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Abstract

We study the min-max problem in factor graphs,
which seeks the assignment that minimizes the
maximum value over all factors. We reduce this
problem to both min-sum and sum-product infer-
ence, and focus on the later. In this approach
the min-max inference problem is reduced to
a sequence of Constraint Satisfaction Problems
(CSP), which allows us to solve the problem by
sampling from a uniform distribution over the set
of solutions. We demonstrate how this scheme
provides a message passing solution to several
NP-hard combinatorial problems, such as min-
max clustering (a.k.a. K-clustering), asymmetric
K -center clustering problem, K -packing and the
bottleneck traveling salesman problem. Further-
more, we theoretically relate the min-max reduc-
tions and several NP hard decision problems such
as clique cover, set-cover, maximum clique and
Hamiltonian cycle, therefore also providing mes-
sage passing solutions for these problems. Ex-
perimental results suggest that message passing
often provides near optimal min-max solutions
for moderate size instances.

1. Introduction

In recent years, message passing methods have achieved
a remarkable success in solving different classes of opti-
mization problems, including maximization (e.g., Frey &
Dueck 2007;Bayati et al. 2005), integration (e.g., Huang
& Jebara 2009) and constraint satisfaction problems
(e.g., Mezard et al. 2002).When formulated as a graphi-
cal model, these problems correspond to different modes
of inference: (a) solving a CSP corresponds to sampling
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from a uniform distribution over satisfying assignments,
while (b) counting and integration usually correspond to
estimation of the partition function and (c) maximization
corresponds to Maximum a Posteriori (MAP) inference.
Here we introduce and study a new class of inference over
graphical models —i.e., (d) the min-max inference problem,
where the objective is to find an assignment to minimize
the maximum value over a set of functions.

The min-max objective appears in various fields, partic-
ularly in building robust models under uncertain and ad-
versarial settings. In the context of probabilistic graph-
ical models, several different min-max objectives have
been previously studied (e.g., Kearns et al. 2001;Ibrahimi
et al. 2011). In combinatorial optimization, min-max may
refer to the relation between maximization and minimiza-
tion in dual combinatorial objectives and their correspond-
ing linear programs (e.g., Schrijver 1983), or it may refer to
min-max settings due to uncertainty in the problem speci-
fication (e.g., Averbakh 2001;Aissi et al. 2009).

Our setting is closely related to a third class of min-max
combinatorial problems that are known as bottleneck prob-
lems. Instances of these problems include bottleneck trav-
eling salesman problem (Parker & Rardin 1984), min-
max clustering (Gonzalez 1985), k-center problem (Dyer
& Frieze 1985;Khuller & Sussmann 2000) and bottleneck
assignment problem (Gross 1959).

Edmonds & Fulkerson (1970) introduce a bottleneck
framework with a duality theorem that relates the min-
max objective in one problem instance to a max-min ob-
jective in a dual problem. An intuitive example is the du-
ality between the min-max cut separating nodes a and b —
the cut with the minimum of the maximum weight — and
min-max path between a and b, which is the path with
the minimum of the maximum weight (Fulkerson 1966).
Hochbaum & Shmoys (1986) leverage triangle inequality
in metric spaces to find constant factor approximations to
several NP-hard min-max problems under a unified frame-
work.
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The common theme in a majority of heuristics for min-max
or bottleneck problems is the relation of the min-max ob-
jective with a CSP (e.g., Hochbaum & Shmoys 1986; Pan-
igrahy & Vishwanathan 1998). In this paper, we establish
a similar relation within the context of factor-graphs, by
reducing the min-max inference problem on the original
factor-graph to that of sampling (i.e., solving a CSP) on
the reduced factor-graph. We also consider an alternative
approach where the factor-graph is transformed such that
the min-sum objective produces the same optimal result as
min-max objective on the original factor-graph. Although
this reduction is theoretically appealing, in its simple form
it suffers from numerical problems and is not further pur-
sued here.

Section 2 formalizes min-max problem in probabilistic
graphical models and provides an inference procedure by
reduction to a sequence of CSPs on the factor graph. Sec-
tion 3 reviews Perturbed Belief Propagation equations (Ra-
vanbakhsh & Greiner 2014) and several forms of high-
order factors that allow efficient sum-product inference. Fi-
nally Section 4 uses these factors to build efficient algo-
rithms for several important min-max problems with gen-
eral distance matrices. These applications include prob-
lems, such as K-packing, that were not previously studied
within the context of min-max or bottleneck problems.

2. Factor Graphs and CSP Reductions

Letz = {z1,...,2,}, wherex € X £ X} x ... x X, de-
note a set of discrete variables. Each factor f;(z;) : X1 —
Yr C R is a real valued function with range ), over a
subset of variables —i.e., I C {1,...,n} is a set of indices.
Given the set of factors F, the min-max objective is

r* =

arg, mlnrjnea;_gff(xf) (1)
This model can be conveniently represented as a bipartite
graph, known as factor graph (Kschischang & Frey 2001),
that includes two sets of nodes: variable nodes x;, and fac-
tor nodes f;. A variable node i (note that we will often
identify a variable z; with its index “4”) is connected to a
factor node I if and only if i € I. We will use 0 to de-
note the neighbors of a variable or factor node in the factor
graph— that is 1 = {i s.t. i € I} (which is the set I) and
Oi={I st.ie€I}.

Let Y = U ;Y1 denote the union over the range of
all factors. The min-max value belongs to this set
maxser fr(z}) € Y. In fact for any assignment x,
maxrer fr(zr) € Y.

Example Bottleneck Assignment Problem: given a matrix
D € RNXN_select a subset of entries of size N that in-
cludes exactly one entry from each row and each column,
whose largest value is as small as possible. As an applica-

(a)

Figure 1. Factor-graphs for the bottleneck assignment problem

tion assume the entry D; ; is the time required by worker
1 to finish task j. The min-max assignment minimizes the
maximum time required by any worker to finish his assign-
ment. This problem is also known as bottleneck bipartite
matching and belongs to class P (e.g., Garfinkel 1971).
Here we show two factor-graph representations of this
problem.

Categorical variable representation: Consider a factor-
graph with x = {z1,...,2n}, where each variable z,; €
{1,..., N} indicates the column of the selected entry in
row ¢ of D. For example z; = 5 indicates the fifth col-
umn of the first row is selected (see Figure 1(a)). De-
fine the following factors: (a) local factors fr;y(z;) =
D; ., and (b) pairwise factors fy; j1 (2 ;) = ool(z; =
xj) — ool(x; # x;) that enforce the constraint z; # ;.
Here I(.) is the indicator function —i.e., [(True) = 1 and
I(False) = 0. Also by convention oo 0 = 0. Note that
if x; = x;, fr;53(2qi,;) = oo, making this choice un-
suitable in the min-max solution. On the other hand with
x; # xj, fri;3(24i,;3) = —oo and this factor has no im-
pact on the min-max value.

Binary variable representation: Consider a factor-graph
where x = [1'1,1, ey TNy X271 ey LT2_Ny--- 7$N7N]
€ {0,1}M*N indicates whether each entry is selected
z;—j = lornot z;_; = 0 (Figure 1(b)). Here the fac-
tors fr(xy) = —ooll(} oy i = 1) +00l(D 0, cpr i # 1)
ensures that only one variable in each row and column is
selected and local factors f;_;(x;—;) = x;—; D; j —oo(1—
x;—;) have any effect only if x;_; = 1.

The min-max assignment in both of these factor-graphs as
defined in eq. (1) gives a solution to the bottleneck assign-
ment problem.

For any y € ) in the range of factor values, we reduce the
original min-max problem to a CSP using the following
reduction. For any y € Y, u,-reduction of the min-max
problem eq. (1), is given by

w) 2 e <y @
Yo

where

D | LGERES) (3)
X I
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is the normalizing constant and I(.) is the indicator func-
tion.! This distribution defines a CSP over X, where
ty () > 0 iff « is a satisfying assignment. Moreover, Z,,
gives the number of satisfying assignments.

We will use f¥(z;) £ I(fi(x;) < y) to refer to reduced
factors. The following theorem is the basis of our approach
in solving min-max problems.

Theorem 2.1 2 Let x* denote the min-max solution and y*
be its corresponding value —i.e., y* = maxy fr(x}). Then
Wy () is satisfiable for all y > y* (in particular i, (x*) >
0) and unsatisfiable for all y < y*.

This theorem enables us to find a min-max assignment by
solving a sequence of CSPs. Let y() < ... < y®) be
an ordering of y € Y. Starting from y = y([N/2D if 1,
is satisfiable then y* < y. On the other hand, if p, is not
satisfiable, y* > y. Using binary search, we need to solve
log(]Y’|) CSPs to find the min-max solution. Moreover at
any time-step during the search, we have both upper and
lower bounds on the optimal solution. That is y < y* <
7, where pi,, is the latest unsatisfiable and is the latest
satisfiable reduction.

Example Bottleneck Assignment Problem: Here we define
the p,-reduction of the binary-valued factor-graph for this
problem by reducing the constraint factors to f¥(zx;) =
I(> icor i = 1) and the local factors to fy; . (wi—;) =
x;—;1(D; ; < y). The u,-reduction can be seen as defin-
ing a uniform distribution over the all valid assignments
(i.e., each row and each column has a single entry) where
none of the N selected entries are larger than y.

2.1. Reduction to Min-Sum

Kabadi & Punnen (2004) introduce a simple method to
transform instances of bottleneck TSP to TSP. Here we
show how this results extends to min-max problems over
factor-graphs.

Lemma 2.2 Any two sets of factors,
{f1}1e7, have identical min-max solution

{fi}1rer and

arg, min max fir(xy) = arg, min max f1(zr)
if VI,Je F,x;e€ Xr,xy € Xy

& frlxr) < fi(z)

fr(zr) < fi(zy)

This lemma simply states that what matters in the min-max
solution is the relative ordering in the factor-values.

! To always have a well-defined probability, we define % 20.
2All proofs appear in Appendix A.

Let y(l) < ... < y(N) be an ordering of elements in ),
and let (f;(x;)) denote the rank of y; = f;(x) in this
ordering. Define the min-sum reduction of { f;} ¢+ as

f;(wl) —or(f1n) vyre F
Theorem 2.3

arg, min Z fi(zr) = arg,min max fr(xr)
I

where { f1}1 is the min-sum reduction of { f1}1.

Although this allows us to use min-sum message passing to
solve min-max problems, the values in the range of factors
grow exponentially fast, resulting in numerical problems.

3. Solving CSP-reductions

Previously in solving CSP-reductions, we assumed an ideal
CSP solver. However, finding an assignment = such that
ty(z) > 0 or otherwise showing that no such assignment
exists is in general NP-hard (Cooper 1990). However, mes-
sage passing methods have been successfully used to pro-
vide state-of-the-art results in solving difficult CSPs. We
use Perturbed Belief Propagation (PBP Ravanbakhsh &
Greiner 2014) for this purpose. By using an incomplete
solver (Kautz et al. 2009), we lose the lower-bound y on
the optimal min-max solution, as PBP may not find a so-
lution even if the instance is satisfiable. 3 However the
following theorem states that, as we increase y from the
min-max value y*, the number of satisfying assignments
to jy-reduction increases, making it potentially easier to
solve.

Proposition 3.1

n<y2 = Zy <2, Vyr,y2 € R

where Z,, is defined in eq. (3).

This means that the sub-optimality of our solution is re-
lated to our ability to solve CSP-reductions — that is, as the
gap y — ™ increases, the 1, -reduction potentially becomes
easier to solve.

PBP is a message passing method that interpolates between
Belief Propagation (BP) and Gibbs Sampling. At each
iteration, PBP sends a message from variables to factors
(v;— 1) and vice versa (v7_,;). The factor to variable mes-
sage is given by

Z fi(zixn) H visr(z;)

jedI\i
4

vi—i(@;) o«

T\ €EXar\i

3To maintain the lower-bound one should be able to correctly

assert unsatisfiability.
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where the summation is over all the variables in I except
for z;. The variable to factor message for PBP is slightly
different from BP; it is a linear combination of the BP mes-
sage update and an indicator function, defined based on a
sample from the current estimate of marginal fi(x;):

visr(zi) o (1=7) T] vomil@) + 7 1@ = ;)

Jeai\I
&)
where T; ~ ji(x;) o H vysi(zi) (6)
Jeoi

where for v = 0 we have BP updates and for v = 1, we
have Gibbs Sampling. PBP starts at v = 0 and linearly
increases +y at each iteration, ending at v = 1 at its final
iteration. At any iteration, PBP may encounter a contradic-
tion where the product of incoming messages to node i is
zero for all x; € A;. This could mean that either the prob-
lem is unsatisfiable or PBP is not able to find a solution.
However if it reaches the final iteration, PBP produces a
sample from i, (x), which is a solution to the correspond-
ing CSP. The number of iterations 7 is the only parameter
of PBP and increasing 7', increases the chance of finding a
solution (Only downside is time complexity; nb., no chance
of a false positive.)

3.1. Computational Complexity

PBP’s time complexity per iteration is identical to that of
BP-i.e.,

o (Z(IWI |Xr]) + Z(\ail |Xi|)> ()

1

where the first summation accounts for all factor-to-
variable messages (eq. (4)) * and the second one accounts
for all variable-to-factor messages (eq. (5)).

To perform binary search over ) we need to sort ), which
requires O(|Y|log(]Y])). However, since |V;| < |&;| and
|V < >>;|Vi], the cost of sorting is already contained in
the first term of eq. (7), and may be ignored in asymptotic
complexity.

The only remaining factor is that of binary search itself,
which is O(log(|Y])) = O(log(>_;(|X1]))) — i.e., at most
logarithmic in the cost of PBP’s iteration (i.e., first term
in eq. (7)). Also note that the factors added as constraints
only take two values of +-00, and have no effect in the cost
of binary search.

As this analysis suggests, the dominant cost is that of send-
ing factor-to-variable messages, where a factor may depend

*The |9I| is accounting for the number of messages that are
sent from each factor. However if the messages are calculated
synchronously this factor disappears. Although more expensive,
in practice, asynchronous message updates performs better.

on a large number of variables. The next section shows that
many interesting factors are sparse, which allows efficient
calculation of messages.

3.2. High-Order Factors

The factor-graph formulation of many interesting min-max
problems involves sparse high-order factors. In all such
factors, we are able to significantly reduce the O(|X;|) time
complexity of calculating factor-to-variable messages. Ef-
ficient message passing over such factors is studied by sev-
eral works in the context of sum-product and max-product
inference (e.g., Potetz & Lee 2008; Gupta et al. 2007;Tar-
low et al. 2010;Tarlow et al. 2012). The simplest form of
sparse factor in our formulation is the so-called Potts fac-
tor, f}t’i,j}(xi, xj) = I(x; = x;)¢(x;). This factor assumes
the same domain for all the variables (X; = X; Vi, j)
and its tabular form is non-zero only across the diago-
nal. It is easy to see that this allows the marginaliza-
tion of eq. (4) to be performed in O(|X;]) rather than
O(|&;| |X;]). Another factor of similar form is the inverse
Potts factor, ffi’j}(mi,mj) = I(z; # x;), which ensures
x; # x;. In fact any pair-wise factor that is a constant plus
a band-limited matrix allows O(]X;|) inference (e.g., see
Section 4.4).

In Section 4, we use cardinality factors, where X; = {0,1}
and the factor is defined based on the number of non-zero
values —i.e., f{(zx) = f(X,cxc i) The p,-reduction
of the factors we use in the binary representation of the
bottleneck assignment problem is in this category. Gail
et al. (1981) propose a simple O(|0I| K) method for
fi(rx) = I ;e i = K). We refer to this factor as
K-of-N factor and use similar algorithms for at-least-K-
of-N fi(zx) = I3 ;e 2i > K) and at-most-K-of-N
fe(zx) = I3, e s < K) factors (see Appendix B).
An alternative for more general forms of high order factors
is the clique potential of Potetz & Lee (2008). For large K,
more efficient methods evaluate the sum of pairs of vari-
ables using auxiliary variables forming a binary tree and
use Fast Fourier Transform to reduce the complexity of K-
of-N factors to O(N log(NN)?) (see Tarlow et al. (2012) and
its references).

4. Applications

Here we introduce the factor-graph formulation for sev-
eral NP-hard min-max problems. Interestingly the CSP-
reduction for each case is an important NP-hard problem.
Table 1 shows the relationship between the min-max and
the corresponding CSP and the factor « in the constant fac-
tor approximation available for each case. For example,
o = 2 means the results reported by some algorithm is
guaranteed to be within factor 2 of the optimal min-max
value * when the distances satisfy the triangle inequal-
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Table 1. Min-max combinatorial problems and the corresponding CSP-reductions. The last column reports the best ci-approximations
when triangle inequality holds. * indicates best possible approximation.

min-max problem | 1y-reduction

msg-passing cost

|

min-max clustering clique cover problem

O(N?K log(N))

2* (Gonzalez 1985)

K-packing max-clique problem

O(N?Klog(N))

N/A

(weighted) K-center problem dominating set problem

O(N31og(N)) or O(NR?log(N))

min; w

min(3, 1 + B2 (Dyer & Frieze 1985)

asymmetric K-center problem set cover problem

O(N?1og(N)) or O(NRZlog(N))

log(N)* (Panigrahy & Vishwanathan 1998;Chuzhoy et al. 2005)

bottleneck TSP | Hamiltonian cycle problem

(N3log

2* (Parker & Rardin 1984)

(9]
bottleneck Asymmetric TSP | directed Hamiltonian cycle O

(N3log

(V)
(N)) log(n)/log(log(n)) (An et al. 2010)

fuay Sy SNy

.
S o

e @ Ji
(a) (b) K-packing (binary)

(c) sphere packing

(d) K-center

Figure 2. The factor-graphs for different applications. Factor-graph (a) is common between min-max clustering, Bottleneck TSP and
K-packing (categorical). However the definition of factors is different in each case.

ity. This table also includes the complexity of the mes-
sage passing procedure (assuming asynchronous message
updates) in finding the min-max solution. See Appendix C
for details.

4.1. Min-Max Clustering

Given a symmetric matrix of pairwise distances D €
RVXN petween N data-points, and a number of clusters
K, min-max clustering seeks a partitioning of data-points
that minimizes the maximum distance between all the pairs
in the same partition.

Let x = {z1,...,zny} withx; € X; = {1,...,K} be
the set of variables, where x; = k means, point ¢ belongs
to cluster k. The Potts factor fy; jy(zs,2;) = I(z; =
xj)D; ; — ool(x; # x;) between any two points is equal
to D; ; if points ¢ and j belong the same cluster and —oo
otherwise (Figure 2(a)). When applied to this factor graph,
the min-max solution =* of eq. (1) defines the clustering of
points that minimizes the maximum inter-cluster distances.

Now we investigate properties of u,-reduction for this
factor-graph. The y-neighborhood graph for distance ma-
trix D € RY*N is defined as graph G(D,y) = (V,€),
where V = {1,...,N}and & = {(¢,j)| D;; < y}. Note
than this definition is also valid for an asymmetric adja-
cency matrix D. In such cases, the y-neighborhood graph

is a directed-graph.

The K-clique-cover C = {C1,...,Cx} for a graph G =
(V, &) is a partitioning of V to at most K partitions such
that Vi, j,k 4,5 € Cp, = (3,4) € £.

k]
.
.
.,
*4,
"h,‘ 4
Hayd

(message-passing)/(FPC) min-m:

2N
[ ;-HHH;OHHNH

10 20 30 20 ) 10 20 30 20 0
number of clusters number of clusters

Figure 3. Min-max clustering of 100 points with varying numbers
of clusters (x-axis). Each point is an average over 10 random in-
stances. The y-axis is the ratio of the min-max value obtained by
message passing (1" = 50 iterations for PBP) over the min-max
value of FPC. (left) Clustering of random points in 2D Euclidean
space. The red line is the lower bound on the optimal result based
on the worst case guarantee of FPC. (right) Using symmetric ran-
dom distance matrix where D; ; = D;; ~ U(0,1).

o5 lower bound on optimal min-max value

Proposition 4.1 The p,-reduction of the min-max cluster-
ing factor-graph defines a uniform distribution over the K -
clique-covers of G(D, y).

Figure 3 compares the performance of min-max clustering
using message passing to that of Furthest Point Clustering
(FPC) of Gonzalez (1985) which is 2-optimal when the tri-
angle inequality holds. Note that message passing solutions
are superior even when using Euclidean distance.

4.2. K-Packing

Given a symmetric distance matrix D € RV <V between N
data-points and a number of code-words K, the K -packing
problem is to choose a subset of K points such that the min-
imum distance D; ; between any two code-words is max-
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imized. Here we introduce two different factor-graph for-
mulations for this problem.

4.2.1. FIRST FORMULATION: BINARY VARIABLES

Let binary variables * = {zy,...,2x} € {0,1}¥, in-
dicate a subset of variables of size K that are selected
as code-words (Figure 2(b)). Use the factor fi(xz) =
ool(d>, 2 # K) — ool(},2; = K) (here K =
{1,...,N}) to ensure this constraint. The p,-reduction
of this factor for any —oo < y < 400 is a K-of-N factor
as defined in Section 3.2. Furthermore, for any two vari-
ables x; and x;, define factor f, .. (v ;) = —D; jriv; —
00(1—a;x;). This factor is effective only if both points are
selected as code-words. The use of —D; ; is to convert the
initial max-min objective to min-max.

4.2.2. SECOND FORMULATION: CATEGORICAL
VARIABLES

Define the K-packing factor-graph as follows: Let x =
{z1,...,xx} be the set of variables where z; € X; =
{1,..., N} (Figure 2(a)). For every two distinct points
1 < i < j < K define the factor fy; jy(wi, ;) =
—Dy, o, 1(x; # x5) + ocl(x; = x;). Here each variable
represents a code-word and the last term of each factor en-
sures that code-words are distinct.

Proposition 4.2 The p,-reduction of the K-packing
factor-graph for the distance matrix D € RN*VN defines
a uniform distribution over the cliques of G(—D, —y) that
are larger than K.

The p,-reduction of our second formulation is similar to
the factor-graph used by Ramezanpour & Zecchina (2012)
to find non-linear binary codes. The authors consider the
Hamming distance between all binary vectors of length n
(i.e., N = 2") to obtain binary codes with known mini-
mum distance y. As we saw, this method is O(N2K?) =
O(2?"K?) —i.e., grows exponentially in the number of bits
n. In the following section, we introduce a factor-graph
formulation specific to categorical variables with Hamming
distance that have message passing complexity O(n?K?2y)
—i.e., not exponential in n. Using this formulation we find
optimal binary codes where both n and y are large.

4.2.3. SPHERE PACKING WITH HAMMING DISTANCE

Our factor-graph defines a distribution over the K binary
vectors of length n such that the distance between ev-
ery pair of binary vectors is at least y.> Finding so-
called “nonlinear binary codes” is a fundamental prob-
lem in information theory and a variety of methods have

3 For convenience we restrict this construction to the case of
binary vectors. A similar procedure may be used to find maxi-
mally distanced ternary and g-ary vectors, for arbitrary q.
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Figure 4. (left) Using message passing to choose K = 30 out of
N = 100 random points in the Euclidean plane to maximize the
minimum pairwise distance (with 7" = 500 iterations for PBP).
Touching circles show the minimum distance. (right) Example
of an optimal ternary code (n = 16,y = 11, K = 12), found
using the K-packing factor-graph of Section 4.2.3. Here each of
K = 12 lines contains one code-word of length 16, and every
pair of code-words are different in at least y = 11 digits.

©

been used to find better codes, trying either to maximize
the number of keywords K or their minimum distance y
(e.g., see Litsyn et al. 1999 and its references). Let
X = {xl_l, RN (5 D! /7, S IS/ 1, SR J}K_n} be the
set of our binary variables, where ©; = {z;_1,...,Zi—n}
represents the i*” binary vector or code-word. Additionally
foreach 1 <1¢ < 5 < K, define an auxiliary binary vector
zij ={%ij1,--.,%ijn} of length n (Figure 2(c)).

For each distinct pair of binary vectors x; and z;, and a
particular bit 1 < k < n, the auxiliary variable z; ;1 = 1
iff xi—r # xj—. Then we define an at-least-y-of-n factor
over z; ; for every pair of code-words, to ensure that they
differ in at least y bits.

In more details, define the following factors on = and z:

(a) z-factors: Forevery 1 <i < j< Kandl <k < n,
define a factor to ensure that z; j i = 1 iff ©;—p # j_k:

f@ioks xjors zign) = Wwiok # 25 1) 1z 50 = 1)
+ Wik = zj-1)(zi 56 = 0).
This factor depends on three binary variables, therefore we

can explicitly define its value for each of 23 = 8 possible
inputs.

(b) distance-factors: For each z; ; define at-least-y-of-n
factor:

fre(zig) =1( Z Zijk 2 Y)

1<k<n

Table 2 reports some optimal codes including codes with
large number of bits n, recovered using this factor-graph.
Here Perturbed BP used 7" = 1000 iterations.

4.3. (Asymmetric) K-center Problem

Given a pairwise distance matrix D € RV*¥ the K-center
problem seeks a partitioning of nodes, with one center per
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Figure 5. (a) K-center clustering of 50 random points in a 2D plane with various numbers of clusters (x-axis). The y-axis is the ratio of
the min-max value obtained by message passing (1" = 500 for PBP) over the min-max value of 2-approximation of Dyer & Frieze (1985).
(b) Min-max K-facility location formulated as an asymmetric K-center problem and solved using message passing. Squares indicate 20
potential facility locations and circles indicate 50 customers. The task is to select 5 facilities (red squares) to minimize the maximum
distance from any customer to a facility. The radius of circles is the min-max value. (c¢,d) The min-max solution for Bottleneck TSP
with different number of cities (x-axis) for 2D Euclidean space as well as asymmetric random distance matrices (7' = 5000 for PBP).
The error-bars in all figures show one standard deviation over 10 random instances.

Table 2. Some optimal binary codes from Litsyn et al. 1999 re-
covered by K-packing factor-graph in the order of increasing y. n
is the length of the code, K is the number of code-words and y is

the minimum distance between code-words.
n| K|y n| K|y n| K|y n| K|y

814 |5 1114 |7 141419 16| 6 |9
174 |11 | 19| 6 |11 |{20| 8 |11 20| 4 |13
2316 | 1324 8 | 1323 4 | 1526 6 |15
27 | 8 | 1528 |10 | 15|28 | 5 |16 (26| 4 |17
20916 | 17]29] 4 | 19(33] 6 |1934| 8 |19
36 | 1219 32] 4 |2136] 6 |2138| 8 |21
3911021 35] 4 |23(39] 6 |2341| 8 |23
39| 4 |25] 43| 6 | 2346 |10 |25 47| 12|25
41 | 4 |27 || 46| 6 | 27| 48| 8 |27 | 50| 10 | 27
441 4 [2949) 6 |29 52| 8 |29 53] 10|29

partition such that the maximum distance from any node
to the center of its partition is minimized. This problem
is known to be NP-hard, even for Euclidean distance ma-
trices (Masuyama et al. 1981). Frey & Dueck (2007) use
max-product message passing to solve the min-sum vari-
ation of this problem —a.k.a. K-median problem. A bi-
nary variable factor-graph for the same problem is intro-
duced in Givoni & Frey (2009). Here we introduce a bi-
nary variable model for the asymmetric K-center problem.
Let z = {Il_l, e 3 T1I-Ns L2153 L2-N,y -« 7IN—N}
denote N2 binary variables, where x;_; = 1 indicates that
point ¢ participates in the partition that has j as its center.
Now define the following factors:

A. local factors: Yi # j  fri—jy(vi_j) = Dijxij —
OO(]. — .’L'i,j).

B. uniqueness factors: every point is associated with ex-
actly one center (which can be itself). For every ¢ con-
sider I = {i —j | 1 <j < N} and define f;(z;) =
0ol(Xoi_jear Ti—j # 1) = 0U(X;_jeor Timj = 1).

C. consistency factors: when j is selected as a center by
any node 7, node j also recognizes itself as a center.

Vj,i # j define f(l‘{j_j)i_j}) = ool(zj—; = 0A
IL‘Z‘_]‘ = 1) — OO]I(I’j_j =1V zi—j = 0)

D. K-of-N factor: only K nodes are selected as centers.
Letting X = {i —i | 1 < i < N}, define fic(zx) =
OOI[(Zifie)C Ti—g 7é K) — OOH(ZifieIC Ti—j — K)

For variants of this problem such as the capacitated K-
center, additional constraints on the maximum/minimum
points in each group may be added as the at-least/at-most
K-of-N factors.

We can significantly reduce the number of variables and
the complexity (which is O((N3log(N))) by bounding the
distance to the center of the cluster . Given an upper
bound 7, we may remove all the variables z;_; for D; ; >
7 from the factor-graph. Assuming that at most R nodes are
at distance D;_; < % from every node j, the complexity of
min-max inference drops to O(N R? log(N)).

Figure 5(a) compares the performance of message-passing
and the 2-approximation of Dyer & Frieze (1985) when
triangle inequality holds. The min-max facility location
problem can also be formulated as an asymmetric K -center
problem where the distance fo all customers is co and the
distance from a facility to another facility is —oo (Fig-
ure 5(b)).

The following proposition establishes the relation between
the K-center factor-graph above and dominating set prob-
lem as its CSP reduction. The K-dominating set of graph
G = (V,€) is a subset of nodes D C V of size |D| = K
such that any node in V' \ D is adjacent to at least one mem-
ber of D —ie,Vi € V\D 3j € D s.t. (i,j) € &.

Proposition 4.3 For symmetric distance matrix D €
RVXN ' the py-reduction of the K-center factor-graph
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above, is non-zero (i.e., p,(x) > 0) iff z defines a K-
dominating set for G(D, y).

Note that in this proposition (in contrast with Proposi-
tions 4.1 and 4.2) the relation between the assignments x
and K -dominating sets of G(D, y) is not one-to-one as sev-
eral assignments may correspond to the same dominating
set. Here we establish a similar relation between asymmet-
ric K-center factor-graph and set-cover problem.

Given universe set V and a set S =
Vi, .V} st Vi, €V, wesay C C S covers
V iff each member of V is present in at least one member
of C —ie., Uvm cc Vm = V. Now we consider a natural
set-cover problem induced by any directed-graph. Given
a directed-graph G = (V, &), for each node i € V, define
asubset V; = {j € V| (j,1) € £} as the set of all nodes
that are connected t0 i. Let S = {V1,...,Vn} denote all
such subsets. An induced K -set-cover of GisasetC C S
of size K that covers V.

Proposition 4.4 For a given asymmetric distance matrix
D € RNXN the py-reduction of the K-center factor-
graph as defined above, is non-zero (i.e., p,(x) > 0) iff
x defines an induced K -set-cover for G(D, y).

4.4. (Asymmetric) Bottleneck Traveling Salesman
Problem

Given a distance matrix D € RY >V the task in the Bottle-
neck Traveling Salesman Problem (BTSP) is to find a tour
of all N points such that the maximum distance between
two consecutive cities in the tour is minimized (Kabadi
& Punnen 2004). Any constant-factor approximation for
arbitrary instances of this problem is A"P-hard (Parker &
Rardin 1984).

Let z = {x1,...,zy} denote the set of variables where
x; € X; = {0,...,N — 1} represents the time-step
at which node ¢ is visited. Also, we assume modular
arithmetic (module N) on members of X; —e.g., N = 0
mod Nand1—-2= N —1 mod N. For each pair x; and
x; of variables, define the factor (Figure 2(a))

fri gy (@i, x5) = ool(w; = x5) — ooll(|z; — 25| > 1) (8)
+Dl)JH($z = .%‘j — 1) + DJ)ZH(JTZ = J}j — 1)

where the first term ensures ; # x; and the second term
means this factor has no effect on the min-max value when
node ¢ and j are not consecutively visited in a path. The
third and fourth terms express the distance between ¢ and j
depending on the order of visit. Figure 6 shows the tabular
form of this factor. In Appendix B.2 we show an O(N)
procedure to marginalize this type of factor.

Here we relate the min-max factor-graph above to a uni-
form distribution over Hamiltonian cycles.

oo D —o0 —oo —oo Dy
Dj; oo Dij —00 —00 —00
— Dj; oo —00 —00 —00
—00 —00 —00 oo D —oo
-0 —00 —00 Dj; oo Dij
D;j —o0 —o0 -+ —o0o Dj; o

Figure 6. The tabular form of fy; ;3 (i, ;) used for the bottle-
neck TSP.

Proposition 4.5 For any distance matrix D € RVN*N | the
y-reduction of the BTSP factor-graph (shown above), de-
fines a uniform distribution over the (directed) Hamiltonian
cycles of G(D,y).

Figure 5(c,d) reports the performance of message passing
(over 10 instances) as well as a lower-bound on the opti-
mal min-max value for tours of different length (/V). Here
we report the results for random points in 2D Euclidean
space as well as asymmetric random distance matrices. For
symmetric case, the lower-bound is the maximum over j of
the distance of two closest neighbors to each node j. For
the asymmetric random distance matrices, the maximum is
over all the minimum length incoming edges and minimum
length outgoing edges for each node.’

5. Conclusion

This paper introduces the problem of min-max inference in
factor-graphs and provides a general methodology to solve
such problems. We use Factor-graphs to represent several
important combinatorial problems such as min-max clus-
tering, K-clustering, bottleneck TSP and K-packing and
use message passing to find near optimal solutions to each
problem. In doing so, we also suggest a message passing
solution to several NP-hard decision problems including
the clique-cover, max-clique, dominating-set, set-cover and
Hamiltonian path problem. For each problem we also an-
alyzed the complexity of message passing and established
its practicality using several relevant experiments.
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