
Computational Prediction of Electron Ionization Mass Spectra to
Assist in GC/MS Compound Identification
Felicity Allen,* Allison Pon, Russ Greiner, and David Wishart

Department of Computing Science, University of Alberta, Edmonton T6G 2E8, Canada

*S Supporting Information

ABSTRACT: We describe a tool, competitive fragmentation modeling for
electron ionization (CFM-EI) that, given a chemical structure (e.g., in
SMILES or InChI format), computationally predicts an electron ionization
mass spectrum (EI-MS) (i.e., the type of mass spectrum commonly
generated by gas chromatography mass spectrometry). The predicted
spectra produced by this tool can be used for putative compound
identification, complementing measured spectra in reference databases by
expanding the range of compounds able to be considered when availability
of measured spectra is limited. The tool extends CFM-ESI, a recently
developed method for computational prediction of electrospray tandem
mass spectra (ESI-MS/MS), but unlike CFM-ESI, CFM-EI can handle odd-electron ions and isotopes and incorporates an
artificial neural network. Tests on EI-MS data from the NIST database demonstrate that CFM-EI is able to model fragmentation
likelihoods in low-resolution EI-MS data, producing predicted spectra whose dot product scores are significantly better than full
enumeration “bar-code” spectra. CFM-EI also outperformed previously reported results for MetFrag, MOLGEN-MS, and Mass
Frontier on one compound identification task. It also outperformed MetFrag in a range of other compound identification tasks
involving a much larger data set, containing both derivatized and nonderivatized compounds. While replicate EI-MS
measurements of chemical standards are still a more accurate point of comparison, CFM-EI’s predictions provide a much-needed
alternative when no reference standard is available for measurement. CFM-EI is available at https://sourceforge.net/projects/
cfm-id/ for download and http://cfmid.wishartlab.com as a web service.

Gas chromatography/mass spectrometry (GC/MS) is
widely used in analytical chemistry to first separate

compounds using gas chromatography then fragment and
identify their components via electron ionization-mass
spectrometry (EI-MS). Putative identification of compounds
using EI-MS commonly involves searching for a closely
matching mass spectrum within a database of previously
collected EI-MS reference spectra,1−3 often the Wiley Registry
of Mass Spectral Data4 or the NIST/NIH/EPA MS database.5

In cases where the query molecule is contained within the
reference database, the resulting accuracy levels are quite good.2

However, the main drawback to this approach is that the
reference database often does not contain a reference spectrum
for the target compound. This is particularly problematic in the
field of metabolomics, where most of the compounds of
interest are not in any existing spectral database. For example,
only 4023 out of >40000 compounds in the Human
Metabalome Database (HMDB)6 have spectra of any kind
recorded in either HMDB or in the NIST/NIH/EPA MS
database. Indeed, even the NIST database, with >240000
compounds, has surprisingly few EI-MS spectra for natural
products or chemicals of biological interest. Only 12525
compounds in the NIST database have a matching entry in
either HMDB, the Chemical Entities of Biological Interest
Database (ChEBI),7 or our own private list of more than
190000 plant-derived compounds. Consequently, finding
alternative means for identifying metabolites for which no

measured reference spectra are available is particularly
important in metabolomics, where GC/MS (EI-MS) techni-
ques are frequently used. The importance of addressing this
challenge has been highlighted in a number of recent reviews,
including those by Kind and Fiehn8 and Scheubert et al.9

Predicting EI-MS spectra from structure is not a new idea. In
fact, it was one of the first problems to be tackled by the
emerging field of artificial intelligence in the 1960’s.
Investigators working on the Dendral project10 separated the
overall problem into three main steps, which they labeled
“plan”, “generate”, and “test”. The “plan” step involved
narrowing the chemical search space by extracting structural
information directly from the target mass spectrum. A range of
machine-learning methods were proposed to address this step,
most of which were aimed at identifying likely substructures of
the target molecule.11−18 This is the approach that is routinely
applied as part of the NIST 2014/EPA/NIH MS Search.17 The
“generate” step generates candidate chemical structures from
within that refined search space. Algorithms for exhaustively
generating structural isomers subject to various constraints19−21

largely solved this problem. However, such exhaustive
enumeration often results in more candidate compounds than
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can be processed with current compute resources. So these
algorithms are often now replaced by queries to large public
chemical databases (e.g., HMDB6 and PubChem22), which
return a smaller subset of candidates. The subsequent “test”
step, in which the obtained candidates are ranked according to
whether they would be expected to produce the target
spectrum, is the focus of this work. This involves generating
fragmentation events that can explain the peaks in the target
spectrum, and also, importantly, determining a score for each
candidate based on the likelihood or quality of those
explanations.
Dendral10 proposed an “expert system” to specify how a

molecule would fragment, which involved the collation of many
user-defined rules. For instance, if the molecule was identified
as a ketone then it would be subject to a McLafferty
rearrangement.23 Several commercial packages now exist that
use a similar rule-based approach. These include Mass Frontier
(Thermo Scientific, www.thermoscientific.com) and MS
Fragmenter (ACD Laboratories, www.acdlabs.com), which
contain thousands of manually curated rules to predict
fragmentations. MOLGEN-MS24 is another commercial
program that also applies rule-based fragmentations. These
programs all produce so-called “bar-code” spectra, in which all
predicted peaks are of equal height.
As more rules have been added to these methods, they have

been able to predict more fragmentations for any given
molecule. This allows such rule-based systems to achieve near-
perfect recall (i.e., they can provide an explanation for almost
every peak in a target spectrum). In general, these systems
achieve improved precision (i.e., a higher percentage of the
predicted fragments actually occur) by leaving out some of the
rules.25 The difficulty comes when deciding which rules to leave
out.
Rather than relying on a large library of fragmentation rules,

another class of algorithms has emerged that apply
combinatorial fragmentation procedures. Mainly developed
for ESI-MS/MS, where rule-based methods are less established,
these algorithms enumerate all possible fragments of a chemical
structure by systematically and recursively breaking all
bonds26−29 or by enumerating all connected substructures of
the input molecule.30,31 Like the rule-based methods, these
methods are capable of generating large numbers of fragments
and often achieve near-perfect recall. In an effort to combat the
associated precision problem, they typically employ various
heuristics in their scoring protocols. For example, MetFrag28

uses an estimate of the energy of each broken bond, combined
with a bonus if the neutral loss formed is one of a common
subset. While these heuristics certainly help to alleviate the
precision problem, this paper shows that there are ways to
improve on this.
Several projects have attempted to estimate the likelihood of

a given fragmentation event from data. As far back as the 1990s,
Gasteiger et al. used logistic regression32 and neural networks33

to predict fragmentation probabilities for α-cleavages from
hand-labeled EI-MS data. However, no implementation appears
to have survived.
More recently, Kangas et al.34 proposed a machine learning

approach to obtain bond dissociation energies for lipids. Their
method uses a neural net within a kinetic Monte Carlo
simulation, trained using a genetic algorithm on ESI-MS/MS
data. However, this method has not yet been applied to general
classes of metabolites, besides lipids, nor to EI-MS data.

Quantum chemical and molecular dynamics methods have
also been applied to this problem with some success.35−37

However, the computational demands of these methods is
exceedingly high (several thousand CPU hours per molecule).
Competitive Fragmentation Modeling (CFM)38 is a method

for mass spectrum prediction that was recently developed in the
context of ESI-MS/MS, in an attempt to improve the precision
of combinatorial methods. From here onward, we denote the
original ESI-MS/MS version of this method as CFM-ESI. It
uses a probabilistic, generative model to predict both the mass
and intensity values of peaks in the spectrum of a given
molecule. The method was shown to be effective in modeling
the relative likelihoods of fragmentation events, producing
spectra with significantly improved Jaccard scores over full
enumeration bar-code spectra. It was also shown to translate
well to the problem of metabolite identification, outperforming
existing methods MetFrag and FingerID,18 at the time of
testing. Another method, CSI:FingerID, has since been
reported to achieve better performance than CFM-ESI on a
different ESI-MS/MS identification task;39 however, it is not
applicable to EI-MS.
In this paper, we propose several modifications to CFM-ESI

to make it applicable to the EI-MS spectra typically generated
by GC/MS instruments and report the results of extensive
empirical testing of the method on EI-MS data.

■ EXPERIMENTAL SECTION
In this section, we first provide a brief outline of the CFM-ESI
method, and then we describe the proposed modifications to
make it applicable to the EI-MS spectra, and finally we provide
details of the empirical testing we carried out.

Competitive Fragmentation Modeling (CFM-ESI).
CFM-ESI uses a probabilistic, generative model for the
fragmentation processes occurring within a mass spectrometer.
The model is a fixed-length, stochastic Markov process of
transitions between discrete fragment states F0, F1, ..., Fd (see
Figure 1) that each take values from the set containing all
possible fragments. The state space of possible fragments is
enumerated using a combinatorial approach based on system-
atic bond disconnection.26 This involves breaking every bond in
the molecule, and every pair of bonds in each ring, in turn, and
considering all hydrogen rearrangements within each pair of
resulting fragments.

Figure 1. Schematic of CFM-EI showing possible sequences of
fragments leading to a spectral peak. A neural network is included
within the transition function. Extensions to handle isotopes are
included in the observation function.
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The transition from any fragment f i to a possible child
fragment f j is assigned a break tendency value θ ∈ i j, . This is
defined as θi,j ≔ wTΦi,j, where Φi,j is a vector of chemical
features describing the possible transition (e.g., the atoms that
exist on either side of the broken bond) and w is a vector of
parameters corresponding to those features. The probability
that f i transitions to f j at a single time step is then defined as

ρ| ≈ =
≠

=

θ

θ

θ

+ ∑

+ ∑
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where this softmax function is used to model the competition
between different fragmentation events originating from the
same parent ion f i and ensures that all probabilities sum to one.
The second part of eq 1 indicates that self-transitions are
allowed and are effectively assigned a break tendency value of
θi,i = 0.
The probability of producing a peak at mass m is modeled by

a real-valued, random variable P. The conditional P = m|Fd is
modeled as a Gaussian with variance σ determined by the mass
tolerance of the instrument and mean given by the mass of Fd:
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The predicted spectrum is computed as the marginal of P
conditioned on the input molecule F0 (see Figure 1) (i.e.,

∑ ∑ ρ ρ σ= | ≈ ··· ··· −P m F w F F F F g m FPr( ; ) ( , ) ( , ) ( , ; )
F F

d d d0 0 1 1

d1

(3)

Parameters for the complete model are estimated from
training data using a maximum likelihood approach. Full details
can be found in Allen et al.38 and Allen.40

From CFM-ESI to CFM-EI. In order to make CFM
applicable to EI-MS, modifications were required to account
for (1) odd-electron ions and (2) isotopes, as detailed in the
following sections. We also explored (3) the incorporation of
an artificial neural network within the CFM transition function.
This latter modification was not specific to EI-MS but was
tested within that context. A schematic of CFM-EI, showing the
isotope and neural network modifications is provided in Figure
1.
Odd Electron Ions. The even-electron rule23,41 is a rule-of-

thumb that applies to the vast majority of ions fragmenting in a
mass spectrometer. It states that even-electron ions can only
produce even-electron fragments, whereas odd-electron ions
can produce either odd- or even-electron fragments. In ESI-
MS/MS the precursor is even, so only even-electron ions can
occur. However, as the precursor in EI-MS is odd, both odd
and even-electron ions occur.
In CFM-ESI, when enumerating the fragment state space,

two possibilities are generated for each break (and any
associated hydrogen rearrangements), by assigning the charge
to either of the two resulting fragments (i.e., to determine
which becomes the ion, and which the neutral loss). In CFM-
EI, when fragmenting odd-electron ions, rather than generating
just two possibilities, we generate four possibilities (i.e., all
combinations of which side includes the charge and which side
the radical).
Isotopes. Isotope peaks are often absent in ESI-MS/MS due

to the use of narrow isolation widths around the precursor

mass. In contrast, isotope peaks are common in EI-MS and can
be useful in deciding between alternative explanations for the
same peak. This is because some fragments may have the same
monoisotopic mass but different expected isotopic distribu-
tions. MOLGEN-MS24 makes use of isotope information in its
scoring function.
Isotopic peaks can be incorporated quite naturally within the

CFM observation model. While CFM-ESI38 used a Gaussian
observation function (see eq 2), CFM-EI instead uses a
weighted sum of Gaussians corresponding to the peaks in the
fragment’s expected isotope spectrum. Denoting the expected
isotope spectrum for fragment f i as  S( )fi

, and defining this as a

set of mass and intensity pairs {(m′,h′)}, normalized such that
∑ ′ =′ ′ ∈

h 1m h S( , ) ( )fi
, the new observation function (replacing

eq 2) becomes

∑σ
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Various algorithms42−45 have been proposed to compute the
expected isotope spectrum for a given molecular formula. We
use the program emass42 for this purpose, thresholding the
result to include only isotopic peaks with normalized intensity
above 0.01.
Eq 4 can be substituted into eq 3 to compute the predicted

spectrum as before but now including the isotopic peaks at
their expected intensities. During parameter training, the
computation of the expected marginal probabilities of the
fragment states becomes slightly more complicated. To address
this, the different isotopes for the same fragment are effectively
considered as different fragments, but their marginal proba-
bilities are then accumulated to give the marginal of the multi-
isotopic fragment. This causes the method to favor those
explanatory fragments for which all isotopic peaks are present
in their expected proportions. However, it also allows the
method to accept such explanations when some of those peaks
are missing (including the monoisotopic peak), if no better
explanations are available. Further details and a simple example
of this computation are provided in the Supporting
Information.

Neural Network. As already noted above, CFM-ESI
modeled the break tendency of a particular bond within a
moelcule as θi,j ≔ wTΦi,j (i.e., a linear function of the chemical
features describing that break). A natural extension is to replace
this linear function with a more complex function using an
artificial neural network. Toward that end, we let θi,j be the
output of a multilayer perceptron, for which the inputs are
given by the feature vector Φi,j. The parameters of the model
are again denoted by w.
In order to estimate these parameters, we use Expectation

Maximization (EM) as before, which maximizes the expected
log-likelihood Q, but employ a modified form of the
backpropagation algorithm to compute the partial gradients
∂
∂

Q
wl in the maximization (M) step, as described in the

Supporting Information. The expectation (E) step proceeds
as before but uses the neural network to compute the θi,j values
on each iteration.

Data Sets. We used the following three EI-MS data sets
from the NIST/EPA/NIH Mass Spectral Library.5 All data
were measured at integer mass accuracy using a single energy of
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70 eV. (1) Small Molecule Set (17324 molecules): this set was
designed to allow rapid comparison of various CFM-EI model
and parameter configurations. Molecules were randomly
selected from those compounds within the main NIST library
that had good spectrum quality [weighted recall of full
enumeration (see Models for Comparison) spectra above
50%] and low CFM-EI spectrum prediction compute times
[Fragmentation graph computation in less than 10 s (see the
Supporting Information)], and no overlap with the two
validation sets below. We identified 987 molecules in this set
as being derivatized, due to the presence of methoxy, O-silyl, N-
silyl, or S-silyl groups. The full set was randomly divided into 5
groups for use within a 5-fold cross validation framework,
ensuring duplicates (determined by matching the c,h and i
sections of the InChI string) were allocated to the same cross-
fold group. A model was then trained on the full set, for
validation with the two sets described next, with which there
were no overlapping molecules. (2) Kerber Set (100
molecules): Kerber et al.24 and Schymanski et al.46 report the
results of applying MOLGEN-MS, Mass Frontier, and MetFrag
on this small data set, which was extracted from the NIST
library. We include this set to compare the performance of
CFM-EI against those previous results. (3) Replicate Set
(20588 molecules): this set contained entries from the NIST
replicate set. The initial set had 33782 molecules. We removed
296 molecules because they were not computable by CFM-EI
(see Supporting Information) and another 12898 because they
were duplicates (e.g., stereoisomers) of another molecule in the
set. We identified 992 molecules within this set as being
derivatized (D), again using the presence of methoxy and silyl
groups.
Model Configuration. The CFM-EI model was configured

with a fragmentation and model depth of 2. We tested both the
original transition function and the extension to include a
neural network. The neural network included two hidden
layers, one with 20 nodes and the other with 4. Each hidden
node used a rectified linear unit (reLU) activation function,
with half the units assigned a negative activation function, as
recommended by a number of previous publications.47,48 The
final output node was a linear unit (see Figure 1). This basic
network configuration was selected with the expectation that it
would provide moderate modeling ability but use an order of
magnitude less parameters than the linear model.
Details of the 996 binary chemical features used to describe

each break are provided in the Supporting Information. On
average, only 23 of these features are “on” for any given break
(as measured on the Small Molecule Set). When the original
linear transition function was used, all quadratic combinations
of the features were also included. When the neural network
was used, the quadratic features were not included, as it was
expected that the neural network would capture this
information more efficiently. Features never encountered in
the training data (the small molecule set) were removed. Table
1 shows the resulting number of parameters in each model.
Although the models have a large number of parameters, the
sparsity of the feature vector means that only a small

proportion of these parameters are used for any given break,
as shown in the final column of Table 1.

Spectrum Prediction. A trained CFM-EI model was used
to predict a spectrum for each molecule in the training (within
a cross-validation framework) and validation sets. Since the data
was collected with integer mass accuracy, we combined the
resulting peaks into integer bins by rounding each mass to the
nearest integer and summing the intensity values of peaks
within the same bin. Unlike in CFM-ESI, no further
postprocessing was applied to remove low intensity peaks.
This was because the NIST EI-MS spectra generally had more
peaks than the ESI-MS/MS spectra used in Allen et al.38 The
use of integer mass accuracy in the NIST data also means that
there are fewer possible peak locations, so fewer peaks to be
potentially discarded. Instead we use the Dot Product metrics
(described next) to account for the size of the peaks when
scoring a spectral match.

Metrics. We used the following metrics (see Supporting
Information for equations) to assess the quality of each
predicted spectrum, when compared to a target reference
spectrum. We used the weighted dot product metric defined by
Stein and Scott,2 in which intensities are raised to the power 0.6
and the masses to the power 3 (Stein Dot Product), as is
recommended for searching against the NIST database. We
also used our own reweighted version of this metric, in which
both the intensities and masses are raised to the power 0.5 (Dot
Product), since we were concerned that Stein’s weighting may
overemphasize the higher mass peaks at the expense of
information contained in the lower mass peaks. We also
calculated Weighted Recall and Weighted Precision scores, as
defined in Allen et al.38 (and in the Supporting Information).

Models for Comparison. CFM-EI is one of the only
computational methods to predict the intensities of peaks as
well as their m/z values. The other exception is the quantum
chemistry-based method QCEIMS.36 However, QCEIMS is too
computationally demanding to allow signficant comparison on
the data sets used here, whereas CFM-EI can typically predict
an EI-MS spectrum for molecules of molecular mass less than
800 Da in less than 10 min on a single CPU (see Supporting
Information). All other currently available EI-MS and ESI-MS/
MS tools can be viewed as generating bar code spectra in which
all (nonisotopic) peaks are the same height. Of those methods,
we do not have access to commercial methods MassFrontier
and MOLGEN-MS24 but were able to use previously reported
results to compare against them in a compound identification
task discussed later. MetFrag28 is open source; however, it does
not produce a computationally accessible spectrum but rather
focuses on computing only those peaks that match a peak in a
target spectrum (i.e., in a compound identification setting). We
provide comparisons with MetFrag in various metabolite
identification tasks discussed later.
To assess CFM-EI’s spectrum prediction performance on the

Small Molecule Set, we compare against our own bar code
spectra, our previous CFM-ESI model, and replicate measured
spectra as follows: (1) Full Enumeration {Enum} x {Iso, −}:
the predicted spectrum includes all possible fragments that
could be produced from the starting molecule, both with (Iso)
and without (−) isotopes, all with uniform intensity values
(including the isotope peaks). (2) Measured: (replicate set
only) this model uses the measured spectrum from the main
NIST library for the corresponding molecule in place of the
predicted spectrum. Since these spectra are measured rather
than predicted, this provides an upper limit for the best possible

Table 1. Number of Parameters for Each Model

model # parameters
av. # parameters used

per break

linear (with quadratic features) 160787 288
neural net 18509 549
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predictions. Remeasurement variability should be the main
reason that these spectra are not a perfect match for the target
spectrum. (3) CFM EI Models {NN, Lin} x {Iso, −}: we
consider four configurations of the CFM-EI model. These are
all combinations of the following: with (Iso) versus without
(−) isotopes; and with (NN) versus without (Lin) the neural
network extensions. (4) Old CFM ESI Models {ESI} x {Iso,
−}: Our CFM-ESI model, trained on ESI-MS/MS data as
described in Allen et al.,38 but modified to allow for odd-
electron ionization, and applied with (Iso) and without (−)
isotopes. The resulting predicted spectra (at three energy
levels) were quantified at unit mass resolution and added
together. For the tests on the Replicate Set, we applied only 3
models: the NN-Iso CFM-EI model, since it performed best of
all CFM models on the Small Molecule Set (see Results and
Discussion); the Enum-Iso model, to show the equivalent “bar-
coded” result; and the measured spectra.
Metabolite Identification. Next we applied our EI-MS

spectrum predictions to a series of metabolite identification
tasks. For each target molecule in each test set, we first obtained
a set of possible candidate molecules for the target (as detailed
next) and then generated the predicted MS spectrum for each
candidate. We then ranked the candidates based on how closely
their predicted spectrum matched the target spectrum. We
considered all four spectrum prediction metrics used above to
compare the target and predicted spectra. In GC/MS studies of
small molecules, the molecules may be either derivatized (with
trimethylsilane) or may be left underivatized. Consequently, we
obtained or prepared both derivatized and underivatized sets of
candidate chemical structures.
Candidate Selection. The candidate sets were produced

using the methods listed below. In all cases, we removed
molecules that were uncomputable by CFM-EI (see Supporting
Information) or could not be computed by CFM-EI in
reasonable time (less than 10 min per compound for candidate
sets of size greater than 100, or less than 1 h per compound for
candidate sets of size less than 100, to keep total compute time
down) (see Supporting Information). For easier comparison
with MetFrag, we also removed those compounds that MetFrag
was unable to process. Both CFM-EI and MetFrag were
evaluated only on the subset of candidates that could be
processed by both programs. Further details of the numbers of
molecules for which the query included the correct molecule
(since some were not found in the databases), and the median
numbers of candidates in each set, are provided with the results
in Table 2. (1) HMDB: we queried HMDB (Human
Metabalome Database)6 for all molecules within 0.5 Da of
the known molecular mass of the target compound. This
simulates the case where the molecule is thought to be a
naturally occurring metabolite, but there is some uncertainty in
the target mass range. (2) PubChem: we queried the PubChem
compound database22 for all molecules within 10 ppm of the
known molecule mass of the target compound. This simulates
the case where little is known about the candidate compound,
but the parent ion mass is known with good accuracy (via high
mass accuracy MS). (3) dHMDB and dPubChem: we used the
derivitization tool,31 provided as part of MetFrag, to produce
derivatized variations for all entitites in HMDB that could be
derivatized. We allowed replacement of up to 8 carbonyl,
amino, and thiol groups, and set the maximum mass limit to
800 Da. This resulted in a total of 37403 derivatized entities.
The derivatized version of PubChem, produced for Ruttkies et
al.,31 was made available to us by the authors. The two

derivatized databases were queried for molecules within 0.5 Da
(for dHMDB) and 10 ppm (for dPubChem) of the known
molecular mass. This simulates the case where derivatization
has been carried out, and so it makes sense to search among
only derivatized compounds. (4) MOLGEN: for the Kerber
Set, to compare with previously published results in Kerber et
al.,24 we used candidate sets of all possible isomers for each
molecule as generated by MOLGEN and made available in the
supporting information of Schymanski et al.25 Using all
structural isomers like this is a very extreme test case, and
since the number of structural isomers grows at least
exponentially with molecular size, it is only possible for test
molecules such as these with low molecular masses. (5) NIST:
for comparison with the case where you have a reference
database of measured spectra (rather than computationally
predicted spectra), we used the entire main library of the NIST
EI-MS database as a candidate set.

Methods for Comparison. Using the Small Molecule Set, we
compared the ranking performance of two CFM-EI models
(NN-Iso and Lin-Iso) and one CFM-ESI model (ESI-Iso)
when querying PubChem, to see whether better prediction
performance translated to better identification performance.
We also assessed the differences in identification performance
obtained using each of the four spectrum prediction metrics to
rank candidates.
On the other two validation sets, we compared the ranking

performance of the best performing CFM-EI model (NN-Iso
with Dot Product), against that of MetFrag,28 and where
possible, MOLGEN-MS24 and MassFrontier (using the results
in Schymanski et al.46).
MetFrag was run using the recent update MetFrag2.2 CL49

using FragmenterScore only (i.e., no use of patent or reference
counts). Both CFM-EI and MetFrag used an absolute mass
tolerance of 0.5 Da to determine matching peaks. Example
configuration files used for both programs are available in the
Supporting Information.
We also compared CFM-EI’s performance to that achievable

when measured spectra are available for all candidate
compounds, by querying the Replicate Set against the NIST
candidate set. For the measured spectra, we used Stein’s Dot
Product to compare spectra, and thus rank candidates, as
recommended by Stein and Scott.2 For CFM-EI, we report
results using both Stein’s Dot Product and our own Dot
Product.

Metrics. We considered both absolute rankings and relative
rankings within each candidate set. In the case of the former, we
dealt with tied scores by taking the expected average ranking
given a uniform distribution over those candidates with equal
scores. For the latter, we employed the RRP score used in
Kerber et al.24 and Schymanski et al.,25 which is defined as

= + −
−

⎜ ⎟⎛
⎝

⎞
⎠RRP

1
2

1
BC WC

TC 1 (5)

where BC is the number of candidates with better scores, WC is
the number of candidates with worse scores, and TC is the total
number of candidates. A value of 0.0 indicates perfect
identification, whereas 0.5 indicates that performance is no
better than random.
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■ RESULTS AND DISCUSSION

In this section, we present the results for the tests of spectrum
prediction performance, followed by the metabolite identi-
fication results.
Spectrum Prediction. The spectrum prediction results are

presented in Figure 2. The values obtained are very similar for
the two molecule sets, suggesting that we have not overfitted to
the Small Molecule Set, nor lost much accuracy in selecting less
computationally intensive molecules for training the models.
For both molecule sets, the high Weighted Recall values

suggest that most of the peaks in each spectrum can be
explained by a fragmentation event generated by CFM-EI.
There are a small proportion of possible fragmentation events
that CFM-EI cannot explain, as can be seen in the higher
Weighted Recall scores for the measured spectra on the
Replicate Set. These may include non-hydrogen rearrange-
ments and fragmentation events requiring depths greater than
2. Note that the Weighted Recall metric is independent of the
predicted intensity values, and so since there is no
postprocessing to remove low intensity peaks, this metric
always assigns the same scores to CFM-EI, CFM-ESI, and the
full enumeration.
The other three metrics show that, when taking the predicted

intensities into account, CFM-EI significantly outperforms the
full enumeration models. This demonstrates that it is able to
differentiate between likely and unlikely fragmentations.
Since the Dot Product scores incorporate the intensities of

both the measured and predicted spectra, they are good metrics
for how well each model predicts the spectrum. Using either
the Stein Dot Product or the Dot Product metric and looking at
the cross-validation results on the Small Molecule Set, we see
that the best performing CFM-EI model uses both the isotope
and neural network extensions. Although the performance of
the neural network model is only a little better than the linear
model, it achieves this using far fewer model parameters and so

is a more efficient representation. The new models, specifically
trained on EI-MS data also outperform the old CFM-ESI
model, which was trained on ESI-MS/MS data.
On the Replicate Set, the comparison with the remeasured

spectra shows that CFM-EI still falls short of providing a
spectrum that is as reliable as those produced by physically
measuring the spectrum. This is not unexpected, and shows
that computational methods still have room for improvement.

Metabolite Identification. The results for the Small
Molecule Set, when querying PubChem for candidates, are
shown in Figure 3. When ranking candidates using the
weighted recall scores, we see that the performance is no
better than random. This is equivalent to using a full
enumeration spectrum for matching and is similar to the
match value scoring used in Kerber et al.24 that Schymanski et
al.25 showed was not effective. The main difference here is the
details of the full enumeration.
The best result (RRP = 0.0882) was achieved when ranking

candidates using the Dot Product metric, demonstrating that
our predicted intensity values help rank candidates correctly.
The performance using the NN-Iso model was better than that
obtained using either the Lin-Iso or ESI-Iso model, showing
that in these cases at least, better prediction performance
translated to better identification performance.
The RRP results for validation testing with the Kerber and

Replicate sets are presented in Table 2. Standard error values
were all less than 0.01 for tests on the Kerber data set and less
than 0.001 for tests on the other data sets. On the Kerber Set,
CFM-EI outperforms MassFrontier, MOLGEN-MS and
MetFrag. The RPP score achieved is 0.199, which means that
nearly 20% of candidates score better than the correct
candidate. However, one should note that this is a very
extreme test case, in which the comparison is between a large
number of very similar molecules, and this result is substantially
better than any previously reported on this set.24,25,46

Figure 2. Spectrum prediction results for the Small Molecule Set (left) and Replicate Set (right). The x axis shows the four metrics: Weighted Recall
(WR), Weighted Precision (WP), Dot Product (DP), and Stein Dot Product (SDP). Enum and Enum-Iso use full enumeration bar code spectra;
ESI and ESI-Iso are CFM-ESI models; Lin, Lin-Iso, NN, and NN-Iso are all CFM-EI models; and measured uses replicate measured spectra. Bars
display means ± standard error (too small to see). For all metrics, larger values are better.
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CFM-EI’s performance on the replicate set when querying
HMDB and PubChem is better, and it substantially outper-
forms MetFrag. Both programs achieved RRP scores when
querying HMDB that are very similar to those achieved when
querying PubChem. This suggests that the characteristics of a
molecule that make it more likely to be found in HMDB are
independent of those characteristics that make it identifiable
from its mass spectrum.
The results for derivatized compounds are a little worse than

those obtained for nonderivatized compounds but not
substantially so. The fact that only 987 from 17324 molecules
in the training data are derivatized may be a factor. Although
given that MetFrag also performs worse on the derivatized set,
it may also be that this is a harder test, due to the similarity of
the derivatized candidates. For example, if multiple locations on
the molecule are feasible for derivatization, this provides
multiple distinct but very similar candidates, only one of which
is considered to be the correct one in this testing. It may be
possible to improve these results by combining information
from multiple derivatizations (e.g., 1 TMS, 2 TMS, 3 TMS,
etc.) of the same compound. We have not yet attempted this.
Since average RRP scores can be unduly affected by outliers,

we also compared per-molecule RRP scores between CFM-EI
and MetFrag in the final column of Table 2. Average RRP
differences seem to translate well to whom-beats-whom

statistics on these tests, such that CFM still outperforms
MetFrag in all tests.
Absolute ranking results for these same tests are shown in the

left four axes of Figure 4. The lower number of candidates
retrieved from HMDB for each molecule means that the similar
RRPs translate to much better ranking performance than for
PubChem. When querying HMDB, the target molecule was
correctly identified in 45% of the cases and ranked in the top 10
in 86% of cases. When querying PubChem, the target molecule
was correctly identified in 13% of cases and ranked in the top
10 in 45% of the cases. For the derivatized versions of these
databases, the correct molecule was identified in 33% and 8% of
cases, respectively, and ranked in the top 10 in 80% and 39%,
respectively.
We reiterate that, while PubChem provides an interesting

test case for our algorithms, it is generally a poor database
choice for anyone wishing to do EI-MS- or GC/MS-based
studies of metabolites, natural products, or environmental
contaminants. With less than 1% of Pubchem’s molecules
having a biological or natural product origin, one is already
dealing with a significant challenge of how to eliminate a 100:1
excess of false positives. So we would regard the results from
the PubChem assessment as a “worst-case” scenario, and the
results from the HMDB assessment as a more typical
experimental scenario, in which we know something about
the target compound of interest. It is likely that introducing
further information about the compound of interest, as done in
Ruttkies et al.,49 would further increase the identification rates
obtained. This might include retention indices, species of
origin, sample type, abundance, or the likelihood of it appearing
in publications or patents (a proxy measure for the relative
abundance or likelihood of being detected).
The rightmost subfigure of Figure 4 shows the results

obtained when querying the Replicate Set against the NIST
candidates.
When querying against the measured reference spectra in the

NIST database, the correct candidate was retrieved at rank 1 in
77% of cases. This is consistent with the results reported in
Stein and Scott2 and suggests that the combined effects of
measurement variability, spectrum quality, and the information
content in mass spectra (or lack thereof), mean that even actual
measured spectra do not allow for perfect identification
performance. In this same test, when CFM-EI was tasked
with searching NIST, it was able to retrieve the correct
candidate at rank 1 in 10% of cases. Given that there are more
than 200000 candidates, this result is not bad. When restricted
to consider compounds with the correct molecular formula, the
rate of correct identifications increases to 42.6%. This scenario
is often enabled by follow-up analysis with high mass accuracy
MS.43 Even when the molecular formula is not uniquely

Figure 3. CFM-EI (NN-Iso and Lin-Iso) and CFM-ESI (ESI-Iso)
identification performance on the Small Molecule Set when querying
PubChem (median number of candidates = 1015). The x axis shows
the metrics used to rank candidates: Weighted Recall (WR), Weighted
Precision (WP), Dot Product (DP), and Stein Dot Product (SDP).
Bars display mean relative ranking performance (RRP) scores. Error
bars are too small to be seen. Note than an RRP of 0.0 is perfect and
an RRP of 0.5 is no better than random.

Table 2. Average RRP of MassFrontier (MFrt), MOLGEN-MS (M-MS), MetFrag (MFrag), and CFM-EI (NN-Iso)a

Data Set Query Nb Mc MFrt M-MS MFrag CFM CFM v MFrag

Kerber MOLGEN 100 802 0.268 0.273 0.354 0.199d 65 (69)
replicate HMDB 3071 53 − − 0.314 0.096d 77 (87)
replicate PubChem 20133 1070 − − 0.335 0.097d 84 (86)
replicate (D)e dHMDB 540 43 − − 0.411 0.128d 79 (85)
replicate (D)e dPubChem 700 641 − − 0.424 0.104d 82 (84)

aThe final column is the percent molecules for which CFM-EI achieves a better (better or equal) RRP than MetFrag. Results for MassFrontier and
MOLGEN-MS were taken from Schymanski et al.46 bN: The number of molecules for which the correct molecule was in the candidate list. cM: The
median number of candidates for those N molecules. dThe best results of each condition. e(D) indicates derivatized compounds only.
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identifiable, knowing an approximate mass substantially reduces
the range of candidates to be considered. However, in some
cases there is sufficient uncertainty surrounding the mass of the
compound (e.g., if the molecular ion peak is absent in the mass
spectrum), that a search of the entire database is required.

■ CONCLUSION

The CFM-EI tool provides an effective extension of the CFM
method for use with EI-MS spectra (i.e., the spectra typically
generated by GC-MS experiments). The spectrum prediction
performance of CFM-EI has been benchmarked in cross-
validation testing on the NIST database. It provides substantial
improvements over the so-called bar code spectra commonly
used for metabolite identification purposes. The method has
also been extensively validated on multiple metabolite
identification tasks. Head-to-head comparisons under multiple
query conditions show that the CFM-EI significantly outper-
forms existing state-of-the-art computational methods.
These results also demonstrate that a gap still remains

between identification performance obtainable when using
computationally predicted spectra vs using real measured
spectra. This confirms the view of Sumner et al.,50 that
metabolite identifications should ultimately be confirmed using
comparisons with real measurements of reference standards.
Despite this apparent shortcoming, collecting reference

spectra of chemical standards can be expensive, time-
consuming, and is often infeasible, whereas computational
methods offer a rapid, cost-effective alternative. It may be
expected that computational methods will continue to be used
as they are now: to narrow the chemical search space and hence
reduce the experimental work load. Since CFM-EI outperforms
other computational methods, it is an important contribution in
this area and should help to reduce the time and cost of
metabolite identifications.
Windows executables, cross-platform source code, and the

trained models used in the results presented here are freely
available at https://sourceforge.net/projects/cfm-id/. Test

molecule lists, configuration files and per-molecule results can
also be found there. A web server interface is also provided at
http://cfmid.wishartlab.com/, which provides access to the
trained CFM-EI model used here, along with examples of
predicted spectra. Predicted spectra for all compounds in both
HMDB and dHMDB (the derivatized version of HMDB used
in these experiments) are also made available both on the
sourceforge site and through the web server interface.
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Figure 4. Absolute ranking results obtained using the replicate set, querying (from left to right) HMDB, dHMDB, PubChem, DPubchem, and NIST
for candidate molecules. Solid lines indicate rankings achieved using the full set of candidates. Dashed lines indicate rankings achieved when
narrowing the set of candidates to include only those with the correct molecular formula (MF). CFM-EI-SDP (in magenta) indicates that CFM-EI
was run using Stein’s Dot Product metric to compare spectra. All other CFM-EI results (in blue) use our Dot Product metric. # cands ≈ N: The
median number of candidates is N. MF ≈ N: the median number of candidates with the correct MF is N.
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