
METHODS ARTICLE
published: 09 November 2012
doi: 10.3389/fnsys.2012.00074

Kernel Principal Component Analysis for dimensionality
reduction in fMRI-based diagnosis of ADHD
Gagan S. Sidhu1,2,3*, Nasimeh Asgarian1,2, Russell Greiner1,2 and Matthew R. G. Brown4

1 Department of Computing Science, University of Alberta, Edmonton, AB, Canada
2 Alberta Innovates Center for Machine Learning, University of Alberta, Edmonton, AB, Canada
3 General Analytics Inc., Edmonton, AB, Canada†

4 Department of Psychiatry, University of Alberta, Edmonton, AB, Canada

Edited by:

Michael Milham, New York
University Langone Medical Center,
USA

Reviewed by:

Brian Cheung, Child Mind Institute,
USA
Zhi Yang, Chinese Academy of
Sciences, China

*Correspondence:

Gagan S. Sidhu, General Analytics
Inc., Edmonton, AB, Canada.
e-mail: gagans@ualberta.ca

This study explored various feature extraction methods for use in automated diagnosis
of Attention-Deficit Hyperactivity Disorder (ADHD) from functional Magnetic Resonance
Image (fMRI) data. Each participant’s data consisted of a resting state fMRI scan as well as
phenotypic data (age, gender, handedness, IQ, and site of scanning) from the ADHD-200
dataset. We used machine learning techniques to produce support vector machine (SVM)
classifiers that attempted to differentiate between (1) all ADHD patients vs. healthy
controls and (2) ADHD combined (ADHD-c) type vs. ADHD inattentive (ADHD-i) type vs.
controls. In different tests, we used only the phenotypic data, only the imaging data, or
else both the phenotypic and imaging data. For feature extraction on fMRI data, we tested
the Fast Fourier Transform (FFT), different variants of Principal Component Analysis (PCA),
and combinations of FFT and PCA. PCA variants included PCA over time (PCA-t), PCA
over space and time (PCA-st), and kernelized PCA (kPCA-st). Baseline chance accuracy
was 64.2% produced by guessing healthy control (the majority class) for all participants.
Using only phenotypic data produced 72.9% accuracy on two class diagnosis and 66.8%
on three class diagnosis. Diagnosis using only imaging data did not perform as well as
phenotypic-only approaches. Using both phenotypic and imaging data with combined FFT
and kPCA-st feature extraction yielded accuracies of 76.0% on two class diagnosis and
68.6% on three class diagnosis—better than phenotypic-only approaches. Our results
demonstrate the potential of using FFT and kPCA-st with resting-state fMRI data as well
as phenotypic data for automated diagnosis of ADHD. These results are encouraging given
known challenges of learning ADHD diagnostic classifiers using the ADHD-200 dataset
(see Brown et al., 2012).
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1. INTRODUCTION
Over the past decade, many researchers have applied statistical
analysis to functional Magnetic Resonance Images (fMRIs) in
order to better understand neuropsychiatric phenomena. Much
of this research has used fMRI to identify group differences
between subjects that have a specific neuropsychiatric disorder
and healthy controls (Purdon et al., 2011). There has also been
a more recent focus on developing methodologies for diagnos-
ing neuropsychiatric illnesses with high accuracy using advanced
statistical methods (Cecchi et al., 2009). With large-scale fMRI
studies including hundreds of participants or more, tractability
becomes an issue. Each fMRI volume contains roughly ∼105

voxel locations, each with a waveform that may be composed of
hundreds of time points. Some patterns in these voxel waveforms
may be diagnostic for a neuropsychiatric disorder, but there is
also substantial variance in the data that is not related to diag-
nosis. The accuracy of computerized diagnosis can be facilitated
by feature extraction during preprocessing. Feature extraction

†http://www.g-a.ca

methods reduce the size of the original fMRI data by extract-
ing a smaller number of features for each subject (i.e., reducing
the dimensionality of each subject’s data). The challenge is to do
this without diminishing the diagnostic value of each subject’s
data—i.e., while preserving the information needed to produce
an effective classifier (Alpaydin, 2004).

We built a system capable of learning a diagnostic classifier.
We investigated the effects on diagnostic accuracy of using dif-
ferent fMRI data dimensionality reduction methods within this
system. Our learning system consisted of two stages, each of which
was comprised of many components. At training time, the first
stage used subjects’ scans to produce a diagnostic classifier. Then
at performance time, the second stage used the (machine learner)
classifier to produce a diagnosis for a novel subject—i.e., a sub-
ject whose data were not used to develop the classifier. Note that
the objective of producing a classifier is different from the more
standard associative approach. Associative studies investigate dif-
ferences between groups, such as differences in average fMRI
activation levels (in various brain regions) between different diag-
nostic groups (Eisenberger et al., 2003). Significant differences
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FIGURE 1 | Our learning system in two stages. The first stage developed the classifier responsible for diagnosing new subjects. The second stage used the
classifier to generate a predicted diagnosis for a participant.

between group averages can exist in the presence of substantial
overlap among the members of the different groups (Brown et al.,
2012). In contrast, diagnostic classifiers must consider individual
differences—that is patterns in the data that differentiate indi-
viduals into different groups, as opposed to differences in group
averages.

As shown in Figure 1, both stages first ran the “fMRI Image
Pipeline” and then reduced the fMRI data’s dimensionality in the
“Feature Creation/Selection” component. This study focused on
this second “Feature Creation/Selection” component. We investi-
gated whether reducing fMRI dimensionality over both the spatial
and temporal dimensions (in contrast to reducing only the spatial
or only the temporal dimensionality) would improve the diag-
nostic system’s discrimination of Attention-Deficit Hyperactivity
Disorder (ADHD) patients from healthy controls.

Figure 2 summarizes the “Feature Creation/Selection” step.
After several fixed steps (see section 2), we then considered
seven dimensionality reduction processes. The first three pro-
cesses applied a variant of Principal Component Analysis (PCA).
These variants applied PCA over the temporal dimension PCA
over time (PCA-t) or over both the temporal and spatial dimen-
sions [PCA over space and time (PCA-st) and the kernelized
variant (kPCA-st)]. The other four dimensionality reduction pro-
cess involved applying the Fast Fourier Transform (FFT) to each
voxel’s waveform and then using the output of the FFT as input
either directly to the learner or to one of the three PCA variants.

In this study, we opted for a biologically naive approach to
fMRI dimensionality reduction. That is, we did not use any prior
biological information about the brain, such as the locations of
brain regions known to be affected by ADHD. In another study
(Brown et al., 2012), we tested feature extraction methods based
on group differences between ADHD patients and controls, but
these did not provide high diagnostic accuracy. One advantage of
such a biologically naive approach is that it was not biased by nor
limited to previously-known group differences between patients
and controls.

We tested these seven feature extraction and classifier learn-
ing processes on the ADHD-200 Global Competition dataset
(Fair et al.). Automated diagnosis of ADHD using this dataset
has proven to be very challenging for the scientific commu-
nity in general. Twenty-one teams took part in the ADHD-200
Global Competition. Our team submitted a classifier that used
only the phenotypic data to produce a diagnosis. This classifier
achieved the best accuracy (62.5%) of any submission (Brown
et al., 2012; Alberta Innovates Center for Machine Learning).
For comparison, guessing “healthy control” for every partic-
ipant in the ADHD-200 Competition’s holdout dataset pro-
duced an accuracy of 55%. See Brown et al. (2012) for further
discussion.

The first three dimensionality reduction processes applied a
variant of PCA to subject’s voxel waveforms. For PCA-t, we rep-
resented the data from all subjects as a matrix, with each row
containing the original waveform from one voxel location from
one subject (Figure 4). That is, the number of rows equaled
the number of subjects times the number of voxel locations.
The voxel configuration was identical in all subjects after spa-
tial normalization of fMRI data, performed during preprocessing
as described below. The PCA-t approach ran PCA on this large
matrix. This PCA-t method has various applications in fMRI
analysis (Andersen et al., 1999). PCA-t compresses each wave-
form into a smaller number of features (specifically, weightings on
principal component vectors). We then trained a classifier using
the set of all such compressed waveforms for each subject. For the
second PCA variant, PCA-st, we first combined all subjects’ data
into a large matrix in which each row contained the waveforms
from all voxels for a given subject (Figure 5). That is, for a given
row, which corresponded to a given subject, we concatenated the
waveforms from all voxel locations for that subject to construct
the row vector. The PCA-st method then performed PCA on this
matrix. The third PCA variant was kernel Principal Component
Analysis (kPCA-st), described in section 2.7, which introduced
nonlinear compression of the data.
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FIGURE 2 | Flow of the “Feature Creation/Selection” component of our

diagnostic system, where the red and blue lines denote the processes

with and without FFT as a preprocessing step, respectively. The PCA
variant step involved developing the respective variant’s data matrix and

processing it by one of PCA-t (Figure 4), PCA-st, or kPCA-st (Figure 5). The
fMRI dimensionality is given beneath each step, written as r × c, where the
number of rows (r) and columns (c) represent the spatial and temporal
dimensions, respectively.

The remaining four dimensionality reduction processes
applied the FFT to the waveforms of all voxels of all subjects, then
extracted the complex magnitude for each of the FFT frequency
components. The simplest FFT-based feature extraction process
used these magnitudes as input features for the learner. The other
three FFT-based feature extraction procedures used the magni-
tude values of the FFT frequency components as input to one of
the three PCA variants described in the previous paragraph.

We compared diagnostic systems based on feature extraction
(dimensionality reduction) methods that differed in terms of
(1) reduction over both the spatial and temporal dimensions
vs. reduction over only the temporal dimension, (2) linear vs.
nonlinear (kernelized) PCA, and (3) initial processing with vs.
without FFT.

Section 2 starts with descriptions of the data and our fMRI
Preprocessing Pipeline. It then describes the FFT, PCA, and
kPCA-st methodologies, as well as our testing methodology.
Section 3 discusses the results for each of these methods on the
dataset provided by the ADHD-200 Competition. Briefly, the
best diagnostic accuracy was achieved using a combination of
phenotypic data and fMRI data with feature extraction based on
FFT followed by kPCA-st.

2. MATERIALS AND METHODS
This section presents the overall approach, based on Figures 1, 2.
Section 2.1 gives details of the data we used. Section 2.2
presents the first step, the fMRI Preprocessing Pipeline. The
remaining subsections describe the Feature Creation/Selection
methodology, which we summarize in Figure 2. Section 2.3 dis-
cusses “Averaging.” Section 2.4 discusses “BOLD Signal Intensity
Normalization and Masking.” Section 2.5 addresses waveform
processing using FFT. Sections 2.6 and 2.7 present the PCA vari-
ants and “Kernel Methods,” including the kernelized PCA variant,
kPCA-st. Section 2.8 describes our “Testing Methodology.”

2.1. DATA
Automated ADHD diagnosis protocols were tested on data from
the ADHD-200 Global Competition dataset (Fair et al.). We used

668 of the 776 participants from the ADHD-200 Competition’s
training dataset, after removing the 108 participants whose scans
did not pass quality assurance checks by the ADHD-200 data
curators. This 668-subject dataset, summarized in Table 1 left,
contained the age, gender, handedness, IQ scores, and scan-
ning site, as well as a resting-state fMRI scan for each of
429 healthy controls, 141 ADHD-combined (ADHD-c) patients,
and 98 ADHD-inattentive (ADHD-i) patients. Most participants
were adolescents, while the remainder were children or young
adults. We tested each learned classifier against the ADHD-200
Competition’s holdout set (Table 1 right side). We used data from
only 171 of the 197 holdout participants, as we excluded the 26
participants from the Brown University site, for whom diagnostic
labels were not released.

2.2. fMRI PREPROCESSING PIPELINE
The ADHD-200 Global Competition organizers provided both
raw and preprocessed data. Instead of using the preprocessed data
that they provided, we used our own pipeline to preprocess the
raw fMRI images using SPM8 (The FIL Methods Group) and in-
house MATLAB code (as specified below). For each subject, the
preprocessing pipeline involves:

1. Six parameter rigid body motion correction (SPM8)
2. Co-registration of functional scans to each subject’s respective

anatomical scan (SPM8)
3. Nonlinear spatial warping of anatomical volume to MNI T1

(Evans et al., 1993) template space at 1 × 1 × 1 mm resolution
(SPM8)

4. Warping of the fMRI volumes into T1 template space at 3 ×
3 × 3 spatial resolution, using the same warping parameters
computed in the previous step without re-estimation.

5. Application of an 8 mm full width at half maximum (FWHM)
Gaussian spatial filter to the fMRI volumes (SPM8)

6. Truncation of all resting-state fMRI scanning data to a 185 s
duration (as this is the shortest time used in all hospitals), fol-
lowed by temporal linear interpolation to a sampling rate of
2 Hz.
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Table 1 | Distribution of ADHD patients and control subjects contained in the original (left) and holdout (right) datasets.

Hospital Number of Control ADHD

subjects group
combined inattentive

Kennedy Kriegler 78 58 15 5

Institute (KKI)

NeuroIMAGE 38 16 12 0

Peking University 194 116 29 49

Oregon Health Science 64 36 17 11

University (OHSU)

New York 188 91 64 33

University (NYU)

University 66 66 0 0

of Pittsburgh

Washington University 40 40 0 0

Hospital Number of Control ADHD

subjects group
combined inattentive

Kennedy Kriegler 11 8 3 0

Institute (KKI)

NeuroIMAGE 25 14 11 0

Peking University 51 27 10 14

Oregon Health Science 34 28 5 1

University (OHSU)

New York 41 12 22 7

University (NYU)

University 9 5 0 4

of Pittsburgh

Washington University 0 0 0 0

After this preprocessing, every subject’s fMRI data had the
same spatiotemporal dimensions (57 × 67 × 50 voxels with
waveforms over 370 time points) and sampling parameters
(3 × 3 × 3 mm voxels spatially, 0.5 s sampling period).

We did not model the fMRI data with explicit nuisance regres-
sors (e.g., run offsets, low frequency sinusoids, and motion
parameters) as this is not standard practice in resting state fMRI
analysis. Inclusion of nuisance regressors is common in general
linear model (GLM)-based analysis of fMRI when the partici-
pant performs a structured task. In contrast, many functional
connectivity analyses, including those based on PCA and FFT,
are not based on the GLM and have no straightforward way to
incorporate nuisance regressors. Instead, we removed known or
suspected sources of noise by applying filtering and other cor-
rections to the data prior to the main analysis. We performed
standard rigid body motion correction and, where appropriate,
time courses were mean-centered. This addressed the issue of dif-
ferences in mean scan intensity, which is the same issue addressed
by run offset predictors in a GLM. Resting-state fMRI analyses
typically treat low frequency components—i.e., in the range of
0.001–0.1 Hz—as containing meaningful signal and often focus
on only those components (Biswal et al., 1995; Yu-Feng et al.,
2007). We therefore did not perform high pass temporal filtering
to remove those frequency components as this may have removed
diagnostically-useful information from the data.

2.3. AVERAGING
After preprocessing (section 2.2), each subject’s fMRI data con-
sisted of volumes with spatial size L × W × H voxels. Each voxel
had a waveform of length T = 370, meaning that each subject’s
scan had a total spatiotemporal dimensionality of L × W × H ×
T, which here was 57 × 67 × 50 × 370 real values per scan.

Each subject’s 57 × 67 × 50 × 370 fMRI scan required roughly
282 MB of memory when represented as a single-precision, four
dimensional array. Applying PCA (section 2.6) to the fMRI data
from all 668 subjects at once would have required 188.78 GB in
memory, which would have strained our computing resources,
both directly and indirectly (by thrashing). To address the
high dimensionality of the data, we first reduced the spatial

FIGURE 3 | Temporal view of subject’s original (left) and averaged

(right) volume at time point t = 1. Averaging reduced the spatial
dimensionality by a factor of 3 × 3 × 3 = 27.

dimensionality using “averaging”—i.e., replacing each k × k × k
sub-volume by its average intensity value, for each time point
t ∈ [1, . . . , T]. Partial volumes on the edge of the scan were
dropped. This procedure reduced the data size by a factor of ≥ k3.
Figure 3 illustrates a subject’s fMRI data before and after aver-
aging. For this study, every subject’s fMRI scan was averaged by
taking the mean over 3 × 3 × 3 subvolumes (i.e., k = 3), result-
ing in �57/3� × �67/3� × �50/3� = 19 × 22 × 16 = 6688 voxel
waveforms. We also tried averaging over 8 × 8 × 8 subvolumes
(i.e., k = 8) but found that all methods performed poorly on this
averaged data.

One potential criticism of using this averaging method is that it
discards information by reducing the spatial resolution. However,
note that subjects’ fMRI scans were already spatially smoothed
with an 8 mm FWHM Gaussian filter during preprocessing. We
argue that averaging with k = 3 did not impose a substantial,
additional reduction in spatial resolution. We did perform a
small number of tests without averaging and found that exclud-
ing the averaging step did not improve diagnostic performance
(results not shown), though it did increase the computation time
substantially.

2.4. BOLD SIGNAL INTENSITY NORMALIZATION AND MASKING
After preprocessing and averaging, we used BOLD signal inten-
sity normalization to address between-subject differences in

Frontiers in Systems Neuroscience www.frontiersin.org November 2012 | Volume 6 | Article 74 | 4

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Sidhu et al. ADHD diagnostics using kernel PCA

FIGURE 4 | The PCA-t process. V is the number of voxels per subject.
N is the number of subjects. T is the length of each voxel’s waveform in
number of time points. All V voxel waveforms from all N subjects were
represented by the rows of the data matrix Xt . After running PCA on this
matrix, the m largest principal component scores of each subject’s

waveforms were used as the reduced-dimension features. Note that the
input signal was always the 3 × 3 × 3 averaged (spatially-reduced) version
within the masked sub-volume. For some tests (Figure 2), the
“waveform” used to form the PCA-t matrix was the FFT of the original
waveforms (see section 2.5).

waveform magnitude introduced by differences in scanner config-
uration or image registration. We considered three different signal
normalization methods (also see Desmond and Glover, 2002). Let
μxi be the mean intensity over a voxel’s waveform xi and σxi be
the standard deviation of the intensity values in xi. Then, for each
voxel i = 1, . . . , V :

Percent Signal Change:

xi,norm = (xi − μxi) × 100

μxi

Z-Score Normalization 1:

xi,norm = xi − μxi

σxi

The classification accuracies when using these methods were
no better than the baseline, which suggested that normalizing
waveforms according to their local properties—i.e., the voxel
waveform’s mean and/or standard deviation—was not useful for
discriminating patients from controls.

We also normalized voxel waveform values using the global
mean, μx, and standard deviation, σx, calculated from intensity
values over a subject’s entire fMRI scan:

Z-Score Normalization 2 (ZN2):

xi,norm = xi − μx

σx

In initial tests, we found that ZN2 signal normalization
resulted in the most accurate diagnostic performances, and we

used it rather than the other two signal normalization methods.
After performing ZN2 signal normalization, we applied a mask
that removed voxels outside of the brain. This left only 3584 voxel
waveforms per subject.

2.5. FOURIER TRANSFORMS
We used MATLAB’s implementation of the FFT (Oppenheim
et al., 1999) on each of the 3584 voxels’ waveforms. Each such
waveform contained 370 time points, and the FFT produced 185
complex-valued Fourier component weights. We extracted the
magnitude and discarded the phase for each frequency compo-
nent. After FFT, each subject’s data consisted of 3584 × 185 =
633, 040 values (features). As shown in Figure 2, we used these
values as input to the next step—either a PCA variant or the
learner itself.

2.6. PRINCIPAL COMPONENT ANALYSIS
PCA is a dimensionality reduction technique that computes the
linear combination of features—e.g., the intensities of a specific
voxel at a single time, over the set of data points—that have high
variance (Rencher, 2002). Instead of representing a data point
using the original features, we can “project” those original fea-
tures onto a smaller number of principal components and know
that this re-encoding “captures” a large proportion of variance in
the data. We assume readers are familiar with PCA and discuss its
relevant theoretical properties in Appendices C.1 and C.2.

2.6.1. PCA compression over time: PCA-t
Here we describe PCA-t, which is a standard approach to reduc-
ing fMRI dimensionality. Its purpose is to capture the variance
over waveforms by selecting the top m components—i.e., the ones
that are responsible for the largest proportion of the variance
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FIGURE 5 | The PCA-st process. V is the number of voxels per subject. N is
the number of subjects. T is the length of each voxel’s waveform in number of
time points. Each subject’s voxel waveforms were horizontally concatenated
to form one row of the data matrix Xst used by PCA-st and kPCA-st. Note that

the input signal was always the 3 × 3 × 3 reduced version within the masked
sub-volume. For some tests (Figure 2), the “waveform” used to form the
PCA-st matrix was the FFT of the original waveforms. Note that we can replace
the first step, PCA, with kernel-PCA (kPCA) to represent the kPCA-st process.

over voxel waveforms. PCA-t’s principal components have been
interpreted as representing networks of activation (Huettel et al.,
2009).

Andersen et al. used primates’ fMRI data to show that PCA-t’s
largest principal components captured the systematic structure—
i.e., voxel activation patterns—based on the assumption that
the smaller T − m principal components were essentially noise.
Andersen et al. also argued that a degree of subjectivity is involved
in interpreting the projections produced by PCA-t (Andersen
et al., 1999). Note that our supervised learning framework pro-
vides an objective way to evaluate various dimensionality reduc-
tion techniques, based on the performance “downstream,” of the
resulting classifier. We used this supervised learning framework to
evaluate whether using PCA-t feature extraction would allow us
to learn a classifier that could discriminate ADHD patients from
controls.

PCA-t treated the waveform from each voxel from each subject
as a data point. As shown in Figure 4, PCA-t took as input a data
matrix Xt and produced a matrix Zt whose principal components
captured over 99% of the variance in Xt (Equation A.9). Each sub-
ject’s fMRI data were first averaged, BOLD signal normalized, and
masked and then reshaped from a 4D representation to a 2D one
(by vectorizing the spatial dimensions). This procedure produced
a V × T matrix for each subject. All N subjects’ matrices were
concatenated vertically to produce the NV × T data matrix Xt .
Xt was projected onto the low-dimensional eigenvector matrix
E ∈ R

T×m (Equation A.7) to produce the NV × m principal
component scores matrix Zt , where the m NV-dimensional prin-
cipal components (columns) contained the N subjects’ principal
component scores.

2.6.2. PCA compression over time and space: PCA-st
We also tested a variant of PCA, PCA-st, which considered both
spatial and temporal aspects of the fMRI data. PCA-st treated the
entire fMRI scan from each subject as a datapoint. In PCA-st,
we applied PCA to an N × VT data matrix Xst in which each

row represented the fMRI data from one subject. After averag-
ing, BOLD signal normalization, and masking a given subject’s
fMRI data, all waveforms from all voxels for that subject were
concatenated, and the resulting row vector comprised one row
of the PCA data matrix Xst . Figure 5 shows the data matrix Xst ,
as well as the matrix Zst produced by PCA. Zst ’s principal com-
ponents captured over 99% of the variance over the waveforms
(Equation A.9).

PCA-st used the dual trick to recover the high-dimensional
eigenvectors of the covariance matrix Sst from the low-
dimensional eigenvectors of Kst (Equation A.6). We then pro-
jected Xst onto the VT × N eigenvector matrix (Equation A.8).
This produced an N × N principal component matrix Zst that
contained N principal components for every subject. Each prin-
cipal component was the dot product between the respective
subject’s VT-dimensional vectorized imaging data and one of the
N VT-dimensional eigenvectors of Sst .

Zst( j, i) = 〈xj, ei〉 =
VT∑
�=1

xj,�ei,� (1)

2.7. KERNEL METHODS
Section 2.7.1 introduces nonlinear similarity measures by extend-
ing the dot product, a linear similarity measure introduced in
section C.1, to a nonlinear setting by introducing nonlinear map-
pings, which are used by kPCA-st (introduced in section 2.7.2).
Section 2.7.3 explains the pitfalls of applying kPCA in only the
temporal or only the spatial dimensions.

2.7.1. Nonlinear similarity measures
We followed Schölkopf and Smola (2002) to show that a nonlinear
similarity measure can still exist in an inner product space. Using
this approach, we tested whether the different values produced
by using a nonlinear similarity measure (as opposed to a linear
similarity measure) would improve the discrimination of patients
from controls.
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In order to use the inner product as a measure of similarity, the
original data points x ∈ X were mapped into vectors in an inner
product space H:

� : X → H (2)

�’s embedding into H allowed the introduction of different
similarity measures that can be expressed as inner products:

k�(xi, xj) := 〈xi, xj〉� = 〈�(xi),�(xj)〉 (3)

Mapping subject images to an inner product space through
�(·) allowed us to investigate whether the enriched geometric
relationship afforded by the mapping �(·) could improve the
discriminatory power of a classifier.

For some �, one can compute K�(xi, xj) (Equation 2) directly,
without first computing �(xi) and �(xj), using the “kernel trick.”
The kernel trick allows one to efficiently compute the kernel func-
tion by avoiding explicit mapping of the data points xi and xj to
the higher-dimensional �(xi) and �(xj). That is, using the ker-
nel trick, one can compute each kernel value k(xi, xj) in a way
that depends on the dimensionality of the original data points xi

and xj, rather than the potentially much higher dimensionality of
�(xi) and �(xj). This approach makes it feasible to use nonlinear
transforms which would be difficult, if not impossible, to repre-
sent explicitly (Herbrich, 2001). The Radial Basis Function (RBF)
kernel is an example of this. For the RBF kernel, the range of the
�(x) mapping is infinite dimensional. The RBF kernel value of
two data points xi and xj, in our original space, is

K̃RBF(i, j) = kRBF(xi, xj) = exp

(
−〈(xi − xj), (xi − xj)〉

2σ2

)
(4)

where xi and xj represent two subjects’ voxel waveforms as vec-
tors and σ is a user-determined parameter. Note that the matrix
containing the kernel values between all pairs of the data points is
denoted as K̃. For K̃RBF, the RBF subscript denotes the use of the
RBF mapping.

When performing kPCA-st (section 2.7.2), we used the RBF
kernel because the kernel matrix K̃RBF is strictly positive definite,
which guarantees the recovery of N strictly positive eigenvalues.
Therefore we always had N principal components to capture the
variance in the data. Having fewer than N principal components
could have hurt the diagnostic accuracy results, as there would
have been fewer eigenvectors to capture the variance in the data.

2.7.2. Kernelized PCA compression over space and time: kPCA-st
kPCA-st consisted of four basic steps:

1. Compute kernel matrix K̃RBF ∈ R
N×N over the training data

(Equation 4).
2. Center K̃RBF using KRBF = K̃RBF − 1NK̃RBF − K̃RBF1N +

1N K̃RBF1N , where every element of the N × N matrix 1N is
1
N .

3. Compute the eigenvector matrix ERBF of KRBF.
4. Project KRBF onto the eigenvector matrix (Equation A.8),

where Xst and E were replaced with KRBF and ERBF,
respectively.

Figure 5 illustrates the process for kPCA-st, assuming PCA is
replaced with kPCA. Similarly to PCA-st, kPCA-st produced N
reduced imaging features for each subject.

We emphasize that every element in kPCA-st’s kernel
matrix represents the point-wise similarity between two sub-
jects’ entire fMRI scans (after applying mapping �) because
it measures the similarity of all T points for every voxel
location.

Using kPCA-st as a dimensionality reduction process for fMRI
is appealing because (1) the result is different from using the stan-
dard linear methods and therefore presents an alternative that
might work more effectively and (2) the kernel matrix, KRBF,
grows with the square of the number of data points instead of
the dimensionality of the range of �. For all diagnostic tests
using kPCA-st, we used the RBF kernel with the kernel parameter
σ = 150.

2.7.3. kPCA in only temporal dimension
Applying kPCA-st to fMRI data reduces dimensionality over
both the spatial and temporal dimensions. We also considered
applying kPCA in only the temporal dimension, as in PCA-t.
However, this approach defeats the purpose of using kPCA over
canonical PCA. Performing kPCA over the temporal dimension,
using PCA-t’s data matrix Xt , produces an NV × NV kernel
matrix, which faces computational issues because of its large size.
If we average over larger subvolumes to reduce the computa-
tional strain of calculating the kernel matrix, the loss of spatial
information cripples performance. We considered averaging over
8 × 8 × 8 subvolumes (results not shown) but observed poor
performance in comparison to averaging over 3 × 3 × 3 subvol-
umes. When averaging over 8 × 8 × 8 subvolumes, we believe
that the large size of the kernel matrix and the poor result of
kPCA-st are sufficient to dismiss applying kPCA in the temporal
dimension.

If kPCA-st is applied to the spatial matrix—i.e., subject vol-
umes at a single time point—then the data matrix X given as
input to kPCA-st has dimensionality N × V . Given that there are
T resting-state volumes per subject, it is difficult to justify selec-
tion of a specific time point’s volume because all volumes were
collected under the same conditions.

2.8. TESTING METHODOLOGY
We evaluated the dimensionality reduction methods in two set-
tings. In two class diagnosis, we classified participants as ADHD
(collapsed across subtypes) vs. healthy control. In three class diag-
nosis, we classified participants as ADHD combined (ADHD-c)
type vs. ADHD inattentive (ADHD-i) type vs. healthy control.
For each setting, we grouped the seven dimensionality reduction
processes into three categories, depending on how each process
transformed the averaged, BOLD signal intensity normalized,
and masked original waveforms (see Figure 2). The number of
processes in each category is parenthesized.

For the first category, we transformed each subject’s wave-
forms as:

I. Without FFT Transform input to PCA-t, PCA-st, and kPCA-
st. (3)
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Table 2 | Two and three class classification accuracies on the original 668 subject dataset.

Number of classes Baseline Phenotypic only FFTed waveforms PCA variant Imaging only Imaging + phenotypic data

2 64.22 72.9 − PCA-t 65.69 (7.16) 70.51 (6.91)
− PCA-st 65.57 (5.51) 69.89 (6.46)
− kPCA-st 70.35∗(5.21) 73.20 (4.79)

+ – 68.41 (5.50) 70.95 (7.66)

+ PCA-t 69.60 (5.36) 70.06 (4.83)
+ PCA-st 69.30 (5.82) 70.06 (5.08)
+ kPCA-st 68.70 (5.53) 76.04∗ (4.92)

3 64.22 66.77 − PCA-t 58.82 (6.26) 62.86 (6.55)
− PCA-st 59.82 (6.16) 63.30 (6.55)

− kPCA-st 64.06∗ (3.74) 66.0∗(7.56)

+ – 63.92∗ (5.88) 64.06 (4.37)

+ PCA-t 59.56 (5.87) 61.23 (5.19)
+ PCA-st 60.76 (5.17) 61.07 (4.97)
+ kPCA-st 64.36∗(5.19) 68.55∗(6.61)

The reduced features were obtained by performing FFT and/or PCA-t, PCA-st, and kPCA-st on the imaging data. Standard deviations are provided in parenthesis. An

accuracy value is in bold if it is statistically better than baseline, and it is asterisked (*) if it is statistically better than PCA-t in the same setting.

For the two remaining categories, we first computed the FFT for
each subject’s waveforms then used the magnitudes from each
subject’s FFTed waveforms as:

II. FFT Only the reduced-dimensionality imaging features. (1)

III. With FFT Transform input to the PCA variants. We differ-
entiated these processes from those in the first category by
referring to these variants as FFT + PCA-t, FFT + PCA-st, and
FFT + kPCA-st. (3)

We used three feature sets for our evaluation:

Phenotypic Data consisted of subject age, gender, scanning site,
and three IQ scores: Verbal, Performance, and Full IQ. Missing
IQ values were set to the mean over all subjects who had the
respective IQ score.

Imaging Data contained only the reduced-dimensionality imag-
ing features produced by one of the seven dimensionality
reduction processes.

Imaging and Phenotypic Data appended the phenotypic data to
the imaging data returned by one of the seven dimensionality
reduction processes1.

This gave a total of 15 feature sets for each setting, including
the phenotypic only feature set as well as the “Imaging Data” and
“Imaging and Phenotypic Data” feature sets for each of the seven
dimensionality reduction processes.

We used each of the resulting feature sets as input to a linear
kernel support vector machine (SVM) learner2, which produced
a classifier. We then evaluated the feature sets in terms of the

1This feature set allowed us to explore whether the combination of the
imaging and phenotypic features would have a synergistic effect.
2This is a standard learning algorithm. We considered other learners, but
found none worked better.

accuracy of the resulting classifier. This accuracy was based on
10-fold Cross Validation (Hastie et al., 2009), where we used the
same folds for tests of different feature sets.

We compared every method’s performance to the baseline
accuracy derived by guessing the majority class (healthy con-
trol) for all participants. We also compared kPCA-st’s results to
PCA-t’s. It was our hypothesis that using kPCA-st would result in
superior diagnostic accuracy compared to using canonical PCA
for dimensionality reduction. To further test the results—i.e., to
make sure they were not a consequence of overfitting—we used a
holdout set to evaluate the performance of each method. At the
close of the ADHD-200 Global Competition, the most accurate
of the submitted classifiers was based on only the phenotypic data
(Brown et al., 2012; Fair and Milham). Therefore, we also com-
pared our results to automated diagnosis using a linear SVM with
only phenotypic data as input.

3. RESULTS
We discuss the performance of all dimensionality reduction
methods on the original dataset, followed by the holdout set (sec-
tions 3.1 and 3.2). For both the original and holdout datasets (see
Table 1), we initially discuss the performance of the PCA vari-
ants without using FFT (sections 3.1.1 and 3.2.1). We then discuss
the performance achieved using FFT features (sections 3.1.2 and
3.2.2). We conclude each dataset’s results subsection by discussing
the performance using the FFT component weights as input to
the PCA variants (sections 3.1.2 and 3.2.2). For all of these cases,
we first discuss the results in the two class setting before the three
class setting. In each setting, we first consider using only the imag-
ing features without the phenotypic data and then consider the
combination of the imaging features with the phenotypic data.
Tables 2, 3 contain the results, shown in Figures 6, 7, for the orig-
inal and holdout datasets, respectively. In section 3.3, we discuss
control tests using different preprocessing of the fMRI data.
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Table 3 | Two and three class classification accuracies on the holdout set, where the reduced features were obtained by performing FFT and/or

PCA-t, PCA-st, and kPCA-st on the averaged imaging data.

Number of classes Baseline Phenotypic only FFTed waveforms PCA variant Imaging only Imaging + phenotypic data

2 54.97 71.35 − PCA-t 53.22 59.1

− PCA-st 56.14 56.73

− kPCA-st 60.23 61.99

+ – 56.73 56.73

+ PCA-t 54.97 57.31

+ PCA-st 57.31 57.31

+ kPCA-st 61.40 66.67

3 54.97 67.25 − PCA-t 47.95 49.71

− PCA-st 49.12 50.88

− kPCA-st 55.56 61.99

+ – 50.88 53.22

+ PCA-t 49.71 50.88

+ PCA-st 50.88 50.88

+ kPCA-st 58.48 59.65

3.1. ORIGINAL DATASET RESULTS
3.1.1. Without FFT transform
For each subject, PCA-t computed 370 component weights at
each of 3584 voxel locations. We only used the m = 2 largest
components (from each voxel) because they captured over 99.9%
of the variance in the data. Both PCA-st and kPCA-st com-
puted a total of 668 component weights for each subject.
For PCA-st 3 and kPCA-st, we used m = 667 and m = 668 com-
ponents, respectively.

When using only the reduced imaging features from PCA-t or
PCA-st in the two class setting, the accuracies were not statisti-
cally better than the baseline. In contrast, using only the reduced
imaging features from kPCA-st produced an accuracy of 70.3%,
which was statistically better than the baseline, PCA-t, and PCA-st
(p = 0.0024, p = 0.014, and p = 0.022), but it was not statisti-
cally better than the accuracy achieved using only the phenotypic
data.

When combining the imaging and phenotypic features in the
two class setting, each of PCA-t, PCA-st, and kPCA-st produced
classification accuracies that were statistically better than the
baseline (p = 0.013, p = 0.016, and p = 0.00032). Even though
PCA-t’s and PCA-st, when combined with phenotypic data, pro-
duced classification accuracies statistically better than the base-
line, neither surpassed the phenotypic classification accuracy.
That is, in the two class setting, using only the phenotypic data
was better than combining it with the reduced imaging features
from PCA-st and PCA-t. In contrast, kPCA-st combined with
phenotypic data produced a superior, but not statistically bet-
ter (p = 0.88), accuracy than using only the phenotypic data.
In general for the two class setting, the discriminatory power of
the classifier based on the kPCA-st derived imaging features was

3The smallest eigenvalue was zero for PCA-st.

better than that of classifiers which used features from PCA-t or
PCA-st.

In the three class setting, none of PCA-t, PCA-st, or kPCA-
st produced classification accuracies that were statistically better
than the baseline, using either the combination of imaging and
phenotypic data or only the imaging data. While all of the feature
extraction methods performed below the baseline when using
only the imaging data in the three class setting, kPCA-st per-
formed statistically better than PCA-t and PCA-st (p = 0.018 and
p = 0.018). When combining the imaging and phenotypic data in
the three class setting, kPCA-st produced accuracies that were not
statistically better than baseline (p = 0.38), PCA-t (p = 0.063),
or PCA-st (p = 0.10).

3.1.2. Using FFT only
In both the two and the three class settings, the FFT was used
to reduce the temporal dimensionality of the imaging data. In
the two class setting when using the 633,040 imaging features or
combining them with the phenotypic data, FFT produced accu-
racies that were statistically better than the baseline (p = 0.00055
and p = 0.0021). However, in the three class setting, FFT failed to
produce accuracies equal to or above the baseline.

We show that FFT is more effective as a preprocessing step in
the next subsection, based on the results from the FFT + PCA-t,
FFT + PCA-st, and FFT + kPCA-st feature extraction methods.

3.1.3. With FFT transform
For the tests described in this subsection, instead of applying
PCA-t, PCA-st, and kPCA-st to the waveforms directly, we first
applied the FFT as a preprocessing step. The goal was to test
whether the magnitude of each FFT-derived frequency compo-
nent was more diagnostically useful than the raw BOLD sig-
nal intensities. FFT transformed the imaging data’s temporal
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FIGURE 6 | Visualization of the results on the original dataset (Table 2), where the error bar is ± the standard deviation. The purple lines denote the
phenotypic data classification accuracy in the two class (left) and three class (right) setting, and the black line denotes the baseline in both the two and three
class settings.

dimensionality from 370 time points to 185 frequency compo-
nent magnitudes. If we let T equal the number of frequency
components, then the feature extraction methods outlined in
Figures 4, 5 still apply.

FFT + PCA-t computed 185 PCA component weights at each
of 3584 voxel locations for each subject. We only used the m = 2
largest PCA components from each voxel because they captured
over 99.9% of the variance in the data. Both FFT + PCA-st and
FFT + kPCA-st computed 668 component weights for each par-
ticipant. For both FFT + PCA-st and FFT + kPCA-st, we used
m = 668 components weights.

In the two class setting using only the imaging data, FFT +
PCA-t, FFT + PCA-st, and FFT + kPCA-st each produced classi-
fication accuracies that were statistically better than the baseline
(p = 0.0011, p = 0.0071, and p = 0.049). Combining FFT +
PCA-t or FFT + PCA-st’s reduced imaging features with the
phenotypic data resulted in classification accuracies that were sta-
tistically better than the baseline (p = 0.0011 and p = 0.0014).
However, this performance was nearly identical to that using
only FFT + PCA-t and FFT + PCA-st’s reduced imaging fea-
tures. In other words, combining the phenotypic data with the
features produced by FFT + PCA-t and FFT + PCA-st did not

improve the discriminatory power of the classifier. Combining
the phenotypic data with the reduced imaging features of FFT +
kPCA-st resulted in a classification accuracy that was statistically
better than the baseline, PCA-t, PCA-st, and the phenotypic data
(p = 1.1 × 10−7, p = 0.0048, p = 0.0056, and p = 0.047). That
is, using the FFT + kPCA-st imaging features with the phenotypic
data improved the discriminatory power of the classifier.

In the three class setting, FFT + PCA-t and FFT + PCA-st
performed similarly to the case where FFT was not used as a
preprocessing step. That is, these approaches failed to produce
classification accuracies that were statistically better than the
baseline, whether or not they were combined with phenotypic
data. FFT + kPCA-st failed to outperform the baseline when
using imaging data only. FFT + kPCA-st produced a classifica-
tion accuracy that was statistically better than FFT + PCA-t (p =
0.032) but not better than FFT + PCA-st’s accuracy. Combining
the phenotypic data with FFT + kPCA-st imaging features pro-
duced a classification accuracy that was statistically better than
the baseline (p = 0.0047), but it was not statistically better than
the accuracy achieved using only the phenotypic data.

In summary, when using phenotypic and imaging data in
the two class setting, classification based on the combination of
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FIGURE 7 | Visualization of the results on the holdout dataset

(Table 3). The purple lines denote the phenotypic data classification
accuracy in the two class (left) and three class (right) settings. The black
line denotes the baseline in both the two and three class settings. The

red line denotes the accuracy of the ADHD-200 global competition
official winners’ submission. The blue line denotes the accuracy of our
competition submission using the logistic classifier with phenotypic data
only.

FFT + kPCA-st features and phenotypic data performed better
than classification based only on the phenotypic data. FFT +
kPCA-st was the only method that produced a statistically better
result than the phenotypic data in either the two or three class
settings.

The results suggest that taking the magnitudes of all voxel
waveforms’ frequency components returned by FFT could be a
useful preprocessing step for voxel waveforms.

3.2. HOLDOUT SET PERFORMANCE
The ADHD-200 Global Competition used a holdout set to eval-
uate the submissions. The organizers released this data after the
competition concluded. We used 171 of the 197 subjects in the
holdout set, where we excluded 26 subjects from a hospital that
did not authorize the release of their diagnoses. For both the two
and three class settings, the baseline accuracy on this dataset was
54.97%, derived by guessing “healthy control” for all subjects.

3.2.1. Without FFT transform
In the two class setting, using only the reduced imaging features,
PCA-t, PCA-st, and kPCA-st produced classification accuracies of

53.22%, 56.14%, and 60.23%. PCA-t’s accuracy was below the
baseline. Using phenotypic data only resulted in a classification
accuracy of 71.35%. These results are consistent with the cross-
validation results from the original dataset. The phenotypic data
outperformed any method that used only the reduced imaging
data, and kPCA-st outperformed both PCA-t and PCA-st. When
combining the phenotypic data with the imaging data in the
two class setting, PCA-t, PCA-st, and kPCA-st performed better
than the baseline but not better than the phenotypic data-based
approach.

In the three class setting, both PCA-t and PCA-st failed to
produce classification accuracies above the baseline. In contrast,
the classification accuracy for kPCA-st using only the reduced
imaging features was 55.56%, which was slightly better than
the baseline. When the kPCA-st reduced imaging features were
combined with the phenotypic data, a classification accuracy of
61.99% was produced.

3.2.2. Using FFT only
Similarly to what was done with the original dataset, we used
FFT as a preprocessing step, which provided the voxel waveform
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frequency component magnitudes as input to PCA-t, PCA-st, and
kPCA-st. Interestingly, FFT’s performance on the holdout dataset
was not consistent with the results from the original dataset
(see section 3.1.2). FFT failed to produce accuracies well-above
baseline in either the two or three class settings with the holdout
data. As we show in the next subsection, this preprocessing step
improved the accuracy of each method.

3.2.3. With FFT transform
In the two class setting using only the imaging data, FFT + PCA-t
performed similarly to the baseline. FFT + PCA-st and FFT +
kPCA-st outperformed the baseline by different margins, FFT +
kPCA-st’s margin being larger than FFT + PCA-st’s. When com-
bined with the phenotypic data, FFT + PCA-t, FFT + PCA-st, and
FFT + kPCA-st all outperformed the baseline. FFT + kPCA-st’s
performance was superior to those of FFT + PCA-t and FFT +
PCA-st. Combining the phenotypic data with FFT + kPCA-st’s
reduced imaging features failed to outperform the phenotypic
data in the two class setting.

In the three class setting when using only the imaging data,
FFT + PCA-t and FFT + PCA-st failed to outperform the base-
line. In comparison, FFT + kPCA-st produced an accuracy of
58.48%, which was better than the baseline. When combining
the phenotypic data with the imaging features, both FFT + PCA-
t and FFT + PCA-st failed to outperform the baseline. FFT +
kPCA-st produced an accuracy of 59.65%, which was better than
the baseline but slightly worse than the 61.99% achieved using
kPCA-st in the same setting.

Using FFT as a preprocessing step improved most methods’
classification accuracies. kPCA-st still produced the best result
of any method using imaging features and consistently outper-
formed PCA-st and PCA-t. In the two class setting, FFT +
kPCA-st benefited the most from using FFT as a preprocess-
ing step, as it produced classification accuracies better than the
baseline and kPCA-st when using only the imaging data.

The results suggest that using FFT as a preprocessing step
before applying dimensionality reduction can improve diagnos-
tic accuracy in this context. Results from both the original dataset
and the holdout set supported our hypothesis that reducing
dimensionality over both the spatial and temporal dimensions,
as kPCA-st does, produces better diagnostic accuracies than
reducing only the temporal dimensionality, as PCA-t does.

3.3. CONTROL TESTS WITH DIFFERENT PREPROCESSING
Resting state fMRI scan durations and sampling rates were differ-
ent for different data collection sites. In preprocessing the data,
subject’s fMRI scans were truncated to the shortest scan length in
the dataset (185 s) and resampled to a 2 Hz sampling rate (see sec-
tion 2.2). To investigate whether the truncation and re-sampling
procedure may have had detrimental consequences on diagnostic
accuracy, we tested diagnosis using the ADHD-200 Competition’s
preprocessed data. Given that images from different sites differed
in their temporal dimensions, we only tested performance from
one site, the NeuroIMAGE site (Fair et al.). When we compared
kPCA-st’s performance on the Competition’s preprocessed data
to the result that used our preprocessed data, we observed that
kPCA-st produced similar results for each dataset. This suggests

that the temporal truncation and resampling in our preprocessing
did not substantially impact performance.

We also tested diagnosis using fMRI data resampled into a 2.0 s
volume time (0.5 Hz sampling rate), instead of a 0.5 s volume
time. We found that our diagnostic methods did not perform sta-
tistically better than the baseline in this case. Up-sampling to 0.5 s
volume time improved performance. A previous study focusing
on slice-timing correction—i.e.. temporal data interpolation—
found that slice-timing effects can significantly impair fMRI
results, and slice-timing correction methods, such as linear inter-
polation, can successfully compensate for these issues, which
improves the robustness of the analysis (Sladky et al., 2011). For
this dataset, linear interpolation allows preservation of the tem-
poral data for scans with higher sampling rates by introducing
data points for scans with lower sampling rates. Linear interpo-
lation is used to both preserve the voxels’ activations and ensure
that these activations “line up,” which is similar to how it is used
in slice-timing correction. We therefore argue that up-sampling
the fMRI data to a 2 Hz sampling rate is warranted.

4. DISCUSSION
Our results suggest that applying kPCA (kPCA-st) leads to clas-
sifiers that are statistically better than canonical PCA (PCA-t)
when using the imaging data only, in the context of imaging-
based diagnosis of ADHD. In the two class setting, kPCA-st
produced a classification accuracy that was statistically better than
the baseline. The performance of kPCA-st in the two class set-
ting provides a proof-of-concept as we work toward fMRI-based
diagnostic protocols for use in the clinic.

Without using FFT to preprocess voxel waveforms, kPCA-st
performed better than canonical PCA (PCA-t) when only using
imaging data in both the two and three class settings. It also per-
formed better than PCA-t in the three class setting when using
both imaging and phenotypic data.

When FFT was used as a preprocessing step, FFT + kPCA-st
performed better than FFT + PCA-st and FFT + PCA-t when
using the imaging and phenotypic data in the two and three class
settings. It also performed better than PCA-t, but not PCA-st,
when using only the imaging data in the three class setting.

kPCA-st’s better performance over PCA-t in either the two
or three class settings, without the FFT transform, suggests that
reducing over spatial and temporal dimensions is superior to
reducing over temporal dimensions, in this context. However,
FFT + kPCA-st failed to produce a statistically better result than
FFT + PCA-t, which suggests that using the FFTed waveforms
greatly benefits PCA-t and marginally impacts kPCA-st. A pos-
sible explanation for this result is that kPCA-st’s advantage over
PCA-st and PCA-t is mitigated by introducing a preprocessing
step that reduces the temporal dimensions of the imaging data.

The results show that nonlinear mapping of subjects’ fMRI
data to a high-dimensional inner product space, as kPCA-st does,
can increase discriminatory power of a classifier when compared
to methods that do not, such as PCA-t and FFT.

Interestingly, FFT + kPCA-st when combined with pheno-
typic data outperformed the phenotypic data-only approach in
both the two and three class setting, though only the result in the
two class setting was statistically better than the phenotypic data.
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FIGURE 8 | Figures shows sine waves (blue) with sampling periods of

2.0 and 2.5 s, as well as re-sampled versions (red) of the same curves

with sampling periods of 2.0 and 0.5 s. The re-sampled curves were
linearly interpolated from the blue curves. We see re-sampling errors
caused by re-sampling from 2.5 to 2.0 s, where the maximum and

minimum values of the red curve are very different from the blue curve.
In the bottom right and bottom left panels we see that linear re-sampling
does not have these errors, but acknowledge that the time points
in-between originally sampled time points are extrapolated using linear
interpolation (Brown et al., 2012).

We believe that FFT + kPCA-st’s statistically insignificant
improvement over the phenotypic data in the three class setting
is not a large issue, because the phenotypic data-based approach
itself was not statistically better than the baseline.

There are two potential consequences of our results:

1. Our results suggest that combining imaging and phenotypic
data can improve the discrimination of ADHD subtypes from
healthy controls. Using FFT + kPCA-st’s features combined
with phenotypic data produced diagnostic accuracies that
were better than using only the FFT + kPCA-st’s features or
only the phenotypic data. This finding is particularly impor-
tant given how challenging automated diagnosis with the
ADHD-200 dataset has proven to be. Among the ADHD-200
Global Competition submissions, no imaging-based diagnos-
tic method out-performed a fairly simple approach using the
logistic classifier with phenotypic data inputs (see Brown et al.,
2012). The current study demonstrates a means of improving
upon such phenotypic-only methods.

2. Imaging data provided diagnostic utility in the two class but
not the three class setting. Five of our imaging-based diag-
nostic methods performed above chance baseline for two class
diagnosis, but none did so for three class diagnosis.

To elaborate on the second statement, we note that three class
diagnosis is intrinsically more difficult than two class diagnosis. In
three class diagnosis, patients correctly diagnosed as patients but
with the wrong subtype count as complete errors when comput-
ing accuracy scores. We expect that the neurobiological profiles
of different ADHD subtypes should look more similar to each
other than to that of healthy controls. This would contribute to
the difficulty of discriminating ADHD subtypes as is required

in three class diagnosis. In addition, the dataset we used for
testing had 141 ADHD-c type subjects and 98 ADHD-i type sub-
jects, in contrast to 429 healthy control subjects. Given that there
are over three times as many images for control subjects than
ADHD-c type patients, the second largest class, including addi-
tional ADHD patient scans may improve accuracy in the three
class setting.

4.1. CHALLENGES AND LIMITATIONS
Applying kPCA-st to fMRI data is in its infancy. This article
focuses on its application to resting-state fMRI data. Future work
should investigate its applicability to other settings such as task-
based fMRI. In the context of fMRI-based diagnosis, it would be
useful to investigate the impact of kernel and parameter selection
on the learner’s discriminatory power in future work.

4.1.1. Differences in scanning protocols
The ADHD-200 data were collected from multiple hospitals
across the world. One consequence with this large data release is
that the MRI scanner hardware and scanning protocols differed
among hospitals (Fair et al.). The resulting variability in the data
may have obscured diagnostically-useful patterns in the imaging
data.

4.1.2. Temporal normalization of imaging data
The resting state fMRI scans from the ADHD-200 dataset were
collected with different volume times, where the number of sub-
jects are parenthesized: 1.5 s (88), 1.96 s (48), 2.0 s (410), 2.5 s
(221), and 3.0 s (1). If we were to re-sample all scans into a
2.0 s volume time, there would be interpolation errors for those
scans originally sampled at 1.5, 2.5, and 3.0 s (see Figure 8 for
an illustration of this effect). To minimize temporal re-sampling
errors, we therefore up-sampled all scans to a 0.5 s volume
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time (2 Hz sampling rate) using linear interpolation, as opposed
to re-sampling into an intermediate volume time such as 2.0 s.
Up-sampling into a 0.5 s volume time avoided introducing such
re-sampling errors because the original volume times are integer
multiples of 0.5 s4.

4.1.3. n-fold cross validation prediction error
It is standard practice to use Cross Validation to estimate the
expected prediction error. However, estimating the variance of
the prediction error is not. Prediction error is a function of the
training and test sets, where the training sets have some over-
lap and the test sets do not. The overlap of training sets leads to
underestimation of the variance of the prediction error (Bengio
and Grandvalet, 2004). We therefore acknowledge that the stan-
dard deviation quantities given for the classification accuracies
in Table 2 could be underestimated, which may introduce bias
when comparing these quantities from different dimensionality
reduction processes.

4.1.4. Masking
In section 2.4, we mentioned that a mask was used to exclude
the waveforms of the voxels outside of the brain. Applying the
mask before BOLD signal normalization dramatically impacted
the classification accuracy, significantly decreasing the classifica-
tion accuracy as a direct result of ignoring voxel locations outside
of the brain prior to performing BOLD signal normalization. We
observed that all voxels outside of the brain had negative values
and all voxels inside the brain had positive values. The magni-
tude of the voxels outside of the brain depended on the scanning
site, and applying the mask prior to BOLD signal normalization
ignored information that we believe should be included. Thus, all

4Note: 1.96 s is not an exact integer multiple of 0.5 s, but it is close. Due to
memory constraints, it would not have been practical to use a re-sampled
volume time of 0.02 s, which is the largest integral divisor of all the original
volume times.

images were masked after BOLD signal normalization was applied
over the averaged image.

We hold that normalizing the signal for all 6688 spatial loca-
tions prior to applying the mask allowed the BOLD signal to be
retain information about the site it was from. Future work should
thoroughly investigate the impact of masking prior to BOLD
signal normalization after performing image registration using
fMRIs from different sites and/or scanners.

4.2. SUMMARY
We have shown that combining phenotypic data with FFT +
kPCA-st feature extraction applied to resting state fMRI data can
produce automated diagnosis of ADHD that is more accurate that
using only phenotypic data. This result builds on and improves
upon previous phenotypic-only diagnostic approaches (Brown
et al., 2012).
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APPENDIX
C. PRINCIPAL COMPONENT ANALYSIS
Section C.1 introduces linear similarity measures, which are used
in section C.2 to illustrate the relevant theoretical properties
of PCA.

C.1. Linear similarity measures
We want the learners to produce classifiers that can generalize to
unseen data points. Assuming that there are c classes in the data,
when a new data point xN+1 is provided, the classifier will assign
xN+1 a label belonging to one of these c classes. The class assigned
by the learner for data point xN+1 should contain data points sim-
ilar to xN+1, based on some notion of similarity. Before defining
such a similarity measure, Schölkopf and Smola (2002) formalize
the problem setting as follows.

Let X be the nonempty set containing the empirical data,
and {1, . . . , c} be the set containing the class labels. Here the ith
data point with the associated label is (xi, yi) ∈ X × {1, . . . , c}
for i = 1, . . . , N. We assume that X = R

p – i.e., data points are
p-dimensional. In general, we use

k : X × X → R (A.1)

for some similarity function k that outputs a real value that char-
acterizes the similarity between a pair of data points. Here, we
can use the dot (inner) product, also called the linear kernel, as a
similarity function

klinear(xi, xj) = 〈xi, xj〉 =
p∑

�=1

xi,�xj,� (A.2)

where xi = [xi,1, . . . , xi,p] and xj = [xj,1, . . . , xj,p] are data points
in R

p.
Interpreted geometrically, the inner product between two data

points xi and xj is the cosine of the angle, assuming that both data
points are normalized to length 1, where the length, or norm, of
a data point x is defined as ||x||2 = √〈x, x〉. Note that this dot
product is largest when xi = xj (i.e., are extremely similar) and is
zero when xi is orthogonal to xj.

A related similarity measure is correlation; similarity measures
are a very general mathematical concept (Herbrich, 2001).

C.2. Theory of PCA
We introduce the theory of PCA in a general form, presenting
information that is used in sections 2.6.1, 2.6.2, and 2.7.2. Let X be
the N × p matrix, where each row corresponds to an observation
and each column is centered around its mean. We can define a
matrix of similarities

K = XXT

K(i, j) = klinear(xi, xj) = 〈xi, xj〉 =
p∑

�=1

xi,�xj,� (A.3)

where xi and xj are rows of X. Then

Ke = λe (A.4)

holds for each eigenvalue/eigenvector pair (λ, e), where eigenvec-
tor e ∈ R

N has the corresponding eigenvalue λ ∈ R. Since K is
a Gramian matrix, it will always have non-negative eigenvalues
λ ≥ 0. Assume that the eigenvalues of K are sorted in descending

order—i.e., λi ≥ λi+1. The eigenvectors of a symmetric matrix
are mutually orthogonal (Khuri, 2003). Note there are at most N
non-zero eigenvalues with the corresponding eigenvector matrix
EN = [e1, . . . , eN ] ∈ R

N×N .
Notice that if there many more observations than features—

i.e., N � p—then K can be very large. The dual of PCA (or
the dual trick) provides an easy way to compute the eigen-
value/eigenvector pairs of such a high-dimensional similarity
matrix, by using the eigenvalue/eigenvector pairs of the lower-
dimensional covariance matrix S = 1

p−1 XTX ∈ R
p×p (Jolliffe,

2002):

Se = λe (A.5)

X(XTX)e = Xλe

K(Xe) = λ(Xe) (A.6)

which proves that the eigenvalue/eigenvector pairs (λ, e), com-
puted using Equation (A.5), of the relatively-small p × p matrix S,
correspond to the eigenvalue/eigenvector pairs (λ, Xe) of the
much larger N × N similarity matrix K. That is, each (λ, e)
eigenvalue/eigenvector pair of S corresponds to the eigen-
value/eigenvector pair of K: (λ, Xe). As N � p, it follows from
Equation (A.4) that there are at most p eigenvalue/eigenvector
pairs with corresponding eigenvector matrix Ep = [e1, . . . , ep] ∈
R

N×p.
Note that Ep can also be viewed the matrix that uses the low-

dimensional eigenvector matrix ES = [e1, . . . , ep] ∈ R
p×p of S to

redefine the coordinate system of X, which produces the principal
component score matrix

ZS = XES ∈ R
N×p (A.7)

where rows of ZS are the data points in the new coordinate system,
and columns are the scores of the N data points, where the ith
column contains the N scores from the ith eigenvector of S.

Although Equation (A.7) shows that the score matrix is numer-
ically equivalent to Ep, its interpretation depends on the application:
When we use the dual trick, we view Ep as the eigenvector
matrix that contains p N-dimensional eigenvectors that allow us
to project the dataset onto these eigenvectors, which produces the
principal component matrix

Z = ET
p X ∈ R

p×p (A.8)

where we omit this step when interpreting Ep as the score
matrix.

The ith principal component is viewed as the data matrix pro-
jected onto (that is, multiplied by) the eigenvector ei. If there are
a total of N principal components, the proportion of variance
captured in the dataset by the first (largest) m < N principal
components is given by:

proportion of variance(λ1, ...,λm) =
∑m

i=1 λi∑N
j=1 λj

(A.9)

We select the m for each dimensionality reduction process as
the number of components needed to capture over 99% of the
variance.
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