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Abstract

This paper introduces the online probing problem: In each round, the learner is
able to purchase the values of a subset of feature values. After the learner uses
this information to come up with a prediction for the given round, he then has the
option of paying to see the loss function that he is evaluated against. Either way,
the learner pays for both the errors of his predictions and also whatever he chooses
to observe, including the cost of observing the loss function for the given round
and the cost of the observed features. We consider two variations of this problem,
depending on whether the learner can observe the label for free or not. We provide
algorithms and upper and lower bounds on the regret for both variants. We show
that a positive cost for observing the label significantly increases the regret of the
problem.

1 Introduction

In this paper, we study a variant of online learning, called online probing, which is motivated by
practical problems where there is a cost to observing the features that may help one’s predictions.
Online probing is a class of online learning problems. Just like in standard online learning problems,
the learner’s goal is to produce a good predictor. In each time step t, the learner produces his
prediction based on the values of some feature x

t

= (x
t,1, . . . , xt,d

)> 2 X ⇢ Rd.1 However, unlike
in the standard online learning settings, if the learner wants to use the value of feature i to produce a
prediction, he has to purchase the value at some fixed, a priori known cost, c

i

� 0. Features whose
value is not purchased in a given round remain unobserved by the learner. Once a prediction ŷ

t

2 Y
is produced, it is evaluated against a loss function `

t

: Y ! R. At the end of a round, the learner
has the option of purchasing the full loss function, again at a fixed prespecified cost c

d+1 � 0 (by
default, the loss function is not revealed to the learner). The learner’s performance is measured by his
regret as he competes against some prespecified set of predictors. Just like the learner, a competing
predictor also needs to purchase the feature values needed in the prediction. If s

t

2 {0, 1}d+1 is the
indicator vector denoting what the learner purchased in round t (s

t,i

= 1 if the learner purchased
x
t,i

for 1  i  d, and purchased the label for i = d+ 1) and c 2 [0,1)d+1 denotes the respective
costs, then the regret with respect to a class of prediction functions F ⇢ {f | f : X ! Y} is defined
by

R
T

=

TX

t=1

{`
t

(ŷ
t

) + h s
t

, c i} � inf
f2F

(
T h s(f), c1:d i+

TX

t=1

`
t

(f(x
t

))

)
,

where c1:d 2 Rd is the vector obtained from c by dropping its last component and for a given func-
tion f : Rd ! Y , s(f) 2 {0, 1}d is an indicator vector whose ith component indicates whether f

1We use > to denote the transpose of vectors. Throughout, all vectors x2Rd will denote column vectors.
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is sensitive to its ith input (in particular, s
i

(f) = 0 by definition when f(x1, . . . , xi

, . . . , x
d

) =
f(x1, . . . , x

0
i

, . . . , x
d

) holds for all (x1, . . . , xi

, . . . , x
d

), (x1, . . . , x
0
i

, . . . , x
d

) 2 X ; otherwise
s
i

(f) = 1). Note that when defining the best competitor in hindsight, we did not include the cost of
observing the loss function. This is because (i) the reference predictors do not need it; and (ii) if we
did include the cost of observing the loss function for the reference predictors, then the loss of each
predictor would just be increased by c

d+1T , and so the regret R
T

would just be reduced by c
d+1T ,

making it substantially easier for the learner to achieve sublinear regret. Thus, we prefer the current
regret definition as it promotes the study of regret when there is a price attached to observing the
loss functions.

To motivate our framework, consider the problem of developing a computer-assisted diagnostic tool
to determine what treatment to apply to a patient in a subpopulation of patients. When a patient
arrives, the computer can order a number of tests that cost money, while other information (e.g., the
medical record of the patient) is available for free. Based on the available information, the system
chooses a treatment. Following-up the patient may or may not incur additional cost. In this example,
there is typically a delay in obtaining the information whether the treatment was effective. However,
for simplicity, in this work we have decided not to study the effect of this delay. Several works in
the literature show that delays usually increase the regret in a moderate fashion (Mesterharm, 2005;
Weinberger and Ordentlich, 2006; Agarwal and Duchi, 2011; Joulani et al., 2013).

As another example, consider the problem of product testing in a manufacturing process (e.g., the
production of electronic consumer devices). When the product arrives, it can be subjected to a
large number of diagnostic tests that differ in terms of their costs and effectiveness. The goal is to
predict whether the product is defect-free. Obtaining the ground truth can also be quite expensive,
especially for complex products. The challenge is that the effectiveness of the various tests is often
a priori unknown and that different tests may provide complementary information (meaning that
many tests may be required). . Hence, it might be challenging to decide what form the most cost-
effective diagnostic procedure may take. Yet another example is the problem of developing a cost-
effective way of instrument calibration. In this problem, the goal is to predict one or more real-valued
parameters of some product. Again, various tests with different costs and reliability can be used as
the input to the predictor.

Finally, although we pose the task as an online learning problem, it is easy to show that the proce-
dures we develop can also be used to attack the batch learning problem, when the goal is to learn a
predictor that will be cost-efficient on future data given a database of examples.

Obviously, when observing the loss is costly, the problem is related to active learning. However, to
our best knowledge, the case when observing the features is costly has not been studied before in
the online learning literature. Section 1.1 will discusses the relationship of our work to the existing
literature in more detail.

This paper analyzes two versions of the online problem. In the first version, free-label online prob-
ing, there is no cost to seeing the loss function, that is, c

d+1 = 0. (The loss function often compares
the predicted value with some label in a known way, in which case learning the value of the label
for the round means that the whole loss function becomes known; hence the choice of the name.)
Thus, the learner naturally will choose to see the loss function after he provides his prediction; this
provides feedback that the learner can use, to improve the predictor he produces. In the second
version, non-free-label online probing, the cost of seeing the loss function is positive: c

d+1 > 0.

In Section 2 we study the case of free-label online probing. We give an algorithm that enjoys a regret
of O(

p
2dLT lnN

T

(1/(TL))) when the losses are L-equi-Lipschitz (Theorem 2.2), where N
T

(")

is the "-covering number of F on sequences of length T . This leads to an Õ(
p
2dLT ) regret bound

for typical function classes, such as the class of linear predictors with bounded weights and bounded
inputs. We also show that, in the worst case, the exponential dependence on the dimension cannot
be avoided in the bound. For the special case of linear prediction with quadratic loss, we give an
algorithm whose regret scales only as Õ(

p
dt), a vast improvement in the dependence on d.

The case of non-free-label online probing is treated in Section 3. Here, in contrast to the free-label
case, we prove that the minimax growth rate of the regret is of the order ⇥̃(T 2/3). The increase of
regret-rate stems from the fact that the “best competitor in hindsight” does not have to pay for the
label. In contrast to the previous case, since the label is costly here, if the algorithm decides to see the
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label it does not even have to reason about which features to observe, as querying the label requires
paying a cost that is a constant over the cost of the best predictor in hindsight, already resulting in
the ⇥̃(T 2/3) regret rate. However, in practice (for shorter horizons) it still makes sense to select the
features that provide the best balance between the feature-cost and the prediction loss. Although we
do not study this, we note that by combining the algorithmic ideas developed for the free-label case
with the ideas developed for the non-free-label case, it is possible to derive an algorithm that reasons
actively about the cost of observing the features, too.

In the part dealing with the free-label problem, we build heavily on the results of Mannor and
Shamir (2011), while in the part dealing with the non-free-label problem we build on the ideas of
(Cesa-Bianchi et al., 2006). Due to space limitations, all of our proofs are relegated to the appendix.

1.1 Related Work

This paper analyzes online learning when features (and perhaps labels) have to be purchased. The
standard “batch learning” framework has a pure explore phase, which gives the learner a set of
labeled, completely specified examples, followed by a pure exploit phase, where the learned pre-
dictor is asked to predict the label for novel instances. Notice the learner is not required (nor even
allowed) to decide which information to gather. By contrast, “active (batch) learning” requires
the learner to identify that information (Settles, 2009). Most such active learners begin with com-
pletely specified, but unlabeled instances; they then purchase labels for a subset of the instances.
Our model, however, requires the learner to purchase feature values as well. This is similar to the
“active feature-purchasing learning” framework (Lizotte et al., 2003). This is extended in Kapoor
and Greiner (2005) to a version that requires the eventual predictor (as well as the learner) to pay
to see feature values as well. However, these are still in the batch framework: after gathering the
information, the learner produces a predictor, which is not changed afterwards.

Our problem is an online problem over multiple rounds, where at each round the learner is required
to predict the label for the current example. Standard online learning algorithms typically assume
that each example is given with all the features. For example, Cesa-Bianchi et al. (2005) provided
upper and lower bounds on the regret where the learner is given all the features for each example,
but must pay for any labels he requests. In our problem, the learner must pay to see the values of
the features of each example as well as the cost to obtain its true label at each round. This cost
model means there is an advantage to finding a predictor that involves few features, as long as it
is sufficiently accurate. The challenge, of course, is finding these relevant features, which happens
during this online learning process.

Other works, in particular Rostamizadeh et al. (2011) and Dekel et al. (2010), assume the features
of different examples might be corrupted, missed, or partially observed due to various problems,
such as failure in sensors gathering these features. Having such missing features is realistic in many
applications. Rostamizadeh et al. (2011) provided an algorithm for this task in the online settings,
with optimal O(

p
T ) regret where T is the number of rounds. Our model differs from this model as

in our case the learner has the option to obtain the values of only the subset of the features that he
selects.

2 Free-Label Probing

In this section we consider the case when the cost of observing the loss function is zero. Thus,
we can assume without loss of generality that the learner receives the loss function at the end of
each round (i.e., s

t,d+1 = 1). We will first consider the general setting where the only restriction is
that the losses are equi-Lipschitz and the function set F has a finite empirical worst-case covering
number. Then we consider the special case where the set of competitors are the linear predictors and
the losses are quadratic.

2.1 The Case of Lipschitz losses

In this section we assume that the loss functions, `
t

, are Lipschitz with a known, common Lipschitz
constant L over Y w.r.t. to some semi-metric dY of Y: for all t � 1

sup
y,y

02Y
|`
t

(y)� `
t

(y0)|  L dY(y, y
0). (1)
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Clearly, the problem is an instance of prediction with expert advice under partial information feed-
back (Auer et al., 2002), where each expert corresponds to an element of F . Note that, if the learner
chooses to observe the values of some features, then he will also be able to evaluate the losses of
all the predictors f 2 F that use only these selected features. This can be formalized as follows:
By a slight abuse of notation let s

t

2 {0, 1}d be the indicator showing the features selected by
the learner at time t (here we drop the last element of s

t

as s
t,d1 is always 1); similarly, we will

drop the last coordinate of the cost vector c throughout this section. Then, the learner can com-
pute the loss of any predictor f 2 F such that s(f)  s

t

, where  denotes the conjunction of the
component-wise comparison. However, for some loss functions, it may be possible to estimate the
losses of other predictors, too. We will exploit this when we study some interesting special cases of
the general problem. However, in general, it is not possible to infer the losses for functions such that
s
t,i

< s(f)
i

for some i (cf. Theorem 2.3).

The idea is to study first the case when F is finite and then reduce the general case to the finite case
by considering appropriate finite coverings of the space F . The regret will then depend on how the
covering numbers of the space F behave.

Mannor and Shamir (2011) studied problems similar to this in a general framework, where in ad-
dition to the loss of the selected predictor (expert), the losses of some other predictors are also
communicated to the learner in every round. The connection between the predictors is represented
by a directed graph whose nodes are labeled as elements of F (i.e., as the experts) and there is an
edge from f 2 F to g 2 F if, when choosing f , the loss of g is also revealed to the learner. It is
assumed that the graph of any round t, G

t

= (F , E
t

) becomes known to the learner at the beginning
of the round. Further, it is also assumed that (f, f) 2 E

t

for every t � 1 and f 2 F . Mannor
and Shamir (2011) gave an algorithm, called ELP (exponential weights with linear programming),
to solve this problem, which calls the Exponential Weights algorithm, but modifies it to explore
less, exploiting the information structure of the problem. The exploration distribution is found by
solving a linear program, explaining the name of the algorithm. The regret of ELP is analyzed in the
following theorem.
Theorem 2.1 (Mannor and Shamir 2011). Consider a prediction with expert advice problem over
F where in round t, G

t

= (F , E
t

) is the directed graph that encodes which losses become available
to the learner. Assume that for any t � 1, at most �(G

t

) cliques of G
t

can cover all vertices of G
t

.
Let B be a bound on the non-negative losses `

t

: max
t�1,f2F `

t

(f(x
t

))  B. Then, there exists
a constant CELP > 0 such that for any T > 0, the regret of Algorithm 2 (shown in the Appendix)
when competing against the best predictor using ELP satisfies

E[R
T

]  CELPB

vuut(ln |F|)
TX

t=1

�(G
t

) . (2)

The algorithm’s computational cost in any given round is poly(|F|).
For a finite F , define E

t

⌘ E
.
= {(f, g) | s(g)  s(f)}. Then clearly, �(G

t

)  2d. Further,
B = kc1:dk1 +max

t�1,y2Y `
t

(y)
.
= C1 + `max (i.e., C1 = kc1:dk1). Plugging these into (2) gives

E[R
T

]  CELP(C1 + `max)
q

2dT ln |F| . (3)

To apply this algorithm in the case when F is infinite, we have to approximate F with a finite
set F 0 ⇢ {f | f : X ! Y}. The worst-case maximum approximation error of F using F 0 over
sequences of length T can be defined as

A
T

(F 0,F) = max
x2XT

sup
f2F

inf
f

02F 0

1

T

TX

t=1

dY(f(xt

), f 0(x
t

)) + h (s(f 0)� s(f))+, c1:d i ,

where (s(f 0)�s(f))+ denotes the coordinate-wise positive part of s(f 0)�s(f), that is, the indicator
vector of the features used by f 0 and not used by f . The average error can also be viewed as a
(normalized) dY -“distance” between the vectors (f(x

t

))1tT

and (f 0(x
t

))1tT

penalized with
the extra feature costs. For a given positive number ↵, define the worst-case empirical covering
number of F at level ↵ and horizon T > 0 by

N
T

(F ,↵) = min{ |F 0| | F 0 ⇢ {f | f : X ! Y}, A
T

(F 0,F)  ↵ }.
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We are going to apply the ELP algorithm to F 0 and apply (3) to obtain a regret bound. If f 0 uses
more features than f then the cost-penalized distance between f 0 and f is bounded from below by
the cost of observing the extra features. This means that unless the problem is very special, F 0 has
to contain, for all s 2 {s(f) | f 2 F}, some f 0 with s(f 0) = s. Thus, if F contains a function for
all s 2 {0, 1}d, �(G

t

) = 2d. Selecting a covering F 0 that achieves accuracy ↵, the approximation
error becomes TL↵ (using equation 1), giving the following bound:
Theorem 2.2. Assume that the losses (`

t

)
t�1 are L-Lipschitz (cf. (1)) and ↵ > 0. Then, there exists

an algorithm such that for any T > 0, knowing T , the regret satisfies

E[R
T

]  CELP(C1 + `max)
q

2dT lnN
T

(F ,↵) + TL↵ .

In particular, by choosing ↵ = 1/(TL), we have

E[R
T

]  CELP(C1 + `max)
q
2dT lnN

T

(F , 1/(TL)) + 1 .

We note in passing that the the dependence of the algorithm on the time horizon T can be alleviated,
using, for example, the doubling trick.

In order to turn the above bound into a concrete bound, one must investigate the behavior of the
metric entropy, lnN

T

(F ,↵). In many cases, the metric entropy can be bounded independently of
T . In fact, often, lnN

T

(F ,↵) = D ln(1 + c/↵) for some c,D > 0. When this holds, D is often
called the “dimension” of F and we get that

E [R
T

]  CELP(C1 + `max)
q
2dTD ln(1 + cTL) + 1 .

As a specific example, we will consider the case of real-valued linear functions over a ball in a
Euclidean space with weights belonging to some other ball. For a normed vector space V with norm
k · k and dual norm k · k⇤, x 2 V , r � 0, let Bk·k(x, r) = {v 2 V | kvk  r} denote the ball in V

centered at x that has radius r. For X ⇢ Rd, W ⇢ Rd, let
F ⇢ Lin(X ,W)

.
= {g : X ! R | g(·) = hw, · i , w 2 W} (4)

be the space of linear mappings from X to reals with weights belonging to W . We have the following
lemma:
Lemma 2.1. Let X,W > 0, dY(y, y0) = |y � y0|, X ⇢ Bk·k(0, X) and W ⇢ Bk·k⇤(0,W ).
Consider a set of real-valued linear predictors F ⇢ Lin(X ,W). Then, for any ↵ > 0,

lnN
T

(F ,↵)  d ln(1 + 2WX/↵).

The previous lemma, together with Theorem 2.2 immediately gives the following result:
Corollary 2.1. Assume that F ⇢ Lin(X ,W), X ⇢ Bk·k(0, X), W ⇢ Bk·k⇤(0,W ) for some
X,W > 0. Further, assume that the losses (`

t

)
t�1 are L-Lipschitz. Then, there exists an algorithm

such that for any T > 0, the regret of the algorithm satisfies,

E [R
T

]  CELP(C1 + `max)
q
d2dT ln(1 + 2TLWX) + 1 .

Note that if one is given an a priori bound p on the maximum number of features that can be used
in a single round (allowing the algorithm to use fewer than p, but not more features) then 2d in
the above bound could be replaced by

P
1ip

�
d

i

� ⇡ dp, where the approximation assumes that
p < d/2. Such a bound on the number of features available per round may arise from strict bud-
getary considerations. When dp is small, this makes the bound non-vacuous even for small horizons
T . In addition, in such cases the algorithm also becomes computationally feasible. It remains an
interesting open question to study the computational complexity when there is no restriction on the
number of features used. In the next theorem, however, we show that the worst-case exponential
dependence of the regret on the number of features cannot be improved (while keeping the root-T
dependence on the horizon). The bound is based on the lower bound construction of Mannor and
Shamir (2011), which reduces the problem to known lower bounds in the multi-armed bandit case.
Theorem 2.3. There exist an instance of free-label online probing such that the minimax regret of

any algorithm is ⌦
⇣q�

d

d/2

�
T
⌘

.
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2.2 Linear Prediction with Quadratic Losses

In this section, we study the problem under the assumption that the predictors have a linear form and
the loss functions are quadratic. That is, F ⇢ Lin(X ,W) where W = {w 2 Rd | kwk⇤  wlim}
and X = {x 2 Rd | kxk  xlim} for some given constants wlim, xlim > 0, while `

t

(y) = (y� y
t

)2,
where |y

t

|  xlimwlim. Thus, choosing a predictor is akin to selecting a weight vector w
t

2 W ,
as well as a binary vector s

t

2 G ⇢ {0, 1}d that encodes the features to be used in round t. The
prediction for round t is then ŷ

t

= hw
t

, s
t

� x
t

i, where � denotes coordinate-wise product, while
the loss suffered is (ŷ

t

�y
t

)2. The set G is an arbitrary non-empty, a priori specified subset of {0, 1}d
that allows the user of the algorithm to encode extra constraints on what subsets of features can be
selected.

In this section we show that in this case a regret bound of size Õ(
p
poly(d)T ) is possible. The key

idea that permits the improvement of the regret bound is that a randomized choice of a weight vector
W

t

(and thus, of a subset) helps one construct unbiased estimates of the losses `
t

(hw, s � x
t

i)
for all weight vectors w and all subsets s 2 G under some mild conditions on the distribution of
W

t

. That the construction of such unbiased estimates is possible, despite that some feature values
are unobserved, is because of the special algebraic structure of the prediction and loss functions.
A similar construction has appeared in a different context, e.g., in the paper of Cesa-Bianchi et al.
(2010).

The construction works as follows. Define the d⇥d matrix, X
t

by (X
t

)
i,j

= x
t,i

x
t,j

(1  i, j  d).
Expanding the loss of the prediction ŷ

t

= hw, x
t

i, we get that the loss of using w 2 W is

`
t

(w)
.
= `

t

(hw, x
t

i) = w>X
t

w � 2w>x
t

y
t

+ y2
t

,

where with a slight abuse of notation we have introduced the loss function `
t

: W ! R (we’ll keep
abusing the use of `

t

by overloading it based on the type of its argument). Clearly, it suffices to
construct unbiased estimates of `

t

(w) for any w 2 W .

We will use a discretization approach. Therefore, assume that we are given a finite subset W 0 of
W that will be constructed later. In each step t, our algorithm will choose a random weight vector
W

t

from a probability distribution supported on W 0. Let p
t

(w) be the probability of selecting the
weight vector, w 2 W 0. For 1  i  d, let

q
t

(i) =
X

w2W0:i2s(w)

p
t

(w) ,

be the probability that s(W
t

) will contain i, while for 1  i, j  d, let

q
t

(i, j) =
X

w2W0:i,j2s(w)

p
t

(w) ,

be the probability that both i, j 2 s(W
t

).2 Assume that p
t

(·) is constructed such that q
t

(i, j) > 0
holds for any time t and indices 1  i, j  d. This also implies that q

t

(i) > 0 for all 1  i  d.
Define the vector x̃

t

2 Rd and matrix X̃
t

2 Rd⇥d using the following equations:

x̃
t,i

=
{i2s(Wt)}xt,i

q
t

(i)
, (X̃

t

)
i,j

=
{i,j2s(Wt)}xt,i

x
t,j

q
t

(i, j)
. (5)

It can be readily verified that E [x̃
t

| p
t

] = x
t

and E
h
X̃

t

| p
t

i
= X

t

. Further, notice that both x̃
t

and X̃
t

can be computed based on the information available at the end of round t, i.e., based on the
feature values (x

t,i

)
i2s(Wt). Now, define the estimate of prediction loss

˜̀
t

(w) = w>X̃
t

w � 2w>x̃
t

y
t

+ y2
t

. (6)
Note that y

t

can be readily computed from `
t

(·), which is available to the algorithm (equivalently,
we may assume that the algorithm observed y

t

). Due to the linearity of expectation, we have
E
h
˜̀
t

(w)|p
t

i
= `

t

(w). That is, ˜̀
t

(w) provides an unbiased estimate of the loss `
t

(w) for any

w 2 W . Hence, by adding a feature cost term we get ˜̀
t

(w) + h s(w), c i as an estimate of the loss
that the learner would have suffered at round t had he chosen the weight vector w.

2Note that, following our earlier suggestion, we view the d-dimensional binary vectors as subsets of
{1, . . . , d}.
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Algorithm 1 The LQDEXP3 Algorithm
Parameters: Real numbers 0  ⌘, 0 < �  1, W 0 ⇢ W finite set, a distribution µ over W 0,
horizon T > 0.
Initialization: u1(w) = 1 (w 2 W 0).
for t = 1 to T do

Draw W
t

2 W 0 from the probability mass function

p
t

(w) = (1� �)
u
t

(w)

U
t

+ �µ(w), w 2 W 0 .

Obtain the features values, (x
t,i

)
i2s(Wt).

Predict ŷ
t

=
P

i2s(Wt)
w

t,i

x
t,i

.
for w 2 W 0 do

Update the weights using (6) for the definitions of ˜̀
t

(w):

u
t+1(w) = u

t

(w)e�⌘(˜̀t(w)+h c,s(w) i), w 2 W 0 .

end for
end for

2.2.1 LQDExp3 – A Discretization-based Algorithm

Next we show that the standard EXP3 Algorithm applied to a discretization of the weight space W
achieves O(

p
dT ) regret. The algorithm, called LQDEXP3 is given as Algorithm 1. In the name

of the algorithm, LQ stands for linear prediction with quadratic losses and D denotes discretization.
Note that if the exploration distribution µ in the algorithm is such that for any 1  i, j  d,P

w2W

0:i,j2s(w) µ(w) > 0 then q
t

(i, j) > 0 will be guaranteed for all time steps. Using the notation
ylim = wlimxlim and EG = max

s2G sup
w2W:kwk⇤=1 kw � sk⇤, we can state the following regret

bound on the algorithm
Theorem 2.4. Let wlim, xlim > 0, c 2 [0,1)d be given, W ⇢ Bk·k⇤(0, wlim) convex, X ⇢
Bk·k(0, xlim) and fix T � 1. Then, there exist a parameter setting for LQDEXP3 such that the
following holds: Let R

T

denote the regret of LQDEXP3 against the best linear predictor from
Lin(W,X ) when LQDEXP3 is used in an online free-label probing problem defined with the se-
quence ((x

t

, y
t

))1tT

(kx
t

k  xlim, |y
t

|  ylim, 1  t  T ), quadratic losses `
t

(y) = (y � y
t

)2,
and feature-costs given by the vector c. Then,

E [R
T

]  C
q
Td (4y2lim + kck1)(w2

limx
2
lim + 2ylimwlimxlim + 4y2lim + kck1) ln(EGT ) ,

where C > 0 is a universal constant (i.e., the value of C does not depend on the problem parame-
ters).

The actual parameter setting to be used with the algorithm is constructed in the proof. The compu-
tational complexity of LQDEXP3 is exponential in the dimension d due to the discretization step,
hence quickly becomes impractical when the number of features is large. On the other hand, one
can easily modify the algorithm to run without discretization by replacing EXP3 with its continuous
version. The resulting algorithm enjoys essentially the same regret bound, and can be implemented
efficiently whenever efficient sampling is possible from the resulting distribution. This approach
seems to be appealing, since, from a first look, it seems to involve sampling from truncated Gaus-
sian distributions, which can be done efficiently. However, it is easy to see that when the sampling
probabilities of some feature are small, the estimated loss will not be convex as X̃

t

may not be pos-
itive semi-definite, and therefore the resulting distributions will not always be truncated Gaussians.
Finding an efficient sampling procedure for such situations is an interesting open problem.

The optimality of LQDEXP3 can be seen by the following lower bound on the regret:
Theorem 2.5. Let d > 0, and consider the online free label probing problem with linear predictors,
where W = {w 2 Rd | kwk1  wlim} and X = {x 2 Rd | kxk1  1}. Assume, for all t � 1,
that the loss functions are of the form `

t

(w) = (w>x
t

� y
t

)2 + h s(w), c i, where |y
t

|  1 and
c = 1/2 ⇥ 1 2 Rd. Then, for any prediction algorithm and for any T � 4d

8 ln(4/3) , there exists a
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sequence ((x
t

, y
t

))1tT

2 (X ⇥ [�1, 1])T such that the regret of the algorithm can be bounded
from below as

E[R
T

] �
p
2� 1p

32 ln(4/3)

p
Td .

3 Non-Free-Label Probing

If c
d+1 > 0, the learner has to pay for observing the true label. This scenario is very similar to the

well-known label-efficient prediction case in online learning (Cesa-Bianchi et al., 2006). In fact,
the latter problem is a special case of this problem, immediately giving us that the regret of any
algorithm is at least of order T 2/3. It turns out that if one observes the (costly) label in a given round
then it does not effect the regret rate if one observes all the features at the same time. The resulting
“revealing action algorithm”, given in Algorithm 3 in the Appendix, achieves the following regret
bound for finite expert classes:
Lemma 3.1. Given any non-free-label online probing with finitely many experts, Algorithm 3 with
appropriately set parameters achieves

E[R
T

]  Cmax
⇣
T 2/3(`2maxkck1 ln |F|)1/3, `max

p
T ln |F|

⌘

for some constant C > 0.

Using the fact that, in the linear prediction case, approximately (2TLWX +1)d experts are needed
to approximate each expert in W with precision ↵ = 1

LT

in worst-case empirical covering, we obtain
the following theorem (note, however, that the complexity of the algorithm is again exponential in
the dimension d, as we need to keep a weight for each expert):
Theorem 3.1. Given any non-free-label online probing with linear predictor experts and Lipschitz
prediction loss function with constant L, Algorithm 3 with appropriately set parameters running on
a sufficiently discretized predictor set achieves

E[R
T

]  Cmax
⇣
T 2/3

⇥
`2maxkck1 d ln(TLWX)

⇤1/3
, `max

p
Td ln(TLWX)

⌘

for some universal constant C > 0.

That Algorithm 3 is essentially optimal for linear predictions and quadratic losses is a consequence
of the following almost matching lower bound:
Theorem 3.2. There exists a constant C such that, for any non-free-label probing with linear pre-
dictors, quadratic loss, and c

j

> (1/d)
P

d

i=1 ci � 1/2d for every j = 1, . . . , d, the expected regret
of any algorithm can be lower bounded by

E[R
T

] � C(c
d+1d)

1/3T 2/3 .

4 Conclusions

We introduced a new problem called online probing. In this problem, the learner has the option
of choosing the subset of features he wants to observe as well as the option of observing the true
label, but has to pay for this information. This setup produced new challenges in solving the online
problem. We showed that when the labels are free, it is possible to devise algorithms with optimal
regret rate ⇥(

p
T ) (up to logarithmic factors), while in the non-free-label case we showed that only

⇥(T 2/3) is achievable. We gave algorithms that achieve the optimal regret rate (up to logarithmic
factors) when the number of experts is finite or in the case of linear prediction. Unfortunately either
our bounds or the computational complexity of the corresponding algorithms are exponential in
the problem dimension, and it is an open problem whether these disadvantages can be eliminated
simultaneously.
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