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Abstract—This paper explores the challenge of efficiently
collecting data to find which genes (from a given set of candidates)
are differentially expressed . We consider several algorithms for
this task, including some that assume there are only two types
of genes: those that are not differentially expressed, and those
that are differentially expressed to the same level. We provide a
framework for evaluating such algorithms and also present an
algorithm that has nice theoretical properties and performs very
well on both real and simulated data.
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I. INTRODUCTION

Many researchers in bioinformatics and related fields are
interested in the biomarker discovery problem; the search for
genes, proteins and other small molecules that are associated
with a specific disease or phenotype. As gene expression
microarrays can measure the expressions of tens of thousands
of genes simultaneously from a given sample, they have
become one of the dominant tools for biomarker discovery
over the last 10 years. There are currently 40 thousand publicly
available datasets from such studies available on the NCBI-
GEO database [1].

The typical result from a microarray association study is
a list of ‘differentially expressed’ genes [2]. Unfortunately,
the biomarkers found in one study are often very different
from the ones found in another [3]. The discrepancy has been
attributed to statistical issues that originate from the extremely
high dimensionality of the data [4], and also to the sensitivity
of the results to the definition of differential expression used
[5]. As a result of these deficiencies, there is a growing interest
from members within the community to mandate a validation
study [6], [7].

In a validation study, researchers will use a more accurate
and reliable technology, such as PCR [6], [7], to confirm that
their reported genes actually have different distributions of
expression levels in the two classes of interest. We consider an
experimentation setup wherein the researcher collects data in
a series of ‘probes’, where each probe is a measurement of the
expression level of a specific gene for a specific tissue sample.
After observing the values of a certain number of probes the
experiment ends and the results are reported.

We focus on the challenge of designing such probe se-
quences to efficiently identifying which genes are truly dif-
ferentially expressed. Here, we are given a set of N genes,
and have the opportunity to probe the expression value of any
specific gene on an instance of a specified class, e.g., you can
ask for the expression value of gene#3 from a cancer patient,
or for the gene#22 of a control patient, etc. After observing
a pre-specified number of probes, our algorithm then returns

a subset, possibly all or none, of the genes that it believes
are differentially expressed. The algorithm is evaluated by the
accuracy of its predictions: rewarded for correctly identifying
differentially expressed genes, and penalized both for both the
non-differentially expressed genes it incorrectly identifies and
the differentially expressed genes that it fails to identify.

In this paper we present three algorithms. The first al-
gorithm, Round Robin (RR), is a naive experimental design,
which is easy to analyze under basic modelling assumptions.
We then show a more intelligent sequential method, Greedy,
that is difficult to analyze and so its performance cannot be
predicted. Our final algorithm, Not As Naive (NAN), acts as
a stepping stone between Greedy and RR. We prove under
the modelling assumptions that Greedy must do no worse
than NAN, which means NAN’s performance provides a lower
bound on Greedy’s. Furthermore, we show that on real gene
expression data where the modelling assumptions do not hold,
NAN has the best performance.

The algorithms are presented and analyzed in Section II.
(Appendix A provides references for the distributions neces-
sary in the analyses.) Section III compares the algorithms on
both synthetic and real data to provide evidence supporting
our claims.

We close this section by providing a formal description
of our problem and then presenting similar problems in the
literature.

A. Formal Model

In keeping with the rest of the gene expression analysis
literature, we assume that expression levels follow a normal
distribution [8]. For each gene, there are then two normal
distributions N (µ+, σ

2) and N (µ−, σ
2) for the +/− classes

respectively1. If µ+ 6= µ−, the gene is said to be differentially
expressed. In microarray studies µ+ − µ− tends to follow a
heavy tail distribution in accordance with Zipf’s law [9], but
for this paper we consider a simple binary model: each gene
g(i) is either discriminatory2, in that (µ

(i)
+ − µ

(i)
− )/σ(i) = ∆

(for a fixed ∆, over all i), or non-discriminatory.

µ
(i)
+ − µ

(i)
−

σ(i)
=

{
∆ → discriminatory
0 → non-discriminatory (1)

We begin with the further simplifying assumption that we
know the distribution for the − classes of all genes is a
standard N (0, 1) distribution. The assumption does not cause a
loss of generality as we can standardize data from any normal

1 Our simplified model assumes σ = σ+ = σ−; this is not standard.
2We use the term “discriminatory” to avoid the ambiguities associated with

the term “differential expression”.



distribution given that we know its parameters. A probe is
defined to be an observation of a single expression value drawn
from the + class distribution for a specific gene. Later, for our
real data experiments, we will define a probe as a pair of
observations drawn from both the + and − distributions of a
specific gene.

We consider the task:

Definition [discriminatory genes problem] Given a set of N
genes and a budget B ∈ N of probes, return the subset of size
Nd genes that are discriminatory w.r.t. ∆ (1). Equivalently the
goal may be to find the Nn = N −Nd subset of genes at are
not discriminatory3.

In this paper we consider algorithms that know a priori Nd,
Nn, ∆ and B. Algorithms will be evaluated based on their true
and false positives in the returned set of genes, as well as the
true and false negatives left unreturned, respectively denoted
as TP, FP, TN and FN. The evaluation function,

eval(TP,FP,TN,FN), (2)
d

dTP
eval(TP,FP,TN,FN) ≥ 0 (3)

d

dFP
eval(TP,FP,TN,FN) ≤ 0 (4)

may be any generic function subject to two constraints (3) and
(4). Thus, the algorithm is rewarded for each correct decision
it makes and penalized for every wrong one, but the rewards
and penalties are not necessarily equal nor constant.

As there are typically disproportionately fewer discrimina-
tory genes than non-discriminatory genes in a study, we use
the F1 measure as our evaluation function.

F1 = eval(TP,FP, ·,FN) =
2× TP

FN + FP + 2× TP
(5)

We define F1(0, 0, 0) = 1 in the event that no genes are
discriminatory. The F1 measure provides a balance between
the precision and recall on the returned set. Note that although
we favour F1, the algorithms and analyses presented here hold
for any function satisfying (2).

B. Related Works

The problem of testing if a single gene is discriminatory
exactly fits the framework of the sequential probability ratio
tests (SPRT) [10], that provide a methodology for sequentially
collecting data to test whether data is drawn from one of two
hypotheses, H0 versus H1. The methodology is optimal in that
no other sequential method can perform the test to the same
degree of accuracy with fewer expected probes. Schuurmans
and Greiner [11] consider the case where a finite budget is
imposed on a SPRT, which makes it exactly the same as the
discriminatory genes problem if only one gene is considered.
While we could try to cast the general problem of finding
discriminatory genes as N parallel SPRTs operating under
a common probe budget, it is unclear how to set the SPRT
parameters nor how to allocate the probes across the SPRTs
to maximize the expected evaluation.

3This alternative view is useful for the task of identifying “house keeping
genes”.

The m-best arm identification is also a very similar but
different problem [12], [13], [14]. Given a set of N distribu-
tions (arms), the goal of the best arm identification problem
is to construct an algorithm to pay for probes to learn about
the arms and return a set of m good arms, where good means
that the true mean of the returned arms is at most ε less than
the mean of the m’th best arm, e.g., if we have arms with
means {0.2, 0.4, 0.6, 0.7, 0.8, 0.9} and m = 2 then a valid
solution is to return two arms with mean greater than 0.8− ε.
If ε > 0.1 then the arms {0.7, 0.9} are a valid solution but if
ε < 0.1 then the only solution is {0.8, 0.9}. The discriminatory
gene problem can be described in this framework by setting
m = Nd and ε = 0. Unfortunately, algorithms for the m-best
arm identification are constructed in a PAC setting; given m
and ε find a good set of arms with probability of error bounded
by δ. The algorithms are typically constructed such that their
asymptotic probe complexity4 can be analyzed by a series of
Hoeffding and union bounds. Our problem is is different as
we start with a hard constraint on the total number of probes.

A second very strong difference is that the evaluation for
m-best arm identification is very harsh; they say that an algo-
rithm fails if it does not return exactly all the discriminatory
genes and nothing else. Our F1 based evaluation measure is
more appropriate for the community doing biomarker discov-
ery.

Finding discriminatory genes can also be viewed as struc-
ture learning problem in graphical models. In a minimal
Naive Bayes model there will only be an arc from the class
node to a gene IFF their distributions are dependent [15].
If their distributions are dependent then the gene must then
be differentially expressed w.r.t. to the class, so finding the
true minimal Naive Bayes model solves the discriminatory
genes problem. This relates to work, by Tong and Koller [16]
and extended by Li et. al. [17], that sought an efficient way
to gather the relevant generative information by requesting a
sequence of [feature,instance] probes. However, those papers
focused only on finding the parameters for a fixed structure,
but did not consider finding the minimal (sub)structure.

II. ALGORITHMS

A. Round Robin (RR)

Round Robin distributes the probe budget across all the
genes and then returns all those with sample mean above a
threshold τ . It is also possible to return the top k genes based
on sample means but we will show in Section II-C that that
behaviour is better described by the NAN algorithm.

Algorithm 1 RR(N ∈ N, B ∈ N, τ ∈ <)

1: p← bB/Nc
2: probe each gene p times
3: estimate the mean for each gene
4: return all genes with sample mean ≥ τ

RR is naive in that it does not use information obtained from
the probes to guide its future probes. For this reason RR
is important as it sets a baseline that other algorithms must

4The probe complexity of these algorithms is the number of probes spent
before termination.



beat. Since the probe data is normally distributed, the sample
mean will also be normally distributed, which makes it easy to
evaluate the probability of labeling a gene as discriminatory.
This leads to two binomial distributions, one for the number
of TP, ptp, returned and one for the FP, pfp. Using Φ(·) as
the standard normal CDF the expected evaluation is obtained
by,

ptp = 1− Φ

(
τ −∆√
M/N

)
(6)

pfp = 1− Φ

(
τ√
M/N

)
(7)

P (TP = a) =

(
Nd
a

)
patp(1− ptp)Nd−a (8)

P (FP = b) =

(
Nn
a

)
pbfp(1− pfp)Nn−b (9)

E[eval(·)]

=

Nd∑
a=0

Nn∑
b=0

P (TP = a)P (FP = b)eval(TP,FP,TN,FN).

(10)

Given the problem description Nd, Nn, ∆ and B, we can
use gradient ascent to easily tune τ to maximize the expected
evaluation.

B. Greedy

A more intelligent approach than RR is to use the infor-
mation gained by the probes to guide a sequential method. An
obvious strategy is exploit the knowledge that we know the
true distributions for each type of gene (although not which
gene is which type) and so compute the log-likelihood ratio
(LLR) of the two models for each gene. Using x(i)

j to denote
the j’th probe for gene i, the LLR Λ(i) for gene g(i) after
seeing p probes is,

Λ(i) =
∆

2

p∑
j=1

(2x
(i)
j −∆). (11)

A greedy strategy would then be to decide a priori a
number of genes to return k and then probe the gene with
the k’th largest LLR at each step. Such a strategy maximizes
the minimum uncertainty of the genes returned.

Algorithm 2 Greedy(N ∈ N, B ∈ N,∆ ∈ <, k ∈ N)

1: probe each gene once
2: for probe = N + 1 to M do
3: compute Λ(i) for each gene
4: i∗ ← index of gene k’th largest Λ(i)

5: probe gi
∗

6: return top k genes based on Λ(i)

Given the problem description Nd, Nn, ∆ and B, it is
difficult to predict the performance of Greedy as a function
of k. One may argue that if the budget B is small then we

should use a small value of k as that will lead to high precision,
but of course having a larger k would mean having a better
recall. What we can say about Greedy is that, depending on
how we choose k, it will eventually lock on to different sets
of the genes. If k = Nd then Greedy will eventually find all
the discriminating genes and then proceed to keep probing
them. If k < Nd then Greedy will then eventually lock onto a
subset of discriminatory genes and spend its remaining budget
on them. If k > Nd then Greedy will eventually find all the
discriminatory genes and then proceed to spend the remaining
probes on the non-discriminatory genes. For our experiments
in Section III we set k = Nd.

C. Not As Naive (NAN)

The main idea of the NAN algorithm is to break the overall
sequence of probes into a series of rounds, during each of
which all (remaining) genes are probed equally. At the end
of a round, the algorithm then either accepts the gene with
the largest sample mean as discriminatory, or rejects the gene
with smallest sample mean as non-discriminatory. Once a gene
is either accepted or rejected, NAN commits to the decision
and stops probing it. The motivation for this behaviour is
that it is highly likely that genes with extreme sample means
will mostly be correctly identified, and by ceasing to probe
them, more effort can be spent on the genes that are harder to
identify. To help analyze NAN, we require a preset pattern of
accept/reject decisions d and a fixed budget to spend probing
the genes in each round m = [m1, . . . ,mN ].

Algorithm 3 NAN(N ∈ N, B ∈ N,d ∈ {a, r}N ,m ∈ NN )

Require:
∑N−1
p=1 (N + 1− p)mp ≤ B

Require: mN = 0
1: active← {1, . . . , N}
2: accept← {}
3: reject← {}
4: for round = 1 to N do
5: probe each gene in active, mround times
6: if dround = a then
7: i← arg maxi∈active Λ(i)

8: accept← accept ∪ {i}
9: else

10: i← arg mini∈active Λ(i)

11: reject← reject ∪ {i}
12: active← active \ {i}
13: return accept

Interestingly NAN can be viewed as a generalization of
RR by forcing the algorithm to spend all the probe budget on
the first round; here m1 = bB/Nc and m2 = m3 = · · · =
mN = 0. A slight difference is that NAN will return a fixed
number of genes, k|, as discriminatory while RR will return a
variable amount based on τ . If k and τ are tuned to to optimize
the evaluation for both algorithms then, RR will on average
return ≈ k genes and thus both algorithms will receive the
same score5.

5For the optimal τ RR might return some fraction of of the genes in order to
get a slightly higher expected evaluation but this difference will be negligible
given the variance of the distributions.



The median elimination algorithm [12] also is a special
case of NAN. Median elimination is an algorithm for the 1-
best arm identification that works by doing rounds of probes
and eliminating half the genes every round. For a small
problem with N = 8 genes and B = 14 probes, median
elimination would probe each gene once, and eliminate the
4 worst, then probe the remaining 4 genes once and eliminate
the worst 2, and finally probe the remaining 2 and keep the
best. This behaviour is easily encoded in the NAN parameters
d = [r, r, r, r, r, r, r, a] and m = [1, 0, 0, 0, 1, 0, 1, 0]. The
SAR algorithm [14] is a more general m-best arm algorithm
that is also very similar to NAN. We can set m such that
both algorithms allocate their probes in the same fashion but
SAR decides to accept/reject genes based on a statistical test
whereas NAN requires the preset sequence d.

D. Analyzing the NAN algorithm

Here we show how to compute a very good approximation
of the probability that NAN correctly accepts a discriminatory
gene at one of its decision points. The probability of correctly
rejecting a non-discriminatory gene can be computed in an
analogous manner. Using this method we can then construct
a simple dynamic programming algorithm that computes the
expected evaluation score by obtaining a distribution over all
possible outcomes of NAN.

The key insight is that the decision to accept a gene is
correct if the maximum sample mean of the active discrimi-
natory genes is larger than the maximum sample mean of the
non-discriminatory genes. If we have a reasonable number of
genes of both types, we can use the Fisher-Tippett-Gnedenko
theorem that states that, given z = maxi=1..N xi where xi are
i.i.d. normal r.v.’s from N (µ, σ2) then z is a Gumbel r.v.:

z ∼ gumbel(α, β) (12)

α = σΦ−1

(
1− 1

N

)
+ µ (13)

β = σ

[
Φ−1

(
1− 1

eN

)
− Φ−1

(
1− 1

N

)]
(14)

At the time of accepting a gene, we have two Gumbel
r.v.’s d and n, corresponding to the maximum sample mean of
the active discriminatory and non-discriminatory genes. The
probability that NAN accepts a discriminatory gene is then
P (d − n > 0). Unfortunately, the difference of Gumbel r.v.’s
can only be computed analytically if they are i.i.d., which is
generally not true here6. However, if the scale parameter of the
Gumbel distribution is sufficiently small then the distribution
can be well approximated by moment matching to a normal
distribution, to produce a distribution that agrees on median,
mode, and entropy7.

During execution there will either be a large number of
genes that have been probed very little, or a very small number

6Iff Nd = Nn then we can consider d and n to be i.i.d. Gumbel r.v.s of
generated from the max of Nd N (0, σ2) normal variables and then compute
the probability P (d + ∆ − n > 0) exactly, see the Logistic distribution in
Appendix A.

7This result is easy to see from the formulae in Appendix A. As β → 0 the
mean, median, and mode converge to α and the entropy converges to log(β),
which is the same as those for a normal distribution with equal mean and
variance.

genes that have been probed heavily. The combined effect is
that the scale parameter for the Gumbel distribution will be
reasonably small.

After moment matching, the probability is easily calculated
because the difference of normal r.v.’s is normal and we can
get the probability via normal CDF. Given d(r) and n(r)

discriminatory and non-discriminatory genes at round r, each
of which have been probed p times, Algorithm 4 provides a
method for computing the probability of correctly accepting a
gene.

To get the desired expected score, we first use the dynamic
programming method presented in Algorithm 5 to compute
the probabilities of all possible decision outcomes. Then since
there is always one gene left in the active set at the end
of NAN, Algorithm 6 accounts for this to get a final count
of the TP and FP for each outcome and then computes the
expectation.

In total the analysis requires O(N3) time. However, this
can be reduced to O(N) for the special case where the
evaluation is the 0/1 loss8 because then we need only compute
the probability that no errors are made. The bottle neck of the
computation is the for loop at line 19 of Algorithm 5. The
computation can be sped up by only looping over the most
probable states instead of all states. Such a trick was employed
in [18] to speed up a similar algorithm.

Algorithm 4 approx(d(r) ∈ N, n(r) ∈ N, p ∈ N,∆ ∈ <)

1: if d(r) = 0 return 0
2: if n(r) = 0 return 1
3: if p = 0 return d(r)/(d(r) + n(r))
4: σ ← p−1/2

5: if Nd > 1 then
6: αd ← σΦ−1

(
1− (d(r))−1

)
+ ∆

7: βd ← σ
[
Φ−1

(
1− (e× d(r))−1

)
− Φ−1

(
1− (d(r))−1

)]
8: md ← αd + γβd {γ is the euler-mascheroni constant}
9: vd ← 1

6 (πβd)
2

10: else
11: md ← ∆
12: vd ← σ2

13: if Nn > 1 then
14: αn ← σΦ−1

(
1− (n(r))−1

)
15: βn ← σ

[
Φ−1

(
1− (e× n(r))−1

)
− Φ−1

(
1− (n(r))−1

)]
16: mn ← αn + γβn
17: vn ← 1

6 (πβn)2

18: else
19: mn ← ∆
20: vn ← σ2

21: if (d(r) = n(r)) and (d(r) > 1) then
22: return 1-

(
1 + e∆/βd

)−1

23: else
24: return Φ

(
md−mn√
vd+vn

)

8This means the algorithm scores 1 iff it returns exactly all the discrimina-
tory genes, else-wise it scores 0, i.e., F1 = 1.



Algorithm 5 NANStateProbabilities(N ∈ N,∆ ∈ <,
d ∈ {a, r}N ,m ∈ NN )

1: pstate(·, ·, ·, ·)← 0
2: p← 0
3: A← 0
4: R← 0
5: for i = 1 to N − 1 do
6: p+ = mi

7: if di = a then
8: A+ = 1
9: else

10: R+ = 1
11: for ∀TP,FP,TN,FN :

TP + FP + TN + FN = i− 1,
TP + FN ≤ A,
FP + TN ≤ R do

12: N ′d ← Nd − TP− FN
13: N ′n ← Nn − TN− FP
14: if di = a then
15: θ ← approx(N ′d, N

′
n, p,∆)

16: pstate(TP + 1,FP,TN,FN)+ =
θ × pstate(TP,FP,TN,FN)

17: pstate(TP,FP + 1,TN,FN)+ =
(1− θ)× pstate(TP,FP,TN,FN)

18: else
19: θ ← approx(N ′n, N

′
d, p,∆)

20: pstate(TP,FP,TN + 1,FN)+ =
θ × pstate(TP,FP,TN,FN)

21: pstate(TP,FP,TN,FN + 1)+ =
(1− θ)× pstate(TP,FP,TN,FN)

22: return pstate

Algorithm 6 NANscore(N ∈ N,d ∈ {a, r}N )
1: pstate ← NANStateProbabilities(N,∆,d,m)
2: A =

∑N−1
i I(di = a)

3: R = N − 1−A
4: Ex ← 0
5: for ∀TP,FP,TN,FN :

TP + FP + TN + FN = N − 1,
TP + FN ≤ A,
FP + TN ≤ R do

6: N ′d ← Nd − TP− FN
7: N ′n ← Nn − TN− FP
8: if dN = a then
9: if N ′d = 1 then

10: x← eval(TP + 1,FP,TN,FN)
11: else
12: x← eval(TP,FP + 1,TN,FN)
13: else
14: if N ′n = 1 then
15: x← eval(TP,FP,TN + 1,FN)
16: else
17: x← eval(TP,FP + 1,TN,FN + 1)
18: Ex+ = x× pstate(TP,FP,TN,FN)
19: return Ex

E. NAN provides a lower bound for Greedy

Here we show that the expected score of Greedy is lower
bounded by NAN. For this to hold true, we assume that both
algorithms have been tuned to return the same number of
genes. Thus, Greedy can behave exactly as NAN and get the
same score or it can deviate in its behaviour; bellow we will
show such deviations will increase its expected evaluation. To
show this, we enumerate below all the ways in which Greedy
can deviate from NAN.

Some of the arguments hinge on the notion of “exploration”
done by greedy, i.e., the uniformity of the Greedy’s probe
allocation. RR would be an example of 100% exploration.
NAN has some forced exploration pattern dictated by its m
parameter. The exploration of an an algorithm can be thought
of as a a measure of how close its probe distribution is to the
uniform distribution.

Greedy and NAN make the same probe allocation:
If both algorithms make the same probe allocation, i.e., both
algorithms have probed each gene g(i) p(i) times, but differ
in their returned gene sets, the set returned by Greedy must
have a higher expected evaluation. This is obvious as Greedy
returns the set of genes that is most likely to be discriminatory,
so if there is a discrepancy NAN must have selected a gene
that has a lower probability of being discriminatory than
any of those selected by Greedy. Thus Greedy has a higher
expected precision and by the monotonicity of the evaluation
function w.r.t. TP, it will therefore have a higher expected
score.

Greedy has done less exploration than NAN:
The Greedy algorithm is designed to keep probing what it
believes to be the discriminatory genes, and in doing so it
increases its confidence that they are discriminatory. If Greedy
has locked on to a set of genes and is spending notably more
probes on them compared to NAN, it will again have higher
confidence on the genes in its returned set.

Greedy has done more exploration than NAN:
If Greedy has done more exploration than NAN this means
the problem is particularly hard and it is unlikely that either
algorithm will do well. Their expected scores will be within
error bars of each other.

III. EXPERIMENTS

We run two types of experiments. The first experiment is
done on synthetic data to show that indeed analysis of the NAN
algorithm does lower bound of the performance of the Greedy
algorithm. The remaining experiments we run on more realistic
synthetic data and real gene expression data where NAN can
outperform Greedy and RR.

A. Synthetic Data Experiment 1

We consider a simple problem with Nd = 3 discriminatory
genes and Nn = 7 non-discriminatory genes. The expression
levels for the discriminatory genes follow a N (1, 1) distri-
bution and the non-discriminatory genes follow a N (0, 1)
distribution. Recall we are just consider ing the + class, as
here we know that the − class is drawn from N (0, 1). For
evaluation we use the F1 measure (5).



For fair comparison we allow RR and NAN to tune their
parameters knowing the problem setup to maximize their
scores. RR tunes its decision threshold τ by gradient ascent.
NAN tunes d and m by brute force searching all combination
and selecting the setting with maximum expected score9. We
then we set Greedy to return the same number of genes as
NAN; for these experiments this was always 3 genes.

Figure 1[A] shows a comparison of the various probe
budgets, M = 2N . . . 7N . The results shown for RR and
NAN are computed analytically, using the previously presented
methods10, while results for Greedy are obtained from Monte
Carlo simulation. We see that NAN provides a lower bound
for Greedy on these problems as expected.

B. Synthetic Data Experiment 2

We repeat Synthetic Data Experiment 1 but begin to make
the problem more realistic by dropping the assumption that
we know the expression level for the − class is N (0, 1)
distributed. Now a probe is defined as observing a draw from
both the + and − classes and we update our definition of
discriminatory to:

discriminatory→ X+ ∼ N (1, 1), X− ∼ N (0, 1) (15)
non-discriminatory→ X+, X− ∼ N (0, 1) (16)

After collecting the probes, the algorithms must estimate µ̂−
and the pooled variance such that they can standardize the −
class, and then applying the same transformation to the data
drawn from the + class they can proceed as previously.

We now repeat the same experimental conditions as in the
first experiment, i.e., we use the same parameterizations of
the algorithms for each of the conditions. Results are shown
in Figure 1[B]. Note that NAN has become a clear winner
amongst the algorithms. Greedy is doing terrible. And most
surprisingly, RR is getting worse as the probe budget increases.

To explain these behaviours, note that the algorithms are
now receiving data from a non-central t-distribution, instead of
a normal distribution. For small sample sizes, the difference
between these is quite notable; in particular the non-central
t-distribution will have a much higher variance and a slightly
larger mean. Thus, for the different sample sizes RR keeps
setting very poor threshold choices. Note that if the budget is
large this will no longer be an issue because the t-distribution
approaches the normal distribution as its degrees of freedom
increase.

The behaviour of Greedy is most interesting here because it
is seemingly invariant to the probe budget, it gets E[F1] ≈ 0.3.
This is because the increased variance of the non-central t-
distribution means its rankings are extremely noisy. In fact a
simple calculation shows that we would receive a similar score
if we just returned genes at random, without even looking at
the data.

E[F1|return 3 genes at random]

=

3∑
i=0

F1(i, 3− i, 3− i)
(
Nd

i

)(
Nn

3−i
)(

N
3

)
= 0.3

(17)

9Given the small size of this problem, brute force search is easily executed.
10Our empirical results confirm that RR and NAN algorithms perform as

predicted.

NAN does surprisingly well because it relies very little on
its prior model of the underlying distribution, but instead, only
uses the fact that it is highly likely that genes with extreme
sample means can be correctly accepted or rejected.

C. Real Data Experiments

To show performance on real data we consider three breast
cancer datasets downloaded from NCBI-GEO, picked because
of they have a common phenotype (ER status +/−), relatively
large sample sizes and are on Affymetrix Human Genome
U133 Plus 2.0 arrays.11; see Table I.

TABLE I. DATASETS FOR REAL DATA EXPERIMENTS. AVAILABLE AT
HTTP://WWW.NCBI.NLM.NIH.GOV/GEO/

GEO ID # ER + # ER −
GSE2034 209 77
GSE3494 213 34
GSE6532 262 45

To set a ground truth for each dataset, we first examine
all the data and for each gene we estimate the mean for each
class, µ+ and µ−, and the pooled variance s. We label the
gene as discriminatory or non-discriminatory accordingly.√

(µ+ − µ− − 1)2 + (s− 1)2 ≤ 0.25→discriminatory (18)√
(µ+ − µ−)2 + (s− 1)2 ≤ 0.25→non-discriminatory

(19)

For each dataset we have 10, 000 trials for each algorithm
for each probe budget. Each trial begins by randomly drawing
a set of Nd = 3 and Nn = 7 genes from their respective piles.
This makes the experiments comparable to the synthetic data,
and avoids the issue of picking a specific set of N = 10 genes.
The algorithms are called with the same parameter settings
tuned based on the assumption of normally distributed data.
To draw probes for the real data we sample from the patients
uniformly at random, without replacement. If an algorithm
wishes to probe more samples from a gene than we have
patients in the dataset we begin to sample with replacement.

The results in Figure 1[C,D,E] show that the algorithms
perform much the same as in synthetic experiment 2. NAN is
clearly the best algorithm for finding the discriminatory genes.

IV. CONCLUSION

Future Work: For this work we have tuned the parameters
for the NAN algorithm, d and m, by brute force searching
all possible combinations. While this was easily done for
the experiments done here, it will not scale up well for
larger problems as the search space is combinatorial. There
are 2N possible d sequences and approximately

(
N+B−1

B

)
unique m vectors. However, many of these will have similar
evaluation scores and a smart search algorithm could tune
parameters avoiding uninteresting areas of the parameter space.
For example, consider a simple problem with where mr > 0
and mr+1 = 0, since no data is collected on the r+1’th round,
accepting on round p and rejecting on p + 1 is equivalent
to rejecting on p and accepting on p + 1. We are currently

11This is currently the favoured brand on the market.

http://www.ncbi.nlm.nih.gov/geo/
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Fig. 1. Experimental results comparing E[F1] vs. budget per gene B/N for our algorithms: [A] synthetic data experiment 1, [B] synthetic data experiment
2, [C] real data GSE2034, [D] real data GSE3494, [E] real data GSE6532. Dashed lines provide 95% confidence intervals.

investigating this and other effective ways to tune parameters
for large problem instances.

While this paper only considered gene expression studies,
this framework could apply to other association studies as well
such as genome wide association studies (for SNPs or CNVs,
etc.) or metabolomic associations for peptides. Also, outside
of bioinformatics, the problem of finding discriminatory genes
could have analogs in crowd-sourcing where it is desired to
quickly identify which workers are sufficiently proficient at
the tasks that need to be assigned.

Contributions: We presented the problem of finding
discriminatory genes as a potential framework for validating
biomarkers from gene expression microarray studies. This is
a problem in experimental design where the goal is to spend
our resources collecting data to allow us to efficiently find a
good set of biomarkers. We presented 3 algorithms for this
problem: RR, Greedy, and NAN where RR is a naive strategy

that ignored the sequential nature of the problem, while NAN
will sequentially remove one gene on each iteration, and
probe the remaining genes, and Greedy will probe the gene
it considers more relevant – the one right on the cusp of
being included. If the data collected is normally distributed,
we argued analytically that the Greedy will have the best
performance but we cannot predict what that performance is.
We then showed that NAN provides a good lower bound for
Greedy. Furthermore, we also showed that on real data, NAN
has superior performance to the other algorithms, as it is least
reliant on the modelling assumptions.

Typically, expression studies aim to identify as many genes
as possible for a fixed false discovery rate, which does not
explicitly consider how many truly discriminatory genes were
missed. Competing algorithms from outside of bioinformatics
adopt a much harsher objective of finding exactly all of the
differentially expressed genes. A nice property of our frame-
work is that it is generic enough to accommodate different



evaluation functions for the genes returned. Given this criteria
our NAN algorithm can be tuned to maximize this score.

APPENDIX

The Gumbel Distribution:
The Gumbel distribution is defined by its location and scale

parameters α and β. If x ∼ gumbel(α, β) then:

fα,β(x) =
1

β
exp

(
−x− α

β
− exp

(
−x− α

β

))
(20)

Fα,β(x) = exp

(
− exp

(
−x− α

β

))
(21)

E[x] = α+ βγ (22)
mode(x) = α (23)

median(x) = α− β log(log(2)) (24)

var(x) =
1

6
(πβ)2 (25)

entropy(x) = log(β) + γ + 1 (26)

γ = 0.577 is the Euler-Mascheroni constant.

The Logistic Distribution:
If x and y are i.i.d. random variables from a gumbel(α, β)

distribution then their difference follows a logistic distribution.

z = x− y (27)

fβ(z) = β−1 exp

(
− z
β

)(
1 + exp

(
− z
β

))−2

(28)

Fβ(z) =

(
1 + exp

(
− z
β

))−1

(29)
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