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Abstract Electrospray tandem mass spectrometry (ESI-

MS/MS) is commonly used in high throughput metabolo-

mics. One of the key obstacles to the effective use of this

technology is the difficulty in interpreting measured spectra

to accurately and efficiently identify metabolites. Tradi-

tional methods for automated metabolite identification

compare the target MS or MS/MS spectrum to the spectra

in a reference database, ranking candidates based on the

closeness of the match. However the limited coverage of

available databases has led to an interest in computational

methods for predicting reference MS/MS spectra from

chemical structures. This work proposes a probabilistic

generative model for the MS/MS fragmentation process,

which we call competitive fragmentation modeling (CFM),

and a machine learning approach for learning parameters

for this model from MS/MS data. We show that CFM can

be used in both a MS/MS spectrum prediction task (ie,

predicting the mass spectrum from a chemical structure),

and in a putative metabolite identification task (ranking

possible structures for a target MS/MS spectrum). In the

MS/MS spectrum prediction task, CFM shows significantly

improved performance when compared to a full enumera-

tion of all peaks corresponding to substructures of the

molecule. In the metabolite identification task, CFM

obtains substantially better rankings for the correct candi-

date than existing methods (MetFrag and FingerID) on

tripeptide and metabolite data, when querying PubChem or

KEGG for candidate structures of similar mass.

Keywords Tandem mass spectrometry � MS/MS �
Metabolite identification � Machine learning

1 Introduction

Liquid chromatography combined with electrospray ioni-

sation mass spectrometry (ESI-MS) is one of the most

frequently used approaches for conducting metabolomics

experiments (Dunn and Ellis 2005; Tautenhahn et al. 2012;

Kind and Fiehn 2010; Wishart 2011). Collision-induced

dissociation (CID) is usually employed within this proce-

dure, intentionally fragmenting molecules into smaller

parts to examine their structure. This is called MS/MS or

tandem mass spectrometry. A significant bottleneck in such

experiments is the interpretation of the resulting spectra to

identify metabolites.

Widely used methods for putative metabolite identifi-

cation (Sumner et al. 2007), using mass spectrometry,

compare a collected MS or MS/MS spectrum for an

unknown compound against a database containing refer-

ence MS or MS/MS spectra (Stein and Scott 1994;

Scheubert et al. 2013; Tautenhahn et al. 2012). Unfortu-

nately, current reference databases are still fairly limited,

especially in the case of ESI-MS/MS. At the time of

writing, the public Human Metabolome Database (Wishart

et al. 2013) contains ESI-MS/MS data for around 800

compounds, which represents only a small fraction of the

40,468 known human metabolites it lists. The publicly

available Metlin database (Smith et al. 2005) provides ESI-

MS/MS spectra for 11,209 of the 75,000 endogenous and

exogenous metabolites it contains, although more than half
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of those spectra are for enumerated tripeptides. The public

repository MassBank (Horai et al. 2010) contains a more

diverse dataset of 31,000 spectra collected on a variety of

different instruments, including ESI-MS/MS spectra for

*2,000 unique compounds. However, set against the more

than 19 million chemical structures in the Pubchem Com-

pound database (Bolton et al. 2008), an estimated 200,000

plant metabolites (Fiehn 2002), or even the 32,801 manu-

ally annotated entries in the database of Chemical Entities

of Biological Interest (ChEBI) (Hastings et al. 2013), we

see that MS/MS coverage still falls far short of the vast

number of known metabolites and molecules of interest.

Consequently, there is substantial interest in finding

alternative means for identifying metabolites for which no

reference spectra are available (Scheubert et al. 2013). For

these cases, one approach to metabolite identification

involves first predicting the MS or MS/MS spectrum for

each candidate compound from its chemical structure

(Heinonen et al. 2008; Wolf et al. 2010; Lindsay et al.

1980; Gasteiger et al. 1992). The interpreter then uses these

predicted spectra in place of reference spectra, and labels

the target spectrum as the metabolite whose predicted

spectrum is the closest match, according to some similarity

criteria. A wide range of similarity criteria have been

proposed, from weighted counts of the number of matching

peaks (Stein and Scott 1994), to more complex probability

based measures (Mylonas et al. 2009; Oberacher et al.

2009).

The upshot of this predictive approach is that only a list

of candidate molecules is needed, rather than a complete

database of reference spectra. However, the restriction to a

list of candidate molecules means that this approach still

falls short of de novo identification of ’unknown

unknowns’ (Wishart et al. 2009), i.e. we cannot identify

molecules not in the list.

The concept of computer-based MS prediction has been

around since the Dendral project in the 1960s, when

investigators attempted to predict electron ionization (EI)

mass spectra using early machine learning methods

(Lindsay et al. 1980). More recent approaches to this

problem have generally taken one of two forms: rule-based

or combinatorial.

Commercial packages, such as Mass Frontier (Thermo

Scientific, www.thermoscientific.com), and MS Frag-

menter (ACD Labs, www.acdlabs.com), are rule-based,

using thousands of manually curated rules to predict frag-

mentations. Primarily developed for EI fragmentation,

these packages have been extended for use with ESI. This

current work does not compare against these methods

empirically, however in at least one study they have been

found to have been out-performed by MetFrag (Wolf et al.

2010), to which we do compare. MOLGEN-MS (Kerber

et al. 2006) also applies rule-based fragmentations in

combination with an isotope-dependent matching criteria

to rank candidate molecules for a given EI spectrum.

Another knowledge-based approach, called MASSIMO,

combines chemical knowledge with data; using logistic

regression to predict fragmentation probabilities for a

particular class of EI fragmentations (Gasteiger et al.

1992).

The other class of algorithms applies a combinatorial

fragmentation procedure, enumerating all possible frag-

ments of the original structure by systematically breaking

bonds (Hill and Mortishire-Smith 2005; Heinonen et al.

2008; Wolf et al. 2010). First proposed by Hill and Mor-

tishire-Smith (2005), this method has been incorporated

into the freely available programs FiD (Heinonen et al.

2008) and MetFrag (Wolf et al. 2010). Both identify the

given spectrum with the metabolite that has the most clo-

sely matching peaks via such a combinatorial fragmenta-

tion. These programs also employ several heuristics in their

scoring protocols to emphasise the importance of more

probable fragmentations. FiD uses an approximate measure

of the dissociation energy of the broken bond, combined

with a measure of the energy of the product ion. MetFrag

incorporates a similar measure of bond energy combined

with a bonus if the neutral loss formed is one of a common

subset.

An alternative method, FingerID (Heinonen et al. 2012),

takes advantage of the increasing number of available MS/

MS spectra, by applying machine learning methods to this

task. This program uses support vector machines (SVMs)

to predict a chemical fingerprint directly from an MS/MS

spectrum, and then searches for the metabolite that most

closely matches that predicted fingerprint. For a more

extensive review of existing computational methods in

MS-based metabolite identification, see Hufsky et al.

(2014).

The main problem with the current combinatorial

methods is that, while they have very good recall,

explaining most if not all peaks in each spectrum, they also

have poor precision, predicting many more peaks than are

actually observed. MetFrag and FiD attempt to address this

problem by adding the heuristics described above. In our

work, we investigate an alternative machine learning

approach that aims to improve the precision of such com-

binatorial methods.

We propose a method for learning a generative model of

the CID fragmentation process from data. This model

estimates the likelihood of any given fragmentation event

occurring, thereby predicting those peaks that are most

likely to be observed. We hypothesise that increasing the

precision of the predicted spectrum in this way will

improve our system’s ability to accurately identify

metabolites. In a similar spirit, Kangas et al. (2012) pro-

posed a machine learning approach for obtaining bond
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dissociation energies for lipids. Their method uses a dif-

ferent model and training paradigm which, to the authors’

knowledge, has not yet been applied to general classes of

metabolites.

Section 2 provides details of our proposed model and the

training method. Section 3 then reports the experimental

results. We will assume the reader knows the foundations

of ESI-MS/MS; for an introduction to this process, see de

Hoffman and Stroobant (2007).

2 Methods

This section presents our model for the ESI-MS/MS CID

fragmentation process, which we call competitive frag-

mentation modeling (CFM), and a method for deriving

parameters for this model from existing MS/MS data.

Section 2.1 describes the simplest form of this method;

single energy competitive fragmentation modeling (SE-

CFM). Section 2.2 then presents an extension of this

method, combined energy competitive fragmentation

modeling (CE-CFM), which aims to make better use of

CID MS/MS spectra measured at different energy levels for

the same compound.

Windows executables, cross-platform source code and the

trained models used in Sect. 3 are freely available at http://

sourceforge.net/projects/cfm-id/. A web server interface is

also provided at http://cfmid.wishartlab.com. This provides

access to the SE-CFM model trained on the Metlin Metab-

olite data as used in Sect. 3 , along with examples of predicted

spectra.

2.1 Single energy CFM (SE-CFM)

In single energy CFM (SE-CFM), we model ESI-MS/MS

fragmentation as a stochastic, homogeneous, Markov pro-

cess (Cappé et al. 2005) involving state transitions between

charged fragments, as depicted in Fig. 1a.

More formally, the process is described by a fixed length

sequence of discrete, random fragment states

F0;F1; . . .;Fd, where each Fi takes a value from the state

space F :¼ ff1; f2; . . .; fjF jg, the set of all possible frag-

ments; this state space will be further described in Sect.

2.1.1. A transition model defines the probabilities that each

fragment leads to another at one step in the process; see

Sect. 2.1.2. An observation model maps the penultimate

node Fd to a peak P, which takes on a value in R that

represents the m/z value of the peak to which the final

fragment will contribute; see Sect. 2.1.4.

SE-CFM is a latent variable model in which the only

observed variables are the initial molecule F0 and the

output peak P; the fragments themselves are never directly

observed. Each output P adds only a small contribution to a

single peak in the mass spectrum. In order to predict a

Fig. 1 a Single energy competitive fragmentation model (SE-CFM):

a stochastic, Markov process of state transitions between charged

fragments. b Combined energy competitive fragmentation model

(CE-CFM): an extension of SE-CFM that combines information from

multiple collision energy spectra into one model
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complete mass spectrum, we can run the model forward

multiple times to compute the marginal distribution of P.

2.1.1 Fragment state space

We make the following assumptions about the CID frag-

mentation process. Further details for the motivations of

each are provided below, but these generally involve a

trade-off between accurately modeling the process and

keeping the model computationally tractable.

1. All input molecules have a single positive charge and

exist in their most common isotopic form.

2. In a collision, each molecule will break into two

fragments.

3. No mass or charge is lost. One of the two fragments

must have a single positive charge and the other must

be neutral. Combined, the two must contain all the

components of the original charged molecule, i.e. all

the atoms and electrons.

4. No further sigma bonds can be removed or added

during a break, except those connecting hydrogens—

i.e. the edges in the molecular graph must remain the

same.

5. Rearrangement of pi bonds is allowed and hydrogen

atoms may move anywhere in the two resulting

fragments, on the condition that both fragments satisfy

all valence rules, and standard bond limitations are

met—e.g. no bond orders higher than triple.

6. The even electron rule is always satisfied—i.e. no

radicals.

Assumption 1 is reasonable as we assume that the first

phase of MS/MS successfully restricts the mass range of

interest to include only the ½MþH�þ precursor ion con-

taining the most abundant isotopes. Since this ion has only

a single positive charge, we can safely assume that no

multiply-charged ions will be formed in the subsequent

MS2 phase. Ensuring that valid ½MþH�þ precursor ions are

selected in MS1 is beyond the scope of this work; see

Katajamaa and Oresic (2007) for a summary of MS1 data

processing methods.

Assumptions 2, 4 and 6 do not necessarily hold in real-

world spectra (Galezowska et al. 2013; Levsen et al. 2007).

However including them substantially reduces the

branching factor of the fragment enumeration, making the

computations feasible. Since these assumptions do appear

to hold in the vast majority of cases, we expect that

including them should have minimal negative impact on

the experimental results. Note that most 3-way fragmen-

tations can be modeled by two sequential, 2-way frag-

mentations, so including Assumption 2 should not impact

our ability to model most fragmentation events.

Assumption 5 allows for McLafferty Rearrangement and

other known fragmentation mechanisms (McLafferty and

Turecek 1993).

Our method for enumerating fragments is similar in

principle to the combinatorial approach used in MetFrag

and FiD (Wolf et al. 2010; Heinonen et al. 2008), with

some additional checks to enforce the above assumptions.

We systematically break all non-ring bonds in the molecule

(excluding those connecting to hydrogens) and all pairs of

bonds within each ring. We do this one break at a time,

enumerating a subset of fragments with all possible masses

that may form after each break, allowing for hydrogen

rearrangements. This subset is found by determining the

number of additional electrons that can be allocated to

either side of the break using integer linear programming to

enforce bond constraints—e.g. breaking the middle bond in

CCC[CH4?] (SMILES format) gives possible fragments

C=[CH3?] (mass = 29.04 Da, loss CC) and C[CH4?]

(mass = 31.05 Da, loss C=C), whereas it is not possible to

break the triple bond in C#[CH2?] because there is

nowhere for the electrons from the bond to go.

The fragmentation procedure is applied recursively on

all the produced fragments, to a maximum depth. The

result is a directed acyclic graph (DAG) containing all

possible charged fragments that may be generated from

that molecule. An abstract example of such a fragmentation

graph is provided in Fig. 2. Note that for each break, one of

the two produced fragments will have no charge. Since it is

not possible for a mass spectrometer to detect neutral

molecules, we do not explicitly include the neutral frag-

ments in the resulting graph, nor do we recur on their

Fig. 2 An abstract example of a fragmentation graph, showing a

directed acyclic graph of all possible ways in which a particular

charged molecule may break to produce smaller charged fragments
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possible breaks. However neutral loss information may be

included on the edges of the graph, indicating how a par-

ticular charged fragment was determined. This represen-

tation of the fragmentation possibilities as a DAG is similar

to that proposed by Böcker and Rasche (2008) with the

exception that their nodes contain molecular formulae

rather than structures for the ions.

2.1.2 Transition model

Our parametrized transition model assigns a conditional

probability to each fragment given the previous fragment in

the sequence F0;F1; . . .;Fd. Recall that Ft denotes the

random fragment state at time t, whereas fi denotes the ith

fragment in the space of all fragments. In the case where fi

has fj as a possible child fragment in a fragmentation graph,

our model assigns a positive probability to the transition

from Ft ¼ fi to Ftþ1 ¼ fj. Furthermore, self-transitions are

always allowed, i.e. the probability of transitioning from

Ft ¼ fi to Ftþ1 ¼ fi is always positive (for the same fi). We

assign 0 probability to all other transitions, i.e. those that

are not self-transitions, and that do not exist within any

fragmentation graph.

Although the set of possible charged fragments F is

large, the subset of child fragments originating from any

particular fragment is relatively small. For example, the

requirement that a feasible child fragment must contain a

subset of the atoms in the parent fragment rules out many

possibilities. Consequently most transitions will be

assigned a probability of 0. Note that the assigned proba-

bilities of all transitions originating at a particular frag-

ment, including the self-transition, must sum to one.

We now discuss how we parametrize our transition

model. A natural parametrization would be to use a tran-

sition matrix containing a separate parameter for every

possible fragmentation fi ! fj. Unfortunately, we lack

sufficient data to learn parameters for every individual

fragmentation in this manner. Instead, we look for methods

that can generalize by exploiting the tendency of similar

molecules to break in similar ways.

2.1.3 Break tendency

We introduce the notion of break tendency, which we

represent by a value h 2 R for each possible fragmentation

fi ! fj that models how likely a particular break is to occur.

Those fragmentations that are more likely to occur are

assigned a higher break tendency value, and those that are

less likely are given lower values. We then employ a

softmax function to map the break tendencies for all breaks

involving a particular parent fragment to probabilities, as

defined in Eq. 1 below. This has the effect of capturing the

competition that occurs between different possible breaks

within the same molecule. For example, consider the two

fragmentations in Fig. 3. Here, although both fragmenta-

tions involve an H2O neutral loss, in the left-hand case, the

H2O loss must compete with the loss of an ammonia group,

whereas in the right hand case, it does not. Hence our

model might assign an equal break tendency to both cases,

but this would still result in a lower probability of frag-

mentation in the former case, due to the competing

ammonia.

We model the probability of a particular break fi ! fj

occurring as a function of its break tendency value hi;j and

that of all other competing breaks from the same parent, as

follows:

qðfi; fjÞ ¼

exphi;j

1þ
P

k

exphi;k
: fi 6¼ fj and fi! fj is possible

1

1þ
P

k

exphi;k
: fi ¼ fj

0 : fi! fj is not possible

8
>>>>>>><

>>>>>>>:

ð1Þ

where the sums iterate over all k for which fi ! fk is

possible.

Since the break tendency is a relative measure, it makes

sense to tie it to some reference point. For the purposes of

this model, we have assigned the break tendency for a self-

transition (i.e. no break occuring) to hi;i ¼ 0, which gives

exp hi;i ¼ 1 as shown in (1).

Incorporating chemical features We need to compute

hi;j for i 6¼ j. To do this we first define a binary feature

vector Ui;j to describe the characteristics of a given break

fi ! fj. Such features might include the presence of a

particular atom adjacent to the broken bond, or the for-

mation of a specific neutral loss molecule—e.g. see Sect.

3.2. We then use these features to assign a break tendency

value using a linear function parameterized by a vector of

weights w 2 R
n—i.e. hi;j :¼ wTUi;j. This can then be

substituted into (1) to generate the probability of transition

fi ! fj. The first feature of Ui;j is a bias term, set to 1 for all

breaks. Note that the vector w constitutes the parameters of

the CFM model that we will be learning.

Fig. 3 Two similar breaks, both resulting in an H2O neutral loss. The

right case should be assigned a higher probability, as in the left case,

the NH3 is also likely to break away, reducing the probability of the

H2O loss
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2.1.4 Observation model

We model the conditional probability of P using a narrow

Gaussian distribution centred around the mass1 of Fd, i.e.

PjFd �NðmassðFdÞ; r2Þ. The value for r can be set accord-

ing to the mass accuracy of the mass spectrometer used. So, we

define this observation function to be the following

gðm;Fd; rÞ ¼ 1

r
ffiffiffiffiffiffi
2p
p exp � 1

2

m�massðFdÞ
r

� �2
( )

: ð2Þ

Our investigation (see supplementary data) of the mass

error of the precursor ions in the Metlin metabolite data

used in Sect. 3 found that the distribution of mass errors

had a mean offset of *1 ppm, and a narrower shape than a

Gaussian distribution. However, in order to model a more

general mass error, not specific to a particular instrument or

set of empirical data, we think the Gaussian distribution is

a reasonable approach.

2.1.5 Selecting parameter values

Our system estimates the values for the parameters w of the

proposed model by applying a training procedure to a set of

molecules X ¼ fx1; x2; . . .; xjXjg, for which we have both

the chemical structure and a measured MS/MS spectrum.

For the purposes of this work, we assume we have a

measured low, medium and high energy CID MS/MS

spectrum for each molecule, which we denote SðxÞ ¼
ðsLðxÞ; sMðxÞ; sHðxÞÞ 8x 2 X : Each spectrum is further

defined to be a set of peaks, where each peak is a pair

ðm; hÞ, composed of a mass m 2 R and a height (or

intensity) h 2 ½0; 100� � R. Note that each spectrum is

normalized, such that the peak heights sum to 100.

For this single energy version of the model, we derive

parameters for a completely separate model for each of the

three energy levels, using data from that level only. Note

that if we had data for only one energy level, we could use

this method to train a model using just that energy. How-

ever Sect. 2.2 will extend this model to combine the three

energy spectra for use in a single model. Until then, we will

use sðxÞ to denote whichever of sLðxÞ; sMðxÞ or sHðxÞ we

are currently considering.

Maximum likelihood We use a maximum likelihood

approach for parameter estimation. The likelihood of the

data X , given the parameters w, and incorporating the

previously defined transition function q and observation

function g, is given by

Lðw;XÞ¼
Y

x2X

Y

ðm;hÞ2sðxÞ

� X

F12C0ðxÞ
qðx;F1;wÞ

X

F22C0ðF1Þ
qðF1;F2;wÞ

...
X

Fd2C0ðFd�1Þ
qðFd�1;Fd;wÞgðm;Fd;rÞ

�h

ð3Þ

where CðfiÞ denotes the children of fi in all fragmentation

graphs containing it, and C0ðfiÞ ¼ ffig [ CðfiÞ.
However we are unable to maximize this function in

closed form. Instead we use the iterative Expectation

Maximization (Dempster et al. 1977) technique.

Expectation maximization (EM) In the E-step, the

expected log likelihood expression is given by

Qðwt;wt�1 j XÞ
¼ Ewt�1

�
logLðwt;XÞ

�

¼
X

F1

. . .
X

Fd

Pr
�
F1. . .Fd j X ; wt�1

�
logLðwt;XÞ;

ð4Þ

where wt denotes the values for w on the t-th iteration.

Substituting (1) and (2) into the above and re-arranging in

terms of all possible fragment pairs gives

Qðwt;wt�1 jXÞ ¼
X

ðfi;fjÞ2F�F
mwt�1ðfi; fj;XÞ logqðfi; fj;wtÞþK

ð5Þ

where

mwt�1ðfi; fj;XÞ ¼
Xd

d0¼1

gd0

wt�1ðfi; fj;XÞ;

gd
wt�1ðfi; fj;XÞ ¼

X

fðm;hÞ2sðxÞ:x2Xg
h Pr

�
Fd�1 ¼ fi;Fd ¼ fj j

F0 ¼ x;P ¼ m; wt�1
�

and

K ¼
X

Fd

PrðFd j X ; wt�1Þ log PrðP ¼ m jFdÞ:

In the M-Step, we look for the wt that maximizes the above

expression of Q. Noting that K is independent of wt and

denoting the lth component of w as wl,

oQ

owl

¼
X

ðfi;fjÞ2F�F
mwt�1ðfi; fj;XÞ

�
I½fi 6¼ fj�Ul

i;j �
X

k2CðfiÞ
Ul

i;kqðfi; fk; wÞ
�

ð6Þ

where Ul
i;k denotes the lth component of the feature vector

Ui;k and I½:� is the indicator function.

This does not permit a simple closed-form solution for

w. However Qðwt;wt�1 j XÞ is concave in wt, so settings for

wt can be found using gradient ascent. Values for the joint

1 Although mass spectrometry measures mass over charge, we

assume charge is always 1 (see Assumption 1 in Sect. 2.1.1) and

hence can use the mass here.
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probabilities in the gd
wt�1 terms can be computed efficiently

using the junction tree algorithm (Koller and Friedman

2009).

We also add an ‘2 regularizer on the values of w to Q

(excluding the bias term). This has the effect of discour-

aging overfitting by encouraging the parameters to remain

close to zero.

2.2 Combined energy CFM

MS/MS spectra are often collected at multiple collision

energies for the same molecule. Increasing the collision

energy usually causes more fragmentation events to occur.

This means that fragments appearing in the medium and

high energy spectra are almost always descendants of those

that appear in the low and medium energy spectra,

respectively. So the existence of a peak in the medium

energy spectrum may help to differentiate between expla-

nations for a related peak in the low or high energy spectra.

For this reason, we also assessed an additional model,

combined energy CFM (CE-CFM), which extends the SE-

CFM concept by combining information from multiple

energies as shown in Fig. 1b. PLOW, PMED and PHIGH each

represent a peak from the low, medium and high energy

spectrum respectively. The fragment states, transition rules

and the observation model are all the same here as for SE-

CFM. The main difference now is that the homogeneity

assumption is relaxed so that separate transition likelihoods

can be learned for each energy block—i.e., F0 to FdL
;FdL

to

FdM
and FdM

to FdH
, where dL; dM and dH denote the

fragmentation depths of the low, medium and high energy

spectra respectively. This results in separate parameter

values for each energy, denoted respectively as wL;wM and

wH . The complete parameter set for this model thus

becomes w ¼ wL [ wM [ wH .

We can again use a maximum likelihood approach to

parameter estimation based on the EM algorithm. This

approach deviates from the SE-CFM method only as follows:

– For each energy level, (6) is computed separately,

restricting the mwt�1 terms to relevant parts of the model

–e.g. d0 would sum from dL þ 1 to dM when computing

the gradients for wM , and from dMþ1 to dH when

computing gradients for wH .

– The computation of the gd
wt�1

terms combines evidence

from the full set of three spectra SðxÞ. In SE-CFM, we

apply one spectrum at a time, effectively sampling

from a distribution over the peaks from each observed

spectra. In this extended model we cannot do this

because we do not have a full joint distribution over the

peaks, but rather we only have marginal distributions

corresponding to each spectrum. The standard infer-

ence algorithms—e.g. the junction tree algorithm, do

not allow us to deal with observations that are marginal

distributions rather than single values. Instead we use

the iterative proportional fitting procedure (IPFP)

(Deming and Stephan 1940), with minor modifications

to better handle cases where the spectra are inconsistent

(not simultaneously achievable under any joint distri-

bution). These modifications reassign the target spectra

to be the average of those encountered when the

algorithm oscillates in such circumstances.

3 Experimental results

In this section we present results using the above described

SE-CFM (d ¼ 2) and CE-CFM (dL ¼ 2; dM ¼ 4; dH ¼ 6)

methods, on a spectrum prediction task, and then in a

metabolite identification task.

3.1 Data

We used the Metlin database (Smith et al. 2005), separated

into two sets (see description below) each containing

positive mode, ESI-MS/MS spectra from a 6510 Q-TOF

(Agilent Technologies) mass spectrometer, measured at

three different collision energies: 10, 20 and 40 V, which

we assign to be low, medium and high energy respectively.

Each set was randomly divided into 10 groups for use

within a tenfold cross validation framework.

1. Tripeptides The Metlin database contains data for over

4,000 enumerated tripeptides. We randomly selected

2,000 of these molecules, then omitted 15 that had four

or more rings due to computational resource concerns,

leaving 1985 remaining in the set. Fragmentation

patterns in peptides are reasonably well understood

(Papayannopoulos 1995; Paizs and Suhai 2005), lead-

ing to effective algorithms for identifying peptides

from their ESI MS/MS data—e.g. (Perkins et al. 1999;

Eng et al. 1994; Ma et al. 2003). However, we think

that the size of this dataset, and the fact that it contains

so many similar yet different molecules, make it an

interesting test case for our algorithms.

2. Metlin metabolites We use a set of 1,491 non-peptide

metabolites from the Metlin database. These are a

more diverse set covering a much wider range of

molecules. An initial set of 1,500 were selected

randomly. Nine were then excluded because they were

so much larger than the other molecules (over 1,000

Da), such that their fragmentation graphs could not be

computed in a reasonable amount of time.

We also used an additional small validation set, selected

because they were measured on a similar mass spectrom-

eter, an Agilent 6520 Q-TOF, but in a different laboratory.
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These were taken from the MassBank database (Horai et al.

2010). All testing with this set used a model trained for the

first cross-fold set of the Metlin metabolite data (� 90 % of

the data).

3. MassBank metabolites This set contains 192 metabo-

lites taken from the Washington State University

submission to the MassBank database. All molecules

from this submission were included that had MS2

spectra with collision energies 10, 20 and 40 V, in

order to provide a good match with the Metlin data.

Files containing test molecule lists and assigned cross

validation groups are provided as supplementary data.

3.2 Chemical features

The chemical features used in these experiments were as

follows. Note that the terms ion root atom and neutral loss

(NL) root atom refer to the atoms connected to the broken

bond(s) on the ion and neutral loss sides respectively—cf.,

Fig. 4.

– Break atom pair Indicators for the pair of ion and

neutral loss root atoms, each from {C, N, O, P, S,

other}, included separately for those in a non-ring

break versus those in a ring break—e.g. Fig. 4a: would

be non-ring C–C. (72 features)

– Ion and NL root paths Indicators for all paths of length

2 and 3 starting at the respective root atoms and

stepping away from the break. Each is an ordered

double or triple from {C, N, O, P, S,other}, taken

separately for rings and non-rings. Two more features

indicate no paths of length 2 and 3 respectively—e.g.

Fig. 4a): the ion root paths are C–O, C–N and C–N–C.

(2020 features).

– Gasteiger charges Indicators for the quantised pair of

Gasteiger charges (Gasteiger and Marsili 1980) for the

ion and NL root atoms in the original unbroken

molecule. (288 features)

– Hydrogen movement Indicator for how many hydro-

gens switched sides of the break and in which direction

–i.e. ion to NL (�) or NL to ion(?) {0, �1;�2;

�3;�4, other}. (10 features)

– Ring features Properties of a broken ring. Aromatic or

not? Multiple ring system? Size {3, 4, 5, 6, other}?

Distance between the broken bonds {1, 2, 3, 4?}?—

e.g. Fig. 4b is a break of a single aromatic ring of size 6

at distance 3. (12 features).

Of these 2,402 features, few take non-zero values for any

given break. Many are never encountered in our data set, in

which case their corresponding parameters are set imme-

diately to 0. We also append Quadratic Features, con-

taining all 2,881,200 pair-wise combinations of the above

features, excluding the additional bias term. Again, most

are never encountered, so their parameters are set to 0.

3.3 Spectrum prediction

For each cross validation fold, and the MassBank validation

set, a model (trained as above), was used to predict a low,

medium and high energy spectra for each molecule in the

test set. The model is run forward and the resulting marginal

distributions for the peak variables are a mixture of Gaussian

distributions. We take the means and weights of these

Gaussians as our peak mass and intensity values. Since all

fragments in the fragmentation graph of a molecule have

non-zero probabilities in the marginal distribution, it is

necessary to place a cut-off on the intensity values to select

only the most likely peaks. Here, we use a post-processing

step that removes peaks with low probability, keeping as

many of the highest peaks as required to form at least 80 %

of the total intensity sum. We also set limits on the number of

selected peaks to be at least 5 and at most 30. This ensures

that more peaks are included than just the precursor ion, and

also prevents spectra occurring that have large numbers of

very small peaks. These values were selected arbitrarily, but

post-analysis suggests that they are reasonable (see supple-

mentary data). When matching peaks we use a mass toler-

ance set to the larger of 10 ppm and 0.01 Da (depending on

the peak mass), and set the observation parameter r to be one

third of this value. No additional processing was done for the

experimental spectra.

3.3.1 Metrics

We consider a peak in the predicted MS/MS spectrum sP to

match a peak in the measured MS/MS spectrum sM if their

masses are within the mass tolerance above. We use the

following metrics:

Fig. 4 Two example fragmentations. a A non-ring break for which

the ion and neutral loss root atoms are labeled. The 1H indicates the

movement of a hydrogen to the ion side (marked with ?) from the

neutral loss side. b A ring break for a single aromatic ring of size 6, in

which the distance between the broken bonds is 3
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1. Weighted recall The percentage of the total peak

intensity in the measured spectrum with a matching

peak in the predicted spectrum: 100�
P

ðm;hÞ2sM

h�

I½ðm; hÞ 2 sP� 	
P

ðm;hÞ2sM

h.

2. Weighted precision The percentage of the total peak

intensity in the predicted spectrum with a matching

peak in the measured spectrum: 100�
P

ðm;hÞ2sP

h�

I½ðm; hÞ 2 sM� 	
P

ðm;hÞ2sP

h.

3. Recall The percentage of peaks in the measured

spectrum that have a matching peak in the predicted

spectrum: 100� jsP \ sMj 	 jsMj.
4. Precision The percentage of peaks in the predicted

spectrum that have a matching peak in the measured

spectrum: 100� jsP \ sMj 	 jsPj.
5. Jaccard score jsP \ sMj 	 jsP [ sM j.
The intensity weighted metrics were included because the

unweighted precision and recall values can be misleading

in the presence of low-level noise—e.g. when there are

many small peaks in the measured spectrum. The weighted

metrics place a greater importance on matching higher

intensity peaks, and therefore give a better indication of

how much of a spectrum has been matched. However,

these weighted metrics can also be susceptible to an over-

emphasis of just one or two peaks, and in particular of the

peak corresponding to the precursor ion. Consequently, we

think it is informative to consider both weighted and non-

weighted metrics for recall and precision.

3.3.2 Models for comparison

The pre-existing methods,—e.g. MetFrag, FingerID—do

not output a predicted spectrum, but skip directly to

metabolite identification. So, instead we compare against:

– Full enumeration This model considers the predicted

spectrum to be one that enumerates all possible

fragments in the molecule’s fragmentation tree with

uniform intensity values.

– Heuristic (tripeptides only) This model enumerates

known peptide fragmentations as described by (Papayan-

nopoulos 1995), including bn; yn; bn � H2O; yn � H2O;

bn � NH3; yn � NH3 and immonium ions.

3.3.3 Results

The results are presented in Fig. 5. For all three data sets,

SE-CFM and CE-CFM obtain several orders of magnitude

better precision and Jaccard scores than the full

enumerations of possible peaks. There is a corresponding

loss of recall. However, if we take into account the inten-

sity of the measured peaks, by considering the weighted

recall scores, we see that our methods perform well on the

more important, higher intensity peaks. More than 75 % of

the total peak intensity in the tripeptide spectra, and

*60 % of the total peak intensity in the metabolite spectra,

were predicted.

The results presented in Fig. 5 show scores averaged

across the three energy levels for each molecule. If we

consider the results for the energy levels separately (see

supplementary data), we find that the low and medium

energy results are much better for all methods we assessed.

For example, in the case of the low energy spectra, the

weighted recall scores for SE-CFM are 78, 73 and 81 % for

the tripeptide, Metlin metabolite and MassBank metabolite

data sets respectively, as compared to 73, 29 and 37 %

respectively for the high energy spectra. The poorer high

energy spectra results may be due to increased noise and a

lower predictability of events at the higher collision ener-

gies. Another possible explanation is that the even-electron

rule and other assumptions listed in Sect. 2.1.1 may be less

reliable when there is more energy in the system. Or per-

haps it is simply a factor of the number of peaks per energy

level, given that the median numbers of peaks in the

measured and predicted spectra respectively were 5 and 6

in the low, 9 and 16 in the medium and 12 and 30 in the

high energy spectra.

In the case of the tripeptide data, our methods achieve

higher recall scores and similar rates of precision to that of

the heuristic model of known fragmentation mechanisms,

resulting in improved Jaccard scores. Since peptide frag-

mentation mechanisms are fairly well understood, this

result is not intended to suggest that our method should be

used in place of current peptide fragmentation programs,

but rather to demonstrate that SE-CFM and CE-CFM are

able to extract fragmentation patterns from data to a similar

extent to human experts, given a sufficiently large and

consistent data set. Like our methods, the heuristic models

also perform better for the lower energy levels, with a

weighted recall score of 66 % for the low energy, as

compared to only 24 % for the high energy.

Unsurprisingly, being a smaller and more diverse data

set, the Metlin metabolite results are poorer than those of

the tripeptides. However the weighted recall for both our

methods is still above 60 % and the precision and Jaccard

scores are much higher than for the full enumeration,

suggesting that the CFM model is still able to capture some

of the common fragmentation trends.

The weighted recall and precision results for the Mass-

Bank metabolites are fairly comparable to those of the

Metlin metabolites. There is a small loss in the non-
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weighted recall, however this is probably due to a higher

incidence of low-level noise in the MassBank data. This

results in a small loss in the average Jaccard score. How-

ever these results demonstrate that the fragmentation trends

learned still apply to a significant degree on data collected

at a different time in a different laboratory.

Since this is the first method, to the authors’ knowledge,

capable of predicting intensity values as well as m/z values,

we also investigated the accuracy of CFM’s predicted

intensity values. We found that the Pearson correlation

coefficients for matched pairs of predicted and measured

peaks, were 0.7, 0.6 and 0.45 for the low, medium and high

spectra respectively (SE-CFM and CE-CFM results were

not significantly different). This indicates a positive,

though imperfect correlation. Full results and scatter plots

are contained in the supplementary data.

Running on a 2.2 GHz Intel Core i7 processor, the

median run-time for the spectrum predictions for each

molecule in the Metlin metabolite data set was 5 s. Larger

molecules with more ring systems generally take longer as

they have so many more fragmentation possibilities in the

initial enumeration. For molecules with no rings, the

median run-time was 2 s, whereas for molecules with 3 or

more rings, the median run-time was 9 s. The longest run-

time in the Metlin metabolite set was for Troleandomycin

(Metlin ID 41012), which has a molecular weight over 800

Da and contains three ring systems, one of which is size 14.

It took just under 5 min.

3.4 Metabolite identification

Here we apply our CFM MS/MS spectrum predictions to a

metabolite identification task. For each molecule, we pro-

duce two candidate sets via queries to two public databases

of chemical entities:

1. We query the PubChem compound database (Bolton

et al. 2008) for all molecules within 5 ppm of the

known molecule mass. This simulates the case where

little is known about the candidate compound, but the

parent ion mass is known with high accuracy.

2. We query Kyoto Encyclopedia of Genes and Genomes

(KEGG) (Kanehisa et al. 2006) for all the molecules

within 0.5 Da of the known molecular mass. This

simulates the case where the molecule is thought to be

a naturally occurring metabolite, but there is more

uncertainty in the target mass range.

To conduct this assessment, duplicate candidates were fil-

tered out—i.e. those with the same chemical structure,

including those that only differ in their stereochemistry.

Charged molecules and ionic compounds were also removed

since the program assumes single fragment, neutral candi-

dates (to which it will add a proton). After filtering, the

median number of candidates returned from PubChem was

911 for the tripeptides and 1,025 for the metabolites. Note

that 9 tripeptides and 57 of the Metlin metabolites were

excluded from this testing because no matching entry was

Fig. 5 Spectrum prediction results for tripeptides (left), metabolites

from Metlin (middle) and metabolites from MassBank (right). The x-

axes show the five metrics: weighted recall (WR), weighted precision

(WP), recall (R), precision (P) and Jaccard (J), averaged across the

three energy levels for each test molecule. Bars display mean scores

� standard error. In each plot, note that the y-axis for Jaccard (on

right) is different from the others (on left)

CFM of ESI-MS/MS spectra for putative metabolite identification 107

123



found in PubChem for these molecules. The KEGG queries

were only carried out for the metabolite data. The median

number of candidates returned was 22, however no matching

entry was found in KEGG for 833 of the Metlin metabolites

and 111 of the MassBank metabolites.

Whenever a matching entry could be found, we ranked

the candidates according to how well their predicted low,

medium and high spectra matched the measured spectra of

the test molecule. The ranking score we used was the

Jaccard score described in Sect. 3.3.

We compared the ranking performance of our SE-CFM

and CE-CFM methods against those of MetFrag (Wolf

et al. 2010) and FingerID (Heinonen et al. 2012). We used

the same candidate lists for all programs. For candidate

molecules with equal scores, we had each program break

ties in a uniformly random manner. This was in contrast to

the original MetFrag code, which used the most pessimistic

ranking; we did not use that approach as it seemed

unnecessarily pessimistic. We set the mass tolerances used

by MetFrag when matching peaks to the same as those used

in our method (maximum of 0.01 Da and 10 ppm). Met-

Frag and FingerID only accept one spectrum, so to input

the three spectra we first merged them as described by

(Wolf et al. 2010): we took the union of all peaks, and then

merge together any peaks within 10 ppm or 0.01 Da of one

another, retaining the average mass and the maximum

intensity of the two. In FingerID we used the linear High

Resolution Mass Kernel including both peaks and neutral

losses, and trained using the same cross-fold sets as for our

own method. Overall, we attempted to assess CFM, Met-

Frag and FingerID as fairly as possible, using identical

constraints, identical databases and near-identical data

input. The results are shown in Fig. 6.

As seen in this figure, our CFM method achieved sub-

stantially better rankings than both the existing methods on

all three data sets, for both the PubChem and KEGG

queries. When querying against KEGG, our methods found

the correct metabolite as the top-scoring candidate in over

70 % of cases for both metabolite sets and almost always

ð[ 95 %Þ ranked the correct candidate in the top 5. In

comparison, MetFrag ranked the correct metabolite first in

*50 % of cases for both metabolite sets, and in the top 5

in 89 %. FingerID ranked the correct metabolite first in

\15 % of cases.

For PubChem, our methods performed well on the tri-

peptide data, identifying the correct metabolite as the top-

scoring candidate in more than 50 % of cases and ranking

the correct candidate in the top 10 for more than 98 % of

cases. This is again convincingly better than both MetFrag

and FingerId, which rank the correct candidate first in\35

and 2 % of cases respectively.

For the metabolite data, CE-CFM and SE-CFM were

able to identify the correct metabolite in only 12 and 10 %

of cases respectively, however given that this is from a list

of approximately one thousand candidates, this perfor-

mance is still not bad. Once again, it is substantially better

Fig. 6 Ranking results for metabolite identification, comparing both

CFM variants with MetFrag and FingerID for tripeptides (left),

metabolites from Metlin (middle) and validation metabolites from

MassBank (right), querying against PubChem within 5 ppm (circles)

and KEGG within 0.5 Da (triangles). Note that our methods out-

perform both MetFrag and FingerID on all metrics, regardless of the

database used
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than MetFrag and FingerID, which correctly identified \6

and 1 % of cases respectively. Our methods rank the cor-

rect candidate in the top 10 in more than 40 % of cases on

both data sets, as compared to MetFrag’s performance of

31 % on the Metlin metabolites and 21 % on the Mass-

Bank metabolites. Additionally, the top-ranked compound

was found to have the correct molecular formula in more

than 88 % of cases for SE-CFM and 90 % of cases for CE-

CFM, suggesting that both methods mainly fail to distin-

guish between isomers. While the performance of all three

methods (CFM, MetFrag and FingerID) is not particularly

impressive for the PubChem data sets (i.e. \12 % correct)

we would argue that the PubChem database is generally a

poor database choice for anyone wishing to do MS/MS

metabolomic studies. With only 1 % of its molecules

having a biological or natural product origin, one is already

dealing with a rather significant challenge of how to

eliminate a 100:1 excess of false positives. So we would

regard the results from the PubChem assessment as a

’’worst-case’’ scenario and the results from the KEGG

assessment as a more typical metabolomics scenario.

The results for CE-CFM showed minimal difference

when compared to those of SE-CFM, casting doubt on

whether the additional complexity of CE-CFM is justified.

However we think this idea is still interesting as a means

for integrating information across energy levels and may

yet prove more useful in future work.

The running time of the metabolite identifications is

mainly dependent on the number of candidate molecules

and the time taken to predict the spectra for each. For

example, taking 1,000 candidates (as in the PubChem tests)

at the median spectrum prediction run-time of 5 s (see Sect.

3.3), the identification would be expected to take in the

order of 1.5 h. Taking only 22 candidates (as in the KEGG

tests), this reduces to 2 min. It would be trivial to paral-

lelize the computation by distributing candidates across

processors. When repeatedly querying against the same

database, it may also be expedient to precompute the pre-

dicted spectra to reduce the identification run-time. For

example, our web server interface http://cfmid.wishartlab.

com provides access to precomputed spectra for all 40,000

compounds in HMDB and over 10,000 compounds in

KEGG. We encourage readers to make use of this web

server, as well as our executables and source code, made

available at http://sourceforge.net/projects/cfm-id.

4 Conclusion

We have proposed a model for the ESI-MS/MS fragmen-

tation process and a method for training this model from

data. The performance has been benchmarked in cross

validation testing on a large molecule set, and further

validated using an additional dataset from another labora-

tory. Head-to-head comparisons using multiple data sets

under multiple conditions show that the CFM method

significantly outperforms existing state-of-the-art methods,

and has attained a level that could be useful to experi-

mentalists performing metabolomics studies.
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