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Abstract— Native Language Identification (NLI) is the task of
identifying the native language of an author of a text written in a
second language. Support Vector Machines and Maximum
Entropy Learners are the most common methods used to solve
this problem, but we consider it from the point-of-view of
probabilistic graphical models. We hypothesize that graphical
models are well-suited to this task, as they can capture feature
inter-dependencies that cannot be exploited by SVMs. Using
progressively more connected graphical models, we show that
these models out-perform SVMs on reduced feature sets.
Furthermore, on full feature sets, even naive Bayes increases
accuracy from 82.06% to 83.41% over SVMs on a 5-language
classification task.

Keywords— NLI, Machine Learning, SVM, Bayesian Methods,
TAN

1. INTRODUCTION

Year-by-year, it is becoming more important to know one
of a small number of languages if one wishes to succeed
professionally. In particular, the number of people who speak
English as a second language is growing faster than any other
language. As more people devote their time and effort to
learning the language, it is also becoming more important to be
able to identify difficulties that may arise in the learning of
English.

Native Language Identification (NLI) is the task of
identifying the native language (L1) of a writer of an essay
written in a second language (L2). The task has seen interest
mainly in the past ten years, with a concentration of Machine
Learning algorithms such as Support Vector Machines (SVMs)
being applied to the problem. Probabilistic Graphical Models
(PGMs) provide an alternative method of tackling the issue,
and provide certain benefits over SVMs. Where SVMs can
predict the L1 of the writer, PGMs can also infer likely feature
groupings, given observed evidence, allowing second language
teachers to adapt curricula to a student’s particular needs.

Our paper is organised as follows: Section II describes the
important work related to the NLI task; Section III briefly
describes the data used to learn and test our models; Section IV
describes the features that have been chosen to learn our
models; Section V provides the methods that we use to build
our graphical models; Section VI gives the results of our
experiments, and Section VII provides some conclusions and
areas for future work.
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II.  RELATED WORK

Koppel et al. [9] are one of the first groups to seriously
consider the problem of NLI. Using a feature set that includes
function words, character n-grams, errors, and rare part-of-
speech (POS) bigrams, the authors train linear SVMs to
classify English essays into five different L1s, obtaining 80.2%
accuracy. Tsur and Rappoport [13] further analyse the
importance of character bigrams, obtaining 65.6% across the
same five Lls. Our approach takes inspiration from these
papers, but we approach the problem differently. Aside from
using PGMs instead of SVMs, we use a slightly different set of
features. As in these papers, we originally considered only 200
features, but sort them by information gain, rather than
frequency. Furthermore, we gradually increase the number of
accepted features, and allow content words, as well as function
words. We also use the most informative POS bigrams,
instead of rare ones, and have our own implementation of
spelling errors.

Wong and Dras [14] abandon SVMs in favour of a
maximum entropy learner to classify essays across seven
different L1s. Furthermore, the authors are more concerned
with syntactic than lexical features, introducing rules generated
by syntax trees as features to their model. By adding syntax
rules to the feature set of previous work, they obtain around
80% classification accuracy. Although our features are mostly
lexical, Wong and Dras consider using more than just 200
features for some of their feature sets. They also demonstrated
that the rare bigrams of Koppel et al. [9] did not contribute to a
classifier’s accuracy, and motivated our decision to use more
common and informative part-of-speech bigrams.

Bergsma et al. [1] tackle a slightly different task than the
one that we are investigating. Using SVMs, the authors
analyse scientific papers, and classify them according to three
criteria: whether or not the first author’s L1 is English, the
gender of the first author, and whether the paper is a journal or
workshop paper. This task is different from ours, but uses
many of the same features that we consider, such as word n-
grams and POS n-grams, as well as other features such as
syntax tree rules.

Tomokiyo and Jones [12] also investigate the not-quite-
NLI-task of native speaker identification, but rather than using
SVMs, the authors use a naive Bayes classifier. They consider
both words and POS as features to their classifier for two types
of transcribed speech: spontancous speech and read text. We
also consider words and POS, but on written text, which can be
significantly different from transcribed speech, and our task is
different from the task of identifying whether or not a speaker



is a native speaker. However, this work encourages us as we
also use PGMs, albeit for the NLI task.

Graphical models have found uses in an area similar to
NLI: text classification. Like NLI, text classification aims to
use features of the text to separate documents into several
classes, based on their content. However, unlike NLI, text
classification is often able to look for a small set of keywords
that are highly indicative of their class: business documents
rarely discuss baseball, unless it is about the business side of
the sport. Essays can be about various topics, yet still have the
same L1.

Lam and Low [10] use Bayesian networks to perform text
classification, learning the structure of their network from their
data, and obtain an F-measure of 0.53. Although this task is
different from ours, we use the same method as the authors of
representing our documents: binary indicators of the presence
or absence of features. Khor and Ting [7] also use Bayesian
networks for the task of text classification, discovering that
Bayesian classifiers perform admirably at the task of separating
conference papers by topic, obtaining 90% accuracy when
compared with human experts performing the same task.

III. DAtaA

Our data set is the TOEFL 2011 Corpus of Non-Native
English [2], which contains 9900 essays evenly distributed
across eleven languages and eight essay prompts. However, to
make the task more manageable, we have reduced the data set
to five languages: Chinese, French, German, Japanese, and
Turkish.  We thus have 4500 essays across these fives
languages.

These languages were chosen to represent a set of
languages that contained both linguistically related languages,
such as French and German, culturally tied languages such as
Chinese and Japanese, and Turkish: a language that is not
culturally or linguistically related to any of the other languages.
The data set was split into 90% for training and 10% for
testing.

IV. FEATURES

Our features were selected from a set determined in
previous work [11]. These features have been shown to
improve classifier accuracy for the NLI task when using
SVMs, and have thus been chosen as features for PGMs. All
features are binary; if a document contains the feature, the
value is set to 1, otherwise it is 0. The features are chosen from
the training set only, and any features encountered in the test
set that were not in the training set are ignored.

A.  Word Unigrams

If asked for the smallest unit of meaning in languages,
many people would suggest the word. Long works are
constructed of paragraphs, which are made up of sentences,
which in turn are composed of words. While there are smaller
units of meaning, words do contain much information.

Furthermore, writers from different linguistic backgrounds
may prefer words that match ones in their first language, or
make common spelling mistakes that can be captured at the
word level. Unfortunately, the set of all words across all
documents is rather large, and document vectors composed of
words are very sparse. We perform some feature reduction,
which we describe further in Section V.

B.  Character Bigrams

Even smaller than the word, characters can provide
information about the tendencies of an author. Certain
linguistic backgrounds may prefer certain spellings, either
more reflective of the spelling of their L1, or more
representative of the sound of the word. English is a very
orthographically dense language, that is, one letter may be
associated with many different sounds, and one sound is not
necessarily tied to a single letter. Consider the sound 's', which
is the first sound in “about” in fast speech. In this case, it is
represented with an “a”, but in “burn”, it is represented by a
“u”, in “woman”, by an “0”, and so on. Similarly, “a” can
represent different sounds, such as the ones in “cat” and “arm”.

If a language usually uses one character for one sound, a
native speaker may default to that letter if he is unsure of the
spelling of a word. Character unigrams are not particularly
informative: the letters in English have a given distribution
amongst words, and changing the frequencies slightly contains
little information. Character bigrams, on the other hand,
provide context for when the letters are incorrectly used. If a
document contains the bigrams “hi” and “in” for the spelling
“thin” when the writer meant “then”, it provides more
information than if we know that “i”” was used instead of “e”.

C. Part-of-Speech Bigrams

More information is contained in a word than just its
meaning. Every word also carries grammatical functionality.
Using annotated files generated by the Stanford Parser [8] for
previous work, we were able to construct POS bigrams from
the essays. As with characters, POS can be very informative of
the writer’s L1. Languages vary considerably from one to
another.  Closely related languages tend to have similar
grammatical structures, but unrelated languages have different
syntactic rules that can be captured by POS. Consider the
following example from German: Obwohl es warm ist, will er
nicht drauffen gehen, which literally translates as “Although it
warm is, wants he not outside to go”, and means “Although it
is warm, he does not want to go outside to play”. We can see
that after the comma, we have a verb followed by a pronoun,
which is a very awkward construction in English, but is
perfectly fine in German. This feature may be indicative of
German as L1.

D. Spelling Errors

Although some aspects of spelling mistakes are captured by
the character bigrams and word unigrams, we also have a
feature that explicitly checks for spelling errors. Essays are
evaluated by ASpell’, and the spell-checker gives a list of
recommended correct spellings. We choose the top

1 http://aspell.net



recommendation as the correct spelling, and compare it with
the incorrect spelling. The two spellings are aligned using
M2MAligner [5]. Consider the example misspelling of
“computer” as “kompyuta”. The aligner would provide the
following alignment:

ter
V
a

o

u
AN
pyut
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From this alignment, we get three error alignments: c-k, u-

yu, and er-a. We use these alignments as features for our
classifier.

V.  METHODOLOGY

The following section describes our methods for learning
graphical models to classify essays by the first language of
their writer. First, we describe methods used to reduce the
feature set to a manageable number of input features.
Secondly, we describe various structure learning methods that
were applied to determine the best graph.

A. Feature Reduction

As mentioned in Section IV, our original feature set was
very large, containing approximately 50,000 features.
Learning a graph on all 50,000 features would have been
prohibitive, so we tried to reduce the dimensionality of our
feature set.

There exist in the NLI literature several methods of
reducing the number of features. Koppel et al. [9] and others
ignore content words in essays, and only consider function
words. Function words can be considered the “building
blocks” of languages. They have little meaning themselves,
but are necessary to build grammatically correct sentences.
Function words belong to a small number of POS classes, such
as prepositions, pronouns, determiners, and conjunctions.
Some examples of these words include “for”, “I”, “the”, and
“and”.

By reducing our word set to a list of 295 function words,
and only considering features that appear in these words, we
reduce our feature set from 50,000 to approximately 5000
features.

Furthermore, we use information gain on our feature sets to
further reduce the number of features. Previous work [11]
showed that when you only want to use a subset of features,
information gain can be helpful in selecting useful features
from a larger set. The equation used for information gain is
provided in equation 1, where H is the Entropy, defined by
equation 2.

2
IG=Y H (word=i)-Y Y. H(word =ilclass=c)
i=1 c=1i=1 (1)

H=-P(x)xlog(P(x)) (2)

B. Structure Learning

Even with a reduction to 1000 features and one class
variable, the number of potential Directed Acyclic Graphs
(DAG) that can be constructed is super-exponential, and we do
not know which is the correct one.

We decided to build several different types of graphs in an
attempt to maximize our chances of finding one that
approximates the true I-Map for the data, which are described
in subsections 1) through 4).

1) Naive Bayes

The very simplest method of constructing a graph is to
assume that all features are independent of each other. This
graph gives us no dependencies, but the next simplest method,
to assume that features are independent if the class variable is
known, at least provides a starting point. As we have 50,000
features, naive Bayes was attractive, with its minimalist
approach.

Khor and Ting [7] also used the naive Bayes classifier as a
baseline for text classification. While our task is not text
classification, the challenges are similar. We use naive Bayes
as our simplest classifier, and as a baseline against which more
connected graphs can be compared.

2) Tree Augmented Naive Bayes
Following the work of Chow and Liu, [3], we investigate
the Tree-Augmented naive Bayes (TAN) classifier. The TAN
tree starts as a Naive Bayes classifier, where all nodes are
assumed independent of each other, given the class variable. A
spanning tree that maximizes mutual information between
nodes is then constructed.

The number of arcs in a TAN network is twice as many as
in a naive Bayes, but is still manageable. All of our features
are binary, and thus, the number of parameters in the network
is also approximately doubled. A TAN is able to encode some
dependencies in the data. Furthermore, TAN networks scale
well with the number of features, and should be able to be
constructed in a reasonable amount of time. A network with
more dependencies may also be more prone to over-fitting the
training data.

3) K2 Hill-Climbing

Although a TAN network models some dependencies in the
data, it is still a graph with very few arcs, and may be missing
key relationships between nodes. Consider the graph in Fig. 1.
The character bigram “ck” is likely related not just to one
word, but to many, such as black, kicked, as well as others that
are not shown. Likewise, each of those words is related to n-1
character bigrams, where 7 is the number of letters in the word.



Figure 1.

One of many potential graphs for a small number of
features

Every word also has a likelihood of being tagged as a
particular part-of-speech, and is then likely to be associated
with any POS bigram that contains that POS. For example, in
the sentence “The man kicked the black dog”, black is an
adjective, and is thus tied to the Adj-NN POS bigram.
Similarly, dog is a noun, and would be tied to all POS bigrams
that contain a noun. Likewise, words can be associated with
several spelling errors. It is easy to see that one node may have
relationships and dependencies with many others.

For this reason, we consider the K2 Hill-Climbing
algorithm, as provided by Weka®. K2 uses an ordering of the
variables to determine the best assignment of parents to nodes,
using a particular scoring function. We have chosen the Bayes
score, represented in equation 3, where Nj is the number of
documents where a node’s i" parent takes its j* value, and Nijk
is the number of documents where a node’s i" parent takes its
j™ value, and the node takes its " value. I(x) is the gamma
function, which extends the factorial (in 7'(x) = (x-1)! for an
integer x).  Given standard assumptions, this function
represents the probability of a structure (marginalized with
respect to the parameter values).

;i

ii (N,[/k+N[jk)
’ F r
(N ij+N[[) k=1 F(N [jk)

©)

QBayes( BS, D)=
i=0 j=1

The K2 algorithm iteratively adds parents from the
previous nodes in its ordering, up to the maximum specified. It
chooses the parents based on which ones lead to the greatest
increase in the score of the network. As we are unsure of the
true ordering of the variables, we start the K2 algorithm with a
random ordering, with the exception that the class variable is
always the first variable in the ordering. Furthermore, we also
require that each variable is dependent on the class.

Weka ensures that all variables lie within the Markov
blanket of the class variable. The network is initialized as a
naive Bayes network, and edges are added to the network.

2 http://www.cs.waikato.ac.nz/ml/weka/

4) Support Vector Machines

As an alternative to graphical models, we consider SVMs.
First proposed by Cortes and Vapnik [4], SVMs compute a
high-dimensional hyper-plane that separates the data, using a
small number of instances, known as Support Vectors, to
determine the location and orientation of the hyperplane. We
use a package for multi-class classification that is extended
from the SVM-Light Package [6]. We use a linear kernel.

VI. RESULTS

Our data set contained 4500 essays that were divided into a
90% training set and 10% test set. We learned naive Bayes
networks, TAN networks, and more-fully connected Bayesian
networks on the training data, as well as SVMs, and performed
inference on the test data. We compared to the Bayesian
networks. Beyond testing the accuracy of our learners, we also
run an ablation study on one of our networks, and compare the
results to a similar ablation study using an SVM. We wanted
to determine whether the same features were contributing to
the network as to the SVM.

A.  Using Function Words for Feature Reduction

Section V describes how we use function words in an
attempt to reduce the dimensionality of our feature set. Table I
shows results for networks built using only function words,
compared with their equivalent networks using all potential
words. All of these networks use 295 word features, and 200
of each of the other three feature sets, as selected by
information gain.

It is quickly apparent that systems using only function
words do not perform as well as those that allow any words.
Naive Bayes gains 5.6% accuracy when all words are
considered, TAN gains 6.96% accuracy, the 5-parent K2
network gains 8.3%, and the SVM gains 2.69% accuracy.
Using function words, we see that naive Bayes out-performs
the other two Bayesian networks, but when all words are
considered, naive Bayes is outperformed by TAN, which in
turn is out-performed by a network that allows even more
potential parents. For the next set of experiments, we only
consider networks allowing all words from the word feature
set, as the trend of this set out-performing the function word
classifiers continued as the networks grew larger.

B.  Growing the Networks

In the previous subsection, all of the networks contained
895 nodes. However, there may be information in the other
features that were not included in the network, and thus, we
increase the size of the network in increments. First, we
double the number of nodes allowed from each feature set; that
is we choose the 400 most informative word unigrams, as well
as 400 character bigrams, 400 POS bigrams, and 400 error
alignments. We then double the size twice more, allowing 800
of each feature type, and then 1600. However, this tops out for
some feature sets -- the character bigrams feature set only
contains 1098 items, while the POS set only contains 1418
items.



TABLE I. ACCURACY OVER 895 FEATURES

Classifier Function Words All Words
Naive Bayes 55.16 60.76
TAN 54.48 61.44
K2 (Max 5 Parents) 53.36 61.66
SVM 55.16 57.85

Thus, while the classifier that allows 800 of each feature
type has 3200 total nodes, the classifier that allows 1600 of
each will not have 6400, but rather 5716. The results are
presented in Fig. 2.

Generally, we see that as the number of features increases,
the accuracy of the classifier also increases. As can be
expected, the increases in accuracy slow down as more features
are introduced. However, the TAN network still appears to be
out-performing the SVM, as the increases are leveling off. If
this trend continues, it is expected that a TAN would still out-
perform the SVM for feature sets for which it is very
computationally expensive to build the TAN. Furthermore, as
more features are included, the SVM eventually passes the
naive Bayes classifier, but the TAN classifier continues to
perform better than the SVM. Somewhat surprisingly, the
classifier constructed with K2 does not seem to benefit much
from an increase in features, but this may be partially due to
the restriction on the number of parents.

Although K2 adds the parents that most increase the score
of the classifier, K2 is restricted in the nodes that it can choose
as parents, while TAN is not. The parents of a node for K2
must come from the previous nodes in the ordering supplied to
the algorithm, and if the ordering is less than optimal, so, too,
will be the network. One final experiment was considered,
where no feature reduction was performed. Due to time
constraints, only the naive Bayes model and the SVM were
able to be compared. The naive Bayes model achieved 83.41%
accuracy, while the SVM obtained 82.06%. Following the
results of our other experiments, it is not inconceivable that the
TAN model would improve upon the naive Bayes, further
improving upon the SVMs.
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Figure 2.

10-fold cross validation accuracy, as number of features
increase

C. Ablation Study

To help understand which factors most contribute most to
our classifiers, and whether this is constant across the various
learners, we conduct an ablation study on the models created
with 800 of each feature type. The results are presented in Fig.
3.

While it appears that the feature sets influence the models
in a similar way, with word unigrams having the most impact,
followed by POS bigrams, character bigrams, and errors, there
are a few differences. The accuracy of the PGMs seems to be
more dependent upon the word unigrams, while SVMs show
similar falls in accuracy for POS bigrams, with larger drops for
the other features than the drops observed for the PGMs.

VII. DiscussiON AND FUTURE WORK

We have learned probabilistic graphical models for
classifying essays by the native language of their writer.
Typically, this has been a task for machine learning methods
such as SVMs or maximum entropy learners, but graphical
models have certain innate advantages over the machine
learning methods. As well as being able to take advantages in
dependencies in the data that cannot be expressed by linear
SVMs, graphical models can perform inference tasks that are
beyond SVMs. If a user makes a set of mistakes, a graphical
model can infer the likelihood that he will make other
mistakes; it can also predict errors that differ between L1s . An
SVM can make no such inference. This ability is of great
importance to second-language teachers, who often need to
adapt their teaching to suit their students. While this ability of
the graphical models is important, we were more concerned
with the construction of the models. We used four feature sets:
word unigrams, character bigrams, part-of-speech bigrams, and
errors alignments to learn four models: naive Bayes, TAN, K2,
and linear SVM. Using feature selection to allow graphs to be
built in reasonable time, we found that the naive Bayes and
TAN models consistently out-perform SVMs when given the
same features to learn a model.

Our models only consider five different Lls, but the
literature has models that differentiate between as many as
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eleven. Future work can consider these other languages, and
the increase in complexity that accompanies them. The feature
sets that we used are only a subset of those commonly used to
tackle the NLI task. It is possible that other features will
further improve the accuracy of the classifier, and will do so
when only a small number are considered. Furthermore, other
methods of feature selection need to be considered. One
disadvantage of the use of graphical models is the amount of
time and resources required to build them. If we are limited in
the number of features that can be used, we need to be sure that
we are using the best ones available.
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