
Online Learning with Costly Features and Labels

Navid Zolghadr
Department of Computing Science

University of Alberta
zolghadr@ualberta.ca
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Abstract

This paper introduces the online probing problem: In each round, the learner is
able to purchase the values of a subset of feature values. After the learner uses
this information to come up with a prediction for the given round, he then has the
option of paying to see the loss function that he is evaluated against. Either way,
the learner pays for both the errors of his predictions and also whatever he chooses
to observe, including the cost of observing the loss function for the given round
and the cost of the observed features. We consider two variations of this problem,
depending on whether the learner can observe the label for free or not. We provide
algorithms and upper and lower bounds on the regret for both variants. We show
that a positive cost for observing the label significantly increases the regret of the
problem.

1 Introduction

In this paper, we study a variant of online learning, called online probing, which is motivated by
practical problems where there is a cost to observing the features that may help one’s predictions.
Online probing is a class of online learning problems. Just like in standard online learning problems,
the learner’s goal is to produce a good predictor. In each time step t, the learner produces his
prediction based on the values of some feature xt = (xt,1, . . . , xt,d)

> ∈ X ⊂ Rd.1 However, unlike
in the standard online learning settings, if the learner wants to use the value of feature i to produce a
prediction, he has to purchase the value at some fixed, a priori known cost, ci ≥ 0. Features whose
value is not purchased in a given round remain unobserved by the learner. Once a prediction ŷt ∈ Y
is produced, it is evaluated against a loss function `t : Y → R. At the end of a round, the learner
has the option of purchasing the full loss function, again at a fixed prespecified cost cd+1 ≥ 0 (by
default, the loss function is not revealed to the learner). The learner’s performance is measured by his
regret as he competes against some prespecified set of predictors. Just like the learner, a competing
predictor also needs to purchase the feature values needed in the prediction. If st ∈ {0, 1}d+1 is the
indicator vector denoting what the learner purchased in round t (st,i = 1 if the learner purchased
xt,i for 1 ≤ i ≤ d, and purchased the label for i = d+ 1) and c ∈ [0,∞)d+1 denotes the respective
costs, then the regret with respect to a class of prediction functions F ⊂ {f | f : X → Y} is defined
by

RT =

T∑
t=1

{`t(ŷt) + 〈 st, c 〉} − inf
f∈F

{
T 〈 s(f), c1:d 〉+

T∑
t=1

`t(f(xt))

}
,

where c1:d ∈ Rd is the vector obtained from c by dropping its last component and for a given func-
tion f : Rd → Y , s(f) ∈ {0, 1}d is an indicator vector whose ith component indicates whether f

1We use > to denote the transpose of vectors. Throughout, all vectors x∈Rd will denote column vectors.
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is sensitive to its ith input (in particular, si(f) = 0 by definition when f(x1, . . . , xi, . . . , xd) =
f(x1, . . . , x

′
i, . . . , xd) holds for all (x1, . . . , xi, . . . , xd), (x1, . . . , x

′
i, . . . , xd) ∈ X ; otherwise

si(f) = 1). Note that when defining the best competitor in hindsight, we did not include the cost of
observing the loss function. This is because (i) the reference predictors do not need it; and (ii) if we
did include the cost of observing the loss function for the reference predictors, then the loss of each
predictor would just be increased by cd+1T , and so the regret RT would just be reduced by cd+1T ,
making it substantially easier for the learner to achieve sublinear regret. Thus, we prefer the current
regret definition as it promotes the study of regret when there is a price attached to observing the
loss functions.

To motivate our framework, consider the problem of developing a computer-assisted diagnostic tool
to determine what treatment to apply to a patient in a subpopulation of patients. When a patient
arrives, the computer can order a number of tests that cost money, while other information (e.g., the
medical record of the patient) is available for free. Based on the available information, the system
chooses a treatment. Following-up the patient may or may not incur additional cost. In this example,
there is typically a delay in obtaining the information whether the treatment was effective. However,
for simplicity, in this work we have decided not to study the effect of this delay. Several works in
the literature show that delays usually increase the regret in a moderate fashion (Mesterharm, 2005;
Weinberger and Ordentlich, 2006; Agarwal and Duchi, 2011; Joulani et al., 2013).

As another example, consider the problem of product testing in a manufacturing process (e.g., the
production of electronic consumer devices). When the product arrives, it can be subjected to a
large number of diagnostic tests that differ in terms of their costs and effectiveness. The goal is to
predict whether the product is defect-free. Obtaining the ground truth can also be quite expensive,
especially for complex products. The challenge is that the effectiveness of the various tests is often
a priori unknown and that different tests may provide complementary information (meaning that
many tests may be required). . Hence, it might be challenging to decide what form the most cost-
effective diagnostic procedure may take. Yet another example is the problem of developing a cost-
effective way of instrument calibration. In this problem, the goal is to predict one or more real-valued
parameters of some product. Again, various tests with different costs and reliability can be used as
the input to the predictor.

Finally, although we pose the task as an online learning problem, it is easy to show that the proce-
dures we develop can also be used to attack the batch learning problem, when the goal is to learn a
predictor that will be cost-efficient on future data given a database of examples.

Obviously, when observing the loss is costly, the problem is related to active learning. However, to
our best knowledge, the case when observing the features is costly has not been studied before in
the online learning literature. Section 1.1 will discusses the relationship of our work to the existing
literature in more detail.

This paper analyzes two versions of the online problem. In the first version, free-label online prob-
ing, there is no cost to seeing the loss function, that is, cd+1 = 0. (The loss function often compares
the predicted value with some label in a known way, in which case learning the value of the label
for the round means that the whole loss function becomes known; hence the choice of the name.)
Thus, the learner naturally will choose to see the loss function after he provides his prediction; this
provides feedback that the learner can use, to improve the predictor he produces. In the second
version, non-free-label online probing, the cost of seeing the loss function is positive: cd+1 > 0.

In Section 2 we study the case of free-label online probing. We give an algorithm that enjoys a regret
of O(

√
2dLT lnNT (1/(TL))) when the losses are L-equi-Lipschitz (Theorem 2.2), where NT (ε)

is the ε-covering number of F on sequences of length T . This leads to an Õ(
√

2dLT ) regret bound
for typical function classes, such as the class of linear predictors with bounded weights and bounded
inputs. We also show that, in the worst case, the exponential dependence on the dimension cannot
be avoided in the bound. For the special case of linear prediction with quadratic loss, we give an
algorithm whose regret scales only as Õ(

√
dt), a vast improvement in the dependence on d.

The case of non-free-label online probing is treated in Section 3. Here, in contrast to the free-label
case, we prove that the minimax growth rate of the regret is of the order Θ̃(T 2/3). The increase of
regret-rate stems from the fact that the “best competitor in hindsight” does not have to pay for the
label. In contrast to the previous case, since the label is costly here, if the algorithm decides to see the
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label it does not even have to reason about which features to observe, as querying the label requires
paying a cost that is a constant over the cost of the best predictor in hindsight, already resulting in
the Θ̃(T 2/3) regret rate. However, in practice (for shorter horizons) it still makes sense to select the
features that provide the best balance between the feature-cost and the prediction loss. Although we
do not study this, we note that by combining the algorithmic ideas developed for the free-label case
with the ideas developed for the non-free-label case, it is possible to derive an algorithm that reasons
actively about the cost of observing the features, too.

In the part dealing with the free-label problem, we build heavily on the results of Mannor and
Shamir (2011), while in the part dealing with the non-free-label problem we build on the ideas of
(Cesa-Bianchi et al., 2006). Due to space limitations, all of our proofs are relegated to the appendix.

1.1 Related Work

This paper analyzes online learning when features (and perhaps labels) have to be purchased. The
standard “batch learning” framework has a pure explore phase, which gives the learner a set of
labeled, completely specified examples, followed by a pure exploit phase, where the learned pre-
dictor is asked to predict the label for novel instances. Notice the learner is not required (nor even
allowed) to decide which information to gather. By contrast, “active (batch) learning” requires
the learner to identify that information (Settles, 2009). Most such active learners begin with com-
pletely specified, but unlabeled instances; they then purchase labels for a subset of the instances.
Our model, however, requires the learner to purchase feature values as well. This is similar to the
“active feature-purchasing learning” framework (Lizotte et al., 2003). This is extended in Kapoor
and Greiner (2005) to a version that requires the eventual predictor (as well as the learner) to pay
to see feature values as well. However, these are still in the batch framework: after gathering the
information, the learner produces a predictor, which is not changed afterwards.

Our problem is an online problem over multiple rounds, where at each round the learner is required
to predict the label for the current example. Standard online learning algorithms typically assume
that each example is given with all the features. For example, Cesa-Bianchi et al. (2005) provided
upper and lower bounds on the regret where the learner is given all the features for each example,
but must pay for any labels he requests. In our problem, the learner must pay to see the values of
the features of each example as well as the cost to obtain its true label at each round. This cost
model means there is an advantage to finding a predictor that involves few features, as long as it
is sufficiently accurate. The challenge, of course, is finding these relevant features, which happens
during this online learning process.

Other works, in particular Rostamizadeh et al. (2011) and Dekel et al. (2010), assume the features
of different examples might be corrupted, missed, or partially observed due to various problems,
such as failure in sensors gathering these features. Having such missing features is realistic in many
applications. Rostamizadeh et al. (2011) provided an algorithm for this task in the online settings,
with optimal O(

√
T ) regret where T is the number of rounds. Our model differs from this model as

in our case the learner has the option to obtain the values of only the subset of the features that he
selects.

2 Free-Label Probing

In this section we consider the case when the cost of observing the loss function is zero. Thus,
we can assume without loss of generality that the learner receives the loss function at the end of
each round (i.e., st,d+1 = 1). We will first consider the general setting where the only restriction is
that the losses are equi-Lipschitz and the function set F has a finite empirical worst-case covering
number. Then we consider the special case where the set of competitors are the linear predictors and
the losses are quadratic.

2.1 The Case of Lipschitz losses

In this section we assume that the loss functions, `t, are Lipschitz with a known, common Lipschitz
constant L over Y w.r.t. to some semi-metric dY of Y: for all t ≥ 1

sup
y,y′∈Y

|`t(y)− `t(y′)| ≤ L dY(y, y′). (1)
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Clearly, the problem is an instance of prediction with expert advice under partial information feed-
back (Auer et al., 2002), where each expert corresponds to an element of F . Note that, if the learner
chooses to observe the values of some features, then he will also be able to evaluate the losses of
all the predictors f ∈ F that use only these selected features. This can be formalized as follows:
By a slight abuse of notation let st ∈ {0, 1}d be the indicator showing the features selected by
the learner at time t (here we drop the last element of st as st,d1 is always 1); similarly, we will
drop the last coordinate of the cost vector c throughout this section. Then, the learner can com-
pute the loss of any predictor f ∈ F such that s(f) ≤ st, where ≤ denotes the conjunction of the
component-wise comparison. However, for some loss functions, it may be possible to estimate the
losses of other predictors, too. We will exploit this when we study some interesting special cases of
the general problem. However, in general, it is not possible to infer the losses for functions such that
st,i < s(f)i for some i (cf. Theorem 2.3).

The idea is to study first the case when F is finite and then reduce the general case to the finite case
by considering appropriate finite coverings of the space F . The regret will then depend on how the
covering numbers of the space F behave.

Mannor and Shamir (2011) studied problems similar to this in a general framework, where in ad-
dition to the loss of the selected predictor (expert), the losses of some other predictors are also
communicated to the learner in every round. The connection between the predictors is represented
by a directed graph whose nodes are labeled as elements of F (i.e., as the experts) and there is an
edge from f ∈ F to g ∈ F if, when choosing f , the loss of g is also revealed to the learner. It is
assumed that the graph of any round t, Gt = (F , Et) becomes known to the learner at the beginning
of the round. Further, it is also assumed that (f, f) ∈ Et for every t ≥ 1 and f ∈ F . Mannor
and Shamir (2011) gave an algorithm, called ELP (exponential weights with linear programming),
to solve this problem, which calls the Exponential Weights algorithm, but modifies it to explore
less, exploiting the information structure of the problem. The exploration distribution is found by
solving a linear program, explaining the name of the algorithm. The regret of ELP is analyzed in the
following theorem.
Theorem 2.1 (Mannor and Shamir 2011). Consider a prediction with expert advice problem over
F where in round t, Gt = (F , Et) is the directed graph that encodes which losses become available
to the learner. Assume that for any t ≥ 1, at most χ(Gt) cliques of Gt can cover all vertices of Gt.
Let B be a bound on the non-negative losses `t: maxt≥1,f∈F `t(f(xt)) ≤ B. Then, there exists
a constant CELP > 0 such that for any T > 0, the regret of Algorithm 2 (shown in the Appendix)
when competing against the best predictor using ELP satisfies

E[RT ] ≤ CELPB

√√√√(ln |F|)
T∑
t=1

χ(Gt) . (2)

The algorithm’s computational cost in any given round is poly(|F|).

For a finite F , define Et ≡ E
.
= {(f, g) | s(g) ≤ s(f)}. Then clearly, χ(Gt) ≤ 2d. Further,

B = ‖c1:d‖1 + maxt≥1,y∈Y `t(y)
.
= C1 + `max (i.e., C1 = ‖c1:d‖1). Plugging these into (2) gives

E[RT ] ≤ CELP(C1 + `max)
√

2dT ln |F| . (3)

To apply this algorithm in the case when F is infinite, we have to approximate F with a finite
set F ′ ⊂ {f | f : X → Y}. The worst-case maximum approximation error of F using F ′ over
sequences of length T can be defined as

AT (F ′,F) = max
x∈XT

sup
f∈F

inf
f ′∈F ′

1

T

T∑
t=1

dY(f(xt), f
′(xt)) + 〈 (s(f ′)− s(f))+, c1:d 〉 ,

where (s(f ′)−s(f))+ denotes the coordinate-wise positive part of s(f ′)−s(f), that is, the indicator
vector of the features used by f ′ and not used by f . The average error can also be viewed as a
(normalized) dY -“distance” between the vectors (f(xt))1≤t≤T and (f ′(xt))1≤t≤T penalized with
the extra feature costs. For a given positive number α, define the worst-case empirical covering
number of F at level α and horizon T > 0 by

NT (F , α) = min{ |F ′| | F ′ ⊂ {f | f : X → Y}, AT (F ′,F) ≤ α }.
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We are going to apply the ELP algorithm to F ′ and apply (3) to obtain a regret bound. If f ′ uses
more features than f then the cost-penalized distance between f ′ and f is bounded from below by
the cost of observing the extra features. This means that unless the problem is very special, F ′ has
to contain, for all s ∈ {s(f) | f ∈ F}, some f ′ with s(f ′) = s. Thus, if F contains a function for
all s ∈ {0, 1}d, χ(Gt) = 2d. Selecting a covering F ′ that achieves accuracy α, the approximation
error becomes TLα (using equation 1), giving the following bound:
Theorem 2.2. Assume that the losses (`t)t≥1 are L-Lipschitz (cf. (1)) and α > 0. Then, there exists
an algorithm such that for any T > 0, knowing T , the regret satisfies

E[RT ] ≤ CELP(C1 + `max)
√

2dT lnNT (F , α) + TLα .

In particular, by choosing α = 1/(TL), we have

E[RT ] ≤ CELP(C1 + `max)
√

2dT lnNT (F , 1/(TL)) + 1 .

We note in passing that the the dependence of the algorithm on the time horizon T can be alleviated,
using, for example, the doubling trick.

In order to turn the above bound into a concrete bound, one must investigate the behavior of the
metric entropy, lnNT (F , α). In many cases, the metric entropy can be bounded independently of
T . In fact, often, lnNT (F , α) = D ln(1 + c/α) for some c,D > 0. When this holds, D is often
called the “dimension” of F and we get that

E [RT ] ≤ CELP(C1 + `max)
√

2dTD ln(1 + cTL) + 1 .

As a specific example, we will consider the case of real-valued linear functions over a ball in a
Euclidean space with weights belonging to some other ball. For a normed vector space V with norm
‖ · ‖ and dual norm ‖ · ‖∗, x ∈ V , r ≥ 0, let B‖·‖(x, r) = {v ∈ V | ‖v‖ ≤ r} denote the ball in V
centered at x that has radius r. For X ⊂ Rd,W ⊂ Rd, let

F ⊂ Lin(X ,W)
.
= {g : X → R | g(·) = 〈w, · 〉 , w ∈ W} (4)

be the space of linear mappings fromX to reals with weights belonging toW . We have the following
lemma:
Lemma 2.1. Let X,W > 0, dY(y, y′) = |y − y′|, X ⊂ B‖·‖(0, X) and W ⊂ B‖·‖∗(0,W ).
Consider a set of real-valued linear predictors F ⊂ Lin(X ,W). Then, for any α > 0,

lnNT (F , α) ≤ d ln(1 + 2WX/α).

The previous lemma, together with Theorem 2.2 immediately gives the following result:
Corollary 2.1. Assume that F ⊂ Lin(X ,W), X ⊂ B‖·‖(0, X), W ⊂ B‖·‖∗(0,W ) for some
X,W > 0. Further, assume that the losses (`t)t≥1 are L-Lipschitz. Then, there exists an algorithm
such that for any T > 0, the regret of the algorithm satisfies,

E [RT ] ≤ CELP(C1 + `max)
√
d2dT ln(1 + 2TLWX) + 1 .

Note that if one is given an a priori bound p on the maximum number of features that can be used
in a single round (allowing the algorithm to use fewer than p, but not more features) then 2d in
the above bound could be replaced by

∑
1≤i≤p

(
d
i

)
≈ dp, where the approximation assumes that

p < d/2. Such a bound on the number of features available per round may arise from strict bud-
getary considerations. When dp is small, this makes the bound non-vacuous even for small horizons
T . In addition, in such cases the algorithm also becomes computationally feasible. It remains an
interesting open question to study the computational complexity when there is no restriction on the
number of features used. In the next theorem, however, we show that the worst-case exponential
dependence of the regret on the number of features cannot be improved (while keeping the root-T
dependence on the horizon). The bound is based on the lower bound construction of Mannor and
Shamir (2011), which reduces the problem to known lower bounds in the multi-armed bandit case.
Theorem 2.3. There exist an instance of free-label online probing such that the minimax regret of

any algorithm is Ω
(√(

d
d/2

)
T
)

.
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2.2 Linear Prediction with Quadratic Losses

In this section, we study the problem under the assumption that the predictors have a linear form and
the loss functions are quadratic. That is, F ⊂ Lin(X ,W) where W = {w ∈ Rd | ‖w‖∗ ≤ wlim}
and X = {x ∈ Rd | ‖x‖ ≤ xlim} for some given constants wlim, xlim > 0, while `t(y) = (y− yt)2,
where |yt| ≤ xlimwlim. Thus, choosing a predictor is akin to selecting a weight vector wt ∈ W ,
as well as a binary vector st ∈ G ⊂ {0, 1}d that encodes the features to be used in round t. The
prediction for round t is then ŷt = 〈wt, st � xt 〉, where � denotes coordinate-wise product, while
the loss suffered is (ŷt−yt)2. The set G is an arbitrary non-empty, a priori specified subset of {0, 1}d
that allows the user of the algorithm to encode extra constraints on what subsets of features can be
selected.

In this section we show that in this case a regret bound of size Õ(
√

poly(d)T ) is possible. The key
idea that permits the improvement of the regret bound is that a randomized choice of a weight vector
Wt (and thus, of a subset) helps one construct unbiased estimates of the losses `t(〈w, s � xt 〉)
for all weight vectors w and all subsets s ∈ G under some mild conditions on the distribution of
Wt. That the construction of such unbiased estimates is possible, despite that some feature values
are unobserved, is because of the special algebraic structure of the prediction and loss functions.
A similar construction has appeared in a different context, e.g., in the paper of Cesa-Bianchi et al.
(2010).

The construction works as follows. Define the d×dmatrix,Xt by (Xt)i,j = xt,ixt,j (1 ≤ i, j ≤ d).
Expanding the loss of the prediction ŷt = 〈w, xt 〉, we get that the loss of using w ∈ W is

`t(w)
.
= `t(〈w, xt 〉) = w>Xt w − 2w>xtyt + y2

t ,

where with a slight abuse of notation we have introduced the loss function `t :W → R (we’ll keep
abusing the use of `t by overloading it based on the type of its argument). Clearly, it suffices to
construct unbiased estimates of `t(w) for any w ∈ W .

We will use a discretization approach. Therefore, assume that we are given a finite subset W ′ of
W that will be constructed later. In each step t, our algorithm will choose a random weight vector
Wt from a probability distribution supported on W ′. Let pt(w) be the probability of selecting the
weight vector, w ∈ W ′. For 1 ≤ i ≤ d, let

qt(i) =
∑

w∈W′:i∈s(w)

pt(w) ,

be the probability that s(Wt) will contain i, while for 1 ≤ i, j ≤ d, let

qt(i, j) =
∑

w∈W′:i,j∈s(w)

pt(w) ,

be the probability that both i, j ∈ s(Wt).2 Assume that pt(·) is constructed such that qt(i, j) > 0
holds for any time t and indices 1 ≤ i, j ≤ d. This also implies that qt(i) > 0 for all 1 ≤ i ≤ d.
Define the vector x̃t ∈ Rd and matrix X̃t ∈ Rd×d using the following equations:

x̃t,i =
1{i∈s(Wt)}xt,i

qt(i)
, (X̃t)i,j =

1{i,j∈s(Wt)}xt,ixt,j

qt(i, j)
. (5)

It can be readily verified that E [x̃t | pt] = xt and E
[
X̃t | pt

]
= Xt. Further, notice that both x̃t

and X̃t can be computed based on the information available at the end of round t, i.e., based on the
feature values (xt,i)i∈s(Wt). Now, define the estimate of prediction loss

˜̀
t(w) = w>X̃t w − 2w>x̃tyt + y2

t . (6)

Note that yt can be readily computed from `t(·), which is available to the algorithm (equivalently,
we may assume that the algorithm observed yt). Due to the linearity of expectation, we have
E
[
˜̀
t(w)|pt

]
= `t(w). That is, ˜̀

t(w) provides an unbiased estimate of the loss `t(w) for any

w ∈ W . Hence, by adding a feature cost term we get ˜̀
t(w) + 〈 s(w), c 〉 as an estimate of the loss

that the learner would have suffered at round t had he chosen the weight vector w.
2Note that, following our earlier suggestion, we view the d-dimensional binary vectors as subsets of

{1, . . . , d}.
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Algorithm 1 The LQDEXP3 Algorithm
Parameters: Real numbers 0 ≤ η, 0 < γ ≤ 1, W ′ ⊂ W finite set, a distribution µ over W ′,
horizon T > 0.
Initialization: u1(w) = 1 (w ∈ W ′).
for t = 1 to T do

Draw Wt ∈ W ′ from the probability mass function

pt(w) = (1− γ)
ut(w)

Ut
+ γµ(w), w ∈ W ′ .

Obtain the features values, (xt,i)i∈s(Wt).
Predict ŷt =

∑
i∈s(Wt)

wt,ixt,i.
for w ∈ W ′ do

Update the weights using (6) for the definitions of ˜̀
t(w):

ut+1(w) = ut(w)e−η(˜̀
t(w)+〈 c,s(w) 〉), w ∈ W ′ .

end for
end for

2.2.1 LQDExp3 – A Discretization-based Algorithm

Next we show that the standard EXP3 Algorithm applied to a discretization of the weight spaceW
achieves O(

√
dT ) regret. The algorithm, called LQDEXP3 is given as Algorithm 1. In the name

of the algorithm, LQ stands for linear prediction with quadratic losses and D denotes discretization.
Note that if the exploration distribution µ in the algorithm is such that for any 1 ≤ i, j ≤ d,∑
w∈W ′:i,j∈s(w) µ(w) > 0 then qt(i, j) > 0 will be guaranteed for all time steps. Using the notation

ylim = wlimxlim and EG = maxs∈G supw∈W:‖w‖∗=1 ‖w � s‖∗, we can state the following regret
bound on the algorithm

Theorem 2.4. Let wlim, xlim > 0, c ∈ [0,∞)d be given, W ⊂ B‖·‖∗(0, wlim) convex, X ⊂
B‖·‖(0, xlim) and fix T ≥ 1. Then, there exist a parameter setting for LQDEXP3 such that the
following holds: Let RT denote the regret of LQDEXP3 against the best linear predictor from
Lin(W,X ) when LQDEXP3 is used in an online free-label probing problem defined with the se-
quence ((xt, yt))1≤t≤T (‖xt‖ ≤ xlim, |yt| ≤ ylim, 1 ≤ t ≤ T ), quadratic losses `t(y) = (y − yt)2,
and feature-costs given by the vector c. Then,

E [RT ] ≤ C
√
Td (4y2

lim + ‖c‖1)(w2
limx

2
lim + 2ylimwlimxlim + 4y2

lim + ‖c‖1) ln(EGT ) ,

where C > 0 is a universal constant (i.e., the value of C does not depend on the problem parame-
ters).

The actual parameter setting to be used with the algorithm is constructed in the proof. The compu-
tational complexity of LQDEXP3 is exponential in the dimension d due to the discretization step,
hence quickly becomes impractical when the number of features is large. On the other hand, one
can easily modify the algorithm to run without discretization by replacing EXP3 with its continuous
version. The resulting algorithm enjoys essentially the same regret bound, and can be implemented
efficiently whenever efficient sampling is possible from the resulting distribution. This approach
seems to be appealing, since, from a first look, it seems to involve sampling from truncated Gaus-
sian distributions, which can be done efficiently. However, it is easy to see that when the sampling
probabilities of some feature are small, the estimated loss will not be convex as X̃t may not be pos-
itive semi-definite, and therefore the resulting distributions will not always be truncated Gaussians.
Finding an efficient sampling procedure for such situations is an interesting open problem.

The optimality of LQDEXP3 can be seen by the following lower bound on the regret:

Theorem 2.5. Let d > 0, and consider the online free label probing problem with linear predictors,
where W = {w ∈ Rd | ‖w‖1 ≤ wlim} and X = {x ∈ Rd | ‖x‖∞ ≤ 1}. Assume, for all t ≥ 1,
that the loss functions are of the form `t(w) = (w>xt − yt)

2 + 〈 s(w), c 〉, where |yt| ≤ 1 and
c = 1/2 × 1 ∈ Rd. Then, for any prediction algorithm and for any T ≥ 4d

8 ln(4/3) , there exists a
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sequence ((xt, yt))1≤t≤T ∈ (X × [−1, 1])T such that the regret of the algorithm can be bounded
from below as

E[RT ] ≥
√

2− 1√
32 ln(4/3)

√
Td .

3 Non-Free-Label Probing

If cd+1 > 0, the learner has to pay for observing the true label. This scenario is very similar to the
well-known label-efficient prediction case in online learning (Cesa-Bianchi et al., 2006). In fact,
the latter problem is a special case of this problem, immediately giving us that the regret of any
algorithm is at least of order T 2/3. It turns out that if one observes the (costly) label in a given round
then it does not effect the regret rate if one observes all the features at the same time. The resulting
“revealing action algorithm”, given in Algorithm 3 in the Appendix, achieves the following regret
bound for finite expert classes:
Lemma 3.1. Given any non-free-label online probing with finitely many experts, Algorithm 3 with
appropriately set parameters achieves

E[RT ] ≤ C max
(
T 2/3(`2max‖c‖1 ln |F|)1/3, `max

√
T ln |F|

)
for some constant C > 0.

Using the fact that, in the linear prediction case, approximately (2TLWX + 1)d experts are needed
to approximate each expert inW with precision α = 1

LT in worst-case empirical covering, we obtain
the following theorem (note, however, that the complexity of the algorithm is again exponential in
the dimension d, as we need to keep a weight for each expert):
Theorem 3.1. Given any non-free-label online probing with linear predictor experts and Lipschitz
prediction loss function with constant L, Algorithm 3 with appropriately set parameters running on
a sufficiently discretized predictor set achieves

E[RT ] ≤ C max
(
T 2/3

[
`2max‖c‖1 d ln(TLWX)

]1/3
, `max

√
Td ln(TLWX)

)
for some universal constant C > 0.

That Algorithm 3 is essentially optimal for linear predictions and quadratic losses is a consequence
of the following almost matching lower bound:
Theorem 3.2. There exists a constant C such that, for any non-free-label probing with linear pre-
dictors, quadratic loss, and cj > (1/d)

∑d
i=1 ci − 1/2d for every j = 1, . . . , d, the expected regret

of any algorithm can be lower bounded by
E[RT ] ≥ C(cd+1d)1/3T 2/3 .

4 Conclusions

We introduced a new problem called online probing. In this problem, the learner has the option
of choosing the subset of features he wants to observe as well as the option of observing the true
label, but has to pay for this information. This setup produced new challenges in solving the online
problem. We showed that when the labels are free, it is possible to devise algorithms with optimal
regret rate Θ(

√
T ) (up to logarithmic factors), while in the non-free-label case we showed that only

Θ(T 2/3) is achievable. We gave algorithms that achieve the optimal regret rate (up to logarithmic
factors) when the number of experts is finite or in the case of linear prediction. Unfortunately either
our bounds or the computational complexity of the corresponding algorithms are exponential in
the problem dimension, and it is an open problem whether these disadvantages can be eliminated
simultaneously.
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APPENDIX—SUPPLEMENTARY MATERIAL

A.1 Free-Label Probing: Lipschitz losses

A.1.1 The ELP algorithm of Mannor and Shamir (2011)

Algorithm 2 The ELP Algorithm. In the pseudocode, ∆N denotes the N -dimensional simplex:
∆N = {s ∈ [0, 1]N |

∑N
i=1 si = 1}.

Parameters: Neighborhood graphs Gt = (F , Et), 1 ≤ t ≤ T , a bound B on the losses.
Initialization: N = |F|, β =

√
(lnN)/(3B2

∑
t χ(Gt)), w0,j = 1/N , 1 ≤ j ≤ N .

for t = 1 to T do
Let st = arg maxq∈∆N

min1≤i≤N
∑

(i,k)∈Et
qk.

Let s∗t = min1≤i≤N
∑

(i,k)∈Et
st,i.

Let γt = βB/s∗t .
Choose action it randomly from probability mass function

pt,i = (1− γt)
wt,i∑N
j=1 wt,j

+ γtst,i (1 ≤ i ≤ N).

Receive loss (`t,k)(it,k)∈Et
.

Compute g̃t,j =
B−`t,j∑

(l,j)∈Et
pt,l

if (j, it) ∈ Et, and g̃j(t) = 0 otherwise.

wt+1,j = wt,j exp(βg̃t,j), 1 ≤ j ≤ N .
end for

A.1.2 Proofs

Lemma 2.1. Let X,W > 0, dY(y, y′) = |y − y′|, X ⊂ B‖·‖(0, X) and W ⊂ B‖·‖∗(0,W ).
Consider a set of real-valued linear predictors F ⊂ Lin(X ,W). Then, for any α > 0,

lnNT (F , α) ≤ d ln(1 + 2WX/α).

Proof. An appropriate covering of F can be constructed as follows: Consider an ε-coveringW ′ of
the ballW with respect to ‖ · ‖∗ for some ε > 0 (i.e., for any w ∈ W there exists w′ ∈ W ′ such that
‖w − w′‖∗ ≤ ε). Then,

F ′ = {g : X → R | g(x) = 〈x,w 〉, w ∈ W ′} (7)

is an εX-covering of F . To see this pick any f ∈ F . Thus, f(x) = 〈w, x 〉 for some w ∈ W . Take
the vector inW ′ that is closest to w and call it w′. Thus, ‖w − w′‖∗ ≤ ε. Let g ∈ F ′ be given by
g(x) = 〈x,w′ 〉. Then,

1

T

T∑
t=1

|f(xt)− g(xt)| =
1

T

T∑
t=1

|〈w − w′, xt 〉| ≤ εX, (8)

where in the last step we used Hölder’s inequality and that by assumption xt ∈ X and thus ‖xt‖ ≤
X . This argument thus shows that to get an α-covering of F , we need an ε-covering of W with
ε = α/X and therefore NT (F , α) ≤ N (W, α/X). As it is well known, N (W, ε) ≤ (2W/ε+ 1)d

and thus lnNT (F , α) ≤ d ln(1 + 2WX/α).

Theorem 2.3. There exist an instance of free-label online probing such that the minimax regret of

any algorithm is Ω
(√(

d
d/2

)
T
)

.

Proof. Let X = {0, 1}d and let F contain the XOR functions applied to all possible subsets of
features: F = {XORS |S ⊂ {1, . . . , d}}, where XORS(x) = ⊗i∈Sxi (⊗ denotes the Boolean
XOR operator). Let the input vector xt ∈ X at time t be such that its components are generated
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independently from each other from the uniform distribution and let them be independent of inputs
generated at different time indices. The prediction space is restricted to Y = {0, 1} and the loss is
defined to be the zero-one loss: `t(y) = 1{y 6=XORS∗ (xt)}, where S∗ ⊂ {1, . . . , d}. The cost of the
individual features is uniform. In particular, ci = 1/(2d).

Note that if an algorithm chooses not to observe some feature i ∈ {1, . . . , d} at some time step t,
there is now way the algorithm can find out the result of XORS(xt) for any S containing i.3 Hence,
no algorithm can infer the losses for such functions. It is also clear that if the feature values for some
set of features S are observed then the loss for any function XORS′ with S′ ⊂ S can be inferred
from the observed loss function. Thus, the directed graph over F that connects f ∈ F to f ′ ∈ F
when given the loss for f , one also learns the loss of f ′, is isomorphic to the graph obtained from
the lattice structure of subsets of {1, . . . , d}. This latter graph has an independent set of size

(
d
d/2

)
(i.e., the set of all functions that use exactly d/2 features) and thus we can apply the same method
that Mannor and Shamir (2011) uses to prove their Theorem 4 to get the desired lower bound for
this problem.

A.2 Free Label Probing: Linear Prediction

A.2.1 Upper Bound on the Regret

Theorem 2.4. Let wlim, xlim > 0, c ∈ [0,∞)d be given, W ⊂ B‖·‖∗(0, wlim) convex, X ⊂
B‖·‖(0, xlim) and fix T ≥ 1. Then, there exist a parameter setting for LQDEXP3 such that the
following holds: Let RT denote the regret of LQDEXP3 against the best linear predictor from
Lin(W,X ) when LQDEXP3 is used in an online free-label probing problem defined with the se-
quence ((xt, yt))1≤t≤T (‖xt‖ ≤ xlim, |yt| ≤ ylim, 1 ≤ t ≤ T ), quadratic losses `t(y) = (y − yt)2,
and feature-costs given by the vector c. Then,

E [RT ] ≤ C
√
Td (4y2

lim + ‖c‖1)(w2
limx

2
lim + 2ylimwlimxlim + 4y2

lim + ‖c‖1) ln(EGT ) ,

where C > 0 is a universal constant (i.e., the value of C does not depend on the problem parame-
ters).

Before stating the proof, we state a lemma that will be needed in the proof of this theorem. The
lemma gives a bound on the regret of an exponential weights algorithm as a function of some “statis-
tics” of the losses fed to the algorithm. Since the result is essentially extracted from the paper by
Auer et al. (2002), its proof is omitted.
Lemma A.2.1. Fix the integers N,T > 0, the real numbers 0 < γ < 1, η > 0 and let µ be a
probability mass function over the set N = {1, . . . , N}. Let `t : N → R be a sequence of loss
functions such that

η`t(i) ≥ −1 (9)
holds for all 1 ≤ t ≤ T and i ∈ N . Define the sequence of functions (ut)1≤t≤T , (pt)1≤t≤T
(ut : N → R+, pt : N → [0, 1]) by ut ≡ 1,

ut(i) = exp

(
η

t−1∑
s=1

`s(i)

)
, pt(i) = (1− γ)

ut(i)∑
j∈N ut(j)

+ γµ(i), (i ∈ N, 1 ≤ t ≤ T + 1) .

Let L̂T =
∑T
t=1

∑
j∈N pt(j)`t(j) and LT (i) =

∑T
t=1 `t(i). Then, for any i ∈ N ,

L̂T − LT (i) ≤ lnN

η
+ η

T∑
t=1

∑
j∈N

pt(j)`
2
t (j) + γ

T∑
t=1

∑
j∈N

µ(j) {`t(j)− `t(i)} .

Proof of Theorem 2.4. Fix the sequence of ((xt, yt))1≤t≤T as in the statement of the theorem and
let `t(y) = (y − yt)2. Remember that (with a slight abuse of notation), the loss of using weight
w ∈ W in time step t is

`t(w) = `t(〈w, xt 〉), 1 ≤ t ≤ T .
3Here, and in what follows we will identify features with their indices.
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Now, observe that ŷt =
∑
i∈s(Wt)

Wt,ixt,i = 〈Wt, xt 〉 holds thanks to the definition of s(Wt) and
thus `t(ŷt) = `t(Wt). Hence, the total loss of the algorithm can be written as

L̂T =

T∑
t=1

[〈 s(Wt), c 〉+ `t(Wt)] .

Let

LT (w) = T 〈 s(w), c 〉+

T∑
t=1

`t(w), w ∈ Rd,

be the total loss of using the weight vector w. Then the regret of LQDEXP3 up to time T on the
sequence ((xt, yt))1≤t≤T can be written as

RT = max
w∈W

RT (w) ,

where
RT (w)

.
= L̂T − LT (w), w ∈ Rd.

Using the discretized weight vector set,W ′, the regret can be written as

RT = max
w∈W

RT (w)

=

{
L̂T − min

w′∈W′
LT (w′)

}
+

{
min
w′∈W′

LT (w′)− min
w∈W

LT (w)

}
=

{
L̂T − min

w′∈W′
LT (w′)

}
+ max
w∈W

min
w′∈W′

{LT (w′)− LT (w)} . (10)

Now, fix w ∈ W . By construction, W ′ is such that for any s ∈ {0, 1}, there exists some vector
w′ ∈ W ′ such that s(w′) = s. Then,

min
w′∈W′

{LT (w′)− LT (w)} ≤ min
w′∈W′:s(w′)=s(w)

{LT (w′)− LT (w)} = min
w′∈W′:s(w′)=s(w)

T∑
t=1

`t(w
′)−`t(w).

Let us first deal with the second term. A simple calculation shows that `t : [−ylim, ylim] → R,
y 7→ (y − yt)2 is 4ylim-Lipschitz. Hence, as long as w′ ∈W ′ is such that s(w′) = s(w),

LT (w′)− LT (w) =

T∑
t=1

`(〈w′, xt 〉, yt)− `t(〈w, xt 〉, yt) ≤ 4Tylim

(
1

T

T∑
t=1

|〈w − w′, xt 〉|

)
.

For s ∈ G, defineW ′(s) = {w ∈ W ′ | s(w) = s} and W (s) = {w ∈ W | s(w) = s}. For α > 0,
let Wα(s) ⊂ W be the minimal cardinality subset ofW(s) such that Lin(X ,Wα(s)) is an α-cover
of Lin(X ,W(s)) w.r.t. dY(y, y′) = |y − y′|. Choose

W ′ = ∪s∈GWα(s) .

Then, by construction,
min
w′∈W′

LT (w′)− LT (w) ≤ 4Tylimα (11)

and since this holds for any w ∈ W , we get that the same bound applies to
maxw∈W minw′∈W′ LT (w′) − LT (w). Before we turn to bounding the first term of (10), let us
bound the cardinality ofW ′, which we will need later.

Notice that
|W ′| ≤

∑
s∈G
|Wα(s)| ≤ |G|max

s∈G
|Wα(s)|.

Now, note also that thanks to the definition of EG , for any s ∈ G, w ∈ W , ‖w‖∗ ≤ EG · ‖w � s‖∗.
Let Wα denote a minimum cardinality α-cover of W . Then, it is easy to see that for any s ∈ G,
Lin(X ,Wα/EG ) is an α-cover of Lin(X ,W(s)) w.r.t. dY(y, y′) = |y−y′|. Hence, by the minimum
cardinality property of Wα(s), we have |Wα(s)| ≤ |Wα/EG | and, by Lemma 2.1, we get that
ln+ |Wα(s)| ≤ d ln(1 + 2EGylim/α). Hence,

ln |W ′| ≤ ln(|G|) + d ln(1 + 2EGylim/α). (12)
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Let us now turn to bounding the expectation of the first term of (10). We have,

E
[
L̂T − min

w∈W′
LT (w)

]
= max
w∈W′

E
[
L̂T − LT (w)

]
,

where we have exploited that LT (w) is deterministic. Therefore, it suffices to bound
E
[
L̂T − LT (w)

]
for any fixed w ∈ W ′. Thus, fix w ∈ W ′.

By the construction of ˜̀
t, E

[
˜̀
t(w)|pt

]
= `t(w) holds for any w ∈ Rd. Hence,

E [LT (w)] = E
[∑T

t=1
˜̀
t(w)

]
. Furthermore, E [`t(Wt)|pt] =

∑
w∈W′ pt(w)`t(w) =∑

w∈W′ pt(w)E
[
˜̀
t(w)|pt

]
= E

[∑
w∈W′ pt(w)˜̀

t(w)|pt
]
.

Introduce ˆ̃
`t(w) = ˜̀

t(w) + 〈 s(w), c 〉, Then, we see that it suffices to bound

E
[
L̂T − LT (w)

]
= E

[
T∑
t=1

∑
w′∈W ′

pt(w
′)

ˆ̃
`t(w

′)−
T∑
t=1

ˆ̃
`t(w)

]
.

Now, by Lemma A.2.1, under the assumption that 0 < γ ≤ 1, 0 < η are such that for any w′ ∈ W ′,
1 ≤ t ≤ T the inequality

η
ˆ̃
`t(w

′) ≥ −1 (13)
holds, we have

T∑
t=1

∑
w′∈W ′

pt(w
′)

ˆ̃
`t(w

′)−
T∑
t=1

ˆ̃
`t(w)

≤ ln |W ′|
η

+ η

T∑
t=1

∑
w′∈W′

pt(w
′)

ˆ̃
`2t (w

′) + γ

T∑
t=1

∑
w′∈W′

µ(w′)(
ˆ̃
`t(w

′)− ˆ̃
`t(w)).

Let us assume for a moment that η, γ can be chosen to satisfy the above quoted conditions – we
shall return to the choice of these parameters soon. Taking expectations of both sides of the last
inequality, we get

E
[
L̂T − LT (w)

]
≤ ln |W ′|

η
+η

T∑
t=1

∑
w′∈W′

E
[
pt(w

′)
ˆ̃
`2t (w

′)
]
+γ

T∑
t=1

∑
w′∈W′

µ(w′)(`t(w
′)+〈 s(w′), c 〉),

where we have used that E
[
ˆ̃
`t(w)

]
= `t(w)+ 〈 s(w), c 〉 ≥ 0. Thus, we see that it remains to bound

E
[
pt(w

′)
ˆ̃
`2t (w

′)
]
, which is done in the following lemma.

Lemma A.2.2. LetW ′, ˜̀
t, pt be as in LQDEXP3. Then, there exist a constant C > 0 such that the

following equation holds:∑
w∈W′

p(w)E
[
ˆ̃
`2(w) | p

]
≤ (4y2

lim + ‖c‖1)(W 2
∞X

2
1 + 2ylimW∞X1 + y2

lim + ‖c‖1).

Proof. By the tower rule, we have

E

[ ∑
w∈W′

pt(w)
ˆ̃
`2t (w)

]
= E

[ ∑
w∈W′

pt(w)E
[
ˆ̃
`2t (w) | pt

]]
Therefore, it suffices to bound ∑

w∈W′
pt(w)E

[
ˆ̃
`2t (w) | pt

]
.

For simplifying the presentation, since t is fixed, from now on we will remove the subindex t from

the quantities involved and write ˆ̃
` instead of ˆ̃

`t, p instead of pt, etc.
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The plan of the proof is as follows: We construct a deterministic upper bound h(w) on |ˆ̃`(w)| and

an upper bound B on
∑
w∈W′ p(w)h(w). Then, we provide an upper bound B′ on E

[
ˆ̃
`(w)|p

]
so

that ∑
w∈W′

p(w)E
[
ˆ̃
`2(w)

∣∣∣ p] ≤ ∑
w∈W′

p(w)h(w)E
[
ˆ̃
`(w)

∣∣∣ p] ≤ B′ ∑
w∈W′

p(w)h(w) ≤ BB′.

Before providing these bounds, let’s review some basic relations. Remember that W∞ =
supw∈W ‖w‖∞ and X1 = supx∈X ‖x‖1. Further, note that for any 1 ≤ j, j′ ≤ d, we have

E
[
1{j∈s(W )}

∣∣∣ p] =
∑

w∈W′:j∈s(w)

p(w) =
∑
w∈W′

1{j∈s(w)}p(w) = q(j), (14)

E
[
1{j,j′∈s(W )}

∣∣∣ p] =
∑

w∈W′:j,j′∈s(w)

p(w) =
∑
w∈W′

1{j,j′∈s(w)}p(w) = q(j, j′). (15)

As to the upper bound h(w) on |ˆ̃`(w)|, we start with

|ˆ̃`(w)| ≤ |w>X̃w|+ 2|y| |w>x̃|+ |y|2 + ‖c‖1. (16)

Now, |y| ≤ ylim and

|w>x̃| ≤W∞
d∑
j=1

1{j∈s(w)}
|xj |
q(j)

.
= g(w, x),

|w>X̃w| ≤W 2
∞

∑
j,j′

1{j,j′∈s(w)}
|xjxj′ |
q(j, j′)

.
= G(w, x).

Hence,
|ˆ̃`(w)| ≤ G(w, x) + 2ylimg(w, x) + y2

lim + ‖c‖1
.
= h(w)

which is indeed a deterministic upper bound on |ˆ̃`(w)|. To bound
∑
w∈W′ p(w)h(w), it remains to

upper bound
∑
w∈W′ p(w)g(w, x) and

∑
w∈W′ p(w)G(w, x). To upper bound these, we move the

sum over the weights w inside the other sums in the definitions of g and G to get:

∑
w∈W′

p(w)g(w, x) = W∞

d∑
j=1

|xj |
q(j)

∑
w∈W′

p(w)1{j∈s(w)} = W∞X1, (by (14) and ‖x‖1 ≤ X1)

∑
w∈W′

p(w)G(w, x) = W 2
∞

∑
j,j′

|xjxj′ |
q(j, j′)

∑
w∈W′

p(w)1{j,j′∈s(w)} = W 2
∞

∑
j,j′

|xjxj′ | (by (15))

= W 2
∞‖x ‖21 ≤W 2

∞X
2
1 .

Hence, ∑
w∈W′

p(w)h(w) ≤W 2
∞X

2
1 + 2ylimW∞X1 + y2

lim + ‖c‖1.

Let us now turn to bounding E
[
|ˆ̃`(w)|

∣∣∣ p]. From (16), it is clear that it suffices to upper bound

E
[
|w>X̃w| | p

]
and E

[
|w>x̃| | p

]
. From (14) and (15), the definitions of x̃ and X̃ and because by

assumption ‖|w|‖∗‖|x|‖ ≤ wlimxlim = ylim, we obtain

E
[
|w>x̃|

∣∣ p] =
∑
j

|wjxj | ≤ ylim and

E
[
|w>X̃w|

∣∣ p] =
∑
j,j′

|wjwj′xjxj′ | =
(∑

j

|wjxj |
)2

≤ y2
lim.

14



Thus,

E
[
|ˆ̃`(w)|

∣∣∣ p] ≤ E
[
|w>X̃w|+ 2ylim|w>x̃|+ y2

lim + ‖c‖1
∣∣∣ p] ≤ 4y2

lim + ‖c‖1.

Putting together all the bounds, we get∑
w∈W′

p(w)E
[
ˆ̃
`2(w) | p

]
≤ (4y2

lim + ‖c‖1)(W 2
∞X

2
1 + 2ylimW∞X1 + y2

lim + ‖c‖1).

It remains to bound
∑
w′∈W′ µ(w′) (`t(w

′) + 〈 s(w′), c 〉). Because of the bounds on weight vectors
in W ′ and ((xt, yt))(1≤t≤T ), we know that `t(w′) + 〈 s(w′), c 〉 ≤ 4y2

lim + ‖c‖1. Combining the
inequalities obtained so far, we get

E
[
L̂T − LT (w)

]
≤ ln |W ′|

η
+ η(4y2

lim + ‖c‖1)(W 2
∞X

2
1 + 2ylimW∞X1 + y2

lim + ‖c‖1)

+ γT (4y2
lim + ‖c‖1).

(17)

Thus, it remains to select η, γ such that the earlier imposed conditions, amongst them (13), hold and

the above bound on the expected regret is minimized. To ensure η ˆ̃
`t(w) ≥ −1, we start with a lower

bound on ˜̀
t(w):

˜̀
t(w) = w>X̃t w − 2w>x̃t yt + y2

t

≥ w>X̃t w − 2w>x̃t yt

=

d∑
i,j=1

wiwj(X̃t)i,j − 2yt

d∑
j=1

wj x̃t,j

≥ −
∑
i,j 1{i∈s(w)}1{j∈s(w)}|xt,ixt,jwiwj |

γ
− 2ylim

∑
i 1{i∈s(w)}|xt,iwi|

γ

≥ −‖w‖
2
∗‖xt‖2

γ
− 2ylim

‖w‖∗‖xt‖
γ

≥ −3y2
lim

γ
.

Thus, as long as 3ηy2
lim ≤ γ, it follows that (13) holds. To minimize (17), we choose

γ = 3ηy2
lim (18)

to get

E
[
L̂T − LT (w)

]
≤ ln |W ′|

η
+ η(4y2

lim + ‖c‖1)(W 2
∞X

2
1 + 2ylimW∞X1 + 4y2

lim + ‖c‖1) .

Using η =
√

ln |W′|
(4y2lim+‖c‖1)(W 2

∞X
2
1+2ylimW∞X1+4y2lim+‖c‖1)

, we get

E
[
L̂T

]
− LT (w) ≤ 2

√
T (4y2

lim + ‖c‖1)(W 2
∞X

2
1 + 2ylimW∞X1 + 4y2

lim + ‖c‖1) ln |W ′| .

Noting that here w ∈ W ′ was arbitrary, together with the regret decomposition (10), the bound (11)
on the regret arising from discretization the bound (12) on ln |W ′| and that ln |G| ≤ d ln 2 give

E [RT ] ≤ 2
√
T (4y2

lim + ‖c‖1)(W 2
∞X

2
1 + 2ylimW∞X1 + 4y2

lim + ‖c‖1) ln |W ′|+ 4T ylimα

≤ 2
√
Td (4y2

lim + ‖c‖1)(W 2
∞X

2
1 + 2ylimW∞X1 + 4y2

lim + ‖c‖1) ln(2 + 4EGylim/α) + 4T ylimα .

Choosing α = ylimT
−1/2, we get the bound

E [RT ] ≤ C
√
Td (4y2

lim + ‖c‖1)(W 2
∞X

2
1 + 2ylimW∞X1 + 4y2

lim + ‖c‖1) ln(EGT ) . (19)

for some constant C > 0.
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A.2.2 Lower Bound

Theorem 2.5. Let d > 0, and consider the online free label probing problem with linear predictors,
where W = {w ∈ Rd | ‖w‖1 ≤ wlim} and X = {x ∈ Rd | ‖x‖∞ ≤ 1}. Assume, for all t ≥ 1,
that the loss functions are of the form `t(w) = (w>xt − yt)

2 + 〈 s(w), c 〉, where |yt| ≤ 1 and
c = 1/2 × 1 ∈ Rd. Then, for any prediction algorithm and for any T ≥ 4d

8 ln(4/3) , there exists a
sequence ((xt, yt))1≤t≤T ∈ (X × [−1, 1])T such that the regret of the algorithm can be bounded
from below as

E[RT ] ≥
√

2− 1√
32 ln(4/3)

√
Td .

Proof. The idea of the proof is similar to Mannor and Shamir (2011, Theorem 4). We will solve the
problem of Multi-Armed Bandits with d arms using an algorithm that can solve free-label probing
with examples having d features. We will use the lower bound proved in Cesa-Bianchi and Lugosi
(2006, Theorem 6.11) for Multi-Armed Bandit game. They showed a method of choosing the losses
and proved that there exist a universal constant CMAB such that no algorithm can achieve a better
regret thanCMAB

√
Td in T rounds using d arms. In their method adversary chooses one of the arms

beforehand and assign a random Bernoulli loss with parameter 1/2 + ε to that arm and a random
Bernoulli loss with parameter 1/2 to all other arms at each round. Then they proved that by choosing
ε =

√
(1/(8 ln(4/3))d/T , no algorithm can achieve better expected regret bound than CMAB

√
Td

in T rounds. Note that they use the fact that losses are in range [0, 1]. Without loss of generality we
can add 1/2 to all the losses and assume that the losses are now in range [1/2, 1 + 1/2] and their
result still hold.

Now we explain how we can solve that problem using an algorithm that solves free label probing
game. More formally we will use the following lemma.

Lemma A.2.3. Give any learner A for an online free-label probing game there exist a learner A′
for Multi-Armed Bandit problem with the adversaries proposed at Cesa-Bianchi and Lugosi (2006,
Theorem 6.11) and an adversary for online free-label probing game such that

E [RA′(T,MAB)]− 2d
√

(1/(8 ln(4/3)) ≤ E [RA(T,OFLP )] ,

holds where RA′(T,MAB) is the regret of the learner A′ in the Multi-Armed Bandit problem with
the defined adversary and RA(T,OFLP ) is the regret of the learner A in the online free-label
probing game.

Proof. We define the adversary in the online free label probing game. The adversary chooses yt = 1
for all the rounds. Note the the challenge is finding a weight vector to predict the label and not only
predicting the label. Consider the weight vector ei which is a zero weight vector with a single one in
its ith element for all 1 ≤ i ≤ d. The adversary then chooses one of the components v, in advance
and sets xt,i to be a Bernoulli random variable with parameter one for every i 6= v and sets xt,v to
be a Bernoulli random variable with parameter 1/2 + ε. Note that this component v is the same arm
as the adversary in multi-arm bandit chooses. Now we know that for each ei the loss will be the cost
of observing ith feature which is 1/2 and a prediction error which is a Bernoulli random variable
based on the assignments to the features. So you can easily see a correspondence between ei and ith
arm in multi-armed bandit problem with the adversary defined in Cesa-Bianchi and Lugosi (2006,
Theorem 6.11).

Let RA(T,OFLP ) denote the regret of the learner A in this online free-label probing. We know
that if we make the set of competitors smaller, the regret can not be increased. Note that we does
not change the set of actions that algorithm A can take. Let R∗A(T,OFLP ) denote the regret of the
learner A in this online free-label probing when it competes only against ei weight vectors for all
1 ≤ i ≤ d. Since we make the set of competitors smaller we have

R∗A(T,OFLP ) ≤ RA(T,OFLP ) . (20)

Now consider the learner A that solves this online free-label probing game. We will construct
another algorithm A′ such that solves the multi-armed bandits problem. Let It denote the chosen
arm by A′ and `t,i denote the loss of arm i at round t ≥ 1. Here are the different situations.
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When A chooses wt = 0 ∈ Rd at round t, A′ chooses one of the arms randomly in multi-armed
bandit problem. By this choice, A does not observe any feature and predict zero for the label. Here
is the expected regret at these types of rounds for A.

E [`t(0)− `t(ev)] = 1− (1/2 + E
[
(e>v xt − yt)2

]
= 1− (1/2 + 1/2− ε) = ε .

On the other hand, the expected regret of A′ in the game of multi-armed bandits at each round is
bounded by ε. By this we know that in the rounds that A chooses wt = 0 ∈ Rd we get

E [`t,It − `t,v] = E [`t(eIt)− `t(ev)] ≤ ε = E [`t(wt)− `t(et)] t ≥ 1 , (21)

which means the regret of A′ is not going to be increased more that regret of A in such rounds.

When A chooses a weight vector wt 6= 0, A′ chooses all arms i in the bandit game whose corre-
sponding ith component of wt is not zero in the free-label probing game in the consecutive rounds
and after finding all required component values of x, it gives it to A as the feedback for calculating
the loss. Note that the chosen weight vector by A requires either one feature or more than one fea-
ture. As a resultA′ plays the bandit games for T ′ rounds whileA plays the online free-label probing
game for T rounds. If it wt needs only one feature due to the way the choice of xt,i, the minimizer
of expected loss is exactly ei. Because if the ith component of wt was α instead of one we get

E
[
(w>t xt − yt)2

]
= E

[
(αxt,i − 1)2

]
= P [xt,i = 0]× 1 + P [xt,i = 1]× (1− α)2 .

which achieves its minimum for α = 1. So we get Eq.(21) for these types of rounds as well. Now if
wt has more than one non-zero components as we said A′ plays more rounds. At these extra rounds
the expected regret of A′ will be increased by at most ε. However A is also paying for those extra
features that it needed. Since the cost of each feature is 1/2 as well assuming that ε ≤ 1/2, we can
conclude that the regret of A for all these extra rounds is still less than or equal the regret of A on
the rounds that it chooses wt. Let T ′ denote the random number of rounds that A′ is playing the
bandits game. We know that this number is bounded by dT since at each round A can choose at
most all the features. Putting the above results together with Eq.(21), we get

E [RA′(T
′,MAB)] ≤ E [R∗A(T,OFLP )] .

Because the expected regret is increasing in the number of rounds we can use E [RA′(T,MAB)] ≤
E [RA′(T

′,MAB)] and also Eq.(20) to get

E [RA′(T,MAB)] ≤ E [RA(T,OFLP )] .

Using the value of ε that Cesa-Bianchi and Lugosi (2006, Theorem 6.11) uses we get the lemma
statement. Also T >= 4d

8 ln(4/3) in the lemma statement guarantees that ε ≤ 1/2 which was needed
in the middle of the proof.

Using this lemma and also knowing that

E [RA′(T,MAB)] ≥
√
dT

√
2− 1√

32 ln(4/3)

based on the result of Cesa-Bianchi and Lugosi (2006, Theorem 6.11), we can derive
√

2− 1√
32 ln(4/3)

√
dT ≤ E [RA(T,OFLP )] .

A.3 Non-Free-Label Probing

A.3.1 Revealing Action Algorithm for Non-Free-Label Probing
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Algorithm 3 Revealing action algorithm for non-free-label online probing
Parameters: Real numbers 0 ≤ η, γ ≤ 1, Set of experts F .
Initialization: u1(f) = 1 (f ∈ F).
for t = 1 to T do

Draw Ft ∈ F from the probability mass function

pt(f) =
ut(f)∑
f∈F ut(f)

, f ∈ F .

Draw a Bernoulli random variable Zt such that P [Zt = 1] = γ.
if Zt = 0 then
St = (s(Ft), 0) (i.e., st,d+1 = 0).
Obtain the features values, (xt,i)i∈s(Ft).
Predict ŷt = Ft(xt).

else
St = 1 ∈ Rd+1 (i.e., all d+ 1 components are one).
Observe all the features of xt.
Predict ŷt = Ft(xt).
Receive the true label yt.

end if
for each f ∈ F do

˜̀
t(f) = 1{Zt=1}

〈 s(f),c1:d 〉+`t(ŷt)
γ .

ut+1(f) = ut(f) exp(−η ˜̀
t(f)).

end for
end for

A.3.2 Upper Bound

Lemma 3.1. Given any non-free-label online probing with finitely many experts, Algorithm 3 with
appropriately set parameters achieves

E[RT ] ≤ C max
(
T 2/3(`2max‖c‖1 ln |F|)1/3, `max

√
T ln |F|

)
for some constant C > 0.

Proof. The regret of the algorithm is decomposed into two additive terms: (i) The extra loss suf-
fered in exploration rounds. The cumulative expectation of this extra loss can be upper bounded by
Tγ‖c‖1. (ii)The regret of the algorithm compared to each expert, excluding rounds that request the
label and extra features. To upper bound this term, we follow the classical “exponential weights”
proof (see e.g., Cesa-Bianchi et al. (2006)).

First we make the trivial observation that for every time step t and f ∈ F ,E[˜̀t(f)] = 〈 s(f), c1:d 〉+
`t(f(s � xt)). That is, ˜̀

t(f) is an unbiased estimate of the true loss of function f . Let Ut =∑
f∈F ut(f). Now we continue with lower and upper bounding the term UT :

UT ≥
∑
f∈F

uT (f) ≥ uT (f∗) = exp

(
−η

T∑
t=1

˜̀
t(f
∗)

)
,
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where f∗ is and arbitrary expert in F . For the upper bound we write

Ut
Ut−1

=
∑
f∈F

ut−1(f) exp(−η ˜̀
t(f))

Ut−1

=
∑
f∈F

pt(f)(1− η ˜̀
t(f) + η2 ˜̀2

t (f)) (22)

= 1− η
∑
f∈F

pt(f)˜̀
t(f) + η2

∑
f∈F

pt(f)˜̀2
t (f)

≤ exp

−η∑
f∈F

pt(f)˜̀
t(f) + η2

∑
f∈F

pt(f)˜̀2
t (f)

 , (23)

where in (22) we used that ut−1(f)/Ut−1 = pt(f) and the inequality ex ≤ 1 + x + x2 if x ≤ 1,
and in (23) we used that ex ≥ 1 + x. Multiplying the above inequality for t = 1, . . . , T and also U1

we get

UT ≤ |F| exp

−η T∑
t=1

∑
f∈F

pt(f)˜̀
t(f) + η2

T∑
t=1

∑
(s,f(.))∈F

pt(f)˜̀2
t (f)

 .

We now merge the lower and upper bounds and take logarithm of both sides:

−η
T∑
t=1

˜̀
t(f
∗)− ln |F| ≤ −η

T∑
t=1

∑
f∈F

pt(f)˜̀
t(f) + η2

T∑
t=1

∑
f∈F

pt(f)˜̀2
t (f) .

Rearranging gives
T∑
t=1

∑
f∈F

pt(f)˜̀
t(f)−

T∑
t=1

˜̀
t(f
∗) ≤ η

T∑
t=1

∑
f∈F

pt(f)˜̀2
t (f) +

ln |F|
η

.

After taking expectation of both sides, the first term on the left hand side is the expected cumulative
loss of the algorithm excluding the extra loss suffered in exploration rounds, while the second term
is the expected cumulative loss of the any arbitrary expert f . The first term on the right hand side
can be upper bounded as

η

T∑
t=1

∑
f∈F

E[pt(f)˜̀2
t (f)] ≤ η

T∑
t=1

∑
f∈F

E[pt(f)˜̀
t(f)]

`max

γ

≤ η`2maxT

γ
,

where `max is the maximum loss an action can suffer, ignoring the label cost cd+1.

Adding up the two terms of the expected regret, we get

E[RT ] ≤ Tγ‖c‖1 +
η`2maxT

γ
+

ln |F|
η

.

For setting the parameters optimally, we consider two cases.

(1) If ‖c‖1 ≥
√

ln |F|
2T `max, then we set

η = (ln |F|)2/3T−2/3(4`2max‖c‖1)−1/3 γ =

√
η`2max

‖c‖1
to get

E[RT ] ≤ C1T
2/3(`2max‖c‖1 ln |F|)1/3

for some constant C1 > 0. The condition on ‖c‖1 is needed for γ to be a probability. On
the other hand,
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(2) if ‖c‖1 <
√

ln |F|
2T `max, then we set

η =

√
ln |F|
T`2max

γ = 1

to get

E[RT ] ≤ C2`max

√
T ln |F|

for some constant C2.

Combining the two bounds gives the result of the lemma.

A.3.3 Lower Bound

In this section we prove the lower bound on the regret of the non-free-label probing game, stated in
Section 3. The proof follows a standard lower bounding technique using a randomized construction
for the loss functions. As such, we omit the proofs of two lemmas used in the derivation; the
interested reader is referred to (Bartók, 2012) for these proofs.
Theorem 3.2. There exists a constant C such that, for any non-free-label probing with linear pre-
dictors, quadratic loss, and cj > (1/d)

∑d
i=1 ci − 1/2d for every j = 1, . . . , d, the expected regret

of any algorithm can be lower bounded by

E[RT ] ≥ C(cd+1d)1/3T 2/3 .

Proof. We construct a set of opponent strategies and show that the expected regret of any algorithm
is high against at least one of them. The features xt,i for t = 1, . . . , T and i = 1, . . . , d are
generated by the iid random variables Xt,i whose distribution is Bernoulli with parameter 0.5. Let
Zt ∈ {1, . . . , d} be random variables whose distribution will be specified later. The labels yt are
generated by the random variable defined as Yt = Xt,Zt

.

To construct the distribution of Zt we introduce the following notation. For every i = 1, . . . , d, let

ai =
1

d
+ 2ci −

2

d

d∑
j=1

cj .

The assumptions on c ensures that ai > 0 for every i = 1, . . . , d. For opponent strategy k, let the
distribution of Zt defined as

Pk [Zt = i] =

{
ai − ε, i 6= k;
ai + (d− 1)ε, i=k ,

with some ε > 0 to be defined later.

Lemma A.3.1. (Bartók 2012, Lemma 25) Let ek denote the kth basis vector of dimension d. Against
opponent strategy k, the instantaneous expected regret for any action such that (s, s`) 6= (ek, 0) is
at least dε2 .

For i = 1, . . . , d, letNi denote the number of times the player’s action is (ei, w, sd+1). Similarly, let
NL denote the number of times the player requests the label. Now it is easy to see that the expected
regret under opponent strategy k can be lower bounded by

Ek[RT ] ≥ (T − Ek[Nk])
dε

2
+ cd+1Ek[NL] .

The rest of the proof is devoted to show that for any algorithm, the average of the above value,
1/d

∑d
i=1 Ei[RT ] can be lower bounded. We only show this for deterministic algorithms. The

statement follows for randomizing algorithms with the help of a simple argument, see e.g., Cesa-
Bianchi and Lugosi (2006, Theorem 6.11).

A deterministic algorithm is defined as a sequence of functions At(·), where the argument of At is
a sequence of observations up to time step t− 1 and the value is the action taken at time step t. We
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denote the observation at time step t by ht ∈ {0, 1, ∗}d+1, where ht,i = xt,i if st,i = 1 and ht,i = ∗
if st,i = 0 for all 1 ≤ i ≤ d. Similarly, ht,d+1 = yt if st,d+1 = 1 and ht,d+1 = ∗ if st,d+1 = 0.
That is, ∗ is the symbol for not observing a feature or the label. The next lemma, which is the key
lemma of the proof, shows that the expected value of Ni does not change too much if we change the
opponent strategy.

Lemma A.3.2. (Bartók 2012, Lemma 26) There exists a constant C1 such that for any i, j ∈
{1, . . . , d},

Ei[Ni]− Ej [Ni] ≤ C1Tε
√
dEj [NL] .

Now we are equipped to lower bound the expected regret. Let

j = argmink∈{1,...,d} Ek[NL].

By Lemma A.3.2,

Ei[RT ] ≥ (T − Ei[Ni])
dε

2
+ cd+1Ei[NL]

≥
(
T − Ej [Ni]− C1Tε

√
dEj [NL]

)
dε

2
+ cd+1Ej [NL]

Denoting
√
Ej [NL] by ν we have

1

d

d∑
i=1

Ei[RT ] ≥

(
T − 1

d

d∑
i=1

Ej [Ni]− C1Tε
√
dν

)
dε

2
+ cd+1ν

2

≥
(
T − T

d
− C1Tε

√
dν

)
dε

2
+ cd+1ν

2

What is left is to optimize this bound in terms of ν and ε. Since ν is the property of the algorithm,
we have to minimize the expression in ν, with ε as a parameter. After simple algebra we get

νopt =
C1Tε

2d3/2

4cd+1
.

Substituting it back results in

1

d

d∑
i=1

Ei[RT ] ≥ (d− 1)
Tε

2
− C2

1T
2ε4d3

16cd+1

Now we set

ε =

(
2

C2
1

)1/3

(cd+1)
1/3

d−2/3T−1/3

to get

E[RT ] ≥ C3 (cd+1)
1/3

d1/3T 2/3

whenever d ≥ 2.
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