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Abstract

Researchers conduct association studies to discover biomarkers in order to gain new

biological insight on complex diseases and phenotypes. Although most researchers

have intuitions about what defines a biomarker and how to assess the results of an

association study, there is neither a formal definition for what a biomarker is, nor

objective goal for association studies. As a result, the literature is full of association

studies with conflicting results – e.g., studies on the same phenotype that produce

lists of biomarkers with little to no overlap.

This thesis presents the “Budgeted Biomarker Discovery (BBD) problem”, which

clearly defines (1) what a biomarker is, and (2) rewards for correctly identifying

biomarkers and penalties for incorrectly identifying biomarkers. Furthermore, the

BBD problem allows researchers to use a mixture of high- and low-throughput tech-

nologies. In the context of discovering biomarkers from gene expression data, we

show how future association studies can use both microarrays and qPCR data to

objectively find the genes that are biomarkers in a cost efficient manner.

We present several algorithms for solving the BBD problem, and show that good

algorithms must make use of both microarrays and qPCR. Also, they must be able to

adapt to the data as it is collected. For example, when solving a new BBD problem,

we must begin by collecting microarrays because we do not yet know how many

biomarkers we expect to identify, or which qPCR arrays would be most informative.

Thus, we use the high-throughput microarrays to survey the problem, until we can

identify which specific low-throughput qPCR arrays to use for focusing on those

genes that are potentially biomarkers. To identify when this transition should occur,

we present the problem of estimating the density of univariate statistics in high-

throughput data, and we present our Fused Density Estimation (FDE) algorithm as
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a solution. We use FDE as the backbone of our adaptive algorithms for solving BBD

problems. In a series of experiments on real microarray data and realistic synthetic

data, we show that our BBD1 algorithm is the most robust solution, amongst those

considered, to the BBD problem.
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Preface

This thesis is an original work by Sheehan Veikko Khan. It builds of his previously

published works:

1. S. Khan, R. Greiner. ”Budgeted Transcript Discovery: A Framework For

Joint Exploration And Validation Studies”, BIBM 2014

2. S. Khan, R. Greiner. ”The Budgeted Biomarker Discovery Problem: A Vari-

ant of Association Studies”, AAAI workshop on Modern Artificial Intelli-

gence for Health Analytics (MAIHA), 2014

3. S. Khan, R. Greiner. ”Finding Discriminatory Genes: a methodology for val-

idating microarray studies”, ICDM workshop on Data Mining for Biomedical

Applications (BioDM), 2013

4. C. Stretch, S. Khan, N. Asgarian, R. Eisner, S. Vaisipour, S. Damaraju, O.

Bathe, H. Steed, R. Greiner, V. Baracos. ”Effects of sample size on differen-

tial gene expression, rank order and prediction accuracy of a gene signature”,

PLoS One, 2013

The first three papers are related to the thesis because they build upon the BBD

problem definition. In particular, our TNAS-FDR, BBD1 and BBD-Greedy are

clear improvements of our previous RR, RR+RR, and mLUCB algorithms from the

BIBM paper (#1 above) respectively. The workshop papers (#2 and #3 above) also

had other algorithms, but they were very specific to the models we used at the time,

and as those models have become outdated so too have the algorithms.

The PloS One paper (#4 above) addresses the issue of statistically underpowered

microarray studies present in the literature. It uses a sub-sampling procedure on a
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very large dataset (to date the largest human skeletal muscle dataset) to show the

sample size required for reliable results. In this thesis we re-use the dataset and

the sub-sampling approach to generate realistic synthetic data for our experimental

results.
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The average Ph.D. thesis is nothing but a transference of bones from one

graveyard to another.

– J. Frank Dobie, “A Texan in England”, 1945.
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Chapter 1

Introduction

Many researchers in bioinformatics are concerned with finding “biomarkers”, which

are features that can be used to identify and separate case specimens (i.e., those that

exhibit the phenotype of interest) from control specimens (i.e., those that do not

exhibit the phenotype of interest). For example, a gene that is overexpressed in

patients with a certain type of cancer, in comparison to expression levels of healthy

people, would be called a biomarker for that cancer. There are several reasons that

researchers are interested in biomarkers:

1. Biomarkers can be used as diagnostic tools – e.g., 23andMe1 is a company

that uses biomarkers to create tests for: inherited conditions, drug response,

genetic risk factors, etc.

2. They can be used for personalized medicine – e.g., biomarkers can be used to

identify the type of breast cancer a woman has, which can help determine the

treatment that will work best for her [11].

3. Once identified, pharmaceutical companies can develop drugs that specifi-

cally target biomarkers to suppress or promote their expression [89].

4. There are many features that could be biomarkers for a specific disease, many

of which have yet to be identified. Identifying these biomarkers could initi-

ate follow-up research on them, which could lead to new biological insights

about those features, and how they are related to the phenotype.

1https://www.23andme.com
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Biomarkers are typically found by using a high-throughput technology to com-

pare many features in a case versus control experiment. We refer to these exper-

iments as “association studies”. While most researchers have intuitions about as-

sociation studies, currently there is no universally accepted consensus about the

specific details, including the goals, of these studies.

In this thesis, we define the Budgeted Biomarker Discovery (BBD) problem.

Solving this problem provides a precise way to find biomarkers in the context of

gene expression association studies. The BBD framework extends the standard ap-

proach of association studies by providing a clear definition for what it means for a

gene to be a biomarker, and defines how to reward algorithms for correctly identi-

fying a genes that are biomarkers, and to penalize algorithms for falsely identifying

genes as biomarkers when they are not. Furthermore the BBD framework incorpo-

rates the use of both high and low-throughput technologies. Thus, when operating

under a fixed experimentation budget, the BBD framework allows researchers to de-

termine the most cost effective way to collect their data with the goal of discovering

biomarkers.

The terms “biomarker” and “biomarker discovery” have been overloaded in the

literature. We are explicitly NOT using the term “biomarker discovery” to mean the

process of identifying markers for use in clinical tests as described by Pepe et al.

[69]. As hinted above, our definition of biomarker is based the ability of a feature,

independent of the technology used to observe it, to separate the cases from the

controls; see Allison et al. [2]. Our definition of biomarker discovery includes the

use of a high-throughput technology to identify candidate biomarkers that are then

checked by a more accurate low-throughput technology. In the context of gene

expression, we will provide formal and objective definitions of our interpretation

of these terms in Chapter 2. In Section 2.6 we will show how our model can be

adapted to other types of ’omics technologies, and beyond bioinformatics we show

that the BBD problem can be generalized to other machine learning problems.
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1.1 Contributions

This section provides a succinct list of the contributions made in this thesis.

1. Claim: Current microarray association studies can benefit from an appropri-

ate and clearly defined objective.

We formalize the Budgeted Biomarker Discovery (BBD) problem, which in-

corporates both high- and low-throughput technologies to discover biomark-

ers within a given experimentation budget. The problem definition itself is a

contribution.

• In current association studies, biomarkers are obtained from either ranked

lists, or null hypothesis testing. Unfortunately neither approach defines

what it means to be a biomaker and it is therefore impossible to ob-

jectively evaluate the study in terms of the statements made about the

biomakers. In other words, without a definition of a biomarker we can-

not reward a study for correctly finding them, or penalize it for incor-

rectly finding things that are not biomarkers. Without an objective eval-

uation criteria for the study, many strange statements can be made. For

example, we could say that “all genes are biomarkers”, or “no genes are

biomarkers”, and without penalties for incorrectly labelling genes both

statements are perfectly fine. In the BBD problem we provide a clear

definition of what a biomarker is, and thus we can partition all genes

into the set of genes that are biomarkers and the set of genes that are

not. We also provide an evaluation function that compares the set of

genes returned as biomarkers to the ground truth based on our defini-

tion.

– Microarray association studies are special case of BBD problems.

By treating them as BBD problems, they benefit from our precise

definitions.

– We show that, while there is a growing number of microarray as-
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sociation studies, the number of microarrays used per study re-

mains the same. Thus, studies remain underpowered and in need

of follow-up checking studies. Because the BBD problem incor-

porates both high- and low-throughput technologies, it allows us to

combine association and checking studies with a single objective.

We conjecture that one of the reasons many researchers currently

do not perform checking studies, is the lack of a proper definition,

but posing the problem as a BBD problem provides that definition.

2. Claim: With only a few observations, we can learn useful plate models for

gene expression data from high-throughput technologies.

We present a plate model for gene expression values, and show it can be used

to tune algorithms for specific BBD problems, i.e., the algorithm can use the

parameters of the plate model to tune its parameters for the BBD problem

that it is currently solving. In order to use these plate models, we showed

that we must estimate the distribution of the effect size of genes f∆; knowing

this distribution, we can generate all other parameters in the plate model. We

showed that we can get good approximations of f∆ with very few examples,

by exploiting the very high-dimensionality of the problem. To do this we

presented and analyzed two simple estimators, which we then combined to

make our Fused Density Estimation (FDE) algorithm.

3. Claim: Algorithms for solving BBD problems should make use of our plate

model.

Claim: Our BBD1 algorithm is a very robust solution for BBD problems.

We show that our BBD1 algorithm is the most robust solution, amongst the

algorithms we present, for solving BBD problems. BBD1 uses a mixture

of microarray and custom PCR data, and can tune its parameters to adapt

to new BBD problems to help solve them effectively. Thus BBD1 performs

very well across all of our experiments; in most experiments it has the best
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performance.

4. Claim: Greedy algorithms do not provide good solutions for BBD problems.

We show that BBD problems have a direct analogy to adaptive submodular

maximization problems. While previous works have shown that greedy algo-

rithms typically perform well on submodular problems, we show that they do

not work well for our BBD problems. The problem with greedy algorithms is

that they must compute some measure of utility for all possible tests, and then

perform the one with highest utility. Whereas our other algorithms, utilizing

only custom PCR arrays, can use our plate model to tune parameters for a

good policy, and then behave according to that policy, i.e., Claim 3.

1.2 Outline

In Chapter 2 we present our definitions and models for biomarkers and their discov-

ery, i.e., we formally define the BBD problem. Section 2.5 highlights the benefits

of adopting the BBD approach in comparison to previous approaches. Chapter 3

follows with a discussion of related problems in bioinformatics and computing sci-

ence.

As a precursor to developing our BBD algorithms, we present the problem of

density estimation for univariate statistics of high-throughput data in Chapter 4.

Solving this problem is not only a crucial step towards solving the BBD problem,

but it can also be used for other problems such as determining the sample size

needed for specific research outcomes. For example, after analyzing some microar-

ray data, we may be able to show that it is statistically impossible to reliably identify

the top 100 genes (that are biomarkers), but this method allows us to predict how

many more microarrays would be required to do so. While this may sound simi-

lar to the development of realistic simulation models of microarray data, Section

3.1.5 shows that is an entirely different problem. We show that it is impossible to

solve this density estimation problem in general, and we highlight the approxima-

tion noise introduced by reasonable solutions. We then construct our hybrid FDE
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algorithm that combines those solutions.

In Chapter 5, we present our algorithms for solving BBD problems. Our algo-

rithms cover two types of BBD problems: 1) where microarray data has already

been collected, and our algorithms must analyze it to find the biomarkers, and 2)

where the algorithms have the ability to analyze data as it is collected, and thus

choose between collecting microarrays or quantitative Polymerase Chain Reaction

(qPCR) so that they may discover as many biomarkers as possible under a given

experimentation budget. Experimental results in Chapter 6 show that our BBD1 al-

gorithm is a particularly attractive solution for BBD problems. It incorporates both

microarray and qPCR data, and it has very robust performance in experiments based

on real microarray data and across a spectrum of synthetic datasets. We believe that

it corresponds to the solution sought after by researchers interested in objectively

validating microarray studies [21, 73].

We close this chapter with a brief description of high- and low-throughput tech-

nologies for readers unfamiliar with methods of observing gene expression values.

We also provide a description of the current approach to association studies in gene

expression, highlighting the issues that are problematic and ill-defined.

1.3 High- Versus Low-Throughput Methods

In bioinformatics, there are two different types of tools used for data collection:

high- and low-throughput. As their names imply, high-throughput methods are ca-

pable of observing many features simultaneously, and low-throughput methods are

capable of observing only a few features simultaneously. For example, we can use

a single microarray to measure the expression values of all of Mrs. Smith’s genes,

or we can use a single qPCR array to measure the values of a small subset of her

genes. These two approaches typically trade-off cost for accuracy. High-throughput

methods are much more cost effective in terms of cost per feature observed, but

low-throughput methods have much less observation noise – microarray costs ap-

proximately $0.01 per gene, and qPCR costs approximately $1 per gene [28, Table

1].
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In the context of studies on gene expression, microarrays are used as the high-

throughput device. Current microarrays are capable of measuring most, if not all,

RNA transcripts in the human genome.2 Low-throughput observations are often

done via qPCR arrays, which typically measure the expression levels of 100 genes.3

In practice qPCR is used as the gold standard for measuring gene expression levels

[19, 21, 63, 73, 75, 91].

While both microarray and qPCR provide measurements of gene expression,

they capture that information very differently. In a microarray, the RNA transcripts

are hybridized to the array, such that the transcripts for gene gi bond at a specific

location, (xi, yi), on the array. The expression value for gene gi is then measured

as the proportion of RNA at (xi, yi) relative to the total amount of RNA across the

array. By contrast, qPCR operates by isolating the RNA transcripts specific to gene

gi, and reverse transcribes them into cDNA. The cDNA then undergoes a series

of amplification cycles. During each amplification cycle, the amount of cDNA

doubles, and for each strand of cDNA produced a photon of light is emitted. Thus,

by counting the number of cycles required to observe a fixed amount of light, it is

straightforward to calculate the amount of RNA present in the original sample. For

more details on microarrays and qPCR (as well as other high- and low-throughput

technologies) we refer the reader to Reece & Campbell [19, Chapter 20].

Clearly, we cannot expect that the expression values for gene gi to be from

the same distribution in both technologies. But, if gene gi really is a biomarker,

we assume that both methods should be able to detect a difference between the

distributions for the cases and controls.

The impact of these differences is that when we use both high- and low-throughput

technologies, we cannot directly mix the data – they produce different numbers,

from different distributions. However, in Section 2.1 we will provide a way to mix

appropriate summaries of the data.

One last point of interest is that, while there are many readily available “off-the-

2The most common brand on the market is the Affymetrix HG-U133-Plus-2, which measures
54 675 mRNA transcripts.

3For example, SABiosciences currently offers qPCR arrays with either 100 genes, or 400 genes.
http://www.sabiosciences.com/PCRArrayPlate.php
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shelf” qPCR products on the market, that each test a set of genes that are known to

have specific interactions (e.g., genes associated with breast cancer, or genes associ-

ated with cell growth, etc.), most vendors also offer custom qPCR solutions, which

allow researchers to specify the 100 genes they would like to test. In general, such

custom qPCR arrays will cost slightly more than purchasing an “off-the-shelf” so-

lution, but will be much more efficient as researchers can avoid purchasing multiple

qPCR products in order to test all the candidate genes suggested by their analysis.

1.4 Traditional Association Studies and Their Pitfalls

When performing an association study on gene expression, researchers will collect

several microarrays from patients in the case group, and several from patients in

the control group. After the data has been collected, the genes are ranked based on

their observed difference between the two groups, and the top genes are declared to

be the biomarkers.4 Here we will quickly outline the pitfalls of this approach.

The first problem with microarray association studies is that they are terribly

“underpowered”, i.e., the number of microarrays used is typically very small in

relation to the number of genes measured in each microarray.5 The community has

been very good in mandating the public release of the microarray data collected in

these studies when publishing their results. One of the largest public databases of

microarray data is the Gene Expression Omnibus (GEO) [32]; currently6 it has 53

959 datasets composed of 1 313 826 microarrays in total. Figure 1.1[top] shows the

number of datasets submitted to GEO per year. Note that the number of microarray

datasets submitted has continued to increase since 2002, with approximately 10 000

being submitted in 2013. However, Figure 1.1[bottom] shows that the number of

microarrays used per dataset has not increased over time; essentially all have less

4Note that we have been intentionally vague here in stating that the genes are ranked based on
their difference, without defining difference. This is one of the problems we will discuss in this
section.

5The statistical power of a test is defined to be the probability that a specific event is detected
[36]. For example, if performing a t-test for the null hypothesis that µ = 0 or µ 6= 0, we may
define the power to be the probability that we correctly reject the null hypothesis when µ = 1,
i.e., P (reject null hypothesis|µ = 1). Thus, statistical power is subject to the null hypothesis being
tested, and the alternative event of interest.

6On January 1, 2015.
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than 100 microarrays and the majority have only 10–12.
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Number of datasets published to GEO per year
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box−whisker plots of # arrays / dataset

Student Version of MATLAB

Figure 1.1: [top] Summary of the dataset submitted to GEO per year. [bottom] Box
and whisker plots for the number of microarrays per dataset.

As a result of being underpowered, it is difficult to properly identify the genes

that are actually biomarkers. This means it is difficult to reproduce the results of

an association study [45]; even if the same tissue samples are given to two differ-

ent labs for analysis, each lab may produce different biomarkers [95]. To alleviate

these issues, some researchers will perform a follow-up checking study using qPCR

to confirm that the genes implicated by the microarray study truly are differentially

expressed. However, there is yet to be a consensus as to which genes require con-

firmation, and what defines confirmation [2, 73].

The community is still in the process of standardizing how qPCR data should

be made publicly accessible [18]. We believe that if more researchers adopted the

BBD framework, it would help push towards mandating the release of qPCR data in

9



a way similar to what is done for microarray data. If qPCR data were made public,

the analyses could be independently verified7, and moreover this data could be used

as testbeds to develop and analyze new BBD algorithms.

The second problem is that there are many ways to measure the difference in

gene expression levels between the cases and the controls. There are several com-

monly used measures, each of which will catch different trends in the data, and they

all claim to be measures of “differential expression” [22, 94]. The results of a study

can be wildly different based on which statistic is chosen to measure differential

expression [14]. For example, suppose our data for a particular gene has sample

means for the cases and controls µ̂1 and µ̂0 respectively. We could measure the

difference by the difference of the estimates m1 = µ̂1 − µ̂0 or we could use their

ratio m2 = µ̂1/µ̂0. If the true values are µ1 = 1 and µ0 = 0.01 then based on

m1 it would seem there is no difference8 but by m2 it would seem there is a large

difference. Without a biological rational to favour one of these measures a priori,

it is highly tempting for researchers to retroactively pick the statistic under which

their favourite genes receive high ranks. Clearly, we should define our association

studies to prevent this from occurring.

Coupled with the ambiguity in defining the measure of differential expression is

the problem of deciding which of the top ranked genes will be called “biomarkers”.9

There are two common approaches taken to decide which genes are biomarkers.

Top K The first approach is to simply declare the top K features to be biomark-

ers, i.e., those with the K largest measures of differential expression. The

problem with this approach is selecting the appropriate value for K. Statisti-

cally, it is difficult to associate the choice of K with any measure of quality

of, or confidence in, the results (if K must be set a priori). Although we

do know that, as a result of studies being underpowered, statistical variations
7Surprisingly, many gene expression papers are published with errors in the statistical analysis

[31] – errors include misinterpreting statistical tests, and training on the testing data (in supervised
learning scenarios). Perhaps the same could be said for results based on qPCR, but without the data
it is difficult to tell.

8This value is below typical levels of observation noise.
9Fundamentally this is a very difficult problem, because we have not specified what determines

if a gene is or is not a biomarker, the rewards for discovering them, nor the penalties for falsely
identifying genes as biomarkers.
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often cause the top K genes in two different studies on the same phenotype

to be very different [35].

One of the motivations for reporting the top K genes is that they can be “ver-

ified” by looking up their relevance in previously published studies. Or they

can be compared with known functional groups of genes from databases like

Kyoto Encyclopedia of Genes and Genomes (KEGG) [50], Gene Ontology

(GO) [4], Ingenuity Pathway Analysis10 (IPA), the Database for Annotation

Visualization and Integrated Discovery (DAVID) [42], etc. This kind of val-

idation can be consider as the “biological plausibility” of the results. If as-

sessing the biological plausibility is the goal of the study, we may question,

“If we are only interested in finding what we already know, why bother do-

ing the study at all?”, as we could just datamine those databases. Also what

does it mean if the biological relevance of the top K features is not already

known? Arguably, the most interesting discovery would be to find genes that

are only expressed with phenotype, i.e., there are no co-morbidities affecting

the expression level of the genes.

Hypothesis test The second approach is to use null hypothesis testing principles.

In this approach, we compute the distribution of the summary statistic un-

der the null hypothesis that the gene is not differentially expressed, i.e., the

distribution of expression levels is the same in both cases and controls. Af-

ter the data has been collected, we compute the summary statistic for each

gene, and those with statistics that are unlikely to be drawn from the distribu-

tion of the null hypothesis are considered biomarkers. We use the p-value to

measure how unlikely the observed statistic is, where the p-value is the prob-

ability of seeing the observed statistic, or one more extreme, when taking a

random draw from the null distribution. The standard assumptions for the

null hypothesis are:

1. When conditioned on the class, s ∈ {1, 0}, the gene expression values

of gene gi are normally distributed, N
(
µi,s, σ

2
i,s

)
.

10www.qiagen.com/ingenuity
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2. The conditional means are the same, µi,1 = µi,0.

The benefit of adopting this approach is that there is a rich literature in statis-

tics that we can use to make statements about the quality of the genes re-

ported as biomarkers. Specifically, we can quantify the number of genes we

have reported as biomarkers, but expect not to be biomarkers, i.e., amongst

those genes identified as biomarkers, we can quantify the number of genes

for which we expect that the null hypothesis is true.

We believe that the second assumption does not hold for any genes. Therefore

given enough data, we will confidently determine all genes are biomarkers.

However, in the statistically underpowered scenarios we actually encounter

in real association studies this is not likely to be an issue. In other words, in

practice we expect that because of the small sample size it is more likely that

we fail to identify genes that are biomarkers than we falsely report genes that

are not biomarkers.

We also note there are others that use a naive bayes approach to to detect-

ing biomarkers [34, 77]. In the naive bayes process, we fit a mixture model,

where each gene is either a biomarker or not biomarker. Then select the

genes that strongly fit the biomarker model to be biomarkers. However, it has

been shown that this is equivalent to using a False Discovery Rate (FDR) con-

trolled t-test, i.e., naive bayes is a variation of the hypothesis testing approach

[34]. Controlling the FDR at level α, means that we guarantee that the null

hypothesis is true for at most α percent of the genes identified as biomarkers.

Thus, the biggest issue with association studies is that they fail to explicitly

define what makes a gene a biomarker. Also needed are rewards and penalties for

(mis)reporting genes as biomarkers. Without rewards and penalties, we can have

some very strange results, e.g., declaring all genes as biomarkers is only a bad

idea if there is a penalty for falsely claiming a gene is a biomarker when it is not.

By asking the right questions of the data, very relevant information can still be

discovered from statistically underpowered association studies. For example, [78]

presents a sub-sampling study on a large microarray dataset, and shows that with
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reasonable sample sizes robust classifiers can be learned from the data to predict

the sex of a patient. Here, the classifiers have a very specific performance measure

(predictive accuracy measured on hold out data), and sex is a very incontrovertible11

phenotype. We will take care to be equally objective when we define the BBD

problem in Chapter 2.

11See footnote 7 in Section 4.4, on page 55.
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Chapter 2

The Budgeted Biomarker Discovery
Problem

In this thesis, we will explore the “Budgeted Biomarker Discovery” (BBD) prob-

lem. While biomarkers can be any type of feature, we will explicitly consider the

case of genes as biomarkers. Focusing solely on genes allows us to be more con-

crete with our descriptions. It is straightforward to adopt our subsequent methods

and analyses to apply to any type of biomarker; we will elaborate on this in Sec-

tion 2.6.

Before we formally define our BBD problem, we first need to introduce some

notations. We begin by assuming that we have a set of genes denoted by G =

{g1, . . . , gN}. We use the proportion of RNA transcripts present in a sample as

a measure of the gene expression level of the patient. When conditioned on the

binary phenotype, s ∈ {1, 0}, the class specific mean and standard deviations for

the expression values of gene gi are denoted as µi,s and σi,s respectively. We will

assess genes based on their standardized effect size,

∆i =
µi,1 − µi,0√(
σ2
i,1 + σ2

i,0

)
/2

. (2.1)

Genes with positive ∆i are said to be up-regulated with the phenotype and those

with negative ∆i are said to be down-regulated. Our goal is to find the set of genes,

R, that are relevant, i.e., either strongly up-regulated, or strongly down-regulated,

R = {gi : |∆i| ≥ ∆∗} . (2.2)
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The terms “relevant gene” and “biomarker” are interchangeable within the BBD

framework. However, we prefer to use the term “relevant gene” going forward as it

is explictly defined in Equation (2.2), whereas “biomarker” may be confused with

a previous definition (outside of this thesis) [69].

Here we have used ∆∗ as a threshold for the minimal effect size genes that are

relevant. For now, we can consider this as some fixed value that has been given

to us as a definition. Later, in Section 2.2 we will discuss how to properly set this

value in general.

2.1 Plate Model

As previously discussed in Section 1.3, in BBD problems we will make use of both

high- and low-throughput technologies. In general we assume that we have a col-

lection of possible tests, T . Each test, t ∈ T , will cover a specific subset of genes,

Gt ⊆ G, for a cost, Ct. For example, one test is a microarray that measures expres-

sion levels of all genes in a patient for cost Carray, another test is a qPCR array that

measures NPCR = 100 genes associated with breast cancer for cost CPCR, and an-

other test is a custom qPCR array that measures NPCR = 100 genes for our choice

for cost Ccustom.

In Section 1.3 we showed that our tests will use different approaches to measur-

ing the gene expression values, and thus our definition of the effect size in Equation

(2.2) is slightly ambiguous because it does not specify to which test the values of

µi,s, and σ2
i,s correspond. However, as the effect size is invariant to scale and shift

operations on the underlying distributions1 we claim that the value of ∆i will be

comparable across different tests. For example, the effect size of a gene observed in

microarray data is comparable to that observed in qPCR, even though both methods

observe fundamentally different data. We make the assumption that all tests have

1A shift operation would add a constant bias to the µi,s terms (raising the overall expression
values for the gene) that would be lost when we compute the difference in means. A scale operation
would multiply the µi,s and σi,s terms by a constant (scaling all the expression values by the same
amount) that would be lost when we divide the mean difference by the average standard deviation.
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the same effect size, i.e.,

∀t ∈ T : ∀gi ∈ Gt : ∆i = ∆
(t)
i =

µ
(t)
i,1 − µ(t)

i,0√(
σ

(t)2
i,1 + σ

(t)2
i,0

)
/2

, (2.3)

where we have added the superscript (t) to denote the quantities specific to the test

t. In general, we know that this assumption is not true, but it allows us to define

relevance as an inherent property of the gene, i.e., a gene is relevant regardless of

which technology we use to observe its values.2

We use ψ(t)
i,s,m to denote the m’th gene expression value, of patients from class

s, of gene gi, using test t. We model these expression values as random draws from

the distribution f
ψ
(t)
i,s

(
ψ ; s, θ

(t)
i

)
, where θ(t)

i is a tuple of parameters, specific to

gene gi, and test t. For example, if expression values are normally distributed, and

∆i = 1, then a possible parameterization would be,

θ
(t)
i =

(
µ

(t)
i,1 = 1, σ

(t)2
i,1 = 1, µ

(t)
i,0 = 0, σ

(t)2
i,0 = 1

)

ψ
(t)
i,1,m ∼ f

ψ
(t)
i,1

(
ψ ; 1, θ

(t)
i

)
= N (1, 1)

ψ
(t)
i,0,m ∼ f

ψ
(t)
i,0

(
ψ ; 0, θ

(t)
i

)
= N (0, 1) .

Figure 2.1 presents a plate model that summarizes our model of gene expression.

Plate models are convenient tools for visualizing data with repeated structure [55,

Chapter 6.4.1]. The idea is to view the repeated structure as a stack of identical

plates. The plates are distinct, but have the same descriptions so it is sufficient to

describe the top plate, and apply all statements to the plates below it.

From the top down, our plate model has a stack of plates corresponding to genes.

The plate for gene gi contains the true effect size of the gene, ∆i, which we model

as a random variable drawn from the distribution f∆, an indicator variable to de-

note if the gene is relevant, and a stack of plates corresponding to the tests used

to observe that gene. The plate for each test, t, contains the distributions for the

gene expression values using that test (which is encoded by θ(t)
i )3, and two stacks of

2In practice, we expect that qPCR will be more accurate than microarray, and thus ∀gi ∈ R :

∆
(microarray)
i ≤ ∆

(qPCR)
i .

3The values of θ(t)
i are constrained according to our assumption that all tests have the same effect

size, Equation (2.3).
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Figure 2.1: Plate model representing how the gene expression data is distributed.
The dash-dot rectangle encloses all the variables and observations pertaining to
gene gi. The dashed rectangle encloses all the variables associated with test t on
gene gi. The solid rectangles enclose all the actual expression values observed (for
each class). The isRelevant variable denotes an indicator of the relevance of the
gene, i.e., gi ∈ R→ isRelevant = 1.

plates corresponding to the observed gene expression values, ψ(t)
i,s,m, one stack per

class, s.

The arrows in the plate model represent the natural flow of information in the

model, i.e., knowing the term at the tail of the arrow it is straightforward to reason

about the term at the head of the arrow. Unfortunately, in BBD problems we can

only observe the expression values, ψ(t)
i,s,m, at the bottom of the model – those are

what we see when collecting data. Thus, we must use the expression values to

make inferences about the unknown distributions, f
ψ
(t)
i,s

, which we then use to infer

the unknown value of ∆i, and ultimately make a prediction about the relevance of

the gene. Using M (t)
s to denote the number of observations collected, from class s,

17



of test t, we compute the following estimates of the unknown model parameters,

µ̂
(t)
i,s =

1

M
(t)
s

M
(t)
s∑

m=1

ψ
(t)
i,s,m

σ̂
(t)2
i,s =

1

M
(t)
s − 1

M
(t)
s∑

m=1

(
ψ

(t)
i,s,m − µ̂(t)

i,s

)2

∆̂
(t)
i =

µ̂
(t)
i,1 − µ̂(t)

i,0√(
σ̂

(t)2
i,1 + σ̂

(t)2
i,0

)
/2

∆̂i =

∑
t∈T

(
M

(t)
1 +M

(t)
0

)
∆̂

(t)
i

∑
t∈T

(
M

(t)
1 +M

(t)
0

) . (2.4)

Another useful property of plate models is that they are generative, which means

that we can use the model to generate realistic synthetic data. If we know the

distribution of the effect sizes, f∆, we can drawN values, {∆i}Ni=1, from it to create

a hypothetical set of genes. Then by assuming a parametric form of the distributions

f
ψ
(t)
i,s

(
ψ ; s, θ

(t)
i

)
we can draw synthetic data to represent the observations.

In Chapter 4 we will show how to exploit high-throughput data to produce a

good estimate of the distribution of effect sizes, f̂∆ ≈ f∆, by assuming that the

f
ψ
(t)
i,s

(
ψ ; s, θ

(t)
i

)
are normal distributions. In other words we assumed,

∀t : θ
(t)
i =

(
µ

(t)
i,1 = ∆i, σ

(t)2
i,1 = 1, µ

(t)
i,0 = 0, σ

(t)2
i,0 = 1

)
.

In Chapter 5 will show how BBD algorithms can use the the estimated distribution,

f̂∆, to tune their internal parameters by simulating their performance on synthetic

data.

2.2 Setting an Appropriate Definition of Relevance

The previous section presented a new definition of biomarkers based on the rele-

vance of genes as measured in Equation (2.2), and presented a plate model from

which we can simulate data to evaluate and tune algorithms designed to find the

relevant genes, but it remains unclear how to set our threshold on effect sizes, ∆∗,

to define the relevant genes. Here we seek for an intuitive manner that we can use

to set ∆∗.
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We posit that a natural approach to setting ∆∗ is to consider the performance

of a case versus control classifier induced by a gene. Biomarkers should be able

to separate the cases from the controls at a reasonably high accuracy. Keeping

our assumption of normally distributed expression values, and assuming we know

the parameters of the class specific distributions, θ(t)
i , we can construct a simple

classifier that predicts the unknown phenotype of a patient, s, based on the observed

expression value, ψ(t)
i , of gene gi,

ŝ = arg maxs∈{1,0}

{
f
ψ
(t)
i,s

(
ψ

(t)
i ; s, θ

(t)
i

)}
.

Further assuming a 50/50 case/control distribution, and a common variance in both

classes, σ(t)2
i,1 = σ

(t)2
i,0 , the accuracy of this classifier is then,

accuracy(∆i) =

∫ |∆i|

−∞

1√
2π
e−

x2

2 dx . (2.5)

Given an understanding of the biology associated with the phenotype under study,

it should be reasonable for a biologist to state a minimal accuracy for a gene to be

relevant. For example, in a study to find genes that are relevant when identifying the

tumour type for women with breast cancers, we may set a high accuracy (perhaps

90%) because we know that the estrogen receptor proteins are strongly related to

breast cancers [26]. However, if our goal is to find genes that are relevant when

comparing stage II tumours to stage III tumours, we may use a lower threshold

(perhaps 60%), as we expect that it would be difficult to determine the stage of a

tumour based on gene expression values alone.

Once we have established a desired level of accuracy, it is a straightforward

exercise to use Equation (2.5) to back-calculate the appropriate ∆∗ to define the

set of relevant genes in Equation (2.2). Figure 2.2 shows ∆∗ as a function of the

desired accuracy.
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Figure 2.2: The relationship between the accuracy of a gene as a univariate classi-
fier, and the ∆∗ used to determine which genes are relevant.
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2.3 Data Collection Model

In practice there are a variety of tests that can be used to collect gene expression

data; different tests will have different costs. As the name implies, the BBD problem

will incorporate a budget requirement, such that we spend at most a fixed budget,B,

while collecting data. In other words, knowing the budget, a BBD algorithm should

select and perform the most cost effective tests to discover the relevant genes.

Unfortunately, when we start a new study we have no idea how effective a par-

ticular test, t, will be at discovering relevant genes, as we have not yet collected

any data. Thus, we consider a sequential data collection model wherein the data is

analyzed as soon as it is collected, and thus can be used to determine which test,

t, should be performed next. In practice we expect that as data is collected, many

genes will appear to be obviously irrelevant, some may appear to be extremely rel-

evant, and others will be difficult to assess. In other words, we can clearly identify

many genes that are definitely are either in, or not in, the set R, defined by Equa-

tion (2.2). We believe that an intelligent algorithm should notice this and focus on

collecting data for those genes that are on the borderline of being labelled relevant.

In other words, there is little utility in collecting additional data for genes that we

have already been strongly convinced are either relevant or irrelevant because it is

unlikely that the data will change our decisions. For example, in a study on a new

disease, an algorithm may begin by collecting a few microarrays to get a general

sense of the data, but then notice that there are many genes on the apoptosis pathway

that are borderline relevant, and so decide is more cost efficient to switch to using

qPCR arrays for apoptosis. In other more general cases, the most cost effective

solution may be to collect data from a variety of different qPCR arrays (including

custom ones) that collectively include the genes that have been implicated by the

initial microarrays.

2.4 BBD Definition

Formally, the BBD problem is to spend an experimentation budget, B, by selecting

tests from T to collect data on the genes in G and return an estimate of the set
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of relevant genes R̂ ⊆ G. Each test, t ∈ T , will provide a measurement of the

expression values for a specific subset of the genes, Gt, at a specific cost, Ct.4

In order to evaluate the performance of algorithms, or objectively compare the

results of different studies, we require an evaluation function that accepts as inputs

the estimated set of relevant genes, R̂ and the true set of relevant genes, R, and

returns a number measuring their similarity, with higher scores being preferable.

Ideally we desire R̂ to have both high precision and recall, where precision means

that genes in R̂ are also in R, and recall means that genes in R are found in R̂.

precision =

∣∣∣R ∩ R̂
∣∣∣

∣∣∣R̂
∣∣∣

recall =

∣∣∣R ∩ R̂
∣∣∣

|R|

To improve one of these measures, after the data has been collected, we must sac-

rifice the other. For example, we could get perfect recall by declaring all genes are

relevant, R̂ = G, but the precision would be poor, and reversely we could get per-

fect precision5 by declaring no genes are relevant, R̂ = {}, but then we would have

a recall of 0. As we require a single number to represent the similarity between R

and R̂, we propose the generalized F score as an appropriate evaluation function,

evaluation(R, R̂) =
(
1 + β2

) precision× recall
β2 × precision + recall

. (2.6)

We use the parameter β ∈ R to trade-off between precision and recall. Specifically,

β allows us to weight the partial derivatives of the evaluation function.

∂evaluation(R, R̂)

∂recall

/
∂evaluation(R, R̂)

∂precision
= β2 precision2

recall2

Thus, β is the relative importance of recall over precision, e.g., β = 2 means that

we prefer recall twice as much as precision. In practice we expect β to be fairly low,

perhaps β ≈ 1/10, as it is much more important that we be precise when reporting

relevant genes, than that we report all the relevant genes.
4This definition of the BBD problem is a generalized version of our previous presented defini-

tions in [52, 53, 54].
5For this we should define 0

0 = 1.
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2.5 Comparison to Traditional Association Studies

We now summarize the main differences between our BBD problem and traditional

approaches to association studies.

1. In Section 1.4 we showed that a pitfall of association studies was that they

lacked both a clear definition of what a biomarker was, and how much they

valued their discovery. The BBD problem has formally defined biomarkers to

be the relevant genes, i.e., those that can separate the cases from the controls

to a high degree of accuracy, where the user specifies accuracy. The BBD

framework also provides the function, evaluation(R, R̂), which sets an objec-

tive goal for the study – to get a high evaluation. The immediate benefits of

this framework are:

(a) Because there is a clear objective to the study, there is no uncertainty

with respect to choosing which set of genes should be reported as biomark-

ers. In order to do well, algorithms should report the set of genes that

they believe would give the highest evaluation possible. 6

(b) This framework helps to remove the perception of conflict that occurs

when multiple studies discover different sets of genes on the same phe-

notype. For example, if two studies on the same phenotype discovered

different sets of genes, R̂1 and R̂2, we would expect them to be dif-

ferent based on the statistical arguments of [35], but if they followed

the same experimental and analytical procedures then we would ex-

pect that the quality of their sets be similar, i.e., evaluation(R, R̂1) ≈
evaluation(R, R̂2).

2. Our definition of relevance based on the effect size is very similar to previous

approaches using t-tests – Equation (2.1) is just a scaled t-statistic. The key

distinction is that for gene gi to be a biomarker the BBD framework requires

|∆i| ≥ ∆∗ for a gene gi to be a biomarker, whereas the t-test only requires
6Note that an algorithm cannot directly compute its evaluation, as it does not know the genes that

are truly relevant, R. We will show that effective algorithms will find a good approximation for the
evaluation.
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∆i 6= 0. We believe that in reality there will be a continuum of ∆i values,

and no genes will have ∆i = 0.

3. Traditional association studies focus only on microarrays, or in general high-

throughput data. Thus, they require a follow up checking study in qPCR

(or other low-throughput data) to confirm that specific genes are biomarkers.

Unfortunately there is no clear consensus on how to properly perform an

association plus checking study [2, 73]. Our BBD framework clearly merges

these concepts into a single study, and considers how to effectively spend

the experimentation budget – the best strategy is to combine microarrays and

qPCR so that the evaluation function is maximized.

2.6 Extensions to the BBD Model

We now describe how our BBD framework can be generalized to cover a broader

range of problems.

While Figure 1.1 showed that microarray studies are increasing in popularity

we acknowledge that they are soon to be replaced by Next Generation Sequencing

(NGS) methods [44]. To update our model, we can simply add these new technolo-

gies to the set of available tests, T , as they come out. All of our algorithms and

analyses will hold for the new technologies.

Outside of gene expression data, it is relatively straight forward to adopt our

plate model to cover other types of ’omics data. For example, in metabolomics

there are different techniques that can be used to collect a metabolomic profile (i.e.,

concentration levels of all metabolites in a sample), each with its own accuracy

and cost [27]. Furthermore, some metabolites will have concentration levels that

are below the noise thresholds of certain technologies, and thus we see a similarity

to the use of different qPCR arrays to cover all genes. By mapping the appropriate

metabolomic parameters into our plate model we can identify metabolites by posing

a BBD problem.

We can also extend our model to cover problems in genomics, where the goal

is to find loci in our DNA where the allele can be linked to a specific phenotype.
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This is currently done by multistage Single-Nucleotide Polymorphism (SNP) stud-

ies [81]. In a multistage study, the first stage uses a SNP array that observes

O(1 000 000) SNPs to identify candidate SNPs. Each subsequent stage then re-

fines the number of candidate SNPs by using SNP arrays that are at least an order

of magnitude smaller than those in the previous stage. Thus, when the study is

completed the reported SNPs will have been selected out of a very large candidate

pool, and have been checked by multiple SNP arrays. This multistage framework is

very similar to the idea of switching from high- to low-throughput technologies in

the BBD problem. The key distinction between SNPs and gene expression is that

SNPs are discrete random variables whereas gene expression and metabolites are

real numbers. We anticipate that our analysis would confirm the standard practice

of running comprehensive SNP arrays for a small number of subjects , then running

small arrays for much larger sets of subjects, etc.

Beyond bioinformatics, we can also use our BBD model to describe other prob-

lems in machine learning. Crowd-sourcing on sites like Amazon’s Mechanical

Turk7 has become a very popular way to get menial tasks done. But before assign-

ing work to a “turker” or group of “turkers” an employer may wish to ensure that

they have some minimal level of proficiency at the task. For example, a company

with a large collection of images to label may create a small test set of expertly

labelled images which they then pay the potential turkers to re-produce those la-

bels. Turkers that do well on the test set can be immediately employed to begin

labelling the rest of the data. Turkers that perform terribly on the test set can be

discarded. Turkers with borderline performance can be re-tested by constructing

a second test set, to decide whether or not to hire them. The task of identifying

good turkers is analogous to finding relevant genes in the BBD problem, with the

different test datasets corresponding to the high- and low-throughput observations

across the turkers.

7https://www.mturk.com
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Chapter 3

Related Works

3.1 Similar Problems in Bioinformatics

3.1.1 Checking Studies

The microarray community has mandated that data be made public as a prerequisite

for publishing association studies [9]. They have even set guidelines mandating the

minimal amount of information to be included when releasing the data – enough

that others can replicate the analyses [15]. Unfortunately, they have not set a stan-

dard for validating the results of an association study with qPCR in a checking study

[21, 73]. Regrettably, most studies only release the microarray data, and give only

summary statistics of the qPCR data (if it exists). It would seem that the commu-

nity has yet to see the same value in qPCR data that it has with microarray data. For

example, the GEO database stores many properties in relation to each microarray

dataset posted, including associated papers and various high level summaries of the

data, but it does not contain links to, or information about, the associated qPCR

data – it does not even have an indicator for the existence of associated qPCR data.

Hopefully this will change in the future, as there has been a move to begin

standardizing qPCR data in a way similar to microarrays [18]. If qPCR data were

made public the analyses could be independently verified, and the data could be

used as testbeds to develop and analyze new BBD algorithms.
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3.1.2 Set Enrichment

As an alternative to searching for individual biomarkers in an association study,

there is also a large amount of research focused on finding sets of features that are

differentially expressed with the phenotype [42, 43, 79]. One of the motivations

for such set analyses is that individual features may not be strongly differentially

expressed in a study due to statistical noise, but if the set contains functionally

relevant features that are related to the phenotype, then it is unlikely that none of

those features will appear as biomarkers. In other words, it is highly likely that

for at least some of the features of important sets will be identified as biomarkers.

Thus, it is more likely that similar studies will agree on the feature sets that are

important even if they disagree on which individual features are biomarkers. For

example, if two studies reported genes from the apoptosis pathway as biomarkers,

even if the the genes reported are different, we might infer that apoptosis is related

to the phenotype.

Gene set analyses also employ the null hypothesis testing approach of associa-

tion studies, but rather than testing a statistic about a particular gene, they employ

a summary statistic that measures expression levels of multiple genes. By far the

most common method for scoring a feature set is the Gene Set Enrichment Analy-

sis algorithm (GSEA) [79]. GSEA is very similar to the Kolmogorov-Smirnov test

used to check if an observed probability distribution is different from a reference

one. In GSEA the reference distribution is the distribution of correlation scores

measured for every feature with the phenotype. The enrichment score is a distance

measure of the distribution of the correlation scores of the features within the set

to the reference distribution. The distance measure will be high if the set contains

features with correlation scores found at the tails of the reference distribution, i.e.,

the set contains genes that either highly correlated with the phenotype, or those that

are highly anti-correlated with the phenotype. Note, this score does not necessarily

mean that all features within the set are correlated with each other, i.e., the genes in

the set need not be biologically related to get a good score.

Analyzing sets by a summary statistic falls into the same trappings we have al-

ready discussed with association studies in Section 1.4 – we lack a formal definition
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of what it means for a set to be “differentially expressed” and an objective evalu-

ation criteria comparing the sets reported to be differentially expressed, to those

that truly are. Also, another important issue is to find appropriate, pre-defined,

sets to analyze. Common choices are to use known pathways from databases like

KEGG [50], or ontologies and hierarchies from GO [4], etc. Note these are some

of the same sources that are being used for biological interpretations of discovered

biomarkers. Thus, we argue that turning to set analysis has really just complicated

the original problem rather than simplifying it.

3.1.3 Class Prediction

An alternative method to finding biomarkers is to build a simple classifier to predict

the phenotype. If the classifier works well then it must then have found informative

features, and by definition1 those features should be called biomarkers. While there

is an extensive literature on learning classifiers for high-dimensional data, only a

handful of the methods have been successfully adopted by the bioinformatics com-

munity.

The Least Absolute Shrinkage and Selection Operator (LASSO) [82], Predictive

Analysis for Microarrays (PAM) [83], and Significance Analysis of Microarrays

(SAM) [87] are very popular algorithms that are typically applied to microarray

data. The main idea in these approaches is to use regularization methods that penal-

ize the classifier for every gene that it includes in its model. As a result the classifier

will opt for using a small set of highly informative genes, instead of using a large

set of many somewhat informative genes. By working with a smaller set of genes

the classifier will have less parameters to fit than had it used more genes, and given

the limited amount of data, relative to the number of genes, it is more likely that

those parameters can be tuned for good performance. In other words, we prefer

classifiers that have fewer parameters to tune, because they will be less likely to

“overfit” to the noise in the data [41].

The downside of employing sparsity inducing methods like these is that, while

1Here we mean the vague definition of biomarkers in general, and not our definition in the BBD
framework.
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there is strong evidence to suggest that the genes that used in the model are biomark-

ers, nothing can be said about the genes left out of the model. As the previous

approaches operated based on inducing sparsity, they are limited in their ability to

discover biomarkers, i.e., by their design, these algorithms will have poor recall

when discovering biomarkers. For example, if there are two genes that are very rel-

evant, but are correlated with each other, the classifier will use one and ignore the

other. Thus, by inspecting the genes used by the classifier we can miss some genes

that are obviously biomarkers. This subtle point is the difference between learning

a good classifier, and the problem of discovering biomarkers.

As an alternative to regularization methods, some researchers prefer to use the

idea of recursive feature elimination [40]. Here we build a series of classifiers. The

first classifier is given the freedom to use all the genes. Then the second classifier

is given the freedom to use any of the genes, except for the most informative gene

used in the first classifier, i.e., the previously determined “best gene” is eliminated

from the feature set. The third classifier is given the freedom to use any of the

genes, except for the most informative gene in the previous two classifiers. Thus,

each classifier is denied access to the most informative gene used by each of its

predecessors. Note, the goal is NOT to make a good ensemble of classifiers to

be used in a predictive task. The goal is to observe the order in which the genes

are eliminated – genes eliminated earlier are more likely to be biomarkers. Thus,

recursive feature elimination is similar to the top K approach discussed in Section

1.4.

Lastly, note that in the BBD framework, the genes are assessed based on their

strength as a univariate classifier, whereas these methods assess the genes based on

their strength within a multivariate classifier. These are potentially two different

sets of genes.

3.1.4 Sample Size Calculations for Microarray Analysis

Many researchers are interested in knowing the sample size required to reliably

analyze microarray data. Jung [48] and Muller et al. [64] investigate the problem

of determining the sample size required to ensure that a pre-fixed amount of genes
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will pass an False Discovery Rate (FDR) controlled t-test for a given level of control

α. However, [13, Section III] provides several strong arguments against adopting

these and similar methods. We believe that a better approach would be to collect

some preliminary microarray data and then apply our FDE algorithm to learn the

plate model for the gene expression values. The plate model can then be used to

determine the appropriate sample size for the study. This can be easily done by

modifying our TNAS-FDR algorithm.2

A similar problem is to determine the sample size required to build robust clas-

sifiers [30, 70, 78]. Dobbin et al. [30] takes an analytical approach to modelling

the statistical variations within microarray data, such that the sample size can be

determined. Popovici et al. [70] and Stretch et al. [78] retro-analyze large microar-

ray datasets by evaluating models built on sub-samples of the data. Strectch et al.

[78] claims to be more objective than Popovici et al. [70] because they have used

classification accuracy (measured by cross validation, and on external datasets) and

sex as the phenotype, whereas Popovici et al. [70] use Area Under the receiver op-

erating Curve (AUC) (measured by cross validation) and Estrogen Receptor (ER)

status as the phenotype – sex is an objective phenotype (there is no ambiguity about

the sex of a patient), and ER status is a subjective phenotype (experts may disagree

on the ER status of a patient). We will use the sub-sampling approach and data from

Stretch et al. [78] in our experiments.

3.1.5 Simulation Models for Microarray Data

Many researchers analyze microarray data to produce Gene Regulatory Networks

(GRNs) [10, 62]. Unfortunately, there are no benchmarks to evaluate GRN algo-

rithms on – as we do not know the ground truth. Thus, if different algorithms

produce different GRNs on the same data, we cannot objectively determine which

is better.

There is a sub-community of researchers that have been developing simulation

models, wherein the ground truth is known, that produce data that seems representa-

2For a given sample size, n, TNAS-FDR computes the optimal level of FDR control, α∗, to
apply, and thus by flipping the problem and fixing α, we can compute the value of n necessary to
achieve a specific evaluation score after we have estimated f∆.
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tive of real microarray data [1, 66]; GRN algorithms can be evaluated and compared

using these simulation models. This simulation modelling is similar to the problem

of estimating the distribution of the true ∆ values, f∆, which we solve as a sub-

routine within BBD. However, the key distinction between the two problems is that

in estimating and using f∆ we make no use of interactions between the genes (i.e.,

we implictly assume genes are uncorrelated), and that is the entire point of these

simulation models.

3.1.6 Individualized Treatment Rules

Clinical medicine often tries to identify which treatments are best for different pa-

tient sub-populations. For example, suppose there are two weight loss pills, A and

B, and we wish to determine which pill is best for men and which is best for women.

Here we hypothesize that there may be a difference in which treatment is more ef-

fective for each sex due to the differences in how men and women store fat. In

other words, this problem is asking if the treatment has a differential effect across

the patient population; this is strikingly similar to the concept of a biomarker be-

ing something that is differentially expressed patient populations. Furthermore, if

we scale up the problem and consider a large pharmaceutical company with many

drug candidates that it needs to screen for differential effects, in a budgeted man-

ner, we can see an analogy to our BBD problem. This problem is referred to as the

Individualized Treatment Rules (ITR) problem [7, 24, 25].

Despite being very closely related to the BBD problem, ITR is fundamentally

different because the actions in ITR means giving a patient a treatment, which not

only gives us information about the treatment but also influences the patient. Thus,

the ITR goal is to not only find good treatments for different patient populations in a

cost effective manner, but the goal is also to deliver good treatments to the patients.

In BBD the evaluation only depends on the conclusions drawn after all the data has

been collected.
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3.2 Similar Problems in Computing Science

3.2.1 Sequential Probability Ratio Tests

The problem of testing if a single gene is relevant, assuming that we can collect

the data sequentially, corresponds to the sequential hypothesis testing problem of

collecting data until one of two hypotheses, H0 versus H1, can be decided at a

pre-fixed confidence. The Sequential Probability Ratio Test (SPRT) [90] solves

this problem optimally in the sense that provably no other algorithm can make the

decision with the same confidence and collect less data in expectation.

When solving BBD problems it would be highly desirable to exploit this op-

timality result to reduce the amount of data collected. Unfortunately, it is very

difficult to reduce BBD to the SPRT framework. For starters, it is not clear how to

set appropriate distributions for theH0 andH1 hypotheses. One approach could be

to pick values ∆0 and ∆1 for the H0 and H1 hypotheses and test which is a better

fit for the estimated effect sized, ∆̂. Such a test would obviously be subject to how

select ∆0 and ∆1.

Aside from the issue of setting up the hypothesis test, the SPRT framework also

fails to model a selection criteria for deciding which tests to perform. For example,

if we had two genes, g1 and g2, the SPRT framework has no criteria to determine if

we should collect data for either g1 at cost C1, g2 at cost C2, or both at cost C1&2 – it

can only determine, for each gene individually, if sufficient data has been collected

to make the decisions at the pre-specified confidence.

3.2.2 Active Structure Learning

Active learning is a field of machine learning that explores the problem of learning a

model when given access to both labelled and unlabelled data with the ability to ob-

tain labels for the unlabelled data at a cost. For BBD problems, we consider that for

all genes, for all tests, for all patients in our study there is a specific expression value

ψ
(t)
i,s,m. If we have performed that test and observed that value then we consider that

as labelled data, and if we have not then it is unlabelled data. The active learning

problem is to use the labelled data to select which unlabelled data we should request
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to be labelled (within our budget) so that we can get a good evaluation score. There

are many learning objectives and labelling mechanisms that have been previously

studied [74]. Among the learning objectives, the closest to our BBD problem is ac-

tive parameter learning for graphical models [84] and active structure learning for

graphical models [59, 85]. We could use algorithms for active parameter learning

to estimate the parameters in our plate model, which includes the ∆i for all genes.

Thus, enabling us to solve our BBD problem. However, solving this problem is

much harder than our BBD problem, because along with identifying the relevant

genes this solution will estimate the distribution of expression values for all tests

for genes, i.e., it must learn all the θ(t)
i in our plate model. While it is possible to

adapt an algorithm from this domain to solving BBD, note that these algorithms are

designed with the goal of minimizing the KL divergence of the learned model to

the true model, but BBD solutions are evaluated on the quality of their estimated

relevant genes, R̂. These are very different objectives. For example, an algorithm

may have poor estimates of the distribution parameters, θ̂(t)
i 6≈ θ

(t)
i , but by aggregat-

ing across multiple tests, Equation (2.4) may produce a good estimate of the effect

size ∆̂i ≈ ∆i. Thus, the learned model will have a high KL divergence to the true

model, but the algorithm will score well on the BBD problem.

Alternatively we can pose a simpler active learning problem, wherein the goal

is to learn a naive bayes classifier for the phenotype. In such a classifier [41, Chap-

ter 6.6.3], we assume that given the phenotype the expression values of genes are

independent of each other, and we only include the genes that are not independent

of the phenotype. Active learning for such naive bayes models has been previously

studied by [59]. After the algorithm has spent its budget, the biomarkers would then

be those genes that are included in the classifier. The problem with this approach is

that it totally ignores our definition of biomarkers in Equation (2.2) – any gene with

∆i 6= 0 will eventually be included in the model, and thus called a biomarker, if the

budget is sufficiently large.

33



3.2.3 Bandit Problems

The n-arm bandit is a classic reinforcement learning problem [80]. This prob-

lem takes its name from its similarity to playing slot machines – slot machines are

also known as one-arm bandits. Bandit algorithms are presented with several arms

(i.e., slot machines) that they must sequentially play, with the goal of maximizing

the amount of money they win. Each arm is characterized by an unknown reward

distribution, thus algorithms should play all arms to get an estimate of these distri-

butions (explore), but should prefer to play those arms that have seemingly higher

rewards more often (exploit). Relevant variants of this problem are the best arm

identification [6], top K arm identification [17], and subset selection [49]. In these

problems, the algorithm has an exploration phase where it can play the arms with

the sole purpose of learning the reward distributions. Then once the exploration

phase is over, the algorithm must identify: the best arm, the top K arms, or a set of

good arms. If we consider each gene to be an arm with mean reward |∆i|, then we

can see a natural mapping between our BBD problem and these problems.

Unfortunately, the current algorithms for these problems are designed to work

in sequential scenarios where the algorithm can only pull one arm at a time, and

all arms have equal cost [17, 49]. The goal of the Successive Accepts and Rejects

(SAR) algorithm [17] is: given a fixed number of pulls, identify the top K arms.

It operates recursively, by pulling all arms equally often, until it can identify the

extremes, i.e., the arms that are clearly very good, or very bad, it then repeats on

the unidentified arms. While it is possible to force a similar behaviour in a BBD

algorithm, by having the algorithm use the set of tests such that all genes are tested

(approximately) equally often, note that finding such a set of tests corresponds to

solving the set cover problem, which is NP-complete [51].3 Alternatively, we could

use the Lower Upper Confidence Bound (LUCB) algorithm [49] which finds a set

of K good arms4 by iteratively partitioning the arms into those that appear to be in

the top K and those that do not, and then pulling the arms that are closest to that

3While high-throughput methods could be used to observe all the genes, they will be come
increasingly cost ineffective as the algorithm proceeds, and thus necessitate solving the set cover
problem.

4Here good arms correspond to relevant genes.

34



decision boundary. In Chapter 5 our BBD-Greedy algorithm will adopt a similar

behaviour.

There has been work in the bandit setting where the arms have different costs,

and algorithms are allowed to observe the returns from multiple arms, but the focus

there has been on minimizing the regret5, rather than classifying the arms [3, 8, 29,

86].

3.2.4 Stochastic Submodular Maximization

A very reasonable solution to BBD problems would be to collect a few microarrays,

and then make and execute a plan of which additional tests to collect, i.e., once

the plan is made the algorithm proceeds to follow that plan, and no longer uses

the data to select which tests to collect. In making such a plan we would expect

that every additional test gives us more information, but as we perform more tests,

the information gained per test will decrease. This diminishing returns property is

known as submodularity [33] and the study of maximizing problems of this nature

has become quite popular in recent years.6

While most of this literature has focused on deterministic problems, there has

been work on sensor placement that is stochastic [39]. Here the goal is to place tem-

perature sensors across a room such that the room is fully covered by the sensors,

but sensors can fail or be subject to varying amounts of noise. Thus, the proposed

solution is to sequentially deploy batches of sensors, so that we may observe which

fail or are obstructed, and adaptively plan accordingly. Golovin and Krause [39]

proves that greedy algorithms do well on this, and similar problems. Our BBD

problem shares this adaptive submodular property, where given the currently col-

lected data one plan may look good, but as we execute that plan, a new plan may

seem better, thus we should periodically revise the plan. Unfortunately we will

show that greedy algorithms are not good solutions for BBD problems, as our ex-

perimental results in Section 6.2 show that our BBD1 algorithm outperforms our

5The regret of a bandit is a comparison of the money made while playing the slot machines, to
how much money it could have made if it knew the true reward distributions.

6A comprehensive list of recent tutorials and workshops on submodular optimization is main-
tained by Andreas Krause at: http://submodularity.org/.
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BBD-Greedy algorithm in terms of the evaluation score.

3.2.5 Density Estimation and De-Convolution

In Chapter 4 we present the problem of density estimation for the univariate statis-

tics of high-throughput data. Our goal is to compute a good estimate of the true

effect sizes of the genes, f∆. The problem of estimating a probability distribution

from data has been well studied as the density estimation problem [76]. Unfortu-

nately, this is a bit of a misrepresentation of our problem as we do not work on den-

sity estimation. Instead we make use of the Glivenko-Cantelli theorem [88], which

states that the empirical estimate of the Cumulative Density Function (CDF), F̂x

converges uniformly to the true CDF, Fx, as the sample size used for the estimate

increases, i.e., supx∈R |Fx (x)− F̂x (x) | a.s.→ 0. Thus, we can safely assume that the

empirical estimate of the distribution of observed effect sizes, ∆̂ is equal to its true

value, i.e., F̂∆̂ = F∆̂, because the high-throughput nature of the data provides a

large enough sample for the theorem to hold. Furthermore, in Chapter 4 we assume

an additive noise model for ∆̂ where the noise distribution, fε is known. Thus, our

problem of computing f∆ can be posed as a de-convolution problem.

Convolution is an operation that takes two functions, x(t) and h(t), and com-

bines them in a linear summation,

y(t) =

∫ ∞

−∞
h(t− τ)x(t)dτ

= (h(t) ∗ x(t)) (t) .

The convolution operation is invertible, i.e., we can use the resulting function y(t)

in combination with h(t) to recover x(t). We call this inverse operation “de-

convolution”, and it arises in many signal processing applications. For example,

to play music a radio must solve the deconvolution problem of extracting the music

signal x(t), from the received signal at its antenna y(t) in the presence of transmis-

sion noise n(t), and unavoidable distortion from the antenna h(t),

y(t) = (h(t) ∗ x(t)) (t) + n(t) .

When h(t) is known and n(t) is unknown, the problem is solved by the Weiner

filter [93]; if h(t) is unknown there is a vast literature of methods [72, Chapter 6].
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By solved we mean that filters have been designed to transform signal y(t) into

x̂(t) such that the Mean Squared Error (MSE) between x(t) and x̂(t) is minimized.

Luckily, our particular de-convolution problem is somewhat easier than this general

problem, as we need only de-convolve f∆̂ = (f∆ ∗ fε). This problem can be solved

by applying the FFT/iFFT method [67, Chapter 9]. However, unlike our example of

producing a music signal, where it is perfectly fine to minimize the MSE, we will

be computing a distribution and are thus interested in analyzing the approximation

noise of the algorithm, and their effects when the computed distribution is used in

our plate model. As the goal of the de-convolution problem is to produce a MSE

estimate of x(t), this analysis is not done in the de-convolution literature.7

7Furthermore, de-convolutions are often used a pre-processing steps in classification problems,
and thus, as long as the approximation noise is systematic the details of its effect are uninteresting.
For example, in communication problems the goal is to determine if x(t) represents a digital “1” or
a digital “0”.
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Chapter 4

Density Estimation for
High-Throughput Statistics

Before we present algorithms for solving the BBD problem we consider the prob-

lem of estimating the distribution of univariate statistics of high-throughput data.

Our goal is to compute a good estimate of the distribution of the effect sizes,

f̂∆ ≈ f∆, to characterize our plate model from Section 2.1, thus allowing us to

generate synthetic data for similar BBD problems that can be used to tune parame-

ters for BBD algorithms. Throughout this section we will make frequent use of the

‘ˆ’ symbol to denote empirical estimates. Thus, for gene gi the true effect size is

∆i, its estimate is ∆̂i, and f∆ and f∆̂ are the respective distributions of the effect

sizes across all genes. f̂∆ is our estimate of f∆.

In this chapter we will present two methods for estimating f∆ from microarray

data, and analyze their different strengths and weaknesses. We then present the

Fused Density Estimation (FDE) algorithm that combines both methods.

In addition to parameter tuning for BBD algorithms, solving this particular den-

sity estimation problem is of interest in other tasks. For example:

1. In a traditional association study, where only microarray data is collected and

the goal is to label biomarkers by using t-tests, or by listing the top K genes,

we can use f∆ to select appropriate control mechanisms for the t-test, or good

values ofK to use in the topK approaches. In fact this will be the motivating

premise for our TNAS algorithms in Section 5.2.

2. We can ask budget related questions, e.g., determine how many microarrays
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are required to reliably find the top K genes, or some gene set S such that

|S| = K and ∀gi ∈ S : |∆i| ≥ ∆∗. This is similar to the work done

on power analysis for microarray studies [92], but has the advantage of being

done precisely for the study of interest instead of attempting to transfer results

from other studies.

3. When analyzing gene set enrichment, knowing f∆ we can assess the quality

of a particular gene set by comparing the observed univariate statistics of

the genes in the set versus those that would be observed in a random draw

from f∆. Note the highly popular GSEA algorithm [79] uses a bootstrap

approach to estimate the distribution of correlation scores of each gene with

the phenotype. Using our FDE algorithm we can get a better estimate of

this distribution. In Section 4.4 we show that, because our FDE algorithm

corrects for the observation noise in the observed statistics, it outperforms

the empirical estimator that does not model the noise.1

As a point of clarity, we note that others have developed methods of estimating

the density of univariate statistics of microarray data as part of empirical bayes

approaches for labelling biomarkers [34, 77]. However, the goal in those works

was to do mixture modelling, where they learned (or assumed) a distribution for the

statistics of the genes that are not biomarkers, and another for the genes that are. In

other words, those methods are learning a good way to compute f̂∆̂ on two sets of

genes. This is different from our goal of computing f̂∆ for all genes.

Throughout this chapter we will assume that all data has been collected using

a single high-throughput technology, presumably microarrays, that simultaneously

measures the expression values for all genes in G. Thus, for simplicity we omit the

use of superscripts to denote the test for which the parameters in this section are

specific.

To be precise about our learning objective here: recall that we assess each gene,

1After applying the Fisher z-transform [37, 38] to the correlation scores, we can fit the resulting
statistics to the additive noise model, Equation 4.3, that our FDE algorithm exploits to correct for
the observation noise.
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gi, based on the standardized effect size,

∆i =
µi,1 − µi,0√(
σ2
i,1 + σ2

i,0

)
/2

. (2.1 revisited)

We seek to estimate the distribution of the these values, f∆, i.e., we want a distri-

bution such that we can view the set of all effect sizes, {∆i}, as a set of N random

variables drawn from f∆. However, we only have access to the unbiased estimates,

∆̂i =
µ̂i,1 − µ̂i,0√(
σ̂2
i,1 + σ̂2

i,0

)
/2

. (4.1)

4.1 Raw Empirical Density Estimate

The obvious, naive, approach to estimating f∆ is to use the distribution of the ob-

served estimates, easily calculated via its Cumulative Density Function (CDF),

F̂∆̂ (x) =
1

N

N∑

i=1

1
(

∆̂i ≤ x
)

f̂∆̂ (x) =
∂

∂x
F̂∆̂ (x) ≈ f∆ (x) . (4.2)

The Glivenko-Cantelli Theorem [88] tells us that for large N , which we have with

microarrays, this empirical estimate converges to the distribution of the observed

effects, f̂∆̂ = f∆̂.2 However, we question how reasonable it is to approximate

f∆ ≈ f∆̂. The issue is that this estimate does not account for the observation noise

present in the estimated effect sizes, {∆̂i}.
In Appendix 8.2 we will show that, given our assumption that the gene expres-

sion values are normally distributed, the estimate ∆̂i follows a scaled non-central

t-distribution. Rather than working directly with the exact distribution of ∆̂i, we

consider an approximation to an additive noise model of the form,

∆̂i ≈ ∆i + εi (4.3)

εi ∼ N
(

0,
2

n

)
.

2Specifically the theorem tells us that supx∈R |F∆̂ (x) − F̂∆̂ (x) | a.s.→ 0 as N increases, which
means that we have a good estimate of the distribution for all values of x.
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The benefit of this approximation is that now, the distribution of the estimates is

given by the convolution of the distribution of the true effect sizes with the additive

noise distribution [68, Equation 7.7],

f∆̂ (x) =

∫ ∞

−∞
f∆ (τ) fε (x− τ) dτ

= (f∆ ∗ fε) (x) . (4.4)

The convolution in Equation (4.4) will have a “smoothing” (i.e., flattening) effect on

the true distribution. To illustrate the effect of the smoothing, Figure 4.1 shows the

effect of adding noise from a normal distribution to values drawn from a Laplace

distribution, i.e., f∆ = Laplace (0, 1) and fε = N (0, 1). We pick the Laplace

distribution for this example as it is notably peaked at x = 0, but after the noise

has been added, the peak is noticeably less sharp, as probability mass from the

peak has been pushed into the tails. If we were to use this distribution (i.e., f∆̂) as

the true distribution (rather than f∆), it would lead us to optimistically believe that

many more genes have large statistics, i.e., we would believe that it is easier to find

relevant genes because there are seemingly more of them.

41



−10 −5 0 5 10
10−4

10−3

10−2

10−1

100

x

 

 
f∆(x)

f∆̂(x) = (f∆ ∗ fε)(x)

Student Version of MATLAB

Figure 4.1: The effect of convolving a noise distribution, fε = N (0, 1), with the
true distribution, f∆ = Laplace (0, 1).
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4.2 Density Estimation via Characteristic Functions

Given our assumption that we know fε, it would seem natural to try to undo the con-

volution operation in Equation (4.4) to recover f∆. In some special cases, when f∆̂

and fε belong to certain distributional families, we can analytically perform the de-

convolution. However, in general scenarios, analytic solutions will not be tractable

and we must resort to numerical integration. Unfortunately, numerical methods will

introduce approximation noise that prevents us from properly recovering the distri-

bution, but by understanding and modelling that noise we can construct algorithms

that are well-suited to the task of estimating f∆.

The trick to understanding the noise is to consider the characteristic function

representation of the distributions. Using j =
√
−1, the transformation from Prob-

ability Density Function (PDF) to characteristic function and its inversion are given

by Equations (4.5) and (4.6).

Φx (t) =

∫ ∞

−∞
ejxtfx (x) dx (4.5)

fx (x) =
1

2π

∫ ∞

−∞
e−jxtΦx (t) dt (4.6)

The characteristic function notation is very convenient when working with sums of

random variables.

Theorem 1 (Product of characteristic functions [68, Equation 7.85]). If ∆̂ = ∆+ε,

where ∆ and ε are independent random variables with characteristic functions Φ∆

and Φε respectively, then the characteristic function of ∆̂ is given by the product,

Φ∆̂ (t) = Φ∆ (t) Φε (t) . (4.7)

Theorem 2 (Characteristic functions of symmetric distributions). If fx (x) = fx (−x)

then,

Φx (t) = Φx (−t) (4.8)

Φx (t) ∈ R . (4.9)

From our additive noise model in Equation (4.3), the characteristic function of

the noise is Φε (t) = e−t
2/n, where n is the number of microarrays (per class). We
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approximate f∆ by assuming that f∆ is symmetric about the origin and then com-

bining Theorems 1 and 2, and applying the reverse characteristic function transfor-

mation, Equation (4.6), to the result.

f∆ (x) =

∫ ∞

−∞
ejxtΦ∆̂ (t) /Φε (t) dt

= 2

∫ ∞

0

cos(xt)Φ∆̂ (t) et
2/ndt

f̂∆ (x; τ, T ) =
τ

π

∑

k : kτ≤T

cos (xkτ) e(kτ)2/n

(
1

N

N∑

i=1

cos
(

∆̂ikτ
))

(4.10)

In the event that f∆ is not symmetric as we have assumed, our approximation will

yield a symmetrized version of the true distribution, f̂∆ (x) ≈ 1
2
(f∆ (x)+f∆ (−x)).

In this case we also point out that the difference between f∆ and f̂∆ is of no conse-

quence because the downstream univariate analyses operate on the absolute value

of the observed statistics. In other words, we are as interested in finding genes that

are up-regulated, as we are in genes that are down-regulated. Thus, it is definitely

beneficial to assume the symmetry, as it leads to notable savings in computation.

We need only evaluate f̂∆ (x) for x ≥ 0 which is a factor 2 fewer calls to Equation

(4.10). Furthermore, within each call to Equation (4.10), we need only sum over

k : 0 ≤ kτ ≤ T , which gives an additional factor 2 savings. We get a third factor 2

savings by noting that Theorem 2 tells us the characteristic function is real valued.3

We now seek to analyze how the choice of the parameters τ and T affect our

approximation. Clearly we know that limτ→0,T→∞ f̂∆ = f∆, but in practice we

cannot use those limiting values.

4.2.1 Aliasing

In order to analyze the affect of τ on our approximation, we consider the case where

T =∞. Thus, the approximation noise is purely a result of τ .

3Arithmetic on complex numbers requires more work because we must track both the real and
imaginary components.

44



Theorem 3 (Aliasing). If we extend our approximation in (4.10) to sum over all

natural numbers then,

lim
T→∞

f̂∆ (x; τ, T ) =
∑

k∈Z

f∆

(
x− k

τ

)
. (4.11)

Theorem 3 is very informative as it shows us two important things:

1. From the summation of k across all integers, we can see that the estimate will

be a summation of infinite “aliases” (i.e., copies) of the true distribution.

2. The aliases will be spaced 1
T

apart, and thus if the support of the distribution

is larger than x ∈ (− 1
2τ
, 1

2τ
) the aliases (i.e., the f∆

(
x− k

τ

)
) will overlap and

we will not be able to recover the tails of the distribution.

In practice we expect that f∆ (x) > 0 for all x ∈ R, but if we can make τ

sufficiently small then we can push the aliases far enough apart that the aliasing

effect is negligible. Figure 4.2 shows the aliasing by using Equation (4.11), for the

case where the true effect distribution is Laplacian, f∆ = Laplace (0, 1). When

τ = 0.5 the aliases are so close that after they add up, f̂∆ (x) > 0.4 for all x,

resulting in a very poor approximation. But when τ = 0.1 the aliases are sufficiently

spaced that we have a very good approximation of f∆ (x) on x ∈ [−5, 5].
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Figure 4.2: Comparison of the true distribution, f∆ (x), and the aliased ver-
sion, f∆ (x; τ, T ), obtained from the approximation in Equation (4.11); using
τ = {0.1, 0.5} and T = ∞. Vertical dashed black lines denote the interval for
which the approximation is valid, x ∈ (− 1

2τ
, 1

2τ
).
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4.2.2 Windowing

We now analyze the effect of T by considering the limit as τ approaches zero.

We refer to this as the windowing effect, as T is used to control the interval (i.e.,

window) of the characteristic function Φ∆ that we are integrating over.4

Theorem 4 (Windowing). In the limit, as we decrease τ in our approximation from

(4.10),

lim
τ→0

f̂∆ (x; τ, T ) =

(
f∆ (x) ∗ sin(xT )

πx

)
(x) . (4.12)

The effect of the convolution introduced in Equation (4.12) is to induce a “rip-

ple” in the estimated distribution. Figure 4.3 illustrates this effect on f̂∆ with

T = {1, 2, 4}. Again, we have used the Laplace distribution to model the distri-

bution of true effect sizes, f∆ = Laplace (0, 1). Note that this convolution has two

very serious effects. Firstly, the tails of the estimated distribution are buried under

the ripple. Secondly, the estimated distribution is not even a distribution – it does

not integrate to 1, nor is it strictly non-negative. However, this is only apparent for

the values of T = {1, 2}, which we have used to highlight the phenomena; when

T = 4 the window effect is almost negligible. Clearly if we set T = 4 with τ small,

then we can get a very good approximation of f∆ here.

In practice our choice of T will be based on how confident we are in our empir-

ical estimate of the characteristic function, Φ̂∆ (t) = Φ∆̂ (t) /Φε (t). The function

becomes harder to estimate as t increases, and thus we limit our integration to the

window t ∈ [0, T ]. In order to determine a proper value of T , we make the addi-

tional assumption that f∆ is unimodal, and then by [5, Theorem 1] the characteristic

function Φ∆ (t) must also be a continuous unimodal function. Thus, we can select

T simply by plotting Φ̂∆ (t) and determining the range over which it is unimodal.

Figure 4.4 compares the true characteristic function, Φ∆ (t), versus the empirical

estimate Φ̂∆ (t) = 1
N
et

2/n
∑

i cos(∆̂it), for the same Laplace (0, 1) distribution,

with n = 5 microarrays per class. Note the function has a trough at t ≈ 4 and thus

T = 4 is a reasonable choice for this problem.
4Furthermore, in signal processing there is an analogous analysis for the constructing “window-

ing functions” for causal FIR filters [67, Chapet 7.2].
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Figure 4.3: The effects of convolving a Laplace distribution with the function
sin(xT )/πx for values T = {1, 2, 4}.
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f∆ =Laplace(0,1), 50 000 genes, n = 5
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Figure 4.4: A comparison of the true characteristic function Φ∆ versus its empirical
estimate Φ̂∆ produced from a study of 5 cases versus 5 controls, i.e., n = 5.
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The additional assumption that f∆ is unimodal is quite reasonable, as we would

expect that most genes are not relevant and this will force the distribution to be

mostly unimodal. In other words, the extremely high abundance of genes with ∆i

near to 0 will force f∆ to be mostly unimodal and symmetric5 about the origin.

Now that we have analyzed the effect of τ and T separately, we compare the ap-

proximation from Equation (4.2) to Equation (4.10) directly. Figure 4.5 compares

these approximations for our same Laplace (0, 1) distribution, with n = 5 microar-

rays per class; for the comparison we use τ = 0.1 and T = 4. Figure 4.5[left]

shows that we get a better approximation of the distribution near the peak by using

the characteristic function approach. Figure 4.5[right] shows that we get a better

approximation of the distribution in the tails using the naive empirical approach.

5Recall, we previously motivated the symmetry assumption in Section 4.2.
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Figure 4.5: A comparison of our two approximation methods: the naive empir-
ical estimate from Equation (4.2), and the characteristic function estimate from
Equation (4.10). [left] highlights approximation in the tails. [right] highlights the
approximation at the peak of the disrtibution.
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4.3 FDE Algorithm

We have now shown two approaches to estimating f∆. The first method, Equation

(4.2), naively used the empirical distribution of the observed ∆̂i, i.e., f̂∆ = f∆̂.

While this approximation was very intuitive, we showed that because it fails to

model the observational noise it will produce a “smoothed” distribution, that “loses”

peaks, and over-estimates tails. The second method, Equation (4.10), approximated

the distribution by estimating its characteristic function and then numerically trans-

forming it back into a PDF. We showed this method is better at recovering the bulk

of the distribution but notably suffers in the tails (more so than the naive estimate).

We now construct our FDE algorithm, Algorithm 1, that computes both density

estimates and then fuses them to get the best of both of their properties.

FDE accepts as inputs a set of estimates {∆̂i} and the assumed noise distribution

Φε (t). Thus, FDE works for any statistic with an additive noise model, not just

our specific case where the noise is normally distributed. For our BBD problem the

noise distribution has characteristic function Φε (t) = e−t
2/n, where n is the number

of microarrays used (per class).

The algorithm requires that the user set τ based on the available computational

resources. Note it takes O
(
T
τ
N
)

time to evaluate Equation (4.10). In Section 4.2.2

we showed how to select an appropriate value of T . We believe that given T , it is

straightforward for the user to determine an appropriate value τ for their use. When

used within our BBD algorithms in Chapter 5, we see that the runtime FDE is

relatively very small in comparison to the time it takes to use the resulting estimate

of f̂∆ to tune an algorithm’s parameters – i.e., in practice we can always set τ

sufficiently small to avoid aliasing effects.
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Algorithm 1 FDE( {∆̂i}, Φε (t) )

1: Φ∆̂ (t) = 1
N

∑N
i=1 cos

(
∆̂it
)

2: Φ∆ (t) = Φ∆̂ (t) /Φε (t)
3: T = maxt∈R+{t : ∂

∂t
Φ∆ (t) ≤ 0}

4: Set τ based on the available computational resources
5: Use τ and T with Equation (4.10) to produce f̂∆(1) (x)
6: Use Equation (4.2) to produce f̂∆(2) (x)
7: x∗ = minx∈R+{x : f̂∆(1) (x) = f̂∆(2) (x)}
8: w1 =

∫ x∗
−x∗ f̂∆(1) (x) dx

9: w2 =
∫ x∗
−x∗ f̂∆(2) (x) dx

10: f∆(fused) (x) =

{
f̂∆(1) (x) |x| ≤ x∗

1−w1

1−w2
f̂∆(2) (x) |x| > x∗

11: return f∆(fused) (x)
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4.4 Experiments

4.4.1 Experiments on Real Data

To show the benefit of using FDE over the naive empirical estimator, Equation

(4.2), we consider the problem of estimating f∆ on real microarray data. As we

cannot truly know f∆ for any real dataset, we take a large microarray dataset and

use all the microarrays to compute f̂∆̂ by our empirical estimator, Equation (4.2),

and use that as our ground truth (i.e., we use this particular f∆̂ as f∆). We then

run our algorithms on sub-samples of the dataset and compare their estimates to the

estimate using the full dataset. By the construction of this experiment, as the sub-

samples increase in size, the empirical estimator will converge towards the estimate

using the full dataset. This experiment will explore whether our FDE algorithm

converges faster than the empirical distribution, f∆̂. For the experiment we will be

using the following datasets from GEO:

GSE11882 This was a study to examine the difference in gene expression in nor-

mal brains between men and women. This dataset has 173 microarrays, 91

male versus 82 female, with 54 675 genes.

GSE19743 This was a study to examine the difference in gene expression of skin

tissues of burn patients versus normal skin tissues, but we decided to use sex

as the phenotype to make it consistent with our other datasets. This dataset

has 177 microarrays, 120 male versus 57 female, with 54 675 genes.

GSE41726 This was a study to examine the difference in gene expression in the

skeletal muscle tissues of patients with cancer cachexia. This dataset has 134

microarrays, 69 male versus 65 female, with 41 000 genes.

We chose to use GSE41726 because it is our dataset from a previous study [78]. We

chose to use GSE11882 and GSE19743 because they use Affymetrix HG-U133-

Plus-26 arrays, they had very large sample sizes, and we could extract the sex of the

patients as a phenotype from the meta-data associated with the dataset. Note that

6This is the most used brand of microarray across all datasets on GEO.
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we excluded other datasets using the same brand of microarray with larger sample

sizes because upon inspection it was difficult to ascertain if the data was from a

single study or was a composition of datasets from separate studies. We wanted to

avoid the latter because unless properly handled, mixing microarray datasets will

give rise to unwanted batch effects [47, 58]. We chose to use sex as our phenotype

because it is incontrovertible7 and common to all of our datasets.

For our experiment, we take sub-samples of sizes n = {5, 10, 15, . . . , 50},
i.e., we compare samples of n men versus n women. To evaluate the algorithms,

we compare the estimate using all the data, f∆, to the estimate produced on the

sub-sample, f̂∆, in terms of KL divergence, KS statistic, and Mean Squared Error

(MSE).

KL divergence =

∫ ∞

−∞
f∆ (x) log

(
f∆ (x)

f̂∆ (x)

)
dx

KS statistic = max
x∈R

∣∣∣F∆ (x)− F̂∆ (x)
∣∣∣

MSE =

∫ ∞

−∞

(
f∆ (x)− f̂∆ (x)

)2

dx

Figure 4.6 shows the results. As we have used the empirical algorithm to set the

ground truth, for large n, these scores will converge to 0. However, we see that

FDE has a much faster convergence rate because it models the observational noise.

Note, that FDE seems to hit a performance barrier for n ≥ 30 on GSE19743 and

GSE41726. This is to be expected because ultimately both algorithms produce

different estimates.

7 Patients are clearly either male or female. While there are some rare chromosomal abnormal-
ities such as females with XO chromosomes (Turner syndrome [61]), or males with XXY chromo-
somes (Klinefelter syndrome [57]), etc., that could affect the analyses and these patients should be
removed as statistical outliers. We know that GSE41726 does not contain any patients with these
abnormalities and believe that neither GSE11882 nor GSE19743 contain them as well.
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Figure 4.6: Comparison of FDE versus the empirical estimator on sub-samples from
real datasets. n denotes the sample size (n men versus n women).
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4.4.2 Experiments on Synthetic Data

We now show that the results of FDE should generalize over many other types

of distributions. Here we use synthetic datasets where we can perform parameter

sweeps on f∆ and show that FDE outperforms the empirical estimator for all pa-

rameterizations of f∆. For these experiments we consider the case where we have

N = 50 000 genes observed in an experiment comparing 5 microarrays from the

cases versus 5 from the controls. For each gene, gi, we draw a ∆i from f∆. Then

we draw 5 values from a normal N (∆i, 1) distribution (for the cases) and 5 values

from a N (0, 1) distribution (for the controls), from which we compute ∆̂i, i.e., we

use our plate model from Section 2.1 to generate the data.

Figure 4.7 plots the performance of our algorithms over the class of zero mean

Laplace distributions, f∆ = Laplace (0, b), and the class of zero mean normal dis-

tributions, f∆ = N (0, σ2). For all settings, we see that our FDE algorithm out-

performs the empirical estimator in terms of KL divergence, KS statistic and MSE.

Note that as b and σ2 increase the problem becomes easier (for both algorithms) as

the values of ∆i become much larger than the observation noise, which makes it

easier to learn their distribution.

As both of the algorithms are based on non-parametric estimators, we believe

that this trend will hold for any other reasonable distribution f∆. In the subsequent

section we will show another class of distributions where our results hold, and FDE

even outperforms parametric estimators.
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Figure 4.7: Comparison of FDE versus the empirical estimator over the class of
zero mean Laplace distributions, and the class of zero mean normal distributions.
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4.5 Parametric Models

The previous section showed that our FDE algorithm outperforms the naive empir-

ical estimator. However, both of these estimators are entirely non-parametric, and

so it is natural to ask, “can we do better if we know a priori that f∆ falls within

some parametric family?” From our additive noise model, assuming we know fε,

we can get very reliable estimates of the mean and variance of f∆,

E[∆] = E[∆̂]− E[ε]

Var(∆) = Var(∆̂)− Var(ε) .

Thus, the short answer is yes, IFF there is a good mapping of the distributional

parameters of f∆ to what we can observe, i.e., if the parameters can be recovered if

we know the mean and variance of the distribution.

However, there are distributional families for which the parameters cannot be

extracted from the mean and variance. Consider the Cauchy distribution,

fx (x) =
1

πγ

[
1 +

(
x−x0
γ

)2
] ,

with location parameter x0 and scale parameter γ. This distribution has undefined

mean and variance and thus we cannot relate x0 and γ to the sample mean and

variance of the observed ∆̂i.

Note that the Cauchy distribution is one of the well-known power law distribu-

tions, and previous works have shown that statistics of gene expression data follows

power laws in practice [60]. Thus, it is a potentially very relevant distribution, and

not just an obscure mathematical construction. We now address the problem of

estimating γ when we know that f∆ is a Cauchy distribution.

Traditionally the scale parameter γ is estimated by taking half the sample In-

terQuartile Range (IQR) [20], i.e., γ̂ =
q3/4−q1/4

2
, where qp denotes the p’th quantile,

qp = F−1
∆ (p). Here the naive approach to estimating γ would be to use the IQR

in the observed ∆̂i. Note that this is equivalent to using the empirical distribution

estimator, Equation (4.2), to compute f̂∆ and then extracting the interquartile range

of that distribution. However, as shown in Section 4.1, the observation noise will
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push mass towards the tails of the estimated distribution, which will cause us to

overestimate the interquartile range. A more robust approach would be to run our

FDE algorithm to get a better estimate of the distribution, and then compute the half

interquartile range from that distribution.

Here we perform an additional experiment on synthetic data where we use the

class of zero median Cauchy distributions, f∆ = Cauchy (0, γ), and we sweep

γ. Again, we use N = 50 000 genes observed in an experiment comparing 5

microarrays from the cases to 5 from the controls. Figure 4.8 compares the dif-

ference in the estimated Cauchy distribution based on the IQR extracted from the

approximate distribution using Equation (4.2) to IQR extracted from our FDE al-

gorithm. We use IQR to denote the naive algorithm that uses half the IQR of ∆̂i,

and use FDE-IQR to denote the more intelligent algorithm that uses half the IQR

from the distribution produced by FDE. As interesting comparison points we also

include the performance of the non-parametric distribution estimates from these

algorithms. Unsurprisingly, the parametric approach is always better than its non-

parametric counterpart – i.e., FDE-IQR is better than FDE. Interestingly the FDE

algorithm generally outperforms the IQR estimate produced by the empirical esti-

mator. Thus, by modelling the observation noise, our non-parametric distribution

estimate is actually better than our naive parametric estimate that fails to model the

noise.
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Chapter 5

Algorithms for BBD

5.1 Simplifying Assumptions

In this chapter we will present algorithms for solving the BBD problem.1 To fully

solve the BBD problem, an algorithm will make use of data that has been collected

and the remaining budget, to specify which test should be performed next and the

patient on whom we shall perform the test. For example, collect a microarray from

Mrs. Smith, or collect the cardiotoxicity qPCR array from Mr. Jones, etc. However,

writing a formal policy for an algorithm to follow is a difficult task. Any such

policy will contain parameters to control its behaviour. If these parameters are set

correctly then the algorithm will behave effectively but if they are set incorrectly

the algorithm may behave very poorly. Here we will introduce some additional

assumptions and restrictions on the BBD algorithms we will develop. By limiting

our algorithms we reduce the number of parameters that they have, and thus make

it easier to optimize them to perform well given the limited data that we envision

BBD algorithms will be able to collect.2

Independence We assume that the expression values of any pair of genes for a

specific patient are independent when conditioned on the patient’s phenotype,

1Much of the material in this chapter corresponds to [52, 53, 54]. In particular, our TNAS-
FDR, BBD1, and BBD-Greedy are clear improvements of our previous RR, RR+RR, and mLUCB
algorithms (from [54]) respectively. [52, 53] also had other algorithms, but they were very specific
to the models we used at the time, and as those models have become outdated so too have the
algorithms.

2Subsequently, in Chapter 6 we will see that even with these restrictions, it may still be challeng-
ing to tune the parameters for some BBD algorithms.
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i.e., we assume a naive bayes model. In other words, knowing the value of

expression value of gene gi1 for a patient, gives us no information about the

unknown expression value of gene gi2 if we know which group (cases or

controls) the patient is from.

While we know that this assumption is definitely NOT true, we believe that it

is a necessary assumption for algorithms to make. The issue is that we do not

know the correlation structure between the genes a priori, and thus in order

for an algorithm to exploit any dependencies it must first learn them from the

data.

As our goal is to determine the relevance of each gene by itself, this assump-

tion does not bias us towards making false statements. However, if we had

a reliable correlation structure to exploit we could potentially reach the same

conclusions with less data.

Balanced designs and indifference to patients For convenience, we restrict our

algorithms such that when collecting data, they can only specify which test

to perform. Once a test has been selected, we run that test on a random pa-

tient from the case group and a random patient from the control group. This

restriction drastically reduces the complexity of our BBD algorithms. With-

out it the algorithm could select any test t ∈ T , and any patient in the study.

However, we may have issues with picking patients in practice. For exam-

ple, we may able to recruit a couple hundred cancer patients to participate

in a study, but our budget limits us to collecting 50 microarrays. Without

some type of gene expression values for a patient a BBD algorithm has no

information from which it can assess the utility of collecting more data for

that patient. In practice, we expect that biological rationale (outside of the

scope of the BBD problem) can be used to select informative patients once

the algorithm has decided which test should be performed.

For ease of notation in our algorithms, we will assume that algorithms track

and update sufficient statistics for all data collected, and estimates derived from

them. Specifically, they track all parameters to compute the aggregate estimate of
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the effect size,

µ̂
(t)
i,s =

1

n(t)

n(t)∑

m=1

ψ
(t)
i,s,m

σ̂
(t)2
i,s =

1

n(t) − 1

n(t)∑

m=1

(
ψ

(t)
i,s,m − µ̂(t)

i,s

)2

∆̂
(t)
i =

µ̂
(t)
i,1 − µ̂(t)

i,0√(
σ̂

(t)2
i,1 + σ̂

(t)2
i,0

)
/2

∆̂i =

∑
t∈T n

(t)∆̂
(t)
i∑

t∈T n
(t)

, (2.4 revised)

here we use n(t) to denote the number of observations of test, t, we have collected

(per class). If one of the algorithms performs a t-test, it uses ∆̂i to test if ∆i = 0,

measured by the p-value pi.

We will also make use of ordered statistics notation [23]. Thus, we use pi to

denote the p-value of gene gi, and p(i) to denote the i’th largest p-value. In other

words, if we sort the p-values of all genes in ascending order, [p(1), p(2), . . . , p(N)],

then p(i) corresponds to the i’th element in the sort. Similarly, we will use the term

|∆̂|(i) to refer the i’th element of the sorted absolute values of the estimated effect

sizes, [|∆̂|(1), |∆̂|(2), . . . , |∆̂|(N)]. This should not be confused with |∆̂i|, which we

use to denote the absolute value of the estimated effect size for gene gi.

5.2 Traditional Naive Association Studies

Our first algorithms represents the Traditional Naive Association Study (TNAS)

approach used by many researchers.3 This approach spends the entire budget col-

lecting microarrays and then uses False Discover Rate (FDR) controlled t-tests to

determine which genes are relevant.4 Algorithm 2 presents pseudocode for our ba-

sic TNAS algorithm. The algorithm accepts as input: the available budget B, the

3Here we mean that the approach is naive in the context of the BBD problem because they only
use microarrays. We are not calling those researchers naive.

4A FDR controlled t-test is multiple hypothesis testing proceedure that (under some assump-
tions) upper bounds the proportion of false positives in the returned genes, i.e., the precision of the
algorithm has a lower bound.
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cost of a microarray Carray, and the level of FDR control α. Line 3 implements the

Benjamini-Hochberg method to control the FDR [12].

Algorithm 2 TNAS( B, Carray, α )
1: n = b B

2Carray
c

2: Collect n microarrays from both the cases and controls.
3: p∗ = maxs {p(s) : ∀r ≤ s : p(r) ≤ r

N
α}

4: return R̂ = {gi : pi ≤ p∗}

A drawback of this algorithm is that there is no clear mapping between the

value of α, and the evaluation score. We extend TNAS to TNAS-FDR, which ex-

amines the collected data to ascertain the difficulty of the problem, and then selects

an appropriate level of FDR control to maximize the expected evaluation. Thus,

TNAS-FDR brings the traditional approach into the BBD framework.

In Algorithm 3:line 3, TNAS-FDR calls the FDE algorithm to produce an esti-

mate of the distribution of the true effect sizes, f̂∆. Knowing this distribution, the

algorithm can then hypothesize the expected evaluation of TNAS with various val-

ues of the FDR control α, and then select the value, α∗, with the best evaluation in

expectation. If our estimated density function is good, then the optimal value α∗ for

f̂∆ will also give good results on our actual problem. We suggest using the golden

search method to efficiently find this α∗; see Appendix 9.1.

In a similar manner we construct our TNAS-TopK algorithm, Algorithm 4,

that instead of accepting genes based on FDR controlled t-tests, accepts the top K

features as relevant. Again, we exploit the plate model to tune an appropriate value

for K.

Algorithm 3 TNAS-FDR( B, Carray )
1: n = b B

2Carray
c

2: Collect n microarrays from both the cases and controls.
3: f̂∆ = FDE

(
{∆̂i},Φε (t) = e−

t2

n

)

4: α∗ = arg maxα E∆

[
evaluation (R,TNAS (B, Carray, α))

∣∣∣f̂∆

]

5: p∗ = maxs p(s) : ∀r ≤ s : p(r) ≤ r
N
α∗

6: return R̂ = {gi : pi ≤ p∗}
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Algorithm 4 TNAS-TopK( B, Carray )
1: n = b B

2Carray
c

2: Collect n microarrays from both the cases and controls.
3: f̂∆ = FDE

(
{∆̂i},Φε (t) = e−

t2

n

)

4: K∗ = arg maxK E∆

[
evaluation

(
R, R̂ =

{
gi : |∆̂i| ≥ |∆̂|(N−K+1)

})∣∣∣f̂∆

]

5: return R̂ =
{
gi : |∆̂i| ≥ |∆̂|(N−K∗+1)

}

5.3 Greedy Algorithm

While it is important to understand TNAS, TNAS-FDR, and TNAS-TopK, none of

these algorithms model the full BBD problem, as they do not make use of qPCR.

Here we consider the full BBD problem where the algorithm has access to a set of

possible tests T , where a test may be either a microarray or an “off-the-shelf” qPCR

array.5 Here we will consider an algorithm that makes full use of the available tests.

In order to have some information on which to base its decisions, the algorithm will

begin by collecting some microarrays, then it will seek to optimize a heuristic func-

tion, h
(
{(∆̂i, ni)},S

)
, where (∆̂i, ni) is a tuple representing the current estimated

effect size of gene gi and the number of observations it is based on, and S ⊆ T is

the set of tests the algorithm would like to perform. By constructing the heuristic

to be a close approximation of the expected evaluation, maximizing the heuristic

will lead the algorithm to perform well on the BBD problem at hand. This idea is

similar to the optimization steps in TNAS-FDR and TNAS-TopK, e.g., Algorithm

3: line 4. The difference is that, in those algorithms, we were only concerned with

how to identify the genes to return, given the current information about the genes;

here, we must also determine what information to collect – making the heuristic

more complicated.

We now seek to construct an appropriate heuristic function, and an algorithm

for maximizing it. Unfortunately, we cannot use the same approach used by the

TNAS algorithms, because here our algorithm decides what specific data to collect.

Previously, we were able to use f̂∆ and our plate model to generate synthetic data

5We use the term “off-the-shelf” to refer to arrays that use a pre-defined set of genes; we are
not allowing the algorithm to design custom qPCR arrays. Custom qPCR arrays will be considered
subsequently in our BBD1 algorithm.
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for very similar microarray studies to tune our parameters. But we cannot map the

genes of a specific test used here, to a set of fictitious ones used in parameter tuning.

Here we can use our observed data to compute the probability that a given gene,

gi, is relevant,

pi(∆̂i, ni) = P (gi ∈ R)

=





1− 1
2

(
F|∆−∆̂|

(
|∆̂i|+ ∆∗

)
− F|∆−∆̂|

(
|∆̂i| −∆∗

))
|∆̂i| > ∆∗

1− 1
2

(
F|∆−∆̂|

(
|∆̂i|+ ∆∗

)
+ F|∆−∆̂|

(
|∆̂i| −∆∗

))
|∆̂i| ≤ ∆∗

F|∆−∆̂| (x) ≈
∫ x

−x

1√
4π/ni

e−
niy

2

4 dy ,

where ∆̂i and ni are the values used in Equation 2.4 to summarize our knowledge

on gene gi. To compute this probability, we have used the CDF of the absolute

deviation from the mean of an estimated effect size, F|∆−∆̂|. We approximate this

CDF using an appropriate normal distribution, see Appendix 8.2. To evaluate the

utility of performing the tests in S, we can inflate ni to match the number of samples

seen after the data is collected,

h
(
{(∆̂i, ni)},S

)
= max

R̂
E∆

[
evaluation(R, R̂)

∣∣∣
{
pi(∆̂i, n

′
i)
}]

(5.1)

n′i = ni +
∑

t∈S

1 (gi ∈ Gt) .

To compute the expected evaluation we simply enumerate all possible outcomes,

and weight them by the given probabilities. We use the method of [46] to compute

the expected evaluation given the probabilities {pi}, which requires O(N4) time.

Now to optimize our heuristic function, we note that it has two key properties.

Firstly, extra tests will always improve the expected evaluation, and secondly the

impact of new tests will become less as more data is collected, i.e., we observe

diminishing returns. More formally, given two sets, S1 ⊆ S2, then,

h (S1) ≤ h (S2)

h ({S1 ∪ t})− h (S1) ≥ h ({S2 ∪ t})− h (S2) ,

where we have dropped the dependence on {(∆̂i, ni} for notational simplicity.

Thus, our heuristic is a monotone submodular set function with respect to S [33].

67



It is well-known that greedy algorithms can provide good solutions to submodu-

lar maximization problems [56, 65]. Furthermore, since our problem is stochastic,

finding the optimal set of tests, S∗, to maximize our initial heuristic may not be a

good idea, because as we begin collecting the data for those tests, we can update our

heuristic with the new data, and we may then prefer to spend the rest of the budget

collecting, S ′ 6= S∗. Thus, our problem has the same properties as the adaptive sub-

modular maximization problem [39]. It has been shown that the greedy algorithm

is a good solution for such problems.

Algorithm 5 presents the obvious greedy algorithm, BBD-Greedy. Line 5 se-

lects the test (among those that it can afford) that is most cost effective at raising the

heuristic. Although we initially said that this algorithm cannot make use of custom

qPCR arrays, this selection criteria can be easily extended to include the custom

arrays that are most likely useful – i.e., those that cover genes that are borderline

relevant. This modification can be done with a simple update to T , but we chose not

to show the modification, as it is not informative in understanding the behaviour of

this algorithm. Furthermore, we will directly address the problem of using custom

qPCR in the subsequent section.

Algorithm 5 BBD-Greedy( T )
1: Collect 2 microarrays from both the cases and controls.
2: B′ = B − 4Carray
3: while B′ ≥ 2 mint∈T Ct do
4: hcurrent = h

(
{(∆̂i, ni}, {}

)

5: t∗ = arg maxt∈T :2Ct≤B′

{
h({(∆̂i,ni},t)−hcurrent

Ct

}

6: perform test t∗ on 1 example from the cases and 1 from the controls.
7: B′ = B′ − 2Ct∗
8: end while
9: R̂ = arg maxR̂⊆G E∆

[
evaluation(R, R̂)

∣∣∣
{
pi(∆̂i, ni)

}]

10: return R̂
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5.4 Custom qPCR Algorithms

We now consider algorithms that utilize a combination of microarrays and custom

qPCR arrays. The envisioned behaviour of these algorithms is to intelligently col-

lect a few microarrays to assess the relevant preliminary info of the problem. Then

once it is cost effective to do so, the algorithm will potentially label the best genes

as relevant, and select the genes that are on the borderline of relevance for follow-up

with custom qPCR arrays. We consider the case where only a single custom qPCR

array will be created but we may use it to perform as many tests as we can afford

given the budget, i.e., we can specify an arbitrary set of NPCR genes, and then test

those genes for a cost of CPCR, as many times as our budget permits. We believe

that this is the type of the behaviour desired by the biologists currently looking for

a principled method for checking studies [2, 73].

Here we will present two algorithms that, instead of using the data collected to

select the tests that are most cost effective at raising the expected evaluation, follow

general policies to determine when (if ever) to stop collecting microarrays, and if so

which genes should be selected for qPCR based on their ranked statistics. The idea

here is that we can use our plate model to tune good parameters for those policies

given the estimate of f̂∆ from our FDE algorithm.

Algorithm 6 presents pseudocode for our BBD1 algorithm. The algorithm ac-

cepts as input: the available budget B, the cost of a microarray Carray, the cost of

custom qPCR array CPCR, and the number of genes it covers NPCR. At first the

algorithm collects the bare minimum number of microarrays needed for it to tune its

parameters. As this estimate is likely to be noisy, the algorithm then continues to re-

fine these estimates as more microarray data is collected (see the while loop at Line

5). Once it believes it has collected the appropriate number of microarrays, BBD1

then labels the top K genes as relevant, and follows up on the next NPCR genes

with the qPCR. Finally, it decides which of these followed-up genes are relevant by

applying a threshold test on the aggregated effect estimates ∆̂i.

To tune its internal parameters BBD1 makes use of the sub-routine BBD1-Core,

which computes the expected evaluation score it will receive for a given parameter-
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ization. Appendix 9 will present useful search algorithms to efficiently tune these

parameters.

Algorithm 6 BBD1( B, Carray, CPCR, NPCR )
1: n = 2
2: Collect n microarrays from both cases and controls
3: f̂∆ = FDE

(
{∆̂i},Φε (t) = e−

t2

n

)

4: n∗, K∗, ζ∗ = arg max
n,K,ζ

E∆

[
evaluation (R,BBD1-Core (n,K, ζ))

∣∣∣f̂∆

]

5: while n 6= n∗ do
6: n = n+ 1
7: Collect a microarray from both cases and controls
8: f̂∆ = FDE

(
{∆̂i},Φε (t) = e−

t2

n

)

9: n∗, K∗, ζ∗ = arg max
n,K,ζ

E∆

[
evaluation (R,BBD1-Core (n,K, ζ))

∣∣∣f̂∆

]

10: end while
11: R̂ =

{
gi : |∆̂i| ≤ |∆̂|(K∗)

}

12: S =
{
gi : |∆̂|(K∗) < |∆̂i| ≤ |∆̂|(K∗+NPCR)

}

13: Create a custom qPCR array for the genes in S
14: Spend remainder of budget collecting data on this custom qPCR array
15: R̂ = R̂ ∪

({
gi : |∆̂i| ≥ ζ∗

}
∩ S
)

16: return R̂

Algorithm 7 BBD1-Core( n, K, ζ )
1: Collect n microarrays from both cases and controls
2: R̂ =

{
gi : |∆̂i| ≤ |∆̂|(K∗)

}

3: S =
{
gi : |∆̂|(K∗) < |∆̂i| ≤ |∆̂|(K∗+NPCR)

}

4: Create a custom qPCR array for the genes in S
5: Spend remainder of budget collecting data on this custom qPCR array
6: R̂ = R̂ ∪

({
gi : |∆̂i| ≥ ζ

}
∩ S
)

7: return R̂
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We also present the BBD2 algorithm, Algorithm 8, which uses FDR controlled

t-tests. Our intention with this algorithm is to highlight the subtle difference be-

tween using a threshold decision versus an adaptive policy like FDR control. In

Section 6.3 we will show that it is easier for us to tune the threshold.

Algorithm 8 BBD2( B, Carray, CPCR, NPCR )
1: n = 2
2: Collect n microarrays from both cases and controls
3: f̂∆ = FDE

(
{∆̂i},Φε (t) = e−

t2

n

)

4: n∗, α∗1, α
∗
2 = arg max

n,α1,α2

E∆

[
evaluation (R,BBD2-Core (n, α1, α2))

∣∣∣f̂∆

]

5: while n 6= n∗ do
6: n = n+ 1
7: Collect a microarray from both cases and controls
8: f̂∆ = FDE

(
{∆̂i},Φε (t) = e−

t2

n

)

9: n∗, α∗1, α
∗
2 = arg max

n,α1,α2

E∆

[
evaluation (R,BBD2-Core (n, α1, α2))

∣∣∣f̂∆

]

10: end while
11: p∗ = maxs{p(s) : ∀r ≤ s : p(r) ≤ r

N
α∗1}

12: R̂ = {gi : pi ≤ p∗}
13: S =

{
gi : |∆̂|(|R̂|) < |∆̂i| ≤ |∆̂|(|R̂|+NPCR)

}

14: Create a custom qPCR array for the genes in S
15: Spend remainder of budget collecting data on this custom qPCR array
16: p∗ = maxs{p(r) : ∀r ≤ s : p(r) ≤ r

N
α∗2}

17: R̂ = {gi : pi ≤ p∗}
18: return R̂

Algorithm 9 BBD2-Core( n, α1, α2 )
1: Collect n microarrays from both cases and controls
2: p∗ = maxs{p(s) : ∀r ≤ s : p(r) ≤ r

N
α1}

3: R̂ = {gi : pi ≤ p∗}
4: S =

{
gi : |∆̂|(|R̂|) < |∆̂i| ≤ |∆̂|(|R̂|+NPCR)

}

5: Create a custom qPCR array for the genes in S
6: Spend remainder of budget collecting data on this custom qPCR array
7: p∗ = maxs{p(s) : ∀r ≤ s : p(r) ≤ r

N
α2}

8: R̂ = {gi : pi ≤ p∗}
9: return R̂
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Chapter 6

BBD Experiments

6.1 Comparison of TNAS Algorithms

Here we present an experiment to compare TNAS, TNAS-FDR, and TNAS-TopK.

We set the FDR control to α = 0.01 for the TNAS algorithm. Also, as a compar-

ison we include a fourth algorithm, TNAS-Omniscient, that cheats by looking at

the true ∆i for each gene, and then selects the top K such that the evaluation is

maximized, i.e., it gets the maximum evaluation possible for both TNAS-FDR and

TNAS-TopK.

We begin by using a sub-sampling experiment on the real microarray datasets

used in Chapter 4. For each dataset, we take a random sub-sample of n men versus

n women, and then present the data to the algorithms. All algorithms receive the

same sub-sample of the data, and thus the observed performance difference is based

entirely on how they construct their estimate of the relevant genes, R̂. To set the

ground truth for each gene we compute the estimated effect sizes, ∆̂i using all the

data and consider those to be the true values. We set ∆∗ = 1 and β = 1/10. Recall

that we use the generalized F score as our evaluation,

evaluation(R, R̂) =
(
1 + β2

) precision× recall
β2 × precision + recall

. (2.6 revisited)

Figure 6.1 presents the results. We can see that TNAS and TNAS-FDR have

similar performance. This is unsurprising, as the only difference is that TNAS-FDR

will use the estimated distribution, f̂∆, from FDE to tune its level of FDR control,

whereas TNAS uses a fixed value – if we can set a reasonable choice of α a priori
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then we cannot greatly improve it by using f̂∆ to tune α∗.1 In comparison TNAS-

TopK performs worse than these algorithms. Recall that FDE will over-estimate

the tails of the true distribution when computing f̂∆, and thus cause the algorithm

to believe there are more relevant genes. This tricks TNAS-TopK into returning

too many genes – e.g., for small values of n it has much higher recall than the other

algorithms but suffers due to the lost precision. Interestingly, as n increases, TNAS-

TopK becomes less aggressive and returns fewer genes. We believe that with larger

n, FDE returns better estimates, f̂∆, which allow TNAS-TopK to see the value in

trading-off recall for precision.

To further compare these algorithms, we ran simulation studies on synthetic

datasets wherein we know the ground truth of everything, and all our assumptions

hold. We consider the case where we have N = 50 000 genes observed in an

experiment of 10 cases versus 10 controls. For each gene, gi, we draw a ∆i from

f∆. Then we draw 10 values from a normalN (∆i, 1) distribution (for the cases) and

10 values from aN (0, 1) distribution (for the controls), and then use these values to

estimate ∆̂i, and compute corresponding p-values. For this experiment we consider

three cases: 1) f∆ is a normal distribution, 2) f∆ is a Laplace distribution, and 3)

f∆ is a uniform distribution. Figure 6.2 shows the results. As we have fixed the

number of microarrays in this experiment, we sweep the variance of f∆, to increase

the number of relevant genes.

Now we see a much stronger contrast in the algorithms’ performances. TNAS

now suffers heavily due its use of a constant level of FDR control α = 0.01. TNAS-

TopK displays the same behaviour as it did with the real data. When the problem

is hard, it seeks a good score by aggressively labelling many genes relevant, but as

the problem gets easier (i.e., for large values of σ2 and b) it becomes less aggressive

and starts trading-off recall for precision. Thus, we can conclude that if analyzing

real data one should use TNAS-FDR.

From the synthetic datasets, we see that the difficulty of the problem is related

1Had we chosen a different value of α for TNAS, or chosen a different value of β for the evalu-
ation, there would have been more contrast between the algorithms. In our subsequent experiments,
keeping α and β constant hut changing the datasets, we will show a more pronounced difference
between TNAS and TNAS-FDR.
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Figure 6.1: A comparison of our microarray only BBD algorithms, on sub-samples
of real microarray data from GEO datasets. n is the number of microarrays used in
the sub-sampling.

to the tails of f∆. Of our three synthetic models, the Laplace distribution has the

heaviest tails, and we can see that it is the easiest to solve. Here we use the perfor-

mance gap between TNAS-FDR and TNAS-Omniscient as a measure of easiness –

i.e., the problem must be easy if our algorithms can perform as well as the oracle

algorithm. On the Laplace distributions, TNAS-FDR is almost indistinguishable

from TNAS-Omniscient. Thus, we conclude that BBD problems on Laplace dis-

tributions are relatively easy. We claim that this relates to the tails of f∆ because

heavy tails mean that there will be more genes with very large values of |∆i|. As

our evaluation favours precision over recall, algorithms can do very well by only

labelling as relevant the extremely obvious genes. The normal distribution has a

slightly lighter tail, and thus there are less of these easy genes to pick off – note
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there is a gap between TNAS-FDR and TNAS-Omniscient. The uniform distribu-

tion has no tails at all, and thus no gene can have a very large |∆i|. This makes it

difficult to distinguish the relevant genes from the irrelevant ones – note the large

gap between TNAS-Omniscient and TNAS-FDR.

0 2 4
0

0.5

1

E
[e

va
lu

at
io

n
]

f∆ = N(0, σ2)

0 2 4
0

0.5

1

E
[p

re
ci

si
on

]

0 2 4
0

0.5

1

E
[r
ec

al
l]

σ2

0 1 2
0

0.5

1
f∆ = Laplace(0,b)

0 1 2
0

0.5

1

0 1 2
0

0.5

1

b

2 3 4
0

0.5

1

2 3 4
0

0.5

1

b

2 3 4
0

0.5

1
f∆ = Uniform(−b, b)

TNAS omni

TNAS FDR

TNAS-Topk

TNAS

Student Version of MATLAB

Figure 6.2: A comparison of our microarray only BBD algorithms, on synthetic
data. For the fixed case of 10 versus 10 microarrays.
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6.2 Comparison of BBD-Greedy To BBD1

We now compare BBD-Greedy to BBD1 using a small experiment on synthetic

data. We consider a set with 20 genes, and we can either do a microarray at cost

Carray = 10 to observe all of them, or a custom qPCR on 3 genes for a costCPCR =

1. If BBD-Greedy decides to collect qPCR, we force it to then spend its entire

remaining budget testing the same 3 genes – thus both algorithms have the same

choices available to them. While this experiment is not necessarily representative

of real problems, we will argue that the results can be extrapolated to cases of

interest.

For the experiment, we set f∆ to be a normal distribution,N (0, σ2), and we will

sweep σ2 and keep the budget fixed at B = 200. Thus, an algorithm may perform a

microarray only study, with 10 per class, or a 9 versus 9 microarray study with an

additional 10 versus 10 qPCR study, etc. Figure 6.3 shows the results.

We see that in all metrics, BBD1 outperforms BBD-Greedy. This is because

BBD-Greedy considers the genes independently when evaluating its expected eval-

uation in Equation (5.1), whereas BBD1 uses f̂∆ to get an empirical estimate of its

performance using our plate model – i.e., it exploits the fact that it can get a crude

estimate of true |∆|(i) even though it does not know how to map those values to the

genes.

If we scale up the problem to more realistic instances, FDE will produce better

estimates of f∆, which means BBD1 will be able to tune its parameters more effec-

tively, and thus perform better. Conversely, as the number of genes increases BBD-

Greedy will further suffer from considering the genes individually when assessing

the utility of tests, and thus perform worse. Therefore, we do NOT recommend the

use of BBD-Greedy in practice.
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Figure 6.3: A comparison of BBD1 to BBD-Greedy over a class of small syn-
thetic datasets. Microarrays cover all genes for cost Carray = 10, and qPCR covers
NPCR = 3 genes for cost CPCR = 1.
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6.3 Comparison of Custom qPCR Algorithms

Now we compare our custom qPCR algorithms, BBD1, and BBD2. As a compar-

ison point, we include TNAS-FDR, to represent a microarray only study. Again,

we use our real datasets to build a realistic experimental setup. When an algorithm

decides to collect a microarray, we randomly select a microarray from a patient in

the study. If an algorithm decides to collect qPCR data, we randomly draw two pa-

tients from the study and then average the gene expression values of the appropriate

subset of genes on their microarrays, to produce a more accurate measurement of

the gene expression values.2

For the experiment, we set the cost of a microarray to Carray = 10 and the cost

of qPCR to CPCR = 1, which covers NPCR = 100 genes of our choosing. We

vary different levels of the experimentation budget, B. For example, if the budget

is B = 200 then the algorithm may perform a microarray only study, with 10 per

class, or a 9 versus 9 microarray study with an additional 10 versus 10 qPCR study.

Figure 6.4 shows the results. We can see that the use of qPCR data does produce

an improvement over the microarray only study – BBD1 and BBD2 generally have

higher expected evaluation than TNAS-FDR. Interestingly these algorithms obtain

their score quite differently: BBD1 does well by finding the same relevant genes

as TNAS-FDR, but with a higher precision. BBD2 does well by labelling more

genes as relevant and scoring very high recall, at the expense of some precision.

We believe that BBD1 is displaying the behaviour sought by biologists looking for

a principled way to conduct a checking study.

Now we compare algorithms on synthetic data to see what happens to our al-

gorithms over a larger range of problems. We re-use the synthetic data experiment

from Section 6.1. We consider the case where we have N = 50 000 genes, and an

experimental budget B = 200; here again microarrays cost Carray = 10, and cus-

tom qPCRs cost CPCR = 1, and cover NPCR = 100 genes. For each gene, gi, we

draw a ∆i from f∆, and we use our plate model from Section 2.1 to draw random

2We know that there is a fundamental difference between microarray and qPCR data – see Sec-
tion 1.3. We do this because we know that qPCR data is more accurate than microarray and we do
not have real qPCR data for all genes.
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Figure 6.4: A comparison of our full BBD algorithms on realistic data derived from
GEO datasets. We fix Carray = 10, CPCR = 1, NPCR = 100, and we sweep the
budget, B.

variables for the expression values of the tests that the algorithms choose to collect.

For this experiment we consider three cases: 1) f∆ is a normal distribution, 2) f∆

is a Laplace distribution, and 3) f∆ is a uniform distribution.

Figure 6.5 shows the results. Shockingly, BBD2 is now clearly the worst of the

three algorithms. Theoretically, it should be able to default into TNAS-FDR if it

believes that collecting microarrays only is the best strategy. Since this is synthetic

data, wherein we know the ground truth and all the modelling assumptions are

true, these results show that it is more difficult to tune the parameters for BBD2

than BBD1, with the same limited amount of data. While both algorithms have

the same numbers of free parameters to be tuned with the data, BBD2’s parameters

describe slightly more complex behaviours – thus making them harder to tune with
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the same data. For example, when selecting which genes to follow-up in custom

qPCR, BBD1 simply puts the top K genes into R̂ and moves on to the next genes,

whereas BBD2 uses an FDR controlled t-test to determine which genes have low

p-values and then focuses on those with p-values that were too large to pass that

test. It seems reasonable that this policy represents a higher level of complexity.

Also note that, because TNAS-FDR spends all the budget collecting microarrays, it

has a more accurate estimate of f∆ than either BBD1 or BBD2, which allows it to

properly tune itself.

We posit that it will be difficult to construct an algorithm that performs notably

better than BBD1. We believe this to be true because in order to beat BBD1 an

algorithm will likely require a more sophisticated policy and that policy will have

parameters to tune. However, as we have just shown that we could not effectively

tune the parameters of BBD2 (which is only moderately more complex than BBD1),

we believe that it will not be possible to tune the parameters of this algorithm in

practice.

80



0

0.5

1

E
[e

va
lu

at
io

n
]

f∆ = N(0, σ2)

0

0.5

1

E
[p

re
ci

si
on

]

0 0.5 1
0

0.02
0.04
0.06

E
[r
ec

al
l]

σ2

0

0.5

1
f∆ = Laplace(0,b)

0

0.5

1

0.3 0.4 0.5
0

0.05

0.1

b

0

0.5

1

2 2.5 3
0

0.05

0.1

b

50 000 genes, B = 200, Carray = 10, CP CR = 1

0

0.5

1
f∆ = Uniform(−b, b)

BBD1

TNAS-FDR

BBD2

Student Version of MATLAB

Figure 6.5: A comparison of our full BBD algorithms on synthetic data. We fix
Carray = 10, CPCR = 1, NPCR = 100, and we sweep the appropriate free parame-
ter of f∆.
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6.4 Examining the Effect of Different Costs

To show that the performance advantage of BBD1 is not due to us unfairly con-

structing our experiments towards it, either by giving it an unfair cost advantage

or by making them overly accurate, we now perform an experiment to observe the

effect of the different costs, CPCR. To make the comparison fair for this experi-

ment, we use synthetic data, wherein both microarrays and qPCR have the same

accuracy, i.e., ∆
(microarray)
i = ∆

(PCR)
i . Thus, the observed differences will be due

to the difference between Carray and CPCR.

Here we fix the true effect size distribution, f∆ = N (0, 0.75), and sweep the

cost of our custom qPCR arrays, CPCR, maintaining Carray = 10 and B = 200. We

chose this particular f∆ because it was a point at which BBD1 was doing moder-

ately well in our previous experiment, and thus could be potentially affected by the

choice of CPCR.

For interesting comparison points, we include TNAS-FDR and TNAS-Omniscient.

Figure 6.6 shows the results. We begin examining this plot from the extreme right,

where the costs of qPCR and microarrays have been set to be equal. Here we can

see that the performance is very similar, but BBD1 has a slight advantage in recall.

This is because it benefits from its decision to accept the top K genes as relevant,

and then focus on the borderline genes. As we decrease the cost of qPCR BBD1

can afford more tests on the same budget and so it begins to see an advantage in

precision, but the recall is largely unaffected. This is because no matter how cheap

we make the qPCR arrays, they can only test NPCR = 100 genes in our setup,

and we may be unlucky in choosing those genes. However, we can be very precise

about the genes we have picked.

Thus, regardless of the cost of qPCR BBD1 will outperform TNAS-FDR on our

synthetic datasets. Interestingly, if the cost is low enough, it may also outperform

TNAS-Omniscient. While this result is on synthetic data, we do believe it is likely

to translate to real datasets, as we have seen in our experiments the assumptions of

normal distributions seems pretty reasonable, and there is a good correspondence

between BBD1 and TNAS-FDR across all our experiments. Unfortunately, with-

82



out real ground truth values for our datasets, we cannot verify that this is actually

happening. Hopefully, as the BBD framework gets adopted and researchers begin

publishing both microarray and qPCR data with their studies we can verify this in

the future.
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Figure 6.6: The effect of the cost of custom qPCR on the performance of BBD1. Re-
sults for TNAS-FDR and TNAS-Omniscient are also provided to compare against
our best microarray only algorithm, and the best possible microarray only algo-
rithm.
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Chapter 7

Conclusions

In this thesis we presented the BBD problem as an alternative to using simple asso-

ciation studies to find genes that are biomarkers. To motivate our BBD framework,

we showed that it addressed several concepts that are ambiguous with the traditional

approaches taken within association studies.

1. In many association studies, p-values are used to determine which genes are

biomarkers; if a gene has a sufficiently low p-value then it is a biomarker.

However, we believe that there are no genes for which ∆i = 0, and thus

given a sufficiently large amount of data, every gene can have a non-zero p-

value. We argued that it should be preferable to assesses genes based on their

standardized effect score, ∆i, and called those with genes with |∆i| ≥ ∆∗

“relevant”. The benefit is that when we call a gene relevant we refer to an

intrinsic, immutable, and interpretable property of the gene with respect to

the phenotype. Thus, the goal of researchers should be to identify genes that

are relevant.

2. The BBD framework provides an evaluation function that assesses the qual-

ity of the estimated set of relevant genes, R̂, based on the set of truly relevant

genes, R; with higher numbers being preferable. Having a clearly defined

evaluation function for BBD is critical because it enables us to develop al-

gorithms with the goal of maximizing that function, and thus provide the

behaviour desired by biologists looking for relevant genes. We also note that

this evaluation function can help us better understand the issue of irrepro-
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ducibility in microarray studies. For example, if two studies on the same

phenotype produced the sets of genes, R̂1 and R̂2, then due to statistical vari-

ations we would expect |R̂1 ∩ R̂2| ≈ 0 [35], but if they followed the same

experimental and analytical procedures then we would expect that the quality

of their sets be similar, i.e., evaluation(R, R̂1) ≈ evaluation(R, R̂2).

3. Currently most researchers agree that qPCR should be used to follow up mi-

croarray association studies, to validate the discovered biomarkers. Unfor-

tunately, there is yet to be a consensus within the community of how this

checking should be standardized. The BBD framework solves this by stat-

ing that microarray and qPCR technologies should be used jointly to produce

the best estimate of the relevant genes, R̂, that is possible given the avail-

able experimentation budget. In other words, microarray and qPCR should

be combined with the goal of maximizing our evaluation function, subject to

the budget constraints.

We showed, by number of datasets submitted to GEO, that there is a growing

trend towards using microarrays for association studies; with approximately 10 000

datasets produced in 2013. Furthermore we also showed that the microarrays used

per dataset is typically on the order of 10–15 arrays, and thus interpretation of the

results will require follow up in qPCR. By posing the analysis as a BBD problem

researchers can ensure that they are collecting their data in a cost efficient manner.

We also presented the problem of estimating the distribution of univariate statis-

tics in microarray data and presented the FDE algorithm to solve it. Our FDE

algorithm relied on the use of a plate model for gene expression values, and an

assumption of normality. We showed, on real and synthetic data, that FDE esti-

mates converge to the true distribution faster than a naive method that relies only

on the Glivenko-Cantelli theorem to produce an empirical estimate from the ob-

served values of ∆̂i. In order for FDE to have worked well on real microarray data,

our underlying plate model and assumption of normal distributions must have been

well founded. Furthermore, we showed that good solutions to the BBD problem

will incorporate our plate model and solve this density estimation problem as a sub-
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routine. Our BBD1, BBD2, and TNAS-FDR algorithms used the plate model to

tune their parameters and thus out-performed our TNAS and BBD-Greedy algo-

rithms, which did not use any plate model.

We showed that our BBD1 algorithm provides the most robust solution, amongst

the algorithms presented here, to the BBD problem. In all of our experiments, in

both real and synthetic data, it had very good performance – in most experiments it

had the highest evaluation score of all algorithms. We believe that BBD1 displays

the behaviour in combining microarray and qPCR data that researchers performing

association and checking studies desire.

We claim that it is extremely difficult to construct an algorithm that uses mi-

croarrays and custom qPCR data that can significantly outperform BBD1. The

issue is that such an algorithm would require a policy that is more elaborate than

BBD1’s to describe its behaviour, but if the policy is too complex the algorithm

will be unable to tune its parameters to behave effectively. We showed that our

BBD2 algorithm used a policy that was only a slightly more complicated policy

than BBD1’s, and it was unable to tune its parameters in synthetic data experiments

where all modelling assumptions were true. In all of these experiments, BBD2

performed worse than TNAS-FDR, which corresponds to the special case where

BBD2 collects only microarray data, i.e., BBD2 failed to realize that it could have

scored a higher evaluation by collecting only microarrays. All the while, in the

same experiments, BBD1 signficantly outperformed both TNAS-FDR, and BBD2

by appropriately combining microarrays with custom qPCR.

7.1 Recommended Future Works

In this thesis we presented the BBD problem and provided the TNAS-FDR, and

BBD1 algorithms as good algorithms for solving it; TNAS-FDR should be used

when retro-analyzing microarray data, and BBD1 should be used when we can col-

lect both microarrays and custom qPCR. However, these algorithms may be viewed

as good initial first steps. Here we will outline several interesting next steps that

could be taken towards analyzing and understanding the BBD problem.
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1. All of our successful BBD algorithms made use of the FDE algorithm as a

subroutine. Thus, by improving FDE we can improve the performance of

our BBD algorithms. Furthermore, we showed that BBD2 could not properly

tune its parameters given the estimated distribution, f̂∆, from FDE, and thus

the construction of more complex BBD algorithms will mandate an associ-

ated improvement to the FDE algorithm.

2. Our BBD1 algorithm showed that the use of a custom qPCR array can im-

prove upon the performance of an algorithm that only uses microarrays. How-

ever, we did not consider the possibility of using more than one custom qPCR

array. It would be interesting to see if an algorithm could do better using mul-

tiple custom qPCR arrays.

3. We presented the BBD problem from the perspective of having a limited bud-

get. However, it may be enlightening to also consider BBD from the perspec-

tive of being mandated to discover a specific amount of relevant genes. For

example, if we are required to find 100 relevant genes, what would be the

most cost effective manner to do so? And how much would it cost? Algo-

rithms for this task would likely make the claim that, with high probability,

they can reliably find the required relevant genes. It would be interesting

to show how the high probability requirement relates to the budget. Among

other things, answering these questions would allow researchers to assess the

feasibility of their research goals, and write more accurate grant proposals.

4. Rather than searching for the set of relevant genes, researchers interested in

biomarkers for diagnostics may wish to search for a set of genes that can

be used used to build a good classifier. In other words, we may wish to

solve the problem of collecting data to build a classifier for the phenotype,

while being efficient with the budget. We note that this sounds similar to the

problems that have been previously addressed in the field of active learning.

However, an interesting distinction here is that the classifier may be intended

to work using a specific technology, such as qPCR but the learning can utilize

different technologies, such as microarrays, as a cost effective means to do
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feature selection.

5. While our presentation of the BBD problem was restricted to just gene ex-

pression data, it would be interesting to approach the BBD problem from a

systems biology perspective and utilize multiple ’omics technologies. This

approach may also involve exploiting datasets from related studies on GEO,

and datamining databases such as KEGG, GO, etc.
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Chapter 8

Probability Distributions Used

This appendix is intended to be a convenient reference for the distributions used

within the thesis. All of this material is readily found in [68].

8.1 Basic Properties of the Distributions

Here we list the basic properties of the distributions we have used to describe ran-

dom variables in this thesis. Specifically, we list the PDF, CDF, characteristic func-

tion, mean, and variance.

Note that, while we did not use the Chi-squared distribution, we include it here

as it will be used as a stepping stone in our analysis of the distribution of ∆̂ in

Section 8.2.

Some of the functions make use of the gamma function,

Γ(x) =

{
(x− 1)! x ∈ N∫∞

0
yx−1e−ydy otherwise .

General properties for the normal distribution, x ∼ N (µ, σ2)

fx (x) = 1√
2πσ2

e−
(µ−x)2

2σ2

Fx (x) = no closed form expression exists12

Φx (t) = ejµt−
1
2
σ2t2

E[x] = µ
Var(x) = σ2

1It is common to use Φ(x) =
∫ x
−∞

1√
2π
e−t

2/2dt, but we do not use this notation, as by our
conventions Φ denotes a characteristic function.

2While this function is well defined, it is difficult to compactly write in the table. It is a function
composed of integrals that cannot be analytically solved.
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General properties for the Laplace distribution, x ∼ Laplace (µ, b)

fx (x) = 1
2b
e−|x−µ|/b

Fx (x) =
{

1
2
e(x−µ)/b x < µ

1− 1
2
e−(x−µ)/b x ≥ µ

Φx (t) = 1
1+b2t2

ejµt

E[x] = µ
Var(x) = 2b2

General properties for the Cauchy distribution, x ∼ Cauchy (x0, γ)

fx (x) = 1
πγ

(
1 +

(
x−x0
γ

)2
)−1

Fx (x) = 1
π

arctan
(
x−x0
γ

)
+ 1

2

Φx (t) = ejx0t−γ|t|

E[x] = undefined3

Var(x) = undefined4

General properties for the uniform distribution, x ∼ U (a, b)

fx (x) =
{

1
b−a a ≤ x ≤ b

0 otherwise

Fx (x) =





0 x < a
x−a
b−a a ≤ x < b

1 b ≤ x

Φx (t) = ejtb−ejtb
jt(b−a)

E[x] = 1
2
(a+ b)

Var(x) = 1
12

(b− a)2

General properties for the chi-squared distribution, x ∼ χ2(ν)

fx (x) = 1
2ν/2Γ(ν/2)

xν/2−1e−x/2

Fx (x) = no closed form expression exists2

Φx (t) = (1− j2t)ν/2
E[x] = ν

Var(x) = 2ν

3By undefined we mean that the integral
∫∞
−∞ xfx (x) dx cannot be solved.

4Because E[x] is undefined, AND E[x2] =∞ then the Var(x) = E[x2]−E[x]2 is also undefined.
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General properties for the non-central t-distribution, x ∼ T (ν, µ)

fx (x) = no closed form expression exists2

Fx (x) = no closed form expression exists2

Φx (t) = no closed form expression exists2

E[x] = µ
√

ν
2

Γ((ν−1)/2)
Γ(ν/2)

ν > 1

Var(x) = ν(1+µ2)
ν−2

− (E [x])2 ν > 2

8.2 The Distribution of ∆̂

We now derive the distribution of ∆̂. We begin by formally stating how the non-

central t-distribution arises, as a function of two random variables. If x ∼ N (µ, 1)

and y ∼ χ2(ν) are independent random variables then the ratio,

t =
x√
y/ν

, (8.1)

is said to follow a non-central t-distribution with ν degrees of freedom and non-

centrality parameter µ, i.e., t ∼ T (ν, µ).

Theorem 5. If the expression values of gene gi, observed by test t, are normally

distributed with common variance (σ2
i = σ2

i,s), ψi,s ∼ N (µi,s, σ
2
i ), and we have

observed n(t) values per class, then the scaled estimated effect size follows a non-

central t-distribution,

∆̂i

√
n/2 ∼ T

(
2n− 2,∆

√
n/2
)

, (8.2)

where we have suppressed the dependence on t for notational convenience.

Proof of Theorem 5. For convenience of notation, we suppress the superscript no-

tation denoting the test t.

We construct the random variables x =
µ̂i,1−µ̂i,0

σi
, and y = (n−1)

σ̂2
i,1+σ̂2

i,0

σ2
i

. From

the normal assumption, x and y are independent random variables1 with distribu-

tions,

x ∼ N
(
µi,1 − µi,0

σi
,

2

n

)
= N

(
∆i,

2

n

)

y ∼ χ2(2n− 2)

1Technically by the normal assumption µ̂i,s and σ̂2
i,s are independt random variables [68, Section

8.4], and thus x and y are independent by extension.
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The result follows from our definition of ∆̂ in Equation (2.4) with a few lines of

algebra.

∆̂i

√
n/2 =

µ̂i,1 − µ̂i,0√(
σ̂2
i,1 + σ̂2

i,0

)
/2

√
n

2

=
µ̂i,1 − µ̂i,0√(
σ̂2
i,1 + σ̂2

i,0

)
/2σ2

i

√
n

2σ2
i

=
x√

y/(2n− 2)

√
n

2
(8.3)

Equation (8.3) is the ratio of a normal random variables with distributionN
(

∆
√
n/2, 1

)

and the appropriately scaled root of a chi-squared random variable with ν = 2n− 2

degrees of freedom, as required by the definition in Equation (8.1).

Lastly we claim that we can approximate the non-central t-distribution with a

normal distribution,

T
(

2n− 2,∆
√
n/2
)
≈ N

(
∆
√
n/2, 1

)
. (8.4)

This claim is pretty reasonable as it a slight variation on the well accepted limit,

limν→∞ T (ν, 0) = N (0, 1). Rather than showing this mathematical we just com-

pare their plots. Figure 8.1 shows both distributions from Equation (8.4) for the

case where ∆ = 1 and n = {5, 10, 15, 20}. Even for these relatively small values

of n we can see that the normal approximation is quite good.
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Figure 8.1: Comparison of the non-central t-distribution (red) and the normal dis-
tribution (blue).
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Chapter 9

Tuning Algorithms for BBD

Now that we have shown that we can estimate f∆ in Chapter 4, we can use our plate

model to tune parameters for the algorithms we have constructed. Knowing f∆, we

can reason about what values of ∆ we should see given N draws from the distri-

bution. Then we can analyze how the algorithm will behave when confronting this

situation. Thus, conceptually we can analytically tune the parameters to optimize

the algorithms performance, i.e., maximize the given evaluation function.

Unfortunately, even for very simple algorithms the analysis is infeasible. Con-

sider our TNAS algorithm which uses a fixed level of FDR control, α, to label the

genes as relevant. In order to analyze such an algorithm we may need to compute

the probability that the algorithm labels exactly K genes as relevant,

P (TNAS labels K genes relevant)

= P

(
p(K) ≤

K

N
α

)
P

(
p(K+1) >

K + 1

N
α

)

= Fp(K)

(
K

N
α

)(
1− Fp(K+1)

(
K + 1

N
α

))
. (9.1)

Equation (9.1) is deceptively simple as it would seem that we only need to evalu-

ate the two CDFs, Fp(K)
and Fp(K+1)

. Unfortunately we do not have these CDFs,

but we can compute very good approximations for them. If we know f∆, then we

know all the ∆i values we expect to see across the genes. For each ∆i, Equa-

tion (8.2) gives us the distribution of ∆̂i, which we can transform to get the dis-

tribution of the corresponding p-vaue, fpi . Then we can compute the distribu-

tion of ordered statics on independent, non-identically distributed random variables
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[23][Chapter 2.8]. Unfortunately, this process takes O
(
N2
(
N
K

))
work, per evalua-

tion of Equation (9.1). Alternatively we can use our plate model to simulate TNAS

in O(N + N log(N)).1Thus, rather than computing the probability analytically, it

is more efficient compute it empirically by averaging over several runs of the algo-

rithm on synthetic datasets.

To tune an algorithm, such that it will perform effectively, we must consider

several parameterizations and for parameterization we must perform some simula-

tions to get an empirical estimate of its expected evaluation. In this appendix we

will present some heuristic search techniques that can be used to reduce the com-

putational effort spent in parameter tuning.

9.1 Golden Search

Here we consider the general problem of finding the value x to maximize some

unimodal function h (x), assuming that we have a bounded interval on the possible

values of x. Specifically we wish to solve the problem,

x∗ = arg max
x∈[a,b]

h (x) . (9.2)

This problem will arise when tuning parameters for our BBD algorithms. For ex-

ample, to tune TNAS-FDR we would set,

h (x) = E∆

[
evaluation (R,TNAS(B,Carray, x))

∣∣∣f̂∆

]

a = 0

b = 1 .

The golden search algorithm is a divide and conquer method that works by

iteratively breaking the interval [a, b] into sub-intervals, which it can quickly check

to see which contains the maximum. The algorithm maintains an ordered triplet

of values (x1, x2, x3) for which it know the values h (x1), h (x2), and h (x3). By

considering a new point x4 ∈ [x1, x3], and evaluating h (x4), the algorithm can
1We can dramatically reduce the work done by TNAS in practice, by noting that the computa-

tional bottleneck is from sorting the p-values. As most genes are not relevant, we need only sort the
bottom few. Thus, we can reduce the work to O(N + K log(K)), where K is the number of genes
passing FDR control.
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Figure 9.1: One iteration of the golden search algorithm. Double arrows represent
the intervals wherein x∗ = arg maxh(x) may lie.

determine which interval the maximum lies in by comparing all the h (xi) values.

Figure 9.1 illustrates the two possible outcomes of the comparison, for the case

where x4 > x2. 2 Either, h (x4) ≥ h (x2) and we can conclude that x∗ ∈ [x2, x3]

because we know h (x) is unimodal, Figure 9.1 outcome 1. Or, h (x4) < h (x2) and

we can conclude that x∗ ∈ [x1, x4], Figure 9.1 outcome 2.

Now we consider how the algorithm selects the point x4. Regardless of the value

of h (x4), we would like to the algorithm to make the same amount of progress per

iteration, i.e., we desire the intervals [x1, x4] and [x2, x3] to have the same length.

Algorithm 10 presents pseudocode for the golden search algorithm, named so as

it uses the well known golden ratio to select the point x4. The algorithm accepts

as inputs: the function to maximize h(·), and upper and lower bounds to begin the

2The case case where x4 < x2 behaves similarly.
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parameter search, x1 and x3 respectively. This algorithm is guaranteed to find the

optimal setting x∗ for any unimodal objective function h(x).

Algorithm 10 uses a check for unimodality to terminate our search at line 8.

Theoretically this should never happen as we began by stating that h (x) is uni-

modal. However, for our purposes we will not have access to the true h (x), and

will rely on an empirical estimate generated from simulating in our plate model –

when the interval is sufficiently small statistical variations on h (x) will cause the

algorithm to terminate.

Algorithm 10 Golden Search( h (·), a, b )

1: r = 1+
√

5
2

2: x1 = a and x3 = b
3: x2 = x1 + x3−x1

1+r

4: evaluate h (x1), h (x2), h (x3))
5: while true do
6: x4 = x1 + (x3 − x2)
7: evaluate h (x4)
8: if h (x) is bi-modal then
9: break

10: end if
11: switch true
12: case (x4 > x2) and (h(x4) > h (x2))
13: x1 = x2

14: x2 = x4

15: case (x4 > x2) and (h (x4) < h (x2))
16: x3 = x4

17: case (x2 > x4) and (h (x4) < h (x2))
18: x1 = x4

19: case (x2 > x4) and (h (x4) > h (x2))
20: x3 = x2

21: x2 = x4

22: end switch
23: end while
24: return x∗ = x2

We note that there are other interval search algorithms that could be used [71],

but golden search is particularly appropriate for two reasons:

1. It has slightly faster convergence towards the value x∗, in terms of the number

of evaluations of h (x4) to the reduction of the interval [x1, x3].
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2. For every evaluation of h (x) we can immediately reduce the interval x∗ ∈
[a, b], whereas methods like ternary search require two evaluations in order to

reduce the interval.

In the following branch and bound search we will benefit from this, as faster updates

to the intervals will improve our bounds and help us to avoid necessary evaluations

of h (x).

9.2 Branch and Bound Search

The golden search method works well for tuning functions with a single parameter,

and thus is well suited for our TNAS-FDR and TNAS-TopK algorithms. But, it

clearly will not work for BBD1. Here we present a branch and bound technique that

we can use for tuning more complicated BBD algorithms. We will use the example

of parameter tuning for BBD1 as running example, but the approach applies equally

well to BBD2, and is likely to generalize to other BBD algorithms.

BBD1 must solve the problem,

n∗, K∗, ζ∗ = arg max
n,K,ζ

E∆

[
evaluation (R,BBD1-Core (n,K, ζ))

∣∣∣f̂∆

]
.

At first this may seem like it we must solve a single optimization problem. But if

we observe how the BBD1-Core algorithm operates, the choice of ζ depends on the

values of n andK, the choice ofK depends on n, and n can be set arbitrarily. Thus,

we can decompose the problem to,

n∗, K∗, ζ∗ = argn,K,ζ

[
max
n

{
max
K

(
max
ζ
h(n,K, ζ)

)}]
(9.3)

h(n,K, ζ) = E∆

[
evaluation (R,BBD1-Core (n,K, ζ))

∣∣∣f̂∆

]

With this decomposition we can now use Algorithm 10 to solve each of the compo-

nent maximizations, as they involve sweeping a single parameter.

We can get further improvements by noting that using interval searches on pa-

rameters allows us to use branch and bound search to solve our optimization prob-

lem. For example, suppose are considering a parameterization with n, K, and we

know ζ ∈ [ζ1, ζ2]. Furthermore, because we use simulations in our plate model to
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get an empirical estimate of the expected evaluation for a given parameterization

we can also compute the precision and recall. We note that by increasing ζ it is

harder for genes to be added to R̂, and thus we increase the precision and decrease

the recall (in expectation). Thus we construct an upper bound on the evaluation

score by using the best possible values of the precision and recall.

precision1 =E∆

[
precision of BBD1-Core (n,K, ζ1)

∣∣∣f̂∆

]

recall2 =E∆

[
recall of BBD1-Core (n,K, ζ2)

∣∣∣f̂∆

]

max
ζ∈[ζ1,ζ2]

E∆

[
evaluation (R,BBD1-Core (n,K, ζ))

∣∣∣f̂∆

]

≤
(
1 + β2

) precision1 × recall2
β2 × precision1 + recall2

When considering two different parameterizations, one with n and K1, and one

with n and K2, we may not need to find the optimal ζ1 if we have observed some

some value of ζ2 where the second parameterization has a higher evaluation than the

bound on the first, then we can abandon the parameter search on ζ1, as the second

parameterization must be better. Thus, we focus our effort into finding the values

of ζ∗2 for the given values of n2 and K2. Naturally, we can apply this same idea to

comparing parameterizations using different values of n.

Lastly, we note that BBD1 is often checking to see if it should collect more

microarrays. If the decision is to collect more microarrays, then the actual values of

n∗,K∗, and ζ∗, are irrelevant, because the algorithm will update f̂∆ and then resolve

Equation (9.3). Thus, we can get a further savings in practice by terminating the

search, whenever it has been determined that more microarrays will be collected.

The important things to take note of to generalize these ideas to tune BBD al-

gorithms is:

1. There is likely a natural hierarchy to the parameters which we can exploit for

the optimization.

2. By using interval searches on a single parameter, we can use the precision and

recall at the end points of the interval to bound the function over the interval.

3. By quickly identifying intervals that the optimal parameters reside in, we can

focus on promising areas of the parameter space and solve the problem faster.
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Chapter 10

Proofs

In this section we provide proofs for the theorems presented in Chapter 4.

Proof of Theorem 2: Characteristic functions of symmetric distributions. If fx (x) =

fx (−x) then with some manipulations:

Φx (t) =

∫ ∞

−∞
fx (x) ejxtdx

=

∫ 0

−∞
fx (x) ejxtdx+

∫ ∞

0

fx (x) ejxtdx

=

∫ ∞

0

fx (−x) e−jxtdx+

∫ ∞

0

fx (x) ejxtdx

=

∫ ∞

0

fx (x)
(
e−jxt + ejxt

)
dx

= 2

∫ ∞

0

fx (x) cos (xt) dx

= Φx (−t)

Proof of Theorem 3 requires the following Lemmas.

Lemma 6 ( Convolution Theorem [67, Equation 2.196] ). If h(x) and g(x) are

arbitrary real valued functions, and both
∫∞
−∞ h(x)ejxtdx and

∫∞
−∞ g(x)ejxtdx are

defined, then,
∫ ∞

−∞
(h(x) ∗ g(x)) (x)× ejxtdx =

(∫ ∞

−∞
h(x)ejxtdx

)(∫ ∞

−∞
g(x)ejxtdx

)

(10.1)
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Lemma 7 (Sifting [67, Equation 4.4] ). If δ(t) is the Dirac delta function, and h(t)

is an arbitrary real valued function, then,
∫ ∞

−∞
h(t)δ(t) = h(0) (10.2)

Lemma 8 (Impulse Train [67, Equation 4.5] ). If δ(t) is the Dirac delta function,

and T ∈ R is a constant, then,

T
∑

k∈Z

∫ ∞

−∞
ejxtδ(x− kT )dx =

∑

k∈Z

δ

(
t− k

T

)
(10.3)

Lemma 9 (Inverse Transform [68, Equation 5.76] ). If h(x) is an arbitrary function

then,

h(x) =
1

2π

∫ ∞

−∞

(∫ ∞

−∞
h(x′)ejx

′tdx′
)
e−jxtdt (10.4)

Proof of Theorem 3: Aliasing. From our approximation in Equation 4.10, the limit

as T →∞ is,

lim
T→∞

f̂∆ (x; τ, T ) = lim
T→∞

τ

2π

∑

k : |kτ |≤T

e−jxkτΦ∆̂ (kτ) /Φε (kτ)

=
τ

2π

∑

k∈Z

e−jxkτΦ∆ (kτ)

By Lemma 7,

=
τ

2π

∑

k∈Z

∫ ∞

−∞
e−jxtΦ∆ (t) δ(t− kτ)dt

=
1

2π

∫ ∞

−∞
Φ∆ (t)

(
τ
∑

k∈Z

δ(t− kτ)

)
e−jxtdt

By Lemma 6 (using Equation (4.6) and Lemma 8 for the components h(x) and

g(x)),

=
1

2π

∫ ∞

−∞

[∫ ∞

−∞

(
f∆ (x) ∗

∑

k∈Z

δ

(
x− k

τ

))
(x) ejxtdx

]
e−jxtdt

By Lemma 9,

=

(
f∆ (x) ∗

∑

k∈Z

δ

(
x− k

τ

))
(x)

=

∫ ∞

−∞
f∆ (x− y)

(∑

k∈Z

δ

(
y − k

τ

))
dy

=
∑

k∈Z

∫ ∞

−∞
f∆ (x− y) δ

(
y − k

τ

)
dy
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By Lemma 7

=
∑

k∈Z

f∆

(
x− k

τ

)

Proof of Theorem 4: Windowing. From our approximation in Equation 4.10, the

limit as τ → 0 is,

lim
τ→0

f̂∆ (x; τ, T ) = lim
τ→0

τ

2π

∑

k : |kτ |≤T

e−jxkτΦ∆̂ (kτ) /Φε (kτ)

=
1

2π

∫ T

−T
e−jxtΦ∆ (t) dt

=
1

2π

∫ ∞

−∞
Φ∆ (kt)1 (|t| ≤ T ) e−jxktdt

By Lemma 6,

=
1

2π

∫ ∞

−∞

(∫ ∞

−∞

(
f∆ (x′) ∗ 1

2π

∫ ∞

−∞
1 (|t| ≤ T ) e−jxtdt

)
(x) e−jxtdx

)
e−jxtdt

By Lemma 9,

=

(
f∆ (x′) ∗ 1

2π

∫ ∞

−∞
1 (|t| ≤ T ) e−jxtdt

)
(x)

By calculus [16], (
f∆ (x′) ∗ sin(Tx)

πx

)
(x)
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