also see
Figure 1.

2.5. fMRI DIMENSIONALITY REDUCTION AND FEATURE EXTRACTION
Each preprocessed fMRI scan was very high dimensional and
included 70,651,500 separate intensity values (57 × 67 × 50 spa-
tial grid by 370 time points)—about 280 Mb using single floating
point precision. In comparison to 70,651,500, the number of
participants (668) in the Training Dataset was small. Therefore,
a machine learning algorithm trained on the full fMRI dataset
would very likely over-fit to high dimensional noise rather than
learning general diagnostic patterns in the data. To address
this problem, we used several different methods for reducing
spatial and temporal dimensionality. Dimensionality reduction
was also necessary to reduce computation times and memory
loads to manageable levels during classifier training and test-
ing. To create each Diagnostic Pipeline, we combined dimen-
sionality reduction procedures as described below. (Also see
summary in Figure 1 as well as mathematical details in the
Appendices.)

Spatial window averaging (SWA) was similar to down-
sampling (see Appendix D). It took a reduction parameter r
and reduced the spatial dimensionality by a factor of approxi-
mately r along each spatial axis. We considered various values
for r. r = 1 produced no dimensionality reduction. r = 3 reduced
the original volume size from 57 × 67 × 50 (190,950) voxels to
19 × 22 × 16 (6,688) voxels. r = 8 reduced the original volume
to 7 × 8 × 6 (336) voxels. For a 4D fMRI scan data array, SWA
was applied separately to each 3D volume (time point).

We used a binary mask to remove voxels outside the brain (see
Appendix E). Masking reduced the original 57 × 67 × 50 vol-
ume’s voxel count from 190,950 to 97,216. For SWA-reduced data,
masking reduced a 19 × 22 × 16 volume (produced with SWA,
r = 3) from 6,688 voxels to 3,558. For a 7 × 8 × 6 volume (pro-
duced with SWA, r = 8), masking reduced the voxel count from
336 to 186.

fMRI scan intensities differed across participants and, in par-
ticular, across different data collection sites. We used two differ-
ent intensity normalization methods. Timecourse-based intensity
normalization involved percent signal change scaling of each
voxel’s timecourse (PSCS-tc). Scan-based intensity normaliza-
tion involved percent signal change scaling of each fMRI scan
(PSCS-s) such that each voxel’s timecourse was scaled by the
mean across the entire dataset (after SWA and masking). Also see
Appendix C.

After SWA, masking, and intensity normalization, fMRI
data were processed with one of four different temporal
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FIGURE 1 | Flow chart summarizing fMRI data preprocessing, normalization, dimensionality reduction, feature extraction, and testing in diagnosis

tasks.
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dimensionality reduction procedures based on temporal averag-
ing (T Avg), PCA, the Fast Fourier Transform (FFT), or an FC
analysis based on ICA.

T Avg reduced the temporal dimensionality of a 4D fMRI scan
from 370 to 1 by replacing each voxel’s timecourse with the aver-
age of that timecourse. This procedure was combined with SWA
using r = 3 or r = 8 and binary masking. Only scan-based inten-
sity normalization (PSCS-s) was used with temporal averaging.
Timecourse-based normalization (PSCS-tc) was not used with
T Avg as it set every voxel’s mean intensity to zero, which would
have resulted in all-zero feature vectors with T Avg. T Avg feature
vectors had a length of 3558 for r = 3 or 186 for r = 8.

We used PCA implemented in MATLAB to reduce temporal
dimensionality (see Appendix F). We treated the timecourse vec-
tor from each voxel from each participant as an observation and
performed PCA on the nparticipants × nvoxels timecourses. We kept
the first 1 or first 5 principal components and projected each
voxel’s timecourse onto those components, for each participant.
This resulted in a temporal size reduction from 370 to 1 or from
370 to 5. We will refer to these two cases as PCA1 and PCA1−5,
respectively. For Diagnostic Pipelines incorporating PCA dimen-
sionality reduction, we used timecourse- or scan-based intensity
normalization (PSCS-tc or PSCS-s). We also used SWA (r = 8)
and masking to reduce PCA computation time. PCA1 feature vec-
tors had a length of 186, while PCA1−5 feature vectors had a
length of 930.

We used the FFT in two different temporal dimensionality
reduction procedures. In the FFT feature extraction procedure,
we computed the FFT of each length 370 timecourse from each
voxel from each participant and retained the modulus and phase
angle from the 18 (complex-valued) FFT components in the
0.001–0.1 Hz frequency range. This frequency range was chosen
based on the literature on analysis of low frequency fluctuations
(ALFF) (Biswal et al., 1995; Zang et al., 2007). FFT reduced tem-
poral dimensionality from 370 to 36. In the ALFF procedure,
we computed the mean modulus over the 18 FFT components
in the 0.001–0.1 Hz frequency range. ALFF reduced temporal
dimensionality from 370 to 1. FFT and ALFF feature extraction
were combined with SWA reduction (for FFT r = 8, for ALFF
r = 3 or r = 8), masking, and timecourse- or scan-based inten-
sity normalization (PSCS-tc or PSCS-s). FFT Diagnostic Pipelines
produced feature vectors with length 6696. ALFF feature vectors
had a length of 3558 for r = 3 or 186 for r = 8.

We performed an FC analysis on the fMRI data using spa-
tial ICA (Calhoun et al., 2001; Erhardt et al., 2011). (Also see
Figure 1.) For details of this FC analysis, see Calhoun et al.
(2001) and Erhardt et al. (2011). Briefly, the FC analysis was
as follows. fMRI data underwent preprocessing steps 1–5 (see
section 2.4.) Each scan was masked. Voxel timecourses were nor-
malized using PSCS-tc. We did not use percent signal change
scaling based on the entire scan mean (PSCS-s) for FC anal-
ysis as PSCS-s does not normalize out between-voxel mean
intensity differences as is required for this FC analysis. Each
participant’s data were entered into a separate spatial PCA, keep-
ing the first 25 components. The 25 PCA components from
each participant were concatenated and entered into a second
PCA step, in which 20 components were retained. These 20

components underwent ICA using Hyvarinen’s FastICA algo-
rithm (Hyvarinen, 1999). We used Erhardt et al. (2011)’s GICA3
method for back reconstruction of individual participant’s ICA
components from the group components. This resulted in 20
volumetric FC weighting maps for each participant. (Note: In
reconstructing the 3D volumetric maps, those voxels that had
been previously masked out were simply zero-filled.) Each FC
weighting map depicted either a network of brain regions or
else a noise pattern (e.g., movement noise). We identified the
default mode network (DMN, Raichle et al., 2001; Fox et al.,
2005) from among the 20 FC weighting maps by visual inspec-
tion. The default mode or resting state network includes poste-
rior cingulate cortex, precuneus, medial prefrontal cortex, and
temporal-parietal cortex. We extracted feature vectors from the
FC maps as components of Diagnostic Pipelines. FCDMN feature
extraction included SWA of the DMN map for a given partici-
pant with reduction factor r = 3 or r = 8, followed by masking
and flattening (see Appendix A) to generate a feature vector.
FCDMN reduced the temporal dimensionality of the data from
370 to 1. With r = 3 and r = 8, respectively, FCDMN Diagnostic
Pipelines produced feature vectors with lengths 3558 and 186.
FC1−20 feature extraction included SWA of all 20 FC weighting
maps for a given participant with reduction factor r = 8 fol-
lowed by masking, flattening, and concatenation of the 20 maps
to create a feature vector for each participant. FC1−20 reduced
the temporal dimensionality of the data from 370 to 20. With
r = 8, FC1−20 Diagnostic Pipelines produced feature vectors of
length 3720.

2.6. DIAGNOSTICS FROM GROUP DIFFERENCES
We also tested whether group differences identified using statisti-
cal comparisons of ADHD vs. controls or ADHD-C vs. ADHD-I
patients would produce features with good diagnostic properties.
For each of the feature extraction methods discussed in section 2.5
(T Avg, PCA1, PCA1−5, FFT, ALFF, FCDMN, and FC1−20), we
performed statistical group comparisons, either between ADHD
patients and controls or between ADHD patient subtypes, and
selected clusters of voxels that showed significant differences
in these comparisons. Participants’ feature vectors were then
extracted from those clusters. Feature extraction procedures using
this method are denoted T AvgCluster, PCA1,Cluster, PCA1−5,Cluster,
FFTCluster, ALFFCluster, FCDMN,Cluster, and FC1−20,Cluster.

In detail, the cluster identification procedure was as follows.
Each of the feature extraction methods from section 2.5 produced
a length η feature vector at each voxel location that passed mask-
ing. η took on the following values: T Avg:1, PCA1:1, PCA1−5:5,
FFT:36, ALFF:1, FCDMN:1, and FC1−20:20. For example, in a
given participant, PCA1−5 produced a length five feature vec-
tor at each voxel containing that voxel’s weights for the first five
PCA components. Consider a given feature extraction method
(T Avg, PCA1, PCA1−5, FFT, ALFF, FCDMN, or FC1−20) and a
given participant p. Let k ∈ [1, η] be an index into the length η

feature vector. For PCA1−5, k = 1 denotes the first PCA com-
ponent weight, k = 2 denotes the second, and so on. We define
Vk,p (where k ∈ [1, η]) as the 3D volume comprised of the kth
feature value at each voxel. For PCA1−5, V1,p contained the
weights for the first PCA component for participant p. (Voxels
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of Vk,p that did not pass the masking process were simply zero-
filled.) For each k ∈ [1, η], we identified clusters of voxels (regions
of interest) exhibiting significant differences in two-sample t-
tests between groups. Specifically, statistical contrast maps were
generated with massively univariate t-tests performed at each
voxel location on the values from participants’ volumes Vk,p.
Diagnostic Pipelines included clusters either from the compari-
son of ADHD patients vs. healthy controls (ncomparisons = 1) or
from the comparison of both ADHD patients vs. healthy con-
trols as well as ADHD-C vs. ADHD-I patients (ncomparisons = 2).
That is, a total of η × ncomparisons statistical maps were com-
puted for a given Diagnostic Pipeline. Statistical contrast maps
were thresholded voxelwise such that |t| > θt , where the value
of θt was specific to each Diagnostic Pipeline. Statistical maps
were then cluster size thresholded (see Appendix I) to zero out
those voxels belonging to clusters with volumes (in mm3) less
than the threshold volume θcs. The value for θcs was also spe-
cific to each Diagnostic Pipeline. Voxel clusters were extracted
from the thresholded contrast maps using an automated algo-
rithm (see Appendix H). To avoid over-fitting, on a given fold
i of 10-fold cross validation, the statistical cluster selection was
done on the training data only (participants not in fold i). The
parameter nclusters governed how many significant clusters were
retained from each statistical map in a given Diagnostic Pipeline.
Clusters were ordered by statistical mass, defined as the sum of
absolute t-values for all voxels in a cluster. The nclusters most sta-
tistically massive clusters from each statistical map were retained,
with less massive clusters discarded. Setting nclusters = ∞ resulted
in all clusters’ being kept. Finally, for a given participant p,
for each cluster identified in each of the η × ncomparisons sta-
tistical maps, we took the appropriate Vk,p and computed its
mean value across the voxel locations in that cluster. All such
mean values were then concatenated to form a feature vector for
participant p.

The T AvgCluster feature extraction method was combined
with no SWA spatial reduction (equivalent to SWA with r = 1),
masking, and scan-based intensity normalization (PSCS-s).
PCA1,Cluster and PCA1−5,Cluster feature extraction were com-
bined with SWA (r = 8), masking, and either timecourse-
or scan-based intensity normalization (PSCS-tc or PSCS-s).
FFTCluster feature extraction was combined with SWA (r = 3),
masking, and either PSCS-tc or PSCS-s intensity normalization.
The ALFFCluster feature extraction method was combined with
no SWA spatial reduction, masking, and either PSCS-tc or
PSCS-s. FCDMN,Cluster and FC1−20,Cluster feature extraction were
always combined with no SWA spatial reduction, masking,
and timecourse-based intensity normalization (PSCS-tc). The
T AvgCluster, PCA1,Cluster, PCA1−5,Cluster, FFTCluster, ALFFCluster,
FCDMN,Cluster, and FC1−20,Cluster procedures were governed by
five parameters, including θt , θcs, and nclusters defined above, as
well as the minimum inter-peak distance dmin and minimum
extracted cluster size vmin parameters used by the automated
cluster extractor (see Appendix H). We tested Diagnostic
Pipelines with different settings for these parameters. Let us
consider the parameter vector [θt, θcs, nclusters, dmin, vmin].
This parameter vector took on a specific value for each
Diagnostic Pipeline. For T AvgCluster, we tested the parameter

vector value [2.582, 1701, ∞, 30, 540]. For PCA1,Cluster and
PCA1−5,Cluster, we tested the parameter vectors [2.582, 0, ∞, 0, 0]
and [1.964, 0, ∞, 0, 0]. For FFTCluster, we tested the
parameter vector [2.582, 1458, ∞, 27, 0]. For ALFFCluster,
we tested the parameter vector [2.582, 1701, ∞, 30, 540].
For FCDMN,Cluster, we tested the following parameter vec-
tors: [2, 1350, 10, 30, 540], [2.582, 1701, 5, 30, 540], and
[2.582, 1701, ∞, 30, 540]. For FC1−20,Cluster, we tested the
parameter vector [2, 1350, 10, 30, 540].

We tested a variant of the cluster-based feature extraction
method described above. This variant was intended to reduce
cluster variability across the different iterations of 10-fold cross
validation. Feature extraction methods utilizing this variant
were denoted T AvgRobust, PCA1,Robust, PCA1−5,Robust, FFTRobust,
ALFFRobust, FCDMN,Robust, and FC1−20,Robust. For a given itera-
tion i of 10-fold cross validation, a set Si of statistical comparison
maps was computed from all participants not in fold i. The set
Si included η × ncomparisons statistical comparisons on the vol-
umes Vk,p where k ∈ [1, η] and p ∈ [1, nparticipants] (see above for
definitions). For example, in FCDMN,Robust, Si included statistical
comparisons on the DMN FC weighting map, as in FCDMN,Cluster.
For FC1−20,Robust, Si included statistical comparisons on all 20 FC
weighting maps, as in FC1−20,Cluster. Then, we also computed nine
additional sets of comparisons maps Si,j in nine sub-iterations j,
where j ∈ {1, . . . , 10}\{i}. A given Si,j was equivalent to a given
Si except that Si,j was computed from participants not in fold i
nor in fold j. The Si,j maps underwent local |t|-value threshold-
ing as well as cluster size thresholding (see Appendix I). Here, we
retained only those voxel locations in Si that also exhibited signif-
icance on all nine sets Si,j. That is, after all nine sub-iterations j,
the maps in Si were modified by zeroing out those voxel locations
not showing significance in the appropriate maps from the sets
Si,j. Clusters were then extracted from the filtered maps Si and
feature vectors generated for each participant as in the cluster-
based feature extraction method described above. This somewhat
elaborate process was meant to introduce robustness into the
cluster selection process, as it only considered voxel locations
showing consistent statistical differences across different subsets
of participants.

The T AvgRobust, PCA1,Robust, PCA1−5,Robust, FFTRobust,
ALFFRobust, FCDMN,Robust, and FC1−20,Robust feature extrac-
tion methods were combined with preprocessing steps in
the same way, respectively, as the T AvgCluster, PCA1,Cluster,
PCA1−5,Cluster, FFTCluster, ALFFCluster, FCDMN,Cluster, and
FC1−20,Cluster methods. (See above for details.) The robust
feature extraction methods were controlled by the same vector
of parameters [θt, θcs, nclusters, dmin, vmin] introduced above
for the cluster-based methods. For T AvgRobust, we tested
the parameter vector value [2.582, 1701, ∞, 30, 540]. For
PCA1,Robust and PCA1−5,Robust, we tested the parameter vector
[1.964, 0, ∞, 0, 0]. For FFTRobust, we tested the parameter vector
[2.582, 1458, ∞, 27, 0]. For ALFFRobust, we tested the parameter
vector [2.582, 1701, ∞, 30, 540]. For FCDMN,Robust, we tested
the parameter vector [2.582, 63, ∞, 0, 0]. For FC1−20,Robust,
we tested the following values for the parameter vector:
[2.582, 63, ∞, 0, 0], [2.6, 100, ∞, 0, 0], [2.6, 50, ∞, 0, 0],
[2.6, 0, ∞, 0, 0], [4, 0, ∞, 0, 0], and [2.6, 200, ∞, 600, 5400].
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2.7. fMRI FUNCTIONAL CONNECTIVITY ANALYSIS GROUP
COMPARISON

We performed statistical group comparison analyses on the
FC weighting maps (see last paragraph of section 2.5). These
comparisons took the form of massively univariate t-tests on
the weighting values for each voxel location for each map. We
considered two different t-tests. The localizer test compared all
participants’ weighting values against zero. The patients vs. con-
trols t-test contrasted ADHD participants’ FC weighting maps
(collapsing across ADHD subtype) against controls. The result-
ing statistical maps were thresholded voxel-wise at |t| ≥ 2.582
(p < 0.01, two-tailed t-test, df = 666). To correct for multiple
comparisons across the voxel population at a global p < 0.05, all
maps were cluster size thresholded (see Appendix I) with a min-
imum cluster size of 63 voxels (equivalent to 1701 mm3). The
cluster size threshold of 63 was determined using Monte Carlo
simulation.

3. RESULTS
3.1. DIAGNOSIS WITH PERSONAL CHARACTERISTIC DATA
Table 3 shows accuracy scores achieved using personal charac-
teristic data features for the binary and three-way diagnostic
tasks. We defined chance baseline as the accuracy obtained from
guessing the majority class (healthy control) for all participants.
Chance accuracy was 64.2% for the Training Dataset. The logistic

classifier, linear SVM, quadratic SVM, and cubic SVM clas-
sifiers all performed significantly better than chance on both
binary and three-way diagnosis (see Table 3) using either the
personal characteristic data selection 1 (PCs1) or selection 2
(PCs2) features (see section 2.3). The RBF SVM classifier always
guessed healthy control. The best binary diagnostic accuracy
(75.0 ± 4.5%) was better than the best three-way diagnostic accu-
racy (69.0 ± 8.3) at p = 0.01 (two-tailed paired samples t = 3.24,
df = 9).

At the time of the ADHD-200 Global Competition deadline,
the logistic classifier using personal characteristic data selection
1 (PCs1) provided the best accuracy on three-way diagnosis of
any Diagnostic Pipeline we had tested, including the fMRI-based
Diagnostic Pipelines discussed below. (Recall that “Diagnostic
Pipeline” refers to the combination of input data, preprocess-
ing, feature extraction, and learning algorithm used to create
a predictor that can produce a diagnosis for each participant.)
The logistic classifier with PCs2 input achieved slightly better
accuracy than with PCs1 on the Training Dataset, but we did
not test PCs2 until after the competition. Therefore, we used
the logistic classifier with PCs1 input features trained on the
entire ADHD-200 Original Training Dataset to generate our pre-
dicted diagnostic submissions for the competition based on the
ADHD-200 Original Holdout Dataset. Our submission achieved
the highest prediction accuracy (62.52%) as well as the best

Table 3 | Training Dataset results: accuracies for binary and three-way diagnosis using various classifiers with personal characteristic data

from the 668 participant Training Dataset.

Diagnostic task Input data Classifier Accuracy (%) P value

Binary Chance 64.2 ± 3.8

Personal characteristic Logistic 73.7 ± 5.1 1 × 10−5

data selection 1 (PCs1) Linear SVM 74.4 ± 4.6 9 × 10−6

Quadratic SVM 74.5 ± 6.2 4 × 10−5

Cubic SVM 74.4 ± 4.8 2 × 10−6

RBF SVM 64.2 ± 3.8 NA

Personal characteristic Logistic 74.0 ± 5.0 1 × 10−5

data selection 2 (PCs2) Linear SVM 75.0 ± 4.5 7 × 10−6

Quadratic SVM 74.2 ± 6.3 5 × 10−5

Cubic SVM 73.8 ± 5.0 3 × 10−5

RBF SVM 64.2 ± 3.8 NA

Three-way Chance 64.2 ± 3.8

Personal characteristic Logistic 68.7 ± 8.1 0.020

data selection 1 (PCs1) Linear SVM 66.9 ± 7.1 0.038

Quadratic SVM 68.6 ± 7.5 0.006

Cubic SVM 68.6 ± 8.2 0.020

RBF SVM 64.2 ± 3.8 NA

Personal characteristic Logistic 69.0 ± 8.3 0.020

data selection 2 (PCs2) Linear SVM 66.9 ± 7.2 0.050

Quadratic SVM 68.9 ± 7.9 0.009

Cubic SVM 67.5 ± 7.7 0.046

RBF SVM 64.2 ± 3.8 NA

PCs1, personal characteristic data selection 1; PCs2, personal characteristic data selection 2. See section 2.3 for details. Accuracy column shows mean accura-

cies ± standard deviations across 10-fold cross validation. Best result in a given category is shown in bold font. P value column shows p values for one-tailed, paired

samples t-tests (df = 9) of accuracies against chance baseline (guessing control for every participant). NA (not available) indicates that the t-test was undefined in

the case of SVM (RBF), which always guessed control and produced predictions identical to chance baseline.
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competition score (124 out of 195) of any of the 21 competing
teams. The competition scoring system assigned one point for
every correct diagnosis and 0.5 point for a diagnosis of ADHD
but with the wrong subtype (e.g., diagnosing ADHD-I when the
participant was actually in the ADHD-C category). For more
details of competition results, see ADHD-200-Results-Webpage
(2011).

We tested the four best-performing Diagnostic Pipelines from
Table 3 on the 171 participant Holdout Dataset, for which
diagnostic labels were released after the ADHD-200 Global
Competition. The results of these holdout tests are shown in
Table 4. All four Diagnostic Pipelines performed better than
chance, indicating their ability to generalize to new data that was
not used either to train the classifier nor to select the learning
algorithms.

3.2. DIAGNOSIS WITH fMRI DATA
We tested binary diagnosis (Figure 2 top) and three-way diagno-
sis (Figure 2 bottom) using resting state fMRI input data with
T Avg, PCA1, PCA1−5, FFT, ALFF, FCDMN, and FC1−20 feature
extraction (see section 2.5). None of these fMRI-based features
provided better diagnostic accuracy than the best results using
personal characteristic data (section 3.1) on either diagnostic task.

The best accuracy on binary diagnosis of the tests shown in
Figure 2 was 70.7 ± 6.2%, which was achieved by the Diagnostic
Pipeline that included SWA with reduction factor r = 3, scan-
based percent signal change intensity normalization (PSCS-s),
T Avg, and the RBF SVM classifier. This accuracy was significantly
better than the 64.2 ± 3.8% chance accuracy (p = 0.008, t =
3.00, df = 9). However, this accuracy was worse than the 75.0 ±
4.5% obtained with the best performing Diagnostic Pipeline
using personal characteristic data (section 3.1) at p = 0.04
(t = 1.94, df = 9).

The best accuracy on three-way diagnosis of the tests shown in
Figure 2 was 64.7 ± 4.3%. The Diagnostic Pipeline that obtained
this accuracy used SWA with reduction factor r = 8, timecourse-
based percent signal change intensity normalization (PSCS-tc),

Table 4 | Holdout Dataset results: accuracies for binary and three-way

diagnosis on the 171 participant Holdout Dataset using personal

characteristic input data.

Diagnostic task Input data Classifier Holdout accuracy (%)

Binary Chance 55.0

PCs1 Quadratic SVM 69.0

PCs2 Linear SVM 65.5

Three-way Chance 55.0

PCs1 Logistic 63.7

PCs2 Logistic 59.1

Only the four best-performing Diagnostic Pipelines from Table 3 were tested

on the Holdout Dataset. PCs1, personal characteristic data selection 1; PCs2,

personal characteristic data selection 2. See section 2.3 for details. Holdout

accuracy column shows accuracies derived from training each classifier on the

668 participant Training Dataset and then testing it on the Holdout Dataset.

Chance baseline was derived by guessing control for every participant.

PCA1 feature extraction, and the linear SVM classifier. Though
this accuracy was barely above the baseline chance accuracy of
64.2 ± 3.8%, this small difference was significant (p = 0.04, t =
1.96, df = 9). This accuracy was worse than the 69.0 ± 8.3%
obtained with the best performing Diagnostic Pipeline using
personal characteristic data (section 3.1) at p = 0.03 (t = 2.23,
df = 9).

3.3. DIAGNOSIS WITH fMRI DATA USING CLUSTER AND ROBUST
FEATURE EXTRACTION

Binary and three-way diagnosis were tested with feature extrac-
tion methods based on significant clusters identified in group
comparisons. These feature extraction methods included the
T AvgCluster, PCA1,Cluster, PCA1−5,Cluster, FFTCluster, ALFFCluster,
FCDMN,Cluster, and FC1−20,Cluster procedures (see section 2.6).
Results are shown in Figure 3. None of these tests performed
better than the best Diagnostic Pipelines using personal charac-
teristic data (section 3.1).

For binary diagnosis, the best cluster-based Diagnostic
Pipeline achieved 69.5 ± 5.5% accuracy, which was significantly
better than the baseline chance accuracy of 64.2 ± 3.8% (p =
0.002, t = 3.88, df = 9). This Diagnostic Pipeline used SWA with
reduction factor r = 8, scan-based percent signal change intensity
normalization (PSCS-s), PCA1,Cluster feature extraction based on
comparison of ADHD patients vs. controls as well as ADHD-C vs.
ADHD-I patients, and the cubic SVM classifier. In comparison to
this cluster-based approach, the best personal characteristic-based
Diagnostic Pipeline (section 3.1) achieved a significantly better
accuracy of 75.0 ± 4.5% (p = 0.002, t = 3.70, df = 9). For three-
way diagnosis, the best cluster-based Diagnostic Pipeline achieved
66.0 ± 5.1% accuracy. Comparison of this accuracy with the
baseline chance accuracy of 64.2 ± 3.8% approached signif-
icance (p = 0.07, t = 1.59, df = 9). This Diagnostic Pipeline
used SWA with reduction factor r = 8, scan-based percent signal
change intensity normalization (PSCS-s), PCA1−5,Cluster feature
extraction based on comparison of ADHD patients vs. con-
trols as well as ADHD-C vs. ADHD-I patients, and the cubic
SVM classifier. Compared to this cluster-based approach, the best
personal characteristic-based Diagnostic Pipeline (section 3.1)
achieved an accuracy of 69.0 ± 8.3%, and the comparison of
these accuracies approached significance (p = 0.08, t = 1.55,
df = 9).

Binary and three-way diagnosis were also tested with fea-
ture extraction methods utilizing the robust cluster extrac-
tion procedure. These feature extraction methods included the
T AvgRobust, PCA1,Robust, PCA1−5,Robust, FFTRobust, ALFFRobust,
FCDMN,Robust, and FC1−20,Robust procedures (see section 2.6). See
Figure 4 for results. None of these tests performed better than
the best Diagnostic Pipelines using personal characteristic data
(section 3.1).

For binary diagnosis, the best robust cluster extraction
Diagnostic Pipeline achieved 67.8 ± 6.2% accuracy, which was
significantly better than the baseline chance accuracy of 64.2 ±
3.8% (p = 0.03, t = 2.23, df = 9). This Diagnostic Pipeline used
SWA with reduction factor r = 8, scan-based percent signal
change intensity normalization (PSCS-s), PCA1−5,Robust feature
extraction based on comparison of ADHD patients vs. controls
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FIGURE 2 | Top: Accuracies on the binary diagnosis task (controls vs. ADHD)
using fMRI input data after dimensionality reduction/feature extraction with
the T Avg, PCA1, PCA1−5, FFT, ALFF, FCDMN , or FC1−20 procedures
(section 2.5) with five different classifiers (section 2.2). Each blue dot with
error bars shows the mean accuracy and standard deviation for one
Diagnostic Pipeline (feature data and classifier combination) on 10-fold cross
validation with the 668 participant Training Dataset. The black horizontal line
at 64.2% accuracy indicates chance baseline (guessing healthy control for all

participants). The red horizontal line at 75.0% accuracy indicates the best
mean accuracy achieved with binary diagnosis on the Training Dataset using
personal characteristic input data (section 3.1). Bottom: Accuracies on the
three-way diagnosis task (controls vs. ADHD-C vs. ADHD-I) using same
Diagnostic Pipelines as in top panel. The red horizontal line at 69.0%
accuracy indicates the best mean accuracy achieved with three-way
diagnosis on the Training Dataset using personal characteristic input data
(section 3.1). Other conventions as in top panel.

as well as ADHD-C vs. ADHD-I patients, and the cubic SVM
classifier. In comparison to this robust cluster-based method,
the best personal characteristic-based Diagnostic Pipeline (sec-
tion 3.1) achieved a significantly better accuracy of 75.0 ± 4.5%
(p = 0.006, t = 3.18, df = 9).

For three-way diagnosis, the best robust cluster extraction
Diagnostic Pipeline achieved 65.1 ± 4.7% accuracy. This was not
significantly better than the baseline chance accuracy of 64.2 ±
3.8% though it approached significance (p = 0.07, t = 1.62,
df = 9). This Diagnostic Pipeline used FC1−20,Robust feature
extraction based on comparison of ADHD patients vs. controls
and the RBF SVM classifier. In comparison to this robust cluster-
based approach, the best personal characteristic-based Diagnostic
Pipeline (section 3.1) achieved a significantly better accuracy of
69.0 ± 8.3% (p = 0.03, t = 2.09, df = 9).

3.4. CONTROL EXPERIMENT: TRAINING AND TESTING ON THE
SAME DATA

As a control experiment, Diagnostic Pipelines were also trained
and then tested on the same training data. Many of the Diagnostic
Pipelines whose test accuracies are shown in Figures 2–4 obtained
perfect accuracies (100 ± 0%) or very good accuracies (above
90%) on the training data. For example, the FC1−20,Cluster fea-
ture set (section 2.6) yielded 100 ± 0.0% accuracy on the training
set for three-way diagnosis with the logistic, quadratic SVM, and
cubic SVM classifiers. This feature set included 200 features per
participant (i.e., feature vector length was 200), which was well
below the number of participants (668) used for 10-fold cross
validation. All Diagnostic Pipelines using FC1−20,Cluster features
performed at or below chance when tested on the test data. We
can conclude that there is diagnostically-useful information in the
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FIGURE 3 | Top: Accuracies on the binary diagnosis task (controls vs.
ADHD) using features derived from clusters of significant difference on
group comparisons (section 2.6) with five different classifiers (section 2.2).
Each blue dot with error bars shows the mean accuracy and standard
deviation for one Diagnostic Pipeline (feature data and classifier
combination) on 10-fold cross validation with the 668 participant Training
Dataset. The black horizontal line at 64.2% accuracy indicates chance
baseline (guessing healthy control for all participants). The red horizontal

line at 75.0% accuracy indicates the best mean accuracy achieved with
binary diagnosis on the Training Dataset using personal characteristic input
data (section 3.1). Bottom: Accuracies on the three-way diagnosis task
(controls vs. ADHD-C vs. ADHD-I) using same Diagnostic Pipelines as in
top panel. The red horizontal line at 69.0% accuracy indicates the best
mean accuracy achieved with three-way diagnosis on the Training Dataset
using personal characteristic input data (section 3.1). Other conventions as
in top panel.

fMRI data and that some Diagnostic Pipelines were able to utilize
this information at least for the data on which they were trained.
These Diagnostic Pipelines were not able to generalize well to new
test data, resulting in performance at or below baseline chance
accuracy in most cases and only 6.5% better than chance in the
best case.

3.5. fMRI FUNCTIONAL CONNECTIVITY GROUP ANALYSES
Figure 5 shows results from the FC group analyses, including
the DMN localizer map and the statistical contrast map com-
paring DMN weighting for ADHD patients vs. healthy controls.
The DMN included medial prefrontal cortex, posterior cingu-
late cortex and precuneus, and the temporal-parietal junction.
We found significantly greater DMN weighting for controls vs.

ADHD patients (p < 0.05 corrected) in posterior cingulate cor-
tex, bilateral anterior superior temporal sulcus, and bilateral
thalamus. ADHD patients exhibited greater DMN weighting than
controls in left anterior middle frontal gyrus, right temporal pole,
and superior cerebellum. Though these regions exhibited group
differences between controls and patients, there was substan-
tial overlap among participants from the two groups (Figure 5
bottom).

Figure 6 illustrates variability in results of group compar-
isons between ADHD patients and controls depending on which
subsets of participants were used in the comparisons. For two dif-
ferent FC weighting maps (one of which was the DMN map),
Figure 6 shows contrast maps computed on three different folds
of 10-fold cross validation. That is, each contrast map was
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FIGURE 4 | Top: Accuracies on the binary diagnosis task (controls vs.
ADHD) using features derived from the robust cluster identification
procedure (section 2.6) with five different classifiers (section 2.2). Each
blue dot with error bars shows the mean accuracy and standard deviation
for one Diagnostic Pipeline (feature data and classifier combination) on
10-fold cross validation with the 668 participant Training Dataset. The black
horizontal line at 64.2% accuracy indicates chance baseline (guessing
healthy control for all participants). The red horizontal line at 75.0%

accuracy indicates the best mean accuracy achieved with binary diagnosis
on the Training Dataset using personal characteristic input data
(section 3.1). Bottom: Accuracies on the three-way diagnosis task
(controls vs. ADHD-C vs. ADHD-I) using the same Diagnostic Pipelines as
in top panel. The red horizontal line at 69.0% accuracy indicates the best
mean accuracy achieved with three-way diagnosis on the Training Dataset
using personal characteristic input data (section 3.1). Other conventions as
in top panel.

computed omitting a different subset (containing 66 or 67 par-
ticipants) of the 668 participant Training Dataset. Though the
maps generated on different folds were for the most part qualita-
tively similar, with clusters of significant difference in equivalent
locations, the precise sizes and shapes of the clusters differed. In
addition, some significant clusters were not present in all maps.
These differences may have important implications for general-
izing group differences to between-individuals analyses such as
diagnostic testing.

4. DISCUSSION
Twenty-one teams took part in the ADHD-200 Global
Competition. Our personal characteristic-based diagnostic
approach outperformed all imaging-based approaches from the

other 20 competing teams (see ADHD-200-Results-Webpage,
2011) in addition to our own imaging-based tests. The best-
performing imaging-based method was submitted by the Johns
Hopkins University team, whose accuracy on three-way diagnosis
was 60.51%, in comparison to our personal characteristic-based
diagnostic accuracy of 62.52% on the same data. Our results
highlight the importance of accounting for personal characteris-
tics like age, gender, IQ, and the site of data collection in studies
of fMRI-based diagnosis. In particular, it is important to include
control tests of diagnosis using only personal characteristic
input.

The relative success of our diagnostic method in the absence
of fMRI input generated some discussion online (SMART, 2011;
Yarkoni, 2011a,b). Poldrack pointed out that the utility of
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FIGURE 5 | Results from functional connectivity group analysis.

Top-left: A midline sagittal slice from a statistical map of voxels with
significant weighting for the default mode network (DMN) in 668
participants. Red regions were positively weighted on the DMN. Blue
regions were negatively weighted. Front of brain is on the right side of the
image. Colored bar indicates t-value scaling. The slice’s coordinate in mm
in MNI space is shown in the upper-left corner. All results p < 0.05
corrected for multiple comparisons. Middle-left: Axial slice of same DMN
weighting map as shown in upper-left panel. Left side of brain is on left
side of image. Other conventions as in top-left panel. Top-right: Sagittal
slice from a contrast map comparing DMN weighting for 239 ADHD
patients vs. 429 healthy controls. Red regions showed greater DMN

weighting in patients, whereas blue regions showed greater weighting in
controls. One cluster of significant difference, including parts of posterior
cingulate cortex and thalamus, is outlined in green. Other conventions as
in top-left panel. Middle-right: Axial slice from same contrast map as
shown in upper-right panel. Conventions as in middle-left panel. Bottom:
Histograms of patients’ (red bars) and controls’ (blue bars) average DMN
weighting values across the voxels in the posterior cingulate/thalamus
cluster which is outlined in green on the contrast maps. Group means are
shown as thick vertical bars (red: patients, blue: controls). Though mean
DMN weighting was significantly larger for controls than for patients in
this region, there was substantial overlap among the weighting values for
the participants’ in the two groups.
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FIGURE 6 | Top-row: Axial slices of default mode network (DMN) localizer
map and three patients vs. controls statistical comparison maps computed
on different folds of 10-fold cross validation. Each fold omitted from the
comparison a different subset of 66 or 67 participants out of the 668
participant Training Dataset. For the localizer map, red/blue regions
exhibited weighting significantly above/below zero. For contrast maps,
red and blue regions exhibited greater weighting for patients and for
controls, respectively. Left side of axial slice represents left side of brain.

Numbers in the upper-left corners of the images indicate slice coordinates
in MNI space. Color bars show t-value scaling. Bottom-row: Equivalent to
top-row expect that localizer and contrast maps were taken from a
different functional connectivity (FC) weighting map. This map appears to
reflect gray matter and white matter structure. It is noteworthy that most
but not all clusters of significance were present in all three-folds depicted.
In addition, cluster sizes and shapes differed to some extent on different
folds.

personal characteristic variables for diagnosis suggests that “any
successful imaging-based decoding could have been relying upon
correlates of those variables rather than truly decoding a correlate
of the disease” (see Yarkoni, 2011b). The SMART working group
(Point 4 of SMART, 2011) has pointed out that high diagnostic
utility is a demanding criterion for any input feature to achieve
and that lack thereof does not imply an absence of biological sig-
nificance for the feature in question. We agree with this point.
For the current discussion, we will focus on the application of
machine learning using personal characteristic and fMRI inputs,
working toward delivering clinical diagnostic tools.

4.1. CHALLENGES OF fMRI-BASED DIAGNOSIS IN LARGE DATASETS
The best accuracies achieved by the ADHD-200 competition
teams were 62.52% using personal characteristic data and 60.51%
using fMRI data. For comparison, one would obtain a chance
accuracy of 55.0% by guessing “healthy control” for all partic-
ipants in the ADHD-200 Holdout Dataset (Original Holdout
Dataset). Previous studies have reported successes with fMRI-
based diagnosis of ADHD (Zhu et al., 2005, 2008) and other
psychiatric illnesses (Shinkareva et al., 2006; Calhoun et al., 2008;
Fu et al., 2008; Marquand et al., 2008; Cecchi et al., 2009; Arribas
et al., 2010; Nouretdinov et al., 2011; Shen et al., 2010; Costafreda
et al., 2011; Fan et al., 2011). These twelve studies reported

diagnostic accuracies ranging from 68% to 89% with a median
of 86%. Superficially, these observations may suggest that it is
fairly challenging to diagnose ADHD with high accuracy in the
ADHD-200 sample. The ADHD-200 dataset presented unique
and novel challenges for fMRI-based diagnosis. As we discuss
below, this dataset is probably much closer to the data that would
be generated in real-world clinical settings, in comparison to the
more constrained datasets used in previous studies. We argue that
achieving three-way diagnostic accuracies better than chance with
this dataset is an encouraging early success in this context.

Firstly, the ADHD-200 competition requirement for three-
way diagnosis is intrinsically more challenging than the binary
diagnosis considered in most previous studies. The standard
accuracy score is computed as the number of participants cor-
rectly classified/total number of participants. This score favors
binary diagnosis, which differentiates patients vs. controls, over
diagnosis with three or more diagnostic classes. In three-way diag-
nosis, participants correctly classified as patients but with the
wrong diagnosis count as complete misses when computing accu-
racy scores. For example, this happens when an ADHD patient
is classified as having ADHD but with the wrong ADHD sub-
type. Accordingly, our best binary diagnostic accuracy of 75.0%
on the Training Dataset (see Table 1) was substantially better than
our best three-way diagnostic accuracy of 69.0% on the same
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data. It would be informative in future fMRI diagnosis com-
petitions to have a binary diagnosis sub-competition in which
competitors attempt to differentiate simply between patients and
healthy controls.

Secondly, the ADHD-200 competition forced competitors to
use a Holdout Dataset that could not be used for training clas-
sifiers nor for selecting a classifier algorithm, feature extraction
procedure, or preprocessing procedure. This is in contrast to
some previous studies which tested multiple classifiers without
correcting for multiple comparisons (over-fitting). For example,
suppose one were to test a dozen different classifiers using n-fold
cross validation to protect against over-fitting within each test.
By emphasizing the results from the best-performing algorithm
or reporting only those results from the best algorithm, one still
exposes oneself to the multiple comparison problem by virtue
of testing multiple classification algorithms. The best perform-
ing algorithm may be best for the particular dataset being used
for testing, simply by chance. That algorithm may not generalize
to new data drawn from the same distribution. The ADHD-
200 competition results were based on a holdout dataset. Using
a holdout set avoided the multiple comparison problem and
predisposed the ADHD-200 results to compare unfavorably to
studies that did not correct for multiple comparisons. We see this
effect in our tests of personal characteristics-based diagnosis. The
Diagnostic Pipelines that performed best on our Training Dataset
achieved lesser accuracy when tested on our Holdout Dataset (see
section 3.1 and Tables 3 and 4).

Thirdly, the ADHD-200 dataset presented new challenges in
terms of participant heterogeneity with which previous studies
did not have to contend. The ADHD-200 sample contains 973
participants. This is many more participants than were included
in the previous studies cited above. Those twelve studies included
from 14 to 104 participants with a median of 39 participants.
In a study with 20 participants, it is possible to select them to
be fairly homogeneous in terms of age, gender, socio-economic
background, medication history, and clinical sequelae. In con-
trast, the ADHD-200 sample pooled hundreds of participants
from eight different sites in various countries. We expect that the
ADHD-200 data were more heterogeneous compared to datasets
used in previous fMRI diagnosis studies. Combining data from
multiple sites introduced additional potential heterogeneity in
terms of participant nationality, genetic background, and cul-
tural background, as well as potential differences in how clinical
groups in different institutions applied ADHD diagnostic crite-
ria. MRI scanner hardware and settings certainly differed across
the eight sites contributing to the ADHD-200 dataset, in con-
trast to previous studies that collected all data on a single scanner.
Previous studies of fMRI-based diagnosis did not have to contend
with heterogeneity on this scale. The ADHD-200 sample is the
first fMRI dataset to combine such large numbers of psychiatric
patients and control participants. That the ADHD-200 Global
Competition teams did not achieve high accuracy diagnosis with
this data may simply reflect the need for new methodological
approaches to address this heterogeneity. More research into new
fMRI-based diagnostic methods that are robust against partic-
ipant heterogeneity is clearly warranted and may enable high
accuracy diagnosis with the ADHD-200 dataset in the future.

Because data from clinical settings also vary across sites, scan-
ners, patients populations, and so on, robustness against these
sources of data heterogeneity will be important as we work toward
deploying fMRI-based diagnosis in clinical settings.

To reduce inter-site variability, we tested diagnosis using rest-
ing state fMRI data from ADHD-200 participants all taken from
a specific site. Within-site diagnosis was not more successful
on average than using the entire Training Dataset (results not
shown). Our robust cluster-based feature extraction methods
were an attempt to improve diagnostic performance generaliza-
tion to novel test data by reducing feature heterogeneity, but these
attempts were unsuccessful. Most of the individual ADHD-200
sites included relatively large numbers of participants, for exam-
ple 216 from NYU. The data from a single site likely still exhibited
substantial heterogeneity among participants, and the diagnos-
tic algorithms we tested may not have been robust against this
heterogeneity.

4.2. CHALLENGES FOR fMRI-BASED DIAGNOSIS OF ADHD
The ADHD-200 Global Competition teams did not achieve high
accuracy diagnosis using the resting state fMRI scans in the
ADHD-200 sample. It is possible that resting state fMRI may not
be an ideal imaging protocol for diagnosing ADHD specifically.
Before adopting this strong conclusion, one would obviously need
to exclude the possibility that the ADHD-200 competition teams
may have used non-optimal diagnostic approaches, as discussed
above. One other group has reported 85% accuracy on binary
diagnosis of ADHD patients vs. controls using resting state fMRI
data (Zhu et al., 2005, 2008). These studies both utilized the
same group of 9 ADHD patients and 11 controls. It is likely that
these small participant groups were more homogeneous than the
ADHD-200 participant groups. It is unknown whether Zhu et al.
(2005, 2008)’s diagnostic methods will scale to larger, more het-
erogenous participant groups. To explore this question, we are
currently in the process of implementing Zhu et al. (2005, 2008)’s
diagnostic methods to test them on the ADHD-200 sample. It
is possible that fMRI data with a different psychological task,
such as an attention task or response inhibition task, may be
more effective for fMRI-based diagnosis of ADHD. To our knowl-
edge, no one has attempted diagnosis of ADHD with these fMRI
protocols.

We must also consider that ADHD may be generally more
difficult to diagnose with fMRI than other psychiatric illnesses.
There is ongoing controversy over whether ADHD is over-
diagnosed (for example, see Bruchmueller et al., 2012). The
presence of individuals incorrectly diagnosed as having ADHD in
the patient group would partially invalidate the “ground truth”
diagnostic labels that a machine learning classifier attempts to
learn and reproduce. Such incorrect ground truth labels could
cause a machine learning algorithm to miss diagnostically-useful
patterns in the data, thereby making it harder to learn an effective
diagnostic classifier.

4.3. GROUP vs. INDIVIDUAL DIFFERENCES
We found significant differences in FC patterns between patients
and controls. Specifically, involvement in the DMN (Raichle et al.,
2001; Fox et al., 2005) differed between patients and controls in
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several regions including posterior cingulate cortex. We know of
one study (Qiu et al., 2011) that compared ADHD patients with
controls using resting state fMRI and an ICA-based analysis simi-
lar to ours. Other studies (Cao et al., 2006, 2009; Tian et al., 2006,
2008; Zang et al., 2007; Castellanos et al., 2008; Uddin et al., 2008;
Wang et al., 2009; Fair et al., 2010; Liston et al., 2011; Sun et al.,
2012) used very different FC analyses, which means we cannot
directly compare their results with ours. Qiu et al. (2011) found
lesser DMN involvement for ADHD patients compared to con-
trols in posterior cingulate, as well as differences in several regions
where we did not find differences.

Between-group differences identified in group analyses can
potentially, but do not necessarily, distinguish the individual par-
ticipants that comprise different groups. Even when two groups
differ significantly in the mean, there can be substantial overlap
among the individuals in the two groups, making classifica-
tion difficult (illustrated in Figure 7 left and middle panels).
Also see Friston (2012). This was the case with our FC group
analysis. There was substantial overlap among ADHD patients’
and controls’ DMN weighting values in regions that exhib-
ited highly significant differences between the groups (Figure 5
bottom). Combining features that are individually poor for clas-
sification into higher dimensional feature vectors can poten-
tially allow one to separate individuals by group. Figure 7 right
panel shows a very simple version of this idea. Many of the
Diagnostic Pipelines incorporating FC input features were able to
detect diagnostically-meaningful patterns in the fMRI data, which
allowed them to achieve very high or even perfect accuracies
when they were trained and then tested on the same partici-
pants’ data. (This was the case even with feature vector lengths
less than the number of participants.) These Diagnostic Pipelines
still did not generalize well to new data—they performed poorly

on novel test participants. We propose that this poor generaliza-
tion performance was due to variability in the diagnostic patterns
extracted from the fMRI data during classifier training with dif-
ferent subsets of participants. This proposition is supported by
the variability we observed in the FC analysis group compar-
isons when we varied which subsets of the participant population
were used for the comparisons (Figure 6). Though these com-
parisons yielded qualitatively similar results, there was variability
in precisely which voxels exhibited significant differences and,
thus, variability in the precise locations, shapes, and sizes of clus-
ters of significant difference. These observations motivate future
work on improved methods for extracting more reliable dif-
ferences in fMRI data with greater out-of-sample validity. One
potential avenue of investigation might focus less on traditional
group comparison analyses and more on individual differences,
for example by adapting various machine learning algorithms to
fMRI applications.

5. CONCLUSIONS
The ADHD-200 Global Competition presented the first oppor-
tunity to test fMRI-based diagnosis of a psychiatric illness with a
large dataset comprised of hundreds of participants from multiple
data collection sites. Encouragingly, the ADHD-200 competition
teams achieved three-way diagnostic accuracies above chance on
this challenging dataset. The relative success of using personal
characteristics such as age, gender, IQ, and site of data collection
to perform diagnosis indicates that such personal characteris-
tic data should be considered carefully in fMRI-based diagnostic
work as well as in studies employing group comparisons. It is
important to include control tests of diagnosis based only on per-
sonal characteristic data. Combining personal characteristic data
and fMRI data has the potential to improve diagnostic accuracy
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FIGURE 7 | Illustration of group differences vs. individual differences.

Left and middle panels show simulated fMRI activation levels from an
arbitrary brain region for two groups (blue and red) of 1000 participants each.
Frequency histograms for participants’ activation levels appear as pale blue
and pale red bars. The actual Gaussian distributions from which participants
were drawn are shown as dark blue and dark red curves. Black vertical
rectangles (which may appear as thick black lines) show 95% confidence
intervals of average activation across each group. Group comparisons
between blue and red average activation levels are significant in both panels
(left: p � machine precision, t = 78.7, df = 1998; middle: p = 2 × 10−12,
t = 7.1, df = 1998). The high statistical significance in both cases derives
from the large number of participants, which allows us to estimate the

means with high precision (Central Limit Theorem). There is little overlap
between the blue and red groups in the left panel, and activation levels can
predict individuals’ groups with accuracy of 93%. In the middle panel, there
is substantial overlap between the groups, and inferring participants’ groups
from their activation levels yields poor accuracy of 56% (compared to
baseline chance accuracy of 50%). This illustrates that group differences with
high statistical significance can, but do not necessarily, translate into good
diagnostic criteria for distinguishing individuals from different groups. Right

panel shows that combining activation levels from two regions, neither of
which can separate the groups on its own because the marginal distributions
overlap substantially, can allow good separation of participant groups if the
joint distributions do not overlap much.
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(see Sidhu et al., 2012, under review). Between-groups statisti-
cal comparisons did not produce features (biomarkers) capable
of diagnosing individual participants with high accuracy. Because
the ADHD-200 dataset combined large numbers of participants
from different data collection sites, it imposed novel challenges in
terms of inter-participant heterogeneity. Future studies of fMRI-
based diagnosis must develop methods that are robust against
such heterogeneity. One potential approach may be to adapt exist-
ing machine learning methods, which were developed in other
contexts, to the identification of individual differences in fMRI
datasets. Such individual differences may have better diagnostic
utility than differences derived from group comparisons. Novel
methods that are robust against heterogeneity will be particularly

important as we work toward delivering new fMRI-based clinical
diagnostic tools that could be deployed in diverse, real-world
health care settings.
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APPENDIX
A. ARRAY NOTATION
For the discussion that follows, we define some notation for 3D
arrays. Let V be a 3D array. Typically, V’s first, second, and third
axes will correspond, respectively, to the left-right, posterior-
anterior, and inferior-superior axes of the brain (as in the NIFTI
data format standard). V(i,j,k) is the intensity value of the voxel at
index position (i, j, k) counting from zero. For example, V(0,0,0)

is the intensity of the voxel in the left-most, bottom-most, back-
most corner of the scan volume. V(9,19,29) is the intensity of
the voxel which is 10th from the left side of the scan, 20th
from the back, and 30th from the bottom. V(a→b,c→d,e→f ) is
the 3D sub-array of V going from index a to b (inclusive) on
the first axis, from c to d on the second axis, and from e to
f on the third axis. Size(V) is a vector of length equal to the
number of axes of V containing integer values denoting the num-
ber of elements in V along each axis. If V is a 57 × 67 × 50
array, Size(V) = [57, 67, 50]T . Size(V)i is the number of elements
in V’s axis i, counting from 0. We can then write Size(V) =
[Size(V)0, Size(V)1, Size(V)2]T . The modulus Mod(x, y) where x
and y are integers is the integer remainder after dividing x by
y [e.g., Mod(7, 4) = 3, Mod(11, 3) = 2]. Fix(x, y) where x and
y are integers is x divided by y and then rounded toward zero
[e.g., Fix(7, 4) = 1, Fix(11, 3) = 3]. VFLAT is the column vector
produced by flattening V. VFLATi is the i’th element of VFLAT

counting from zero. Letting si = Size(V)i,

VFLATi = V(Mod(i,s0),

Fix(Mod(i,s0×s1),s0),

Fix(i,s0×s1))

(1)

(This is equivalent to V(:) if V were a 3D array in MATLAB.)

B. TEMPORAL RESAMPLING
In the ADHD-200 dataset, the resting state fMRI scans collected
from the various sites had different volumes times (sampling peri-
ods) including 1.5 s (88 participants), 1.96 s (48 participants),
2.0 s (410 participants), 2.5 s (221 participants), and 3.0 s (1
participant). fMRI data preprocessing step 6 (see section 2.4)
included up-sampling each scan into a 0.5 s volume time (2 Hz
sampling rate) using linear interpolation. We chose to up-sample,
rather than re-sampling into an intermediate sampling period
such as 2.0 s, to minimize temporal re-sampling errors. If we had
re-sampled all scans into a 2.0 s volume time, those scans orig-
inally sampled at 1.5, 2.5, and 3.0 s would have been affected by
interpolation errors (see Figure A1). Up-sampling into a 0.5 s vol-
ume time avoided this problem because the original volume times
are integer multiples of 0.5 s. (1.96 s is not an exact integer multi-
ple of 0.5 s, but it is close. It would not have been practical to use
a re-sampled volume time of 0.02 s, which is the largest integral
divisor of all the original volume times.)

C. INTENSITY NORMALIZATION
Given a voxel’s unnormalized (raw) timecourse vector xrawi, the
percent signal change scaled (PSCS-tc) version of that timecourse

is defined as:

xi = 100 × (xrawi − Mean(xrawi))/Mean(xrawi), (2)

where Mean(xrawi) is the mean over the timecourse xrawi.
Given an unnormalized (raw) 4D scan Xraw and unnormalized

voxel timecourse vector xrawi, percent signal chance scaling based
on the scan mean (PSCS-s) was defined as:

xi = 100 × (xrawi − Mean(Xraw))/Mean(Xraw), (3)

where Mean(Xraw) is the mean over the entire 4D scan Xraw.

D. SPATIAL WINDOW AVERAGING
SWA reduced the spatial dimensionality in a fashion somewhat
similar to down-sampling. Let reduction factor r be an integer
with r ≥ 1. Consider a 3D volumetric array V. We imposed a 3D
grid over the volume with grid spacing = r. We computed the
average intensity over the r3 voxels within each grid box (win-
dow). These values constituted a new 3D array Vreduced with
volume 1/r3 the original. Partial grid windows could occur at the
edges of the volume if r was not an integer factor of one or more
of the original V’s axis lengths Size(V). In these cases, we trun-
cated the original V evenly on all sides so as to fit the grid without
partial boxes on the edges.

Vreduced(i,j,k) = Mean(V((ir+offset0)→(ir+(r−1)+offset0),

(jr+offset1)→(jr+(r−1)+offset1),

(kr+offset2)→(kr+(r−1)+offset2))
)

(4)

where offseti = Fix(Mod(Size(V)i, r), 2). By applying SWA to
every volume (time point) of a participant’s 4D fMRI data array,
we spatially reduced the entire 4D array, leaving the temporal
dimension unchanged. We used either r = 8 yielding a reduced
fMRI data spatial size of 8 × 7 × 6 voxels, r = 3 yielding a
reduced fMRI data spatial size of 19 × 22 × 16 voxels, or r = 1
resulting in no dimensionality reduction. We implemented SWA
in custom MATLAB code.

E. MASKING
We used a binary mask to remove voxels outside the brain
(Figure A2). A binary mask volume M was built as follows. For
each of the 668 Training Dataset participants, the first volume
(first time point) of the participant’s resting state fMRI scan
was mean-normalized—every voxel’s intensity was divided by the
mean intensity across the whole volume. We then took the mean
volume across the 668 mean-normalized volumes and thresh-
olded it using a manually-determined threshold of 0.5 intensity
to create a binary mask volume with values of 1 for voxels inside
the brain in most participants and values of 0 for voxels outside
the brain in most participants. The mask had the same spatial
dimensions as participants’ fMRI data (57 × 67 × 50). The mask
marked 97,216 voxels as being inside the brain out of a total of
190,950 voxels.

The masking procedure mapped a 3D volume V of size 57 ×
67 × 50, representing one fMRI time point, to a column vector

Frontiers in Systems Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 69 | 20

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Brown et al. Machine learning diagnosis of ADHD

0 2 4 6 8 10 12
−1

−0.5

0

0.5

1
Original 2.0 s, Re−sampled 2.0 s

S
in

e 
W

av
e

0 2 4 6 8 10 12
−1

−0.5

0

0.5

1
Original 2.5 s, Re−sampled 2.0 s

0 2 4 6 8 10 12
−1

−0.5

0

0.5

1
Original 2.0 s, Re−sampled 0.5 s

Time (s)

S
in

e 
W

av
e

0 2 4 6 8 10 12
−1

−0.5

0

0.5

1
Original 2.5 s, Re−sampled 0.5 s

Time (s)

FIGURE A1 | Figure shows sine waves (blue) with original sampling

periods of 2.0 or 2.5 s as well as re-sampled curves (red) with

re-sampling periods of 2.0 or 0.5 s. Red curves were linearly interpolated
from blue curves. Re-sampling from 2.0 to 2.0 s (upper-left panel) leaves the
curve unchanged. Re-sampling from 2.5 to 2.0 s (upper-right panel) causes

re-sampling errors—the minimum and maximum values for the red curve are
closer to zero than for the blue curve. Linear re-sampling from 2.0 or 2.5 s
into 0.5 s (lower-left and lower-right panels) does not introduce such
re-sampling errors, though of course it cannot recover sine wave values for
time points falling in-between the originally-sampled time points.

FIGURE A2 | Figure shows slices from the between-subject mean-normalized fMRI volume (see text). Red line indicates the manually-determined edge
of the binary mask volume.

Vmasked of size 97, 216 × 1. Recall from Appendix A that VFLAT

is the column vector produced by flattening V and VFLATi is the
i’th element of VFLAT counting from zero. Vmasked was derived by
concatenating the values VFLATi for all i where MFLATi = 1.

The masking procedure for an individual volume was extended
to 4D fMRI scan data as follows. Let A be a 4D array of size
57 × 67 × 50 × 370 representing an fMRI scan composed of 370
volumes (times points) Vt . The masked version of A was a matrix
Amasked produced by applying the masking procedure to each Vt

and then concatenating the resulting Vmasked
T
t row vectors. We

will call such a matrix representing a masked fMRI scan X.

X = Amasked =

⎡
⎢⎢⎣

Vmasked
T
0

Vmasked
T
1

...

Vmasked
T
369

⎤
⎥⎥⎦ (5)

To combine SWA with masking with a given reduction factor r
(see above), we applied SWA to the full size binary mask volume
to create a reduced size mask volume. SWA on a binary volume
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creates voxels with scalar values between 0 and 1. Such values were
thresholded, replacing intensities greater than or equal to 0.5 with
1 and values less than 0.5 with 0. We then proceeded with masking
on the SWA-reduced fMRI data set using the reduced mask.

F. PRINCIPAL COMPONENTS ANALYSIS
Let XSi be an ntimepoints × nvoxels matrix representing the fMRI
scan from participant i after SWA with reduction factor r =
8 and masking (see Appendix E.) Let D be the ntimepoints ×
(nvoxels × nparticipants) matrix produced by horizontally concate-
nating all XSi :

D =
[

X1 X2 ... Xnparticipants

]
. (6)

A centered version of the data matrix Dc was produced by sub-
tracting the row mean from each row of D. For our PCA dimen-
sionality reduction, we computed the eigenvectors and eigenval-
ues of the covariance matrix DcDc

T/(nvoxels × nparticipants − 1).
We ranked the eigenvectors in descending size of their corre-
sponding eigenvalues and retained either the first eigenvector
(PCA1) or the first five eigenvectors (PCA1−5). For each partic-
ipant i, the participant’s data Xsi were projected onto the one or
five eigenvectors resulting in an neigenvectors × nvoxels matrix PSi .
The flattened version of this matrix PFLATSi was the feature vector
for participant i.

G. FEATURE NORMALIZATION
Features were normalized using Weka’s min./max. standard-
ization. (Note: Weka uses “normalization” to mean Z-scaling
and “standardization” to mean the min./max. normalization
described here.) Let the classifier input data be represented by an
nparticipants × nfeatures matrix F with each row consisting of one
participant’s feature vector. Each column ci of F contained feature
element i for all participants. Each such column was normalized
thus:

ci,normalized = (ci − MIN(ci))/(MAX(ci) − MIN(ci)) (7)

Also see Witten et al. (2011).

H. CLUSTER EXTRACTION
Let T be a statistical parametric T map—that is, a 3D array repre-
senting the T-values resulting from performing a t-test at each

voxel location in an fMRI data set. T is assumed to have been
locally thresholded such that |T| > θt for all voxels, where θt

might be 2.0 for example. The dmin parameter is the minimum
interpeak distance in mm. The vmin parameter is the desired mini-
mum cluster size in mm3. The nclusters parameter is the maximum
number of clusters to return. The cluster extraction algorithm
performed two passes, one for positive parts of the map and one
for the negative parts. On a given pass, the algorithm located
the statistical peak locations (local extrema) and ranked them. If
dmin > 0, the algorithm iterated through the peaks in descending
order, discarding those peaks less than dmin mm away from the
nearest peak with a larger |T| value. Each surviving peak served as
the seed for a cluster. The clusters were grown in parallel by iter-
atively adding to a given cluster any unassigned, non-zero-valued
voxels that were the immediate neighbor of a voxel already in the
cluster. In the case of a conflict where a voxel neighbored onto
two growing clusters, the cluster with the higher peak (seed) value
won. After completion of the growth process, any cluster with vol-
ume less than vmin was absorbed into the neighboring (abutting)
cluster with the highest peak (seed) value if possible. If no such
neighboring cluster was available, a small cluster was left as it was.
In addition, the algorithm checked for “orphaned” voxels that
no growing cluster could reach because the requisite seed voxel
was removed in the minimum inter-peak assertion process at the
start. In such cases, the required peak voxel was re-instated and
a new cluster grown around it to absorb unassigned voxels. This
algorithm split large contiguous regions of statistical significance
that contained several local statistical peaks into multiple clusters.
Regions of statistical significance with only one peak tended to be
smaller regions, and these regions were assigned to one cluster.
Finally, all regions were ordered by absolute statistical mass, that
is, the sum of the |T| values for all voxels in a cluster. The nclusters

clusters with the largest absolute statistical mass were returned.
Setting dmin = 0 mm, vmin = 0 mm3, and nclusters = ∞ caused
this algorithm to return the same output as MATLAB’s bwlabel
function.

I. CLUSTER SIZE THRESHOLDING
Let T be a statistical parametric T map that was locally thresh-
olded such that |T| > θt for some threshold parameter θt . A set of
clusters C was extracted from T using automated cluster extrac-
tion (see Appendix H) with dmin = 0, vmin = 0, and nclusters =
∞. For every cluster ci in C, if ci had fewer voxels than the min-
imum cluster size θcs, all voxels in T contained in cluster ci had
their values set to zero.

Frontiers in Systems Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 69 | 22

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive

	ADHD-200 Global Competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements
	Introduction
	Materials and Methods
	Datasets
	General Diagnosis Procedure
	Diagnosis with Personal Characteristic Data
	fMRI Data Preprocessing
	fMRI Dimensionality Reduction and Feature Extraction
	Diagnostics From Group Differences
	fMRI Functional Connectivity Analysis Group Comparison

	Results
	Diagnosis with Personal Characteristic Data
	Diagnosis with fMRI Data
	Diagnosis with fMRI Data Using Cluster and Robust Feature Extraction
	Control Experiment: Training and Testing on the Same Data
	fMRI Functional Connectivity Group Analyses

	Discussion
	Challenges of fMRI-Based Diagnosis in Large Datasets
	Challenges for fMRI-Based Diagnosis of ADHD
	Group vs. Individual Differences

	Conclusions
	Acknowledgments
	References
	Appendix
	Array Notation
	Temporal Resampling
	Intensity Normalization
	Spatial Window Averaging
	Masking
	Principal Components Analysis
	Feature Normalization
	Cluster Extraction
	 Cluster Size Thresholding



