
 

 

Breast Cancer Prediction Using Genome Wide Single 

Nucleotide Polymorphism Data  
 

Mohsen Hajiloo
1,2

, Babak Damavandi
1,2

, Metanat Hooshsadat
1,2

, Farzad Sangi
1,2

, John R. Mackey
3
, Carol E. Cass

3
, 

Russell Greiner
1,2*

, and Sambasivarao Damaraju
4,5*

 
1
Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada 

2
Alberta Innovates Centre for Machine Learning, University of Alberta, Edmonton, Alberta, Canada 

3
Department of Oncology, University of Alberta, Edmonton, Canada 

4
Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada 

5
PolyomX Program, Cross Cancer Institute, Alberta Health Services, Edmonton, Alberta, Canada 

Email: {hajiloo@ualberta.ca, damavand@ualberta.ca, hooshsad@ualberta.ca, fsangi@ualberta.ca, 

john.mackey@albertahealthservices.ca, carol.cass@albertahealthservices.ca, rgreiner@ualberta.ca, 

sambasivarao.damaraju@albertahealthservices.ca} 
* These authors contributed equally to this work and are joint corresponding authors

 

 
 

 

Abstract—This paper introduces and applies a Genome Wide 

Predictive Study (GWPS) to learn a model that predicts whether 

a new subject will develop breast cancer or not, based on her SNP 

profile. We applied a combination of a feature selection method 

(MeanDiff) and a learning method (K-Nearest Neighbours, KNN) 

to a dataset of 623 female subjects, including 302 cases of breast 

cancer and 321 apparently healthy controls from Alberta, 

Canada. The learning algorithm considered all the SNPs 

(506,836) from a whole genome scan with 100% call rate and 

with minor allele frequency of > 5%. The leave-one-out cross-

validation (LOOCV) accuracy of this classifier is 59.55%. 

Random permutation test show that this result is significantly 

better than the baseline accuracy of 51.52%. Sensitivity analysis 

shows that our model is robust to the number of selected SNPs. 

We then used the only relevant publicly available breast cancer 

dataset (CGEMS breast cancer dataset with 1145 breast cancer 

cases and 1142 controls) to further validate our approach. We 

showed that our combination of MeanDiff and KNN leads to a 

LOOCV accuracy of 60.25%, which is significantly better than 

the CGEMS baseline of 50.06%. To better understand the 

challenge of this dataset, we systematically explored a large 

variety of other feature selection and learning algorithms. We 

found that none of the biologically naïve approaches to feature 

selection worked as well as our MeanDiff.  We also considered 

many biologically-informed methods to select SNPs – using SNPs 

reported in the literature to be associated with breast cancer, 

SNPs associated with genes of KEGG’s cancer pathways, and 

SNPs associated with breast cancer in the F-SNP database. 

However, those SNPs produced classifiers that were not even 

better than baseline. These negative findings suggest the 

challenge of our task. Finally, we identified several limitations 

that may hinder a more accurate predictive model for breast 

cancer susceptibility: Our study implicitly assumes that breast 

cancer is a homogenous phenotype, but it is not. Moreover, while 

our study does involve 623 samples, this is small relative to the 

number of features (SNPs) from a whole genome scan; we expect 

to achieve yet better results given a larger sample sizes. 

Furthermore, we anticipate developing better predictive models 

by incorporating other genetic information (such as point 

mutations and copy number variations) as well as environmental 

and lifestyle factors. 

I. INTRODUCTION 

A genome wide association study (GWAS) compares the 
SNP profiles, over a wide range of SNPs, of two groups of 
participants: e.g., people with the disease (cases) versus people 
without the disease (controls). Each individual SNP whose 
values are significantly different between these groups 
(typically based on chi-square test between the values observed 
for the two groups) is said to be associated with the disease [1]. 
The database of Genotypes and Phenotypes (dbGaP) archives 
and distributes the results of studies that have investigated the 
interaction of a genotype and phenotype in GWASs [2]. While 
GWASs can help the researchers better understand diseases, 
genes and pathways, they are not designed to predict whether a 
currently undiagnosed subject is likely to develop the disease. 
This paper introduces Genome Wide Predictive Studies 
(GWPSs), which take the same input as a GWAS (a set of SNP 
arrays for individuals, each labelled as a case or a control) but 
outputs a classification model that can be used later to predict 
the class label of a previously undiagnosed person, based on 
his/her SNP profile. Here, we consider a way to learn a 
predictor (“who has breast cancer?”), for a dataset that specifies 
all available SNPs about each subject.  

Our approach differs from research that attempt to learn 
predictors from only a pre-defined set of candidate SNPs. As 
an example of such a candidate SNP study, Listgarten et al. [3] 
applied a machine learning tool (support vector machine, 
SVM) to a pre-defined set of 98 SNPs, distributed over 45 
genes of potential relevance to breast cancer, to develop a 
predictive model with 63% accuracy for predicting breast 
cancer. Ban et al. [4] applied a SVM to analyze 408 SNPs in 87 
genes involved in type 2 diabetes (T2D) related pathways, and 
achieved 65% accuracy in T2D disease prediction. Wei et al. 
[5] studied type 1 diabetes (T1D) using genome wide scan of 
SNPs and reported 84% area under curve (AUC) using an 
SVM.  

Our approach also differs from the conventional risk 
modeling/prediction studies. Those studies also begin with a 
small set of pre-defined features: they first sort the training 
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subjects into a small set of bins, based on the values of these 
features – e.g., the Gail model uses 7 features to produce a 
small number of bins – and record the percentage in each bin 
with the phenotype (here breast cancer) [6-7]. Afterwards, to 
estimate the risk a new subject will face, this tool uses the 
subject’s values for those relevant features to sort that subject 
into the proper bin, and returns the associated probability 
(called risk).  Hence this approach bases its assessment on only 
a small number of pre-specified features. Note this might not 
be sufficient to usefully characterize the subjects, especially if 
the hand-picked features are not adequate. On the other hand, 
our machine learning (ML) approach lets the data dictate on the 
possible combination of features that are relevant.  (While the 
ML model described in this paper returns a specific prediction 
for the individual – here breast cancer or not – there are other 
ML models that will return the probability that the individual 
will have the disease P(disease | feature_values), which is 
basically risk).  

Our general goal is to develop a tool to help screen women, 
by predicting which of the apparently healthy subjects sampled 
in a population will eventually develop breast cancer. This 
cannot be done by gene expression-based microarray analyses, 
as those results require biopsies of tissues from organs or 
tumours, which means they are only relevant to individuals 
with suspect tissues; hence they are not effective at identifying 
individuals at risk in a general population, before the onset of 
the disease, and so cannot be used for our early detection.  

II. METHOD 

In general, a Genome Wide Predictive Study (GWPS) takes 
as input the SNP profiles of a set of N individuals (including 
both cases and controls) and outputs a classifier, which can 
later be used to predict the class label of a new individual, 
based on his/her SNP profile. Here, we used a dataset of N=623 
subjects including 302 cases (with breast cancer) and 321 
controls (disease free at the time of recruitment), accessed from 
a previous study on sporadic breast cancer wherein breast 
cancer predisposition in women is not related to mutations in 
the known high penetrance breast cancer genes (eg, BRCA) nor 
other genes of moderate penetrance, described in earlier 
studies. Briefly, our study subjects began with 348 cases (late 
onset of disease, i.e., of sporadic nature) and 348 controls (with 
no family history of breast cancer), both predominantly of 
Caucasian origin. Population stratification correction using 
EIGENSTRAT technique removed 73 subjects (46 cases and 
27 controls) that did not co-cluster with Hapmap II Caucasian 
subjects. We then isolated germline DNA from peripheral 
blood lymphocytes and generated genotyping profiles using 
Affymetrix Human SNP 6.0 array platform (906,600 SNPs on 
each array). The study subjects provided informed consent and 
the study was approved by the Alberta Cancer Research Ethics 
Committee of the Alberta Health Services [8]. Following probe 
labelling, hybridization and scanning, the data was filtered by 
removing any SNP (1) that had any missing calls, (2) whose 
genotype frequency deviated from Hardy-Weinberg 
equilibrium (nominal p-value <0.001 in controls) or (3) whose 
minor allele frequency were less than 5%; this left a total 
number of 506,836 SNPs for analysis. For each SNP, we 
represented wild type homozygous, heterozygous and variant 

homozygous by 1, 2, and 3 respectively. Collectively, we view 
this as a labelled dataset, where the label for each subject is 
either case or control. 

A trivial classifier, which just predicts the majority class 
(here control), will be 321/623 = 51.52% accurate.  The 
challenge is producing a classifier that uses subject SNP data to 
produce predictions that are significantly more accurate. In 
particular, we explored tools that use the given labelled dataset 
to find the patterns that identify breast cancer (i.e., case versus 
control). Fortunately, the field of machine learning (ML) 
provides many such learning algorithms, each of which takes 
as input a labelled dataset, and returns a classifier.  These 
systems typically work best when there are a relatively small 
number of features – typically dozens to hundreds – but they 
tend to work poorly in our situation, with over half-a-million 
features; here, they will invariably over-fit: that is, do very well 
on the training data as they find ways to fit the details of this 
sample, but in a way that does not translate to working well on 
the subjects that were not part of the training dataset. Note that 
our goal is to correctly classify such novel (that is, currently-
undiagnosed) subjects. We therefore apply a pre-processing 
step to first reduce the dimensionality of the data, by 
autonomously identifying a subset of the most relevant SNPs 
(features).  We then give this reduced dataset to a learning 
algorithm, which produces a classifier. We also discuss how to 
evaluate the classifier produced by this “feature-selection + 
learning” system.  

A. Feature Selection 

In our analysis, as we expect only a subset of the SNPs to 
be relevant to our prediction task, we focused on ways to select 
such a small subset of the features.  In general, this involves 
identifying the features that have the highest score based on 
some criteria (which we hope corresponds to being most 
relevant to the classification task). In this study, we used the 
MeanDiff feature selection method, which first sorts the SNPs 
based on their respective MeanDiff values, which is the 
absolute value of the difference between mean values of this 
SNP over the cases and the controls: 

        (      )   | (   )   (   ) |          (1)  

over the dataset D = C  H where C is the set of subjects 
known to have cancer (each labelled as case) and H is the 
remaining healthy subjects (each labelled as control), and using 
Expr(i,j) as the value of the i'th SNP of  subject j,  (   )  
 

| |
∑     (   )    is the mean value of the i'th SNP over the 

subset H (the controls) and  (   )  
 

| |
∑     (   )     is the 

mean value of the i'th SNP over the subset C (the cases). Note 
this MeanDiff(SNPi, D) score will be 0 when SNPi is irrelevant 
and presumably larger for SNPs that are more relevant to our 
prediction task.  

B.  Learning 

To build a classifier, we use the very simple learning 
algorithm, K-Nearest Neighbors (KNN), which simply stores 
the (reduced) profiles for all of the training data [9].  To 
classify a new subject p, this classifier determines p’s k nearest 
neighbors, then assigns p the majority vote.  (So if k=5, and p’s 



 

 
5 closest neighbors include 4 controls and 1 case, then this 
classifier assigns p as control). Of course, we need to define 
distances to determine the nearest neighbors.  As we are 
representing each patient as a m-tuple of the SNP values, we 
define the distance between two individuals p = [p1, ..., pm] and 
q = [q1, ..., qm] as the square of the Euclidean distance (aka L2 
distance) as shown below. 

 (   )   ∑ (     )
  

                            (2) 

C. Evaluation 

Here we use two strategies to evaluate our classification 
algorithm: (1) by using Leave-One-Out Cross Validation 
(LOOCV) strategy and (2) by using an external hold-out 
(validation) dataset from the Cancer Genetic Markers of 
Susceptibility (CGEMS) breast cancer project [10]. 

III. RESULTS 

Our LOOCV estimates the accuracy of this model to be 
59.55%; with precision 50.40%, recall/sensitivity 61.92%, and 
specificity 57.32%. To test if this result is significantly more 
accurate than the baseline of 51.52%, we applied a permutation 
test [11]. Here, we permuted the labels in the original dataset 
randomly, which should destroy any signal relating the SNPs to 
the cancer/no-cancer phenotype. We then ran the KNN to build 
new classifiers on this new dataset, and ran the LOOCV 
process to estimate the accuracy of the new model.  We 
repeated this “permute, learn, evaluate” process over 100 
permutations. None of these accuracies (of the 100 models built 
over randomly permuted labelled datasets) exceeded the 
59.55% accuracy of our model. This suggests that our result is 
significantly better than the baseline, with a confidence of more 
than 1 - 1/100 = 0.99 -- ie, the associated p-value is p<0.01. 
Furthermore, we measured the LOOCV accuracy of the 
classification model built using KNN on sets of SNPs with the 
top {500, 600, ..., 1500} MeanDiff scores and we realized that 
our model is fairly robust to the number of MeanDiff selected 
SNPs, when selecting more than 500 SNPs.  

To test the effectiveness of our approach, we next explored 
ways to apply it to other datasets. Unfortunately, there are no 
other public datasets for this phenotype that use the same Affy 
6.0 Platform.  We did, however, consider applying our C623 = 
KNN(D623) classifier on the CGEMS breast cancer dataset with 
1145 breast cancer cases and 1142 controls genotyped on the 
Illumina I5 array platform. This dataset includes only 101 
SNPs in common with the m=500 SNPs used by C623.  As this 
meant the CGEMS data was missing ~80% of the SNP values 
used by C623, we obviously could not apply C623 directly on this 
dataset. As this CGEMS breast cancer dataset is the only 
available genome wide association study dataset on Caucasian 
population, we therefore had to design another experiment to 
use the external hold-out set to evaluate our approach, of the 
KNN learning method that involved the MeanDiff feature 
selection method. Here, we applied the same algorithm 
explained in the Methods section, KNN( .), but trained this 
method over D2287, the 2287 subjects of CGEMS breast cancer 
dataset. We evaluated the performance of this model using the 
LOOCV method. LOOCV accuracy is 60.25% (which is 
significantly better than the baseline of 50.06%), with precision 
59.39%, recall/sensitivity 59.65%, and specificity 59.11%. 

Table 1 – 10-Fold Cross Validation Accuracy of Various Combinations of 
Statistical Feature Selection and Learning Methods 

 Feature Selection Methods 

Information 
Gain 

MeanDiff mRMR PCA 

L
ea

r
n

in
g
 

M
et

h
o

d
s 

Decision Tree 50.88% 52.06% 51.20% 51.69% 

KNN 56.17% 58.71% 57.78% 51.36% 

SVM-RBF 55.37% 57.30% 56.18% 51.84% 

This confirms that our approach and algorithm, is reproducible, 
as this exact system works effectively on a second, very 
different breast cancer dataset. 

Hoping to further improve these results, we explored 
several techniques – both biologically naïve and informed – for 
both selecting features and for building the classifier itself. To 
select features, we considered biologically naïve methods such 
as information gain [12], minimum redundancy maximum 
relevance (mRMR) [13] and principal component analysis 
(PCA) [14]. We also applied other biologically naïve learning 
algorithms, including decision trees [12], and support vector 
machines (with RBF kernel) [15]. In all, we tried dozens of 
different combinations of the learning and feature selection 
algorithms (each with its own range of parameters values) – 
each of which proved to be computationally intensive (several 
CPU days). Table 1 shows the (10-fold cross validation) 
accuracy of 12 of these combinations.  

We also used biological information related to cancer to 
inform feature selection – ie, use SNPs known to be relevant to 
breast cancer, rather than our biologically-naïve MeanDiff 
method: First, we analyzed 28 SNPs identified by recent 
GWASs as being highly associated with breast cancer. We 
trained a classifier over the 623 subjects, but using only these 
28 SNPs; unfortunately the LOOCV of this classifier was just 
baseline. (We also noticed that none of these 28 SNPs appear in 
the list of 500 SNPs selected by our MeanDiff feature-selection 
algorithm.) Second, we tried using only the 12,858 SNPs 
associated with genes of KEGG’s cancer pathways [16] 
recognized as hallmarks of cancer [17]; unfortunately, the 
classifier based on these features also did not perform better 
than baseline. Finally, we built a classifier using only the 1,661 
SNPs associated with breast cancer in the F-SNP database [18]; 
this too had just baseline accuracy.  These negative results 
show that the obvious approach of first using prior biological 
information to identify SNPs, and then learning a classifier 
using only those SNPs, does not work here. Recall that our 
feature selection method found the relevant SNPs itself; n.b., it 
did not just use the SNPs considered significant by some earlier 
association test.  (This demonstrates that the predictive power 
of our model does not depend on the SNPs that previous 
GWASs have reported to be statistically significant for breast 
cancer susceptibility.) Our feature selection method 
automatically deals with the redundancies of features – ie, 
SNPs that are highly correlated with one another. We are now 
exploring ways to use SNPs from common variants, 
anticipating that clinically useful models may emerge from 
integrating rarer variants and mutations in the genome as well 
as gene-environment interactions, using the machine learning 
approaches described. 



 

 

IV. DISCUSSIONS 

Our studies, using MeanDiff within KNN, confirm that 
SNPs do carry information related to breast cancer genetic 
susceptibility, and that GWPSs are a promising tool for 
decoding and exploiting this information. While this approach 
is theoretically applicable for studying other cancer types and 
diseases, we list below some of the potential limitations that 
may make it difficult to produce more accurate breast cancer 
prediction models: 

Small Sample Size vs. Large Feature Size: As noted 
earlier, the number of subjects in this study is much less than 
the number of SNPs (a few hundred instances versus half a 
million features) can easily cause standard learning systems to 
over-fit – i.e., produce models that perform well on the training 
subjects but relatively poorly on new subjects distinct from the 
those training subjects.  

Heterogeneity of Breast Cancer: Breast cancer is 
biologically heterogeneous [19]. Our current dataset ignores the 
differences between different subtypes by merging these them 
into a single label, case. We might be able to produce a more 
accurate predictor if we employed more detailed labelling of 
sub-cases, that sought a classifier that could map each subject 
to its specific molecular subtype.  

SNPs are Only one Form of Genomic Alterations: While 
the heritable genetic basis for breast cancer occurs in SNPs, 
mutations, copy number variations (CNVs), and other 
chromosomal changes, this study considered only SNPs. We 
believe that augmenting the SNP data with such additional 
genetic information, could lead to more accurate breast cancer 
predictive models.   

Breast Cancer is also influenced by Non-genetic Factors: 
Heritable factors are only part of the issue. Indeed, for many of 
diseases, the genetic component accounts for only 30-60% of 
the risk, with the remaining risk due to environmental and life 
style risk factors [20]. We anticipate a better predictive result 
from a comprehensive model that includes both genetic and 
non-genetic factors. 
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