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Abstract—Manifold learning algorithms rely on a neighbourhood
graph to provide an estimate of the data’s local topology. Unfortunately,
current methods for estimating local topology assume local Euclidean
geometry and locally uniform data density, which often leads to poor
embeddings of the data. We address these shortcomings by proposing
a framework that combines local learning with parametric density
estimation for local topology estimation. Given a data set D ⊂ X , we
first estimate a new metric space (X, dX) that characterizes the varying
sample density of X in X, and then use (X, dX) as a new (pilot) input space
for manifold learning. The proposed framework results in significantly
improved embeddings, which we demonstrated objectively by assessing
clustering accuracy.

Index Terms—Manifold learning, divergence measures, neighbourhood
graphs, graph topology estimation, divergence based graphs.

I. INTRODUCTION

Manifold learning algorithms have recently played a crucial role in
unsupervised learning tasks such as clustering and nonlinear dimen-
sionality reduction [15], [13], [5], [3], [6]. A common aspect of these
algorithms is that they rely on a neighbourhood graph constructed
from the input data1 D = {xi}ni=1 with the points xi ∈ Rd as
its vertices. Such a graph provides an estimate for the topology
of an underlying low dimensional manifold that (approximately)
encapsulates the data. A manifold learning algorithm then tries to
“unfold”, or “flatten” this manifold—while preserving some local
information—to partition the graph (e.g. as in clustering), or to re-
define some metric information (e.g. as in dimensionality reduction).
The standard distance used to construct this data graph—whether
it be a fully connected, ε-ball, or k-nearest neighbours graph—is
the Euclidean distance. Unfortunately, the Euclidean distance creates
severe inaccuracy problems for graph estimation, and consequently
for the manifold learning process. In this paper, we show how to
overcome these inaccuracies by introducing a new manifold learning
framework that mitigates the liability incurred by using Euclidean
geometry on real data.

One reason for inaccurate topology estimates is the finite nature of
data, which means that low probability regions will be poorly sampled
and hence poorly represented in D. This results in an uneven sample
distribution in the input space X [4]. In practice, the situation is
exacerbated by noise, nonlinearity, and the high dimensionality of
the data. Unfortunately, the Euclidean metric cannot accommodate
any of these factors. First, the Euclidean distance, by definition, is
constant over the entire input space X , and hence does not take the
varying sample distribution into consideration. To see this note that
for any data of the formD, the Euclidean distance enforces an identity
covariance matrix I to measure pairwise distances between points. By

1Notations: Bold small letters x,y are vectors. Bold capital letters A,B are
matrices. Calligraphic and double bold capital letters X , Y , X, Y denote sets
and/or spaces. Symmetric positive definite (SPD) and semi-definite (SPSD)
matrices are denoted by A � 0 and A � 0 respectively. tr(·) is the matrix
trace and | · | is the matrix determinant.

expanding the squared norm of ‖x−y‖2 to (x−y)>I(x−y), one
directly obtains a special case of the generalized quadratic distance
(GQD) d(x,y;A) =

√
(x− y)>A(x− y) which itself, generalizes

the Mahalanobis2 distance for any SPD matrix A. If A = I, then the
Euclidean distance enforces a unit variance for all variables in the data
with zero correlation among them. Second, similar remarks apply for
the GQD if A is the inverse of the data’s global covariance matrix,
or it is learned via a metric learning algorithm [19], [18] that might
impose some local and/or global constraints on distances (based on
labels or side information). For most metric learning algorithms A
is constant over X and hence, it is still not a faithful modelling for
the varying density in X . More importantly, such metric learning
algorithms are either supervised or semi-supervised, and hence they
cannot be used in the unsupervised setting discussed here. These
factors impart serious inaccuracy in the data graph construction,
which in turn yields erroneous estimates for the manifold topology
and increases uncertainty of point locations in the lower dimensional
subspace. A manifestation of these effects is topological instability
of manifold learning and sensitivity to noise [2].

In this paper we propose an algorithmic framework that overcomes
these liabilities by inferring a new input space for the manifold
learner, such that the new input space, denoted X, characterizes the
varying sample density in the original input space X . In particular, we
integrate the concept of local learning algorithms [4], with parametric
density estimation to learn from D a new metric space3 (X, dX)
that becomes the (pilot) input space for the manifold learner. The
proposed framework, depicted in Figure 1, redefines the proximity
between two points in D based on the divergence between the local
density surrounding each of the two points, then passes this proximity
to the manifold learner. The set X contains all the parameters that
define the local density for each point in D, while the new proximity
information, characterized by the divergence measure dX, defines the
metric space (X, dX).

Recent work in this direction has focused on patching some of
the problems caused by the Euclidean distance when used in the
neighbourhood graph construction. Due to space limitations, we refer
to [10] and [7] as recent examples on such approaches. Unlike this
research direction, our approach redefines a new input space with a
different geometry and distance between points and anchor it to the
manifold learner.

2In this case A is the inverse of the data’s covariance matrix.
3A metric space is an ordered pair (X , d) such that X is a non-empty abstract set (of

any elements, whose nature is left unspecified), and d is a distance function, or a metric,
defined as: d : X × X 7→ R, and the following axioms hold for all a, b, c ∈ X :
(i) d(a, b) ≥ 0, (ii) d(a, a) = 0, (iii) d(a, b) = 0 iff a = b, (iv) Symmetry:
d(a, b) = d(b, a), and (v) The triangle inequality: d(a, c) ≤ d(a, b) + d(b, c).
Semi-metrics satisfy axioms (i), (ii), and (iv) only. The axiomatic definition of metrics
and semi-metrics, in particular axioms (i) and (ii), produce the positive semi-definiteness
of d. Hence metrics and semi-metrics are positive semi-definite (PSD).



(a) (b)

Fig. 1. (a) The common used distance for the data graph construction
step in manifold learning is Euclidean distance, which is the straight line
between the points x and y. (b) In the proposed framework (dashed black
box), the distance between any two points is defined in two steps: I. Each
point defines a local neighbourhood by finding its m nearest neighbours. II. A
Gaussian distribution with a regularized full covariance is fitted to each local
neighbourhood. The distance between the two points is then the divergence
between these two Gaussian distributions that is then conveyed to the graph
construction step of manifold learning.

II. THE ELEMENTS OF THE SET X

We assume that the input space X is locally smooth, and hence
it can be considered a smooth differentiable manifold that is locally
Euclidean. Under this assumption, Euclidean geometry only holds in
a small neighbourhood N around each point x ∈ X . In the finite
sample setting, for each xi ∈ D, the neighbourhood N (xi), or
Ni for short, is the set of neighbouring points for xi, which can
be defined using an ε−ball or the m nearest neighbours (NNs) of
xi. In principle, the neighbourhood size should slowly grow until it
circumvents the region where Euclidean geometry holds, and going
beyond that size, the local Euclidean assumption will break due to
the manifold curvature. Hence, if m is too small, the estimate for
the local Euclidean subspace will be poor and inaccurate, while if m
is too large, the local linear structure will be smoothed out by the
influence of far away points. In practice, m can be set either by using
cross validation, grid search, or the method of [5]. See [4], [5], [3]
for examples on using local neighbourhoods for manifold learning.

For large data sets with high dimensionality, finding the NNs for
each xi can be time consuming. In this case, approximate neighbours
can be found using methods based on random projections. For
example, locality-sensitive hashing can be used [9], where for h hash
tables, each defined using k hash functions, the time complexity for
finding m approximate nearest neighbours for all query points qi is
reduced to guaranteed to be O (nmh(kτ + dnε)). Here τ is the time
to evaluate the hash function on point x, and ε << 1 is the probability
that the distance between xi and xj , is greater than a predefined
threshold. Since τ is usually small, this complexity is substantially
less than the O(mn2d2) required for brute force search.

A. Local learning for manifold estimation

Local learning algorithms overcome a nonuniform data distribution
by introducing a local adjustment mechanism with control parameters
that limit its impact to individual regions of the input space [4].
The Euclidean distance and the GQD do not have such a control
mechanism, and hence do not take the varying sample density into

consideration. We propose to introduce such a control mechanism to
manifold learning in the following three steps:

1) Estimate the density for {Ni}ni=1. The parameters of these
densities will define the elements of X.

2) Define dX as a dissimilarity measure on X (§III).
3) Use dX to construct the neighbourhood graph.

Formally, let Ni ≡ N (xi) = {xi1, . . . ,xim}, where xij ∈ D, and 1 ≤
i ≤ n. A reasonable density model for Ni under the local smoothness
assumption is the Gaussian. Note that such a local density model does
not impose any constraints or assumptions on the global density for
the data. Let Gi(xi,Σi) be the Gaussian density centered at xi for
neighbourhood Ni, where Σi ∈ Sd×d++ is the sample covariance with
respect to the mean xi, given by Σi = m−1 ∑

x∈Ni
(x − xi)(x −

xi)
>, and Sd×d++ is the space of symmetric positive definite matrices.

Since in practice it might be that d� m, the sample covariance Σi

will be a poor estimate for the true covariance, and generally rank
deficient. Therefore, Σi can be replaced with the regularized estimate
Ri ∈ Sd×d++ which shall be formally discussed in §II-B.

In terms of local learning, µi and Ri are the local parameters that
provide the means for coping with the uneven sample distribution.
Ideally, each Gi defines a local neighbourhood around the point xi
with axes defined by the eigenvectors of Σi, while its eigenvalues
indicate the amount of data variance along each axis direction. If
the data manifold is locally linear in the vicinity of xi, then all but
the d0 dominant eigenvalues will be very close to zero, while their
associated leading eigenvectors will constitute the optimal variance
preserving local coordinate system. In an ideal setting, a local
maximum likelihood procedure will naturally capture this structure.
However, to leverage the cases when Σi is degenerate for the above
mentioned reasons, Σi is replaced with Ri. This local Gaussian
assumption at each point xi is in the same spirit various of various
manifold learning algorithms [5], [17],

Given the set {Ni}ni=1, their corresponding local densities G =
{Gi}ni=1 characterize the varying sample density for X according
to the parameters µ and R. Since all local densities have the same
parametric form, we define the set of 2-tuples {(µi,Ri)}ni=1 ⊂ X,
where X ⊂ Rd×Sd×d++ . Note that N (x), µ, and R are defined in an
unsupervised manner. However, if auxiliary information is available
in the form of labels or side information, then the proposed approach
can be extended to supervised and semi-supervised learning.

B. Handling high dimensional data

For real world data sets, it is possible that d is large thereby
making d larger than the number of samples m in N (x). In this
setting, standard assumptions of classical statistics can be easily
violated causing conventional estimators to behave poorly. This
problem of “large d small m” is more serious when estimating a
covariance matrix from a small number of samples. Indeed, accurate
estimation of a covariance matrix from high dimensional data is a
fundamental problem in statistics, since the number of parameters
to be estimated grows quadratically with the number of variables.
Learning a model under these conditions can be easily prone to
overfitting, and yield poor generalization to out-of-sample points.
In addition, computational tractability becomes another problem for
handling such large matrices.

In this work, we consider shrinkage estimators that regularize the
covariance matrix by shrinking it towards a symmetric target matrix
such as a scaled version of the identity matrix: Ri = (1 − γ)Σi +
γd−1tr(Σi)I, or the diagonal entries of Σi: Ri = (1 − γ)Σi +
γdiag(Σi), where γ ∈ (0, 1) is the mixing (or shrinkage) intensity
coefficient. These regularized estimates are known to be statistically



efficient, well conditioned, avoid local overfitting, and reduce the
influence of outliers especially on the manifolds’ boundaries.

Note that due to the structure of Ri and to the rank deficiency of
Σi, the computational efficiency (in space and time) can be greatly
improved as follows. First, since Σi is rank deficient, it can be
written as ViΛiV

>
i , where Vi ∈ Rd×m and Λi ∈ Rm×m are

respectively its eigenvector and eigenvalue matrices. Since Λi is
diagonal and m � d, the storage required for n Ri’s, will be
n(dm + m + 2), which is significantly less than nd(d + 1)/2 as
originally required. This in turn speeds up any matrix-matrix and
matrix-vector computations since it is rarely required to form Ri.
Second, this decomposition improves computational efficiency since
it leverages the need for explicitly computing the inverse of Ri.
Finally, note that for all Ri’s, the spectral properties for Σi are not
changed since the regularization only affects its eigenvalues but not
its eigenvectors.

III. THE DIVERGENCE MEASURE dX

The measure dX conveys the dissimilarity between two local
densities, Gi and Gj , which describe Ni and Nj around points xi
and xj respectively. Note that dX measures the difference between
two local coordinate systems located at xi and xj in terms of :
(i) the location, specified by µi and µj , and (ii) the scaling and
orientation, specified by the eigenvectors of Ri and Rj , which define
the axes of each local coordinate system. It is important, therefore, to
understand the properties of dX, how these properties can affect the
graph topology estimation, and how they affect the final embedding.

Since the elements of X are the parameters for G = {Gi}ni=1,
a natural measure for the dissimilarity between two densities is the
divergence. For Gi and Gj , some well known divergence measures
with closed form expressions are: (1) The symmetric KL divergence:

dJ(Gi,Gj) = 1
2
u>Ψu + 1

2
tr{R−1

i Rj + R−1
j Ri} − d, (1)

where Ψ = (R−1
i + R−1

j ), and u = (µi − µj). (2) The
Bhattacharyya distance dB :

dB(Gi,Gj) = 1
8
u>Γ−1u + 1

2
ln

[
|Ri|−

1
2 |Rj |

−1
2 |Γ|

]
, (2)

where Γ = ( 1
2
Ri + 1

2
Rj). (3) The Hellinger distance

dH =
√

2[1− ρ(Gi,Gj)], where ρ is the Bhattacharyya coeffi-
cient: ρ(Gi,Gj) = |Γ|−

1
2 |Ri|

1
4 |Rj |

1
4 exp{− 1

8
u>Γ−1u}. (4) The

Jeffreys-Riemann metric [1]:

dJR(Gi,Gj) = ( 1
2
u>Ψu)

1
2 + dR(Ri,Rj), (3)

where dR(Ri,Rj) = tr{log2 Λ(Ri,Rj)}
1
2 is the Riemannian

metric for SPD matrices, and Λ(Ri,Rj) = diag(λ1, . . . , λd) is the
generalized eigenvalue matrix for the generalized eigenvalue problem.

The divergence Div between any two probability distributions,
P1 and P2 say, has the following properties: Div(P1, P2) ≥ 0,
and Div(P1, P2) = 0 iff P1 = P2. Therefore, by definition, Div
satisfies axioms (i), (ii), and (iii) of metrics, and in general, is not
symmetric nor does it satisfy the triangle inequality (see footnote
3). However, for the above divergence measures, they are all are
symmetric, and hence axiom (iv) is also satisfied. Unfortunately, the
triangle inequality does not hold for the KL divergence dJ , nor does
it for the Bhattacharyya distance dB . However, for dH and dJR, they
all satisfy the triangle inequality as well [1].

Although dX can be any of the above divergence measures, it turns
out that the metric properties for these measures are intimately related
to the positive semi-definiteness of the affinity matrix A ∈ Rn×n
extracted from the data’s neighbourhood graph adjacency matrix.

TABLE I
DATA SETS USED IN OUR EXPERIMENTS WITH THEIR SIZE n, NUMBER OF

FEATURES d, AND NUMBER OF CLASSES c.

Data Set n d c Data Set n d c

Balance 625 4 3 Lymphography 148 18 4
Bupa 345 6 2 NewThyroid 215 5 3
Glass 214 9 6 Wine 178 13 3
Ionosphere 351 33 2 Corel 500 36 5
Letter 20000 16 26 SatImage 6453 36 6
Spam 4601 57 2

In [1] we have studied the metric properties of these divergence
measures and how they can impact the final embedding for two
different manifold learning algorithms: classical multidimensional
scaling (cMDS) and Laplacian eigenmaps (LEM) [3].

For LEM, for instance, the affinity matrix A is defined as
Aij = K(Gi,Gj), ∀i, j, where K is a SPSD kernel. Since for
LEM A has to be SPSD, then from Mercer theorem it is known
that A will be SPSD if and only if K is SPSD as well. If
K(Gi,Gj) = exp{− 1

σ
dX(Gi,Gj)}, where σ > 0 is a scale parameter,

then it suffices for K to be SPSD that dX is a semi-metric (see
footnote 3). Therefore for LEM, dX can be dJ , dB , dH , or dJR.
Note that LEM is different from cMDS for instance which requires
dX to be a metric such as dH or dJR in order for A to be SPSD [1].

A. How does dX affect the graph topology estimation?

We will make a slight abuse of the notation and let: dX ≡
dX(xi,xj) = Div(Gi,Gj), to imply that querying the distance
between xi and xj with respect to the space X returns the divergence
between their respective local densities, where Div is dJ , dB , dH ,
and dJR. The expressions for Div in Equations(1), (2), and (3)
are summations of two terms; the first term is for the difference in
means µi and µj weighted by a symmetric positive definite matrix,
and the second term is for the discrepancy between Ri and Rj .
If µi = µj = µ (or µi ≈ µj), the first term in (1), (2), and
(3) will be zero (or very small), and dX(xi,xj) will be mainly
determined by the dissimilarity in the covariances. If Ri = Rj = R
(or Ri ≈ Rj), the second term in (1), (2), and (3) will be zero
(or very small) and dX(xi,xj) reduces to the Mahalanobis distance.
Further, if Ri = Rj = I, then dX(xi,xj) reduces to the Euclidean
distance between µi and µj .

Any two points xi and xj in D (equivalently two nodes on the
graph) will be close to each other, if and only if µi ≈ µj and
Ri ≈ Rj . That is, it is not sufficient that ‖xi − xj‖2 is small. This
new meaning for the distance between points is more restrictive and
different from the Euclidean distance and the GQD, which are special
cases from dX(xi,xj). Note that dX(xi,xj) has an effect only on xi
and xj , but not on any other points in D. This is due to the nature
of local learning employed to learn (X, dX), together with the nature
of dX as a divergence measure.

IV. EXPERIMENTS

We performed a series of experiments to test the validity and
efficacy of the input space (X, dX) on two different manifold learning
methods; cMDS and LEM. Following various works on spectral
clustering and dimensionality reduction [8], [11], we assess the
benefit of (X, dX) for manifold learning via the accuracy of k-Means
clustering. More specifically, we quantify the impact of the new input
space via comparing the average clustering accuracy for the data
in the embedding space obtained before and after using (X, dX).
For each learning method, say LEM, and for each data set, we



TABLE II
CLUSTERING ACCURACY (WITH STANDARD DEVIATION) FOR k-MEANS IN
THE ORIGINAL INPUT SPACE (EUC.) AND FOR THE EMBEDDINGS BY PCA,

LEM, (X, dX)+LEM, CMDS, AND (X, dX)+CMDS.

Data set Euc. PCA LEM (X, dX)+LEM

Balance 51.1 (3.2) 51.1 (4.4) 56.8 (1.8) 61.7 (4.5)
Bupa 55.1 (0.1) 55.3 (0.04) 56.6 (0.1) 66.6 (0.04)
Glass 51.3 (3.2) 52.8 (1.8) 52.1 (3.1) 56.4 (3.5)
Ionosphere 70.6 (1.6) 71.1 (0.1) 69.8 (0.05) 79.3 (2.6)
Lymphography 47.4 (6.5) 49.5 (5.3) 54.9 (4.2) 57.3 (5.47)
NewThyroid 79.7 (8.9) 79.9 (8.1) 86.0 (1.4) 91.1 (0.05)
Wine 67.7 (5.1) 68.5 (4.4) 73.2 (0.5) 92.1 (0.06)
Corel 45.2 (3.6) 45.9 (3.5) 51.1 (3.01) 64.9 (2.9)
Letter 26.8 (0.7) 26.8 (0.6) 33.7 (2.4) 38.4 (2.6)
SatImage 62.7 (1.1) 65.3 (1.1) 72.2 (3.2) 76.3 (2.7)
Spam 63.5 (0.3) 63.5 (0.3) 69.2 (1.03) 72.5 (4.5)

Data set Euc. PCA cMDS (X, dX)+cMDS

Balance 51.1 (3.2) 51.1 (4.4) 53.2 (1.6) 65.3 (1.8)
Bupa 55.1 (0.1) 55.3 (0.03) 55.3 (0.01) 59.7 (0.1)
Glass 51.3 (3.2) 52.8 (1.8) 52.8 (2.5) 55.9 (1.0)
Ionosphere 70.6 (1.6) 71.1 (0.1) 71.1 (0.1) 80.8 (0.4)
Lymphography 47.4 (6.5) 49.5 (5.3) 49.6 (6.4) 57.6 (8.6)
NewThyroid 79.7 (8.9) 79.9 (8.1) 80.9 (7.2) 94.4 (0.03)
Wine 67.7 (5.1) 68.5 (4.4) 68.5 (4.4) 89.8 (0.05)
Corel 45.2 (3.6) 45.9 (3.5) 46.6 (2.9) 59.4 (2.3)
Letter 26.8 (0.7) 26.8 (0.6) 26.9 (0.7) 35.6 (2.0)
SatImage 62.7 (1.1) 65.3 (1.1) 64.4 (0.8) 77.8 (0.5)
Spam 63.5 (0.3) 63.5 (0.3) 63.5 (0.3) 72.8 (2.3)

tune the hyperparameters for the learning algorithm to maximize a
specific clustering accuracy measure. Next, the input space (X, dX) is
combined with manifold learning—denoted (X, dX)+LEM—and for
the same data set, the algorithm is optimized to yield an embedding
that maximizes the same clustering accuracy measure. Our hypothesis
is that the clustering accuracy in the embedding space obtained by
(X, dX)+LEM and (X, dX)+cMDS will always be higher than the
accuracies obtained by LEM and cMDS alone.

For the purpose of these experiments, we used twelve data sets,
shown in Table (I), from the UCI Machine Learning Repository
[12]. The experimental setup proceeded as follows. For each data
set D, we obtain different low dimensional embeddings using the
following algorithms: (i) Principal component analysis (PCA). (ii)
LEM with a Gaussian kernel. (iii) (X, dX)+LEM, (iv) cMDS, and (v)
(X, dX)+cMDS, where dX = {dJ , dB , dH , dJR}. We used k–Means
for clustering the data in each embedding space, and the number of
clusters was assumed to be known. Since k–Means usually converges
to local minima, the algorithm was run for 30 times with different
initializations. For each run, the clustering accuracy was measured
using the the Hungarian score and the final accuracies shown in Table
(II) are the average Hungarian scores over the 30 different runs4.

It can be seen from Table (II) that the clustering accuracy under
(X, dX), regardless of the divergence measure used, is significantly
better than the accuracy under Euc., PCA, LEM, and cMDS. Note
that in the context of current results, we had a fixed value for the
regularization parameter γ, and we did not consider how to choose
which divergence measure to use for a particular data set with LEM

4The hyperparameters were tuned as follows. For PCA, the number of
retained components constituted 98% of the total data variance. For LEM
with a Gaussian kernel, there are two hyperparameters; σ the kernel width,
and the number of NNs used to construct the neighbourhood graph. Three
values were considered for σ; from all the pairwise similarities distribution,
we selected the median, the 0.25 and the 0.75 quantiles. The NNs was allowed
to vary from 3 to 15. The dimensionality d0 for LEM was fixed to the number
of classes in the data [11]. For (X, dX), m the size of neighbourhoods varied
from 3 to 15 NNs, and in all our experiments we used a regularized covariance
of the form: Ri = Σi + γI, γ = 1.0e− 4.

since this a question of model selection. Nevertheless, our results
show that (X, dX) helps the manifold learner to better characterize
the latent class structure in the data. This also shows that there is
still a room for improvement if we consider optimizing γ, or using
more efficient regularized low rank covariance estimators.

V. CONCLUDING REMARKS

We proposed an algorithmic framework for manifold learning
algorithms that overcomes the liabilities of Euclidean geometry when
dealing with real data sets. The framework integrates local learning
with parametric density estimation to learn, in an unsupervised
manner, the metric space (X, dX) which becomes a pilot input
space for manifold learning. (X, dX) characterizes the varying sample
density in the original input space X , and reorganizes the proximity
between points in D ⊂ X based on dX which now takes the varying
sample density into consideration. The measure dX conveys this new
proximity information to the manifold learner, through the neighbour-
hood graph (and its adjacency matrix), to better characterize regions
with high density (clusters). Future research work will consider the
analysis of our approach based on the results of [6], [16], [14].
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