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Abstract—There is increased interest in using patient-specific
information to personalize treatment. Personalized treatment
decision rules can be learned using data from standard clinical
trials, but such trials are very costly to run. This paper
explores the use of budgeted learning techniques to design
more efficient clinical trials, by effectively determining which
type of patients to recruit, at each time, throughout the
duration of the trial. We propose a Bayesian bandit model and
discuss the computational challenges and issues pertaining to
this approach. We compare our budgeted learning algorithm,
which approximately minimizes the Bayes risk, using both
simulated data and data modeled after a clinical trial for
treating depressed individuals, with other plausible algorithms.
We show that our budgeted learning algorithm demonstrated
excellent performance across a wide variety of situations.

Keywords-Budgeted Learning; Bayesian; Active Learning;
Personalized Treatment;Reinforcement Learning

I. INTRODUCTION

As every patient is different, a treatment that works
well for one patient may be completely ineffective or even
harmful for other patients with the same disease. The goal of
personalized medicine is to treat a patient with the treatment
that is best for her, based on her own characteristics [1].
Unfortunately, medicine is still a long way from this goal.
Over the past decade, medical science has taken a staged
approach [2], where the first step has been to identify useful
characteristic (biomarker) or combinations of characteristics
(biomarker profiles). These characteristics can be any biolog-
ical, psychological, social and genetic factor that is likely to
influence the effectiveness of the treatment. The second step
is to determine which treatment is best for each biomarker
profile. Hence, a central challenge in clinical research is the
development of clinical trial designs that efficiently evaluate
the clinical usefulness of the putative biomarker profiles for
personalizing treatment.

As an example, suppose researchers in depression dis-
orders have conjectured that the best treatment for several
biomarker profiles might be different. Here a natural ques-
tion is how best to design a clinical trial to learn the best
treatment for each profile; see Section IV-B. To reduce the
cost of running such trials, many researchers have started
to utilize modern clinical infrastructure such as electronic
medical records to recruit their participants, thus permitting

targeted recruitment of participants in each biomarker pro-
file. We can therefore formulate the design of the clinical
trial as a Bayesian budgeted bandit problem, where each
intermediate decision step specifies which type of patients
(that is which biomarker profile) to recruit, anytime during
the trial. The goal is to optimize the overall quality of
the resulting personalized treatment. Below we formualte
this task more precisely, then propose an approximation
algorithm for solving this problem and provide experimental
results that demonstrate the excellent performance of our
approach.

We further discuss related work in clinical research,
budgeted learning and other areas in Section II. We then
give a formal definition of the Bayesian budgeted design
problem for developing personalized treatment and describe
a look-ahead algorithm in Section III. Finally, Section IV
describes various properties of the proposed algorithm and
demonstrates its effectiveness using both simulated data and
data modeled after a specific clinical trial.

II. RELATED WORK

In clinical research, currently the most common approach
for personalizing treatment is to use a conventional multi-
arm randomized trial with post-hoc, subgroup analyses [3].
Typically, this type of trial recruits uniformly from the
whole population of patients who meet a basic “inclusion”
criterion, and then randomly assigns each patient to one
of the several treatment arms. Only after the entire trial
is completed do researchers search for patient subgroups
for which the treatment effect seems to be significant.
Unfortunately this approach suffers from severe drawbacks.
Findings in these post-hoc analyses are notoriously hard to
replicate: biomarker profiles discovered retrospectively in
post-hoc analyses are likely to be spurious due to chance.
This is due (at least partially) to the use of many statistical
tests without controlling the overall error rate. It is also
difficult to obtain a good estimate of treatment effects for
rare biomarker profiles in these trials, as those profiles are
most-likely under-represented. A more severe problem is
that the conventional multi-armed randomized trial does not
make efficient use of the trial resources, as it does not take
advantage of the information accumulated during the trial.



The basic problem is that these multi-arm randomized trials
were designed to compare treatments, but not for our task of
informing the development of personalized treatment. (This
type of standard trials could help develop personalized treat-
ment indirectly—by proposing candidate biomarker profiles
for further study.)

In clinical research literatures, other methods have been
proposed to determine if there is any benefit of a single
binary biomarker [2]. These designs use hypothesis-testing
based approaches to test if a treatment is beneficial in neither
biomarker profiles (null hypothesis) versus the treatment
benefits one of the profiles (alternative hypothesis). These
methods have been largely studied in a two-stage enrichment
design [4], [5] over two profiles. Typically, in the first stage,
the clinical trial recruits patients from both profiles, then
in the second stage, the clinical trial recruits from one or
both of the profiles, depending on the evidence collected
from the first stage. We consider a generalization of this
approach to situations with multiple biomarker profiles in
which patients are recruited continuously without requiring
an interim stopping of the trial.

Our formulation (Section III) also bears formal similarity
with targeted response adaptive trials [6], recently popular in
cancer research, which also divide patients into subgroups.
The cancer patients are usually so sick that these trial designs
naturally aim to place more patients on what appears to
be the better treatment in each subgroup, which echoes the
objective of “maximizing cumulative reward” in standard
bandit problems [7]. Similarly in machine learning and
statistics, bandit problems that aim to explore and exploit
contextual information (i.e. subgroups or biomarker profiles)
have been studied under the name of contexual bandits or
bandit with covariates, [8], [9]. These works also aim to
maximize cumulative reward, which is quite different from
the goal of our work.

Our goal is to produce a system that works effectively, at
“performance time” (i.e. treating patients outside the trial).
As such, it is similar to the standard budgeted (probe) learn-
ing [10] in machine learning, which seeks to learn the most
accurate classifier subject to a fixed data collection budget.
The main differences are that budgeted probe learning (1) at
training time, sequentially selects a feature on an instance to
probe, and (2) produces a classifier; whereas we (1) apply a
specified treatment to a patient from a specified biomarker
profile and (2) produce treatment decision rules that map a
biomarker profile to a treatment.

A budgeted version of the Bernoulli bandit problem was
studied in [11], in which the goal is to minimize the
difference between the success probability of the chosen arm
and that of the best arm. In this setting the regret corresponds
to the hinge loss. Our formulation in Section III is also
a budgeted bandit problem, in which the action of “arm
pull” corresponds to recruiting from a biomarker profile. Our
formulation also uses the hinge loss. The main difference

lies in the choice of the objective function, as our goal
is to learn the best treatment for all biomarker profiles,
which differs from their goal of selecting the single best
arm. Other budgeted bandit problems that focus only on the
“end results” have also been studied [12]–[15]. These works
differ from ours mathematically either due to the choice of
loss functions (sum of variances or 0-1 loss vs hinge loss) or
the choice of risk functions (Bayesian vs frequentist risk).

Budgeted bandit problems are also connected to tradi-
tional sequential analysis in statistics [16], [17]. Often the
question there is when one should stop data collection,
where the goal is minimizing the combined loss of decision
making and sampling cost, usually there is no pre-specified
hard sample size constraint. Our work utilizes the Bayesian
formulation [17], which is appropriate as it provides a
natural way to utilize the information collected during the
experiment. Finally, there is a large literature in operation
research on “ranking and selection”, in which the goal is
usually to select the best arm meeting a prespecified prob-
ability guarantee. Our work uses some of their algorithmic
ideas, especially from [18].

III. METHODS

We consider the following budgeted learning problem.
1. There are 2 treatments S = {A,B} for a fixed disease.
2. There are K distinct biomarker profiles of people with

the disease.
3. For each i ∈ {1, · · · ,K}, and s ∈ S, the clinical

outcome of treating patient from profile i with treatment s is
Yi,s. The outcomes Yi,s ∼ Norm(µi,s, σ

2
ε ) are independent

conditioned on µ = (µ1,A, µ1,B , · · · , µK,A, µK,B), which
is unknown. σ2

ε is assumed both known and homogeneous
over profiles and treatments. The assumption of known σ
reduces the clutter of notations, but does not fundamentally
alter the problem.

4. A budgeted learning trial design b (i.e., an MDP policy
[19]) for a sampling size (budget) 2T , is a tuple b = (e, d),
with e = (e0, · · · , eT−1) being the exploration rule and d
being the final decision rule. For computational convenience
and as an initial investigation, we consider randomization
of treatments within each profile in the following way:
at decision time point t = 0, · · · , T − 1, the exploration
rule et suggests from which biomarker profile to recruit
the next pair of patients. When a profile is chosen for
experimentation, a pair of patients from that profile will
be selected, one of which is assigned to treatment A and the
other to treatment B. As the sample size is 2T , a budgeted
learning trial design b will need to make T exploration
decisions.

Let Xt ∈ ({1, ...,K} × R × R)t denote the sequence of
recruitment and outcomes observed up to time t, with action
∈ {1, ...,K} and real-valued outcomes for treatment A and
B at each time. et(Xt) is the next exploration action taken
at time t + 1, and Xt+1 ≡ (et(X

t), Yet(Xt),A, Yet(Xt),B),



Xt+1 ≡ [Xt, Xt+1], and so on. At time t = 0, X0 = {}. We
assume for now there is no delay in observing the outcome:
before the next decision time t + 1 arrives, Xt has already
been observed. (But see Section IV-D)

At decision time t = T , a final decision rule d specifies
how to map profile information to a treatment. That is, d =
(d1, d2, ..., dK), where di(XT ) ∈ {A,B} is the treatment
deemed best for patients belonging to profile i.

5. We define the loss function for a decision action a =
(a1, · · · , ak) = d(XT ) ∈ {A,B}K , as the sum of regrets
of not selecting the better treatments:

L(µ, a) =
∑
i

[µi,āi − µi,ai ]+ (1)

where µ is the unobserved effect vector, ai is the chosen
treatment for profile i, āi = {A,B}\ai is the “other”
treatment, and [x]+ = max(x, 0) is the hinge loss. While
it is tempting to consider the 0-1 loss: L0/1(µ, a) =∑
i 1{µi,āi > µi,ai}, corresponding to the (probability of)

failure to identify the best treatment, this loss can be too
harsh when µi,A and µi,B are very close to each other,
which might lead to excessive sampling of such profiles.
In classification problems, this motivates algorithms (e.g.
SVM) that choose to optimize margin loss rather than 0-1
classification error. In Section IV, we report the performance
of our algorithm using both loss functions. Finally, while
we could extend our model to handle weighted loss (say,
by subpopulation sizes), we intentionally view all profiles
equally: if the rarest profile has the largest effect, we want
to discover this.

6. We take a Bayesian view by assuming the true treat-
ment effect vector µ follows a prior multivariate Gaussian
distribution ρ = N(µ, v): µ =

(
ζ, · · · , ζ

)
, and v =

Diag[τ2, · · · , τ2]; below we set ζ = 0 and τ = 100
as an uninformative prior. It would be trivial to extend
our model to accommodate correlated profiles. We did not
pursue this as in our applications, different profiles are often
based on very different biological pathways, so there is no
apriori reason to believe that the treatment effects should be
correlated across profiles.

The Bayes decision risk of the budgeted trial design b =
(e, d) is

r(ρ, b) = EL(µ, d(XT )) (2)

where the expectation is taken with respect to both the prior
distribution of the µ as well as the conditional distribution of
observed outcome history XT given µ. Note XT implicitly
depends on b. Our goal is to find a trial design with decision
risk close to infb r(ρ, b).

A. Bayes Decision Rule dρ and Posterior Decision Analysis

Given our framework, the posterior distribution of µ|Xt

for t = 1, · · · , T is a multivariate Gaussian distribution,
denoted as ρt = N(µ(t), v(t)), where µ(t) is the posterior

mean vector, and v(t) is the posterior covariance matrix.
Define κ(ρt, ai) ≡ Eµ∼ρt [µi,āi − µi,ai ]+ to be the pos-
terior expected loss for decision ai for the ith profile.
Also define the “posterior expected loss” of a decision
a = (a1, a2, · · · , aK) as:

κ(ρt, a) =
∑
i

κ(ρt, ai) =
∑
i

Eµ∼ρt [µi,āi −µi,ai ]+ (3)

The “posterior Bayes action”, denoted as dρ(XT ) ∈
arg mina κ(ρT , a), is any decision a that minimizes κ(ρT , a)
over a ∈ {A,B}K . Berger [17] shows that in our Bayesian
setting, finding dρ (the Bayes decision rule) is equivalent to
finding dρ(XT ) for any outcome XT .

The Bayes decision rule is

dρi (X
T ) =

{
A if µ(T )

i,B ≤ µ
(T )
i,A

B otherwise
(4)

where µ(T )
i,B and µ

(T )
i,A are the posterior means. To see this,

note that by linearity, Equation 3 is minimized when each
term Eu∼ρT [µi,āi −µi,ai ]+ is minimized. Now we focus on
one of the profiles (say, profile 1) and drop the subscript i.
To compute the Bayes action arg mina∈{A,B} κ(ρT , a), we
first compute κ(ρT , A). Here

κ(ρT , A) = σφ(δ/σ) + δΦ(δ/σ) (5)

σ2 ≡ v
(T )
A + v

(T )
B (6)

δ ≡ µ
(T )
B − µ(T )

A (7)

where v
(T )
A is the posterior variance parameter in ρT for

treatment A, and v(T )
B for treatment B; and Φ(·) (resp. φ(·))

is the CDF (resp. PDF) of N(0, 1). We can derive a similar
result for κ(ρT , B), differing only by reversing the sign of δ.
Thus we should choose treatment A if κ(ρT , A) ≤ κ(ρT , B),

⇔ σφ(δ/σ) + δΦ(δ/σ) ≤ σφ(δ/σ)− δΦ(−δ/σ)

⇔ δ(Φ(δ/σ) + Φ(−δ/σ)) = δ ≤ 0 (8)

From now on, we will assume that this Bayes decision rule
dρ will be used. A more general derivation shows that, as
long as the loss function is a summation of hinge losses, and
the posterior distributions ρT can be factorized as products
of marginals for each profile, the decision rule in Equation 4
holds for other distributions as well.

B. Approximating the Exploration Rule eρ

Calculating the Bayes exploration rule eρ is much harder
than calculating the Bayes decision rule dρ. Conceptually,
the optimal exploration rule is the solution to a continuous
space Markov Decision Process (aka “belief MDP”) in
which the unobserved states are the sets of all possible
treatment effect vectors µ. In other words, this is a “multi-
armed bandit” situation. The belief states of the belief
MDP are the set of all possible posterior distributions of
µ; these posterior distributions can be parameterized by the



posterior mean vector and the allocations of patients to each
profile. Conceptually we can then define the transition kernel
given the exploration action taken, and use value iteration
algorithms. However in practice, belief MDPs are often
computationally intractable to solve exactly, leading to many
proposals for approximate solutions [20], [21].

Here we propose a simpler algorithm based on ideas from
operations research using two approximation ideas. The first
idea is to approximate the dynamic allocation using a static
allocation, which determines how many patients from each
profile to select, before seeing any of the outcomes. Because
even the static allocation is computationally hard, the second
idea is to employ a further approximation to the posterior
distribution to compute the static allocation.

First consider approximating the dynamic allocation with
a static allocation problem: Here we start with a prior
distribution ρ = N(µ(0), v(0)) for µ, and allocate the next
m pairs of patients at one shot, for some specified number
of look-ahead steps m. How should we allocate these 2m
instances to maximally reduce the decision risk r(ρ, (e, d))?
The general strategy is to compute r(ρ, (e, d)) for all pos-
sible e (i.e. combinatorial allocations of m pairs among K
profiles) then choose the e that produces minimal risk r. Let
n = (n1, n1, n2, n2, · · · , nK , nK) be the number of patients
to be assigned to each profile/treatment combination, and
ρm = N(µ(m), v(m)) be the posterior distribution of µ
after observing the 2m outcomes (denoted as Xm) of these
patients. Then the static allocation problem is to choose n
such that

minimize
n

r(ρ, (e, d)) = EXm κ(ρm, d(Xm)) (9)

s.t. κ(ρm, d(Xm)) =
∑
i

σiφ(δi/σi) + δiΦ(δi/σi)

(10)

σ2
i = v

(m)
i,A + v

(m)
i,B

δi = µ
(m)

i,d̄i(Xm)
− µ(m)

i,di(Xm)∑
ni = m

where the expectation in EXm κ(ρm, d(Xm)) is with respect
to the marginal density of X(m); v(m)

.,. are the posterior vari-
ance parameters; and µ(m)

.,. are the posterior mean parameters
conditioned on Xm. Note that v(m) is fully determined by
the prior ρ and the allocation n, but does not depend on
outcomes Xm, while µ(m) does depend on the “future”
outcome Xm.

The difficulty in solving this static allocation problem
is that the objective function is hard to directly calculate.
The posterior expected loss κ(ρm, d(Xm)) depends on data
Xm, which is not yet observed. This is where the second
approximation idea is useful. When m is not too big, Chen
[18] proposed assuming µ(m) ' µ, i.e. assume the posterior
mean does not change too much in the next few allocations.
With this assumption, κ(ρ, d(Xm)) does not depend on the

actual outcomes but just on the allocation n, so there is no
need to take expectation over Xm. The changes to the above
static allocation are: in Equation 9, replace r(ρ, (e, d)) by
κ(ρm, d(Xm)) and replace δi by −|µ(0)

i,B − µ
(0)
i,A|.

After obtaining the solution to the static allocation prob-
lem, there are several ways to use the static allocation to
design a sequential allocation algorithm. For example, one
can select the next profile probabilistically according to
Multinomial(ni/m), giving priorities to profiles that have
higher static allocation. For the special case when m = 1,
this corresponds to selecting the next profile that would
decrease the decision risk the most. We call this algorithm
“Look-ahead (LA)”, which is sketched in Algorithm 1.

Algorithm 1 The look-ahead algorithm LA
Inputs. m: the look-ahead step; 2T : the budget; 2w: initial
probe per profile
1. Initially, recruit 2w patients from each profile; compute
the posterior distribution ρ.
2. while there is some budget left do

a. Using ρ as prior, solve the static allocation with m
to obtain (approximately) optimal allocations {ni} (note∑
ni = m)
b. Choose the next profile probabilistically according

to Multinomial(ni/m).
c. Recruit a pair of patients from the selected biomarker

profile; obtain response pair, then update ρ.
end while

IV. EXPERIMENTS

In this section, we evaluate the LA algorithm and dis-
cuss several practical issues. Although the formulation is
Bayesian, the evaluation is “frequentist”: for a fixed but
unknown µ, we assess how well the algorithm minimizes
the expected hinge loss in repeated experiments.

We generated test cases in the following way. For an
experiment with K profiles, we generate a total of K test
cases. E.g. for K = 6 and δ = 0.5, test case 1 has
no useful profile, with µ = (0, 0, 0, · · · , 0). Test case 2
has 1 useful profile, with µ = (δ, 0, 0, · · · , 0) and so on.
We choose standard error σ = 1, so that δ/σ = 0.5 ;
note this matches a minimal effect commonly regarded as
significant by clinicians. Note our experimental setups are
actually worst–case designs; the problem becomes easier
if some profiles have smaller (nonzero) effects, as this
permits an algorithm to focus some resources on these easier
profiles. The initial prior is almost flat, with ζ = (0, 0, ....0),
and τ2 = 1002. We set the total budget to be 20 × K,
which means on average 20 patients per profile. Finally,
each profile/treatment combination is initially allocated with
w = 5 patients, and each evaluation of a test case is an
average of 2000 repetitions.
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Figure 1. Basic properties of the Look-ahead algorithm. (a) result for the hinge loss; (b) consistency of the LA algorithm; (c) result for 0-1 loss
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Figure 2. The performance on the Nefazodone-CBASP trial data. The algorithms are the look-ahead algorithm (LA), and the Uniform-Random algorithm
(UR) and the balanced UR. (a) result for the hinge loss; (b) result for 0-1 loss

A. Look-ahead (LA) vs. Uniform Random (UR) Algorithm

Our experiments show that the Look-ahead algorithm is
robust to the number of look-ahead steps m. Figure 1(a)
plots the decision risk of the test cases for K = 6, where
the x-axis indexes the test cases and the y-axis is the
decision risk. The algorithms shown are the Look-ahead
algorithms (denoted as LA) with different look-ahead steps
m and the Uniform-Random (UR) algorithm, which recruits
the next patient pair uniformly at random from the whole
population. In these sets of experiments, we assume that each
of the biomarker profiles has equal presence in the whole
population.

Second, as the budget increases, the decision risk (ex-
pected hinge loss) converges to 0. This is true for all the test

cases in our experiments. Figure 1(b) shows an example of
diminishing decision risk (y-axis) as the sample spending
increases for one of the test cases (case 5). The color-
shaded regions show the variability of the decision risk over
repeated runs. The total budget has been increased to 480
only to illustrate the trend. Figure 1(b) also shows significant
reduction of total recruitments with the LA: to drive the
decision risk below 0.025, LA needs about 200 participants
while UR needs about 25% more participants.

Third, we evaluated 0-1 loss: In Figure 1(c), the y-axis
is the expected 0-1 decision risk among only the useful
profiles. For example, in the test case 4, the truth is that
profiles 1,2,3 are useful profiles, while profiles 4,5,6 are
the futile profiles, which respond equally well to either
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Figure 3. (a) the oracle effect, (b) the delay effects and (c) the staged allocations.

treatment (i.e., the treatment does not matter). If a decision is
(A,B, A, ∗, ∗, ∗), then the loss is 1/3 ≈ 0.33 for any values
of “∗”s. We notice that the Look-ahead algorithm performs
very well in minimizing 0-1 loss. Also our results suggest
that there is smaller variation across all algorithms (including
the UR algorithm), which is likely due to the binary nature
of the 0-1 loss function.

B. Case Study

To demonstrate the new algorithm, we use the data
collected from the Nefazodone-CBASP trial [22], [23]
dealing with depression, which randomized 681 patients
to Nefazodone (NFZ), cognitive behavioral-analysis system
of psychotherapy (CBASP) or the combination of the two
treatments (COMBO). For the 440 patients assigned to either
NFZ or COMBO, Gunter et al. [23] suggested 2 potential
variables–Obsessive Compulsiveness (OC) and Alcohol–for
making treatment decisions. The outcome in their analysis
was based on the 24-item Hamilton Rating Scale for De-
pression (HAMD) score [24].

We use the trial data to form a patient population, and
draw patients with replacement from the 440 patients. We
followed [23] by excluding the mono CBASP treatment in
our simulation. We created 4 disjoint profiles based on the
above two variables: profile 1: OC=NO, Alcohol=Absent;
profile 2: OC=NO, Alcohol=Abuse; profile 3: OC=NO,
Alcohol=Dependence; profile 4: OC=YES. Table I shows
that in this population, there is a very small differential
treatment effect (2.81−2.73 = 0.08) in profile 1, and larger
treatment effects in the remaining profiles. Note very few
patients belong to profile 4. We assume that the differential
treatment effect is significant enough to pursue for profile
2, 3, 4.

The simulation involves 2000 trials, each with a total

budget of 200, which is much smaller than the original
sample size of 440. Figure 2(a) shows that the Uniform
Random (UR) performed fairly poorly, as the useful profiles
in this dataset are rare. The algorithm UR Balanced forces
equal randomization among these 4 profiles. Figure 2(b)
shows that LA was able to drive the 0-1 decision risk down
much more quickly than the other two algorithms.

Table I
SUMMARY OF THE SIMULATED POPULATION, CHARACTERIZED BY

OBSESSIVE COMPULSIVENESS (OC), ALCOHOL, AND THE
RANDOMIZED TREATMENT(1 FOR NFZ, 0 FOR COMBO). THE

OUTCOMES ARE NORMALIZED TO HAVE UNIT VARIANCE.

OC Alcohol Treatment Percentage Mean
of patients Outcome

No Absent 0 33% 2.81
(Profile 1) 1 34% 2.73

Abuse 0 9.1% 2.50
(Profile 2) 1 8.6% 2.69

Dependence 0 5.2% 2.89
(Profile 3) 1 5.5% 3.26

Yes 0 1.5% 2.30
(Profile 4) 1 1.5% 1.10

C. Oracle Effect

To better understand our algorithms, we consider unreal-
istically powerful algorithms that have access to an oracle
that identifies which profiles have differential effects. In
particular, the “Oracle Uniform Random” (OUR) algorithm
excludes the profiles with no differential effect, and proceeds
as uniform random sampling over the remaining profiles.
The “Oracle Look-ahead” (OLA) algorithm excludes profiles
with no effect and otherwise proceeds as the LA algorithm.
Figure 3(a) shows the decision risks of these algorithms for
different test cases. Clearly, the use of prior knowledge to
avoid recruiting from futile profiles should improve both



the Random and Look-ahead algorithms. The Oracle Look-
ahead (OLA) algorithm fared best among all four algorithms.
Notice that the regular LA algorithm can sometimes outper-
form the OUR algorithm; this is a little surprising given
that the look-ahead algorithm has little knowledge about the
futile profiles at the beginning of the trial. But notice this
only happened for test case 5 (with 4 useful profiles) and test
case 6 (with 5 useful profiles): when the prior knowledge of
which profiles are futile does not give too much advantage
to an oracle algorithm (i.e., eliminating only 1 or 2 profiles).
The LA algorithm, despite “wasting” draws by recruiting in
the “futile profiles”, was able to outperform OUR, because
it took advantage of the realized trajectory of responses (i.e.,
signals in the data)

Nonetheless, the performance of the OLA algorithm indi-
cates potential improvement by incorporating early-stopping
rules to terminate sampling from futile profiles.

D. Delayed Observation of Outcomes and Solutions

In real life, there is a delay between a patient treatment as-
signment and the observation of the outcome. An exploration
policy may therefore be forced to make decisions without
observing the outcomes of patients who are still in treatment.
The queueing characteristics of a clinical trial can be quite
complex in real life, and to gain some understanding, we
study (for simplicity), a deterministic, constant delay model.
This model assumes, at any time, q pairs of patients are
currently in treatment, whose outcomes are unavailable for
the lookahead algorithm at that time. This means when a
new pair is assigned, the earliest of the q pair patients just
finishes treatment, thus the queue size is kept constant.

Figure 3(b) suggests that the advantage of the look-ahead
algorithm will be hampered by delays. To alleviate this
problem, one can run the trial in semi-staged fashion, i.e.
waiting for a group of patients to finish the treatment before
assigning new patients to treatment. This strategy has the
effect of increasing the departure rate as compared to the
arriving rate. In Figure 3(c), the lookahead algorithm is
modified to assign g pairs of patients at the same time (for
various values of g), whose outcomes are simultaneously
observed before making decisions for the next batch of pa-
tients. We see that the advantage of the look-ahead algorithm
is restored.

E. Comparison with Frequentist Algorithms: Preliminary
Results and Discussion

Several frequentist’s approaches with a similar objective
have been studied in [13]–[15]. Except for some differ-
ences in modeling assumptions, they all aim to minimize
the maximal probabilities of picking the wrong treatment
over all profiles [14]. The “minmaxpcs” algorithm in [14],
under the experimental setup described in Section IV, favors
profiles with small δ̂i/σ̂i, where δ̂i is the sample mean of
treatment effect, and σ̂i is the sample standard deviation

of the treatment effect. This is simply the t-statistic. Un-
der our experimental setup, “ucbe” [13], [15] (an upper
confidence bound (UCB) based algorithm) selects a profile
with the maximal −δ̂i +

√
ηGH−1n−1

i , in which G is the
total budget, H is an intrinsic parameter characterizing the
difficulty of a problem, ni is the number of times a profile
has been selected, η is a tuning parameter. That is, a profile is
preferred if it seems hard to distinguish the two treatments
or it has not been explored enough. For our experimental
setup however, the value of H is ∞, because we assume
that some profiles have no differential treatment effects.
In our experiments, we used instead −δ̂i +

√
η log(G)n−1

i

where η = K−1 and K is the number of profiles, and
we use log(G) instead of G, following the formulation in
the original UCB algorithm. Examining equation (3) or the
equation (10), the LA algorithm proposed in this paper is
also a confidence bound based algorithm in spirit, albeit
developed in a Bayesian framework.

Figure 4(a) shows the 0-1 decision risks of these al-
gorithms for different test cases under a small (but more
realistic) budget. The performances of the two frequentist’s
algorithms are on par with the LA algorithm. However, the
“ucbe” algorithm converges quite slowly when we increase
the budget to 480 as shown Figure 4(b).

V. FUTURE WORK AND CONTRIBUTIONS

We have identified several interesting new directions to
pursue: a) The current approach will devote resources to
find a winner among the treatments for a profile, even when
there is none. Are there ways to incorporate effective stop-
ping rules, allowing the system to give up on such profiles.
Note this is especially challenging when the effect size or
the budget is small. b) We should relax the assumptions of
paired outcomes. c) Currently, our system does the best it
can with the total budget, expressed as the parameter T . It
would be useful to estimate the budget required to ensure
a certain quality of performance – to determine whether
the given budget is sufficient to produce a high quality
decision rule. d) We plan to extend our preliminary results
in Section IV-D perhaps by staged allocations.

In summary, we identified and formulated a clinical
trial problem as the budgeted learning problem, providing
a framework and experimentally showing that a simple
heuristic work very effectively for realistic experimental
conditions.
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