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Abstract. A clinical tool that can diagnose psychiatric illness using
functional magnetic resonance brain images would greatly assist physi-
cians. Here, we propose a learning algorithm that uses the histogram
of oriented gradients (HOG) features of fMRI images as the input to
support vector machines, then show that this system can produce such
classifiers when run on two large public datasets: able to diagnose ADHD
with hold-out accuracy of 0.626 (over baseline = 0.550) when trained
on the ADHD-200 global competition dataset, and to diagnose autism
with hold-out accuracy of 0.619 (over baseline = 0.516) when trained
on the Autism Brain Imaging Data Exchange (ABIDE) dataset. While
these results are not yet to clinical relevance, they outperform all pre-
viously presented methods on both datasets. These results suggest that
our learning approach may lead to diagnostic classifiers (from functional
images) for yet other psychiatric disorders.
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1 Introduction

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that
uses strong magnetic fields from standard MRI scanners to produce images of
biological tissues, which can be used to investigate brain changes over a few
minutes [1]. While the person is inside the scanner, the instrument will produce
a complete scan of the brain every 1 to 3 second [1]. This produces, in effect, a
waveform signal for each voxel of the brain.

FMRI can be used to analyze the brain in different ways. Many researchers
compare groups of people and/or compare brain states within the same individ-
uals. For example, Wolf et al. applied independent component analysis (ICA)
to a dataset of 12 healthy and 12 ADHD adults during a working memory task
and observed that ADHD patients had significantly less activation in the left
ventrolateral prefrontal cortex (VLPFC), cerebellar and occipital regions com-
pared with healthy controls [2]. (However, they did not try to build a diagnos-
tic system.) Such “association studies” aggregate over individuals in different
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groups or over brain states repeatedly sampled within given individuals. This is
in contrast to machine learning classification studies that attempt to diagnose
individual people.

FMRI is most commonly based on the blood oxygenation level dependant
(BOLD) signal. In task-based fMRI, the subject is asked to perform a task
while in the scanner. By contrast, in resting-state fMRI (RS-fMRI), the sub-
ject is asked to lie in the magnet and rest quietly. RS-fMRI is often used to
investigate the functional architecture of the brain [3]. Methods used to ana-
lyze resting state data include seed-based approaches, independent component
analysis, graph methods, clustering algorithms, neural networks, and pattern
classifiers [3].

In the ADHD-200 global competition [4], many teams tried to learn a clas-
sifier that could determine if a subject in the dataset is healthy or has ADHD,
using RS-fMRI data. The results show that it is possible to classify the ADHD
disorder using only functional images, with the caveat that it is not ready for
clinical purposes since the accuracy is far from perfect [5]. Other researchers have
tried to learn to classify autism, using the ABIDE dataset [6,7]. We describe their
results below.

Our work makes 3 contributions: a) We show that histogram of oriented gra-
dient (HOG) feature descriptors can be useful for diagnosing psychiatric disor-
ders. b) Our method outperforms any previously published classification results
on two large resting state fMRI datasets. c) For these datasets, we found that a
learner that uses time-averaged fMRI signal descriptors performs better than a
learner that uses T1-weighted images.

Below, section 2 will describe our learning method and section 3 will present
our experimental results on those two datasets.

2 Methodology

The ADHD-200 global competition dataset originally included 776 resting state
fMRI and anatomical scans from 8 different imaging sites, 491 of which were
obtained from “controls” (typically developing subjects) while 285 were cases,
with ADHD. We also included the ADHD-200 global competition test data,
which originally included 197 instances from both types of healthy and ADHD
cases. We had to remove 33 subjects (6 had no resting state scan, 1 could not
be preprocessed using SPM8 [8] and 26 from the Brown site had no labels),
leaving us with 94 healthy subjects and 77 ADHD cases in the test set and
490 healthy controls and 279 ADHD cases in the training set. The ADHD-200
dataset also included other non-imaging data including gender, age etc; see [4].
The ABIDE dataset originally included 1112 subjects, but we had to remove
one (as it could not be preprocessed using SPM8) leaving us with a dataset
of size 1111 individuals, including 573 healthy controls and 538 autistic cases.
The ABIDE dataset also provided an extensive array of phenotypic information;
see [6].
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Due to issues like the movement of subjects in the scanner, it is necessary
to preprocess fMRI data before analysis. Researchers use different preprocessing
steps to reduce the variability of data that is not associated with the experimen-
tal task, and to prepare the data for statistical testing [1]. For preprocessing we
have used statistical parametric mapping (SPM8) [8] software and our in-house
MATLAB code. Our preprocessing included 6 steps: a) 6-parameter rigid body
motion correction to remove the head motions in the magnet, b) coregistration
of functional scans to subject-specific anatomical scans to guide the normaliza-
tion step, c) non-linear spatial normalization to match all of the images to the
MNI T1 template [9–11], d) spatial smoothing with 8mm FWHM [1] Gaussian
kernel to increase the signal-to-noise ratio, e) temporal preprocessing to make
all the images equal in terms of their volume times (time to scan the whole brain
once) and temporal duration and f) z-normalizing each image to make the in-
tensities of images from different sites comparable. For more information about
the preprocessing steps, see Huettel et al. [1].

The fMRIs are 4D images. We first reduced the number of dimensions to 3
by averaging over time for each voxel of the image. This produced what we call
a 3D functional MR image for each individual. We used the mean value because
the values of the waveform signal for the voxels appear to follow a Gaussian
distribution. (We also repeated our experiments using the median values of the
voxels over time and found similar results.)

We then computed 3D HOG (histogram of oriented gradients) features of the
images. This, in our case, describes each subject with 116, 480 features. HOG is a
powerful feature descriptor for visual object recognition [12] that computes spa-
tial gradient information among pixels. To be specific, HOG divides the whole
image into blocks and each block into several cells. In each cell, it utilizes the
normalized local histograms of gradient orientations as a new feature. It then
normalizes each cell within the same block. A thorough explanation of differ-
ent kinds of normalizations including gamma/colour normalization and different
block normalization schemes can be found in [12]. The HOG method relies on
the assumption that local histogram of gradient information can characterize lo-
cal objects or shapes very well, even when discarding the position information of
corresponding gradients [12]. HOG has been successfully applied to 2D images
for different kinds of tasks related to object recognition [12].

Figure 1 shows an example where 8 orientation bins are evenly spaced over 0◦

- 360◦ [12]. Fig 31 shows how the HOG features (right) of a bike (left) – showing
the major direction of each region: eg, horizontal at the top and bottom of the
wheel and vertical on the left and right sides (in green), and horizontal along the
crossbar (in blue). For 3D images, such as magnetic resonance images, first we
divide the whole image into 3D blocks instead of 2D ones, and then we divide
these 3D blocks into smaller 3D cells. Then we generalize the 2D orientation
bins into the 3D space using 26 orientation bins; (see Fig. 2).

Using the HOG features as input, we learned binary classifiers to diagnose ei-
ther ADHD versus control (using ADHD-200 data) or autism versus control (us-

1 image from www.mathworks.com
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Fig. 1: 2D bins Fig. 2: 3D bins

Fig. 3: Input and output of HOG

ing ABIDE data). We considered several base classifiers including Naive Bayes,
K-Nearest Neighbours with different number of neighbours and RBF SVM with
different sigma values. As each dataset had only about 1000 individuals, there
was a high chance the learning algorithms will overfit to the training data if we
used all of the features. So we used MRMR (maximum relevance minimum re-
dundancy) [13,14] to select the most relevant features. For notation, let acc( L, D,
FS) be the 5 values computed by using 5-fold cross-validation when running the
learning L on the dataset D, using only the feature set FS; and let Eacc(L,D,FS)
be the mean of these 5 values. Also let FSk(D) be the top k MRMR features over
the dataset D. For each learner L, on dataset D, our L2CPD system (Algorithm
1) sequentially considered using the top k = {1, 11, 21, ...} MRMR features, stop-
ping when the Eacc(L,D, FSk) decreased or reached a plateau. We then identified
each learner L with the mean of the accuracies for the best FS, and the range of
these accuracy values. We identified each base learner with both the mean accu-
racy achieved using the best feature set, and also the range of accuracy values.
We found the three base learners with the top 3 mean accuracy values; these
appear in Table 1. (Note all 3, for each dataset, were SVM with RBF kernels.
They differ only by the Sigma values.) Since the top 3 mean accuracies are very
close, L2CPD chose the learner from these 3 with the smallest range of accuracy
values and returned that learner. In the ADHD-200 dataset, for learning algo-
rithms with top accuracy values, we saw accuracy decrease when the number of
features went over 211 and in the ABIDE dataset we almost reached a plateau
when we went over 101 features.
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Algorithm 1 L2CPD algorithm

1: procedure L2CPD(D: training data, L: set of base learners)
2: for each base learner L in L do
3: FS ← top 1 MRMR feature (on D)
4: bsfm ← 0 // best-so-far mean
5: bsfr ← 0
6: while True do
7: vals[L; 1 : 5]← acc( L, D, FS ) // 5-fold c-v accuracy of L on D, using FS
8: mean ← ave {vals[i]}
9: range ← maxi{vals[i]} − minj{vals[j]} // range of accuracy over 5 folds

10: AveAcc[L, |FS|] ← [mean, range]
11: if mean ≥ bsfm then
12: bsfm ← mean
13: bsfr ← range
14: FS ← FS + top 10 new MRMRSelectedFeatures from D
15: else
16: Break
17: SortAveAcc ← sort AveAcc (corresponding to first element), large to small
18: BestAcc[1 : 3] ← SortAveAcc[1: 3]
19: BestL ← learner in BestAcc[1 : 3] with smallest 2nd entry
20: return BestL

3 Experimental Results

The ADHD-200 Global Competition divided the ADHD-200 dataset into training
and test sets. In the ABIDE dataset, we randomly selected 4/5 of the data as
the training data and left the remaining 1/5 as the testing data. We ran our
L2CPD system on these two datasets. For ADHD-200, L2CPD determined the
best classifier was SVM with Sigma = 8 on 121 MRMR features. When run
on the hold-out set, its accuracy was 0.6257, which was better than the best
imaging-based diagnostic performance, 0.6154, achieved in the ADHD-200 global
competition [5]. (Note that our accuracy scores for the ADHD-200 test set did
not include the 26 subjects from the Brown site, as their diagnostic labels have
not been released). For the ABIDE dataset, L2CPD determined that SVM with
Sigma = 9, on 241 features, was the best. When it was run on its hold-out set,
its accuracy was 0.6188 (note on this hold-out set, the baseline was 0.5157). This
is better than the result of Nielsen et al., who achieved 0.60 accuracy against
their baseline of 0.5363 [15]. The difference in baseline accuracies was because
Nielsen et al. omitted 148 of the individuals due to preprocessing problems.

We then explored the accuracy of various base learners, as a function of the
number of features. In this paper we only show the 3 learners that had the best
overall accuracy. The dashed lines in Figures 4 and 5 show the average 5 fold cross
validation accuracy using SVM with RBF kernel with different sigma values, as
a function of features selected. (This corresponds to the values of AveAcc[ L, k
].mean, for each learner L, for the different feature set sizes, k in {1, 11, ...} .
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Fig. 4: ADHD train data,
baseline: 0.6372

Fig. 5: ABIDE train data,
baseline: 0.5158

Table 1: Top 3 base learners

ADHD ABIDE
Sigma = 9 Sigma = 7 Sigma = 8 Sigma = 9 Sigma = 9 Sigma = 8

Accuracy 0.71907 0.71644 0.71387 0.58556 0.58334 0.58330
Number of features 211 181 121 251 241 231

Range 0.07996 0.106103 0.073538 0.075509 0.044944 0.06244

We then considered whether we could get similar performance using struc-
tural MRI – that is, just using T1-weighted images. We therefore ran the same
processing, including HOG feature extraction, MRMR feature selection, and us-
ing the same range of base learners; these appear as the solid lines in Figures 4
and 5. The figures show that functional-based features are almost always doing
better than the structural based features, over the entire range of feature set
sizes.

4 Discussion

We anticipate our approach may be used to learn classifiers for other diseases.
We also think our classification accuracy will improve if we also include personal
characteristic data, in addition to fMRI-based information, as was done in [16].

To summarize, our results showed that both autism and ADHD can be di-
agnosed using the functional images and also that HOG features, which are well
known for object detection, can also be useful for classification of psychiatric
diseases using brain images. Since we successfully applied our method to learn
two diagnosis methods from two large multisite datasets, we expect that our ap-
proach might be appropriate for other datasets. Further research will be needed
to address this question.
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