
Received: 16 August 2015 Revised: 30 May 2016 Accepted: 1 August 2016

DOI 10.1002/smr.1821

S P E C I A L I S S U E — S A N E R 2 0 1 5

Detecting duplicate bug reports with software engineering
domain knowledge†

Karan Aggarwal Finbarr Timbers Tanner Rutgers Abram Hindle

Eleni Stroulia Russell Greiner

Department of Computing Science, University

of Alberta, Edmonton, Canada

Correspondence

Abram Hindle, Department of Computing

Science, University of Alberta, Edmonton,

Canada.

Email: abram.hindle@ualberta.ca

Bug deduplication, ie, recognizing bug reports that refer to the same problem, is a challenging

task in the software-engineering life cycle. Researchers have proposed several methods primar-

ily relying on information-retrieval techniques. Our work motivated by the intuition that domain

knowledge can provide the relevant context to enhance effectiveness, attempts to improve the

use of information retrieval by augmenting with software-engineering knowledge. In our previous

work, we proposed the software-literature-context method for using software-engineering litera-

ture as a source of contextual information to detect duplicates. If bug reports relate to similar

subjects, they have a better chance of being duplicates. Our method, being largely automated, has

a potential to substantially decrease the level of manual effort involved in conventional techniques

with a minor trade-off in accuracy.

In this study, we extend our work by demonstrating that domain-specific features can be applied

across projects than project-specific features demonstrated previously while still maintaining

performance. We also introduce a hierarchy-of-context to capture the software-engineering

knowledge in the realms of contextual space to produce performance gains. We also highlight

the importance of domain-specific contextual features through cross-domain contexts: adding

context improved accuracy; Kappa scores improved by at least 3.8% to 10.8% per project.

KEYWORDS

deduplication, documentation, duplicate bug reports, information retrieval, machine learning,

software engineering textbooks, software literature

1 INTRODUCTION

Modern software projects use issue-tracking systems to record

bug/issue reports, a colloquial term for the issues that developers,

testers, and users encounter while using a particular software system.

Primarily, these tracking systems serve as a store of bug reports, stack

traces, and feature requests, and are sometimes used to measure the

developers’ productivity based on their progress in addressing issues.

Bug reports are usually written in natural language; as a result, the

same issue can be described in different ways by the project devel-

opers and testers and the system users who encounter the issue.

Typically the vocabulary used by developers differs from that used by

users, and can vary among users depending on their level of technical

sophistication. Currently, many projects are forced to use a triager,

often an experienced developer, to “translate” bug reports into a more

† All of the word lists and bug datasets used in this paper can be found online at: https://
bitbucket.org/kaggarwal32/bug-deduping-dataset

technical language, relevant to developers. Duplicate bug reports

waste the triager’s and developers time. If manual triaging effort could

be reduced, developer productivity would be increased, as they would

not have to consider multiple reports for the same bug and they would

have more information about each bug report, enabling them to fix

each bug faster.

Considerable research has been done on automated methods for

detecting duplicate bugs. Prior works from Runeson et al1 and Sun

et al2,3 on bug-report deduplication —namely, the detection of dupli-

cate bug reports— measure bug-report similarity considering the

bug-report textual descriptions, as well as categorical bug attributes

such as “component”, “type”, and “priority”. These approaches typically

use off-the-shelf document-similarity measures, applying them to bug

reports. While effective, such approaches ignore an important aspect of

the deduplication problem: bug reports are not New York Times articles

—the traditional domain in the context of which IR methods have been

formulated— but rather technical reports about software projects.

J Softw Evol and Proc. 2017;29:e1821. wileyonlinelibrary.com/journal/smr Copyright © 2016 John Wiley & Sons, Ltd. 1 of 15
https://doi.org/10.1002/smr.1821

https://doi.org/10.1002/smr.1821
https://bitbucket.org/kaggarwal32/bug-deduping-dataset
https://bitbucket.org/kaggarwal32/bug-deduping-dataset

2 of 15 AGGARWAL ET AL.

Alipour et al4,5 exploited the technical nature of the bug reports

by using software-engineering and project-specific context to improve

bug-report deduplication efforts. By exploiting contextual features

through comparing a bug report to terms referring to non-functional

requirements or architectural descriptions, Alipour et al improved

on the bug-deduplication performance of Sun et al.3 This contextual

method relied on manually constructed contextual word lists, and

topics generated through supervised labeled Latent Dirichlet Allo-

cation (labeled-LDA) on the project’s bug descriptions. Labeled-LDA

worked well but is an extremely effort-intensive process.6 Alipour

concluded that contextual features tend to reveal the relationship

between the bug report text and concepts such as non-functional

requirements and/or architectural modules. These relationships can

be exploited in bug-report deduplication when different terminol-

ogy is used to describe the same scenario; not only could one com-

pare the text between bug reports, but also their corresponding

non-functional and architectural contexts as well. Continuing on this

work, and aiming to reduce the cost of constructing these contextual

features, we introduced a method for generating these features from

software-engineering literature, which proved cost effective, general-

izable, and easy to use.7 Our method performs at par with unsuper-

vised LDA approaches and is marginally worse than the labeled LDA

approach, with far less manual labor involved.

Continuing on this line of work, the study reported in this paper

examines the relevance of different layers of abstraction in the contex-

tual space, capturing multiple essential aspects of software develop-

ment and processes. We include domain-specific contextual features,

which are more abstract than the project-specific context previously

used, and thus more general. This general context can be used across

different projects, while still maintaining project/domain level speci-

ficity. We show the effectiveness of the domain knowledge and domain

awareness by using out-of-context features and comparing the results

against our previous work. Second, we use our hierarchy of contexts to

demonstrate the utility of including additional layers of domain-specific

features. Finally, we use the software body of knowledge guide (SWE-

BOK) as an additional source of contextual features from more general

software-engineering literature to demonstrate the superiority of gen-

eral contextual features given their ease-of-sharing across projects.

In this paper, we address the following research questions:

• RQ1: Does project documentation help deduplicate bug reports?

• RQ2: Does domain-specific knowledge help deduplicate bug

reports?

• RQ3: Does general software engineering knowledge help dedupli-

cate bug reports?

• RQ4: Does using more than one context (project-specific,

domain-specific, or general) improve deduplication performance?

We improve upon our previous work by enhancing the generality and

reuse potential of our contextual technical-literature method through

using the domain-specific contextual features. The method is easy to

use, as developers can use already extracted features, or, should they

need to generate their own features, the developers have only to label

textbook and project documentation chapters to extract the features

in question, instead of having to extract the features themselves. The

labeled LDA method used by Alipour et al4,5 required the features to

be extracted manually. Our method is thus easily generalizable, and

allows for contextual features to be easily shared. The marginal cost of

using already extracted features in the form of word lists, such as those

provided by the authors, is merely the cost of downloading the data.

2 RELATED WORK

Most bug-deduplication methods use textual analysis to detect dupli-

cate bug reports. Runeson et al1 used natural language processing

techniques to detect 66% of the duplicate reports of Sony Ericson

Mobile Communications. Bettenburg et al8 used machine-learning

classifiers—support-vector machines and naïve bayes classifiers—to

triage the reports based on a word vector representation of the report

titles and descriptions and obtained roughly 65% accuracy.

Jalbert et al9 used the categorical features of bug reports in conjunc-

tion with textual-similarity measures and graph-clustering techniques

to filter out duplicate reports. Their method was tested on a dataset

of 29,000 bug reports from the Mozilla Firefox project and was able to

filter out 8% of the duplicate reports. We test our method against the

same dataset. Tian et al10 extended this work with extensive similarity

measures to substantially improve accuracy.

Wang et al11 proposed a method using natural language process-

ing techniques to extract data from execution traces on the Eclipse

project’s set of bug reports; their methodology relies on the execution

traces being manually extracted, which is extremely time-intensive. We

also test our method against the Eclipse dataset.

Surekha et al12 used an n-gram based textual model on the Eclipse

dataset to report top-k bug reports that could potentially be dupli-

cates of a given bug report. Sun et al3 built on this work to pro-

pose a new model centered around around the BM25F score, using

the term frequency-inverse document frequency vector-space model

with BM25F as a similarity score between reports. In addition, they

used categorical features such as priority and severity to produce sub-

stantial improvements over previous methods. Sun et al3 sorted the

reports into different “buckets” corresponding to the underlying bugs,

and focused on sending incoming duplicate reports to the appropri-

ate bucket. They evaluate their method by comparing the list of top-k

potentially duplicate bug reports against the true-duplicates list for

each bug, obtaining an improvement of 10-27% over Surekha et al. One

issue with this kind of evaluation is that only true-positives are queried.

Bug reports with no duplicates are not considered by the evaluation

methodology, and therefore true-negatives are not examined. This is a

drawback since the ability to identify true-negatives is a desirable func-

tionality of any deduplication process, in effect enabling developers to

proceed with the bug fix confident that there is no other similar reports

to consider. Nguyen et al13 added topic modeling to Sun’s3 work.

Alipour et al4,5 improved upon the work of Sun et al3 by adding

contextual features extracted using both labeled and unlabeled LDA

generated word lists6 to the method used by Sun et al. Alipour et al

reformulated the task as detecting whether a given pair of bugs are

duplicates or not. The use of LDA produced strong improvements in

accuracy, increasing by 16% over the results obtained by Sun et al3

Klein et al14 and Lazar et al15 have leveraged the same dataset against

new textual metrics based on LDA’s output to achieve an accuracy

improvement of 3% over Alipour et al. Their work is promising but

AGGARWAL ET AL. 3 of 15

relies on running LDA on the corpus itself, whereas some of the

features described in this paper are extracted only once from textbooks

and can be applied broadly to other software projects without any fur-

ther extraction effort from the user. We apply the features here to 4

different projects without any further effort after the initial extraction.

Thung et al16 provide one of the very few implementations of

the full end-to-end bug deduplication systems based on Runeson

et al1’s model.

3 METHODOLOGY

This section describes our contextual bug-deduplication method. First,

we describe our processes for curating our datasets and contex-

tual word lists. Next, we explain our process for extracting contex-

tual features. Finally, we discuss our methodology for evaluating the

effectiveness of these contextual features for accurate bug-report

deduplication.

The Android, Eclipse, Mozilla, and Open Office bug report datasets

used for analysis consist of 37,536, 43,729, 71,292, and 29,455 bug

reports, respectively. The Android bug reports are from Nov, 2007 to

Sept, 2012; Eclipse for the year 2008; Mozilla for the year 2010; and

Open Office for 2008 to 2010. Details are shown in Table 1.

Each report contains the following fields: Bug ID, description, title, sta-

tus, component, priority, type, version, open date, close date, and Merge ID.

In the case of Mozilla, dup_id is used in place of Merge ID, as explained

below. If a bug is a duplicate of another, the “status” field is marked

as “Duplicate,” and the Bug ID of the duplicate report(s) are listed in

the “Merge ID” field. This enables developers to determine how many

bugs are duplicates, and reveal groups of duplicates bugs. Table 2 shows

an example of 2 sample bugs containing information representative of

a typical Android bug. Note that Bug 2282 is not a duplicate of any

other bug(s); therefore, its MergeID is empty, whereas Bug 14518 is a

duplicate and has a non-empty MergeID assigned to it.

Figure 1 depicts the workflow of the software-literature context

method. (1) The main starting point is to take bug-reports and

pre-process them, but this assumes that contextual word lists have

already been acquired or extracted. (2) Optionally, one can extract new

word lists from available literature. (3) Once the bug reports have been

pre-processed, pairs of bug reports have their textual and categori-

cal similarity measured, as well as their contextual similarity. (4) The

similarities of contextual, categorical, and textual measures are joined

together with the bug-report pairs. (5) Machine learning classification

is applied to pairs of bugs leveraging the categorical, textual and con-

textual features.

3.1 Contextual-features extraction

Contextual features are organized in a hierarchy of contexts, as shown

in Figure 2, according to their specialization/generalization relation-

ships. The most general context, that of general software engineering,

is at the top, followed by domain-specific context and project-specific

context. These mid-level domain specific contexts can be viewed

as software product-type contexts, that can be applied to software

projects providing similar functionalities and features, and build on

similar principles.

The following 10 sets of word lists were used as contexts in this

study, divided into 3 context levels. Across the 10 sets, there are a

total of 145 word lists. Each set of word lists took 1 graduate student

TABLE 1 Details of datasets

Duration

Platform No. bugs No. duplicates From To

Android 37,536 1361 2007-11 2012-09

Eclipse 43,729 2834 2008-01 2008-12

Mozilla 71,292 6049 2010-01 2010-12

OpenOffice 29,455 2779 2008-01 2010-12

TABLE 2 Example bug report information

BugID Component Priority Type Version Status MergeID

2282 Applications Medium Defect 1.5 Released

14518 Tools Critical Defect 4 Duplicate 14156

FIGURE 1 Workflow of the software-literature context evaluation methodology showing inputs and output. The sharp edged rectangles
represent data and the rounded corner rectangles represent activities. IDE, integrated development environment; SWEBOK, software body of
knowledge guide

4 of 15 AGGARWAL ET AL.

FIGURE 2 Hierarchy of the context with project-specific context at the bottom, domain-specific context in the middle layer, and general software
engineering context at the top, in the increasing order of their generalizability from the bottom up. Arrows from the project-specific contexts to
domain-specific contexts shows the relation between the project and domain-specific word lists

approximately one half hour to create, for an approximate total of 5

hours spent creating word lists.

(1.) General software-engineering context: This context represents the

general software-engineering practices and processes. Two litera-

ture sources have been used to extract 2 contexts.

(a) Pressman: These word lists are extracted from Pressman’s

textbook.17 The book was split into 13 different word lists

corresponding roughly to the chapters of the book, eg, archi-

tecture, user interface design, formal methods, and testing.

(b) SWEBOK: These word lists are extracted from the interna-

tionally accepted software body of knowledge guide18 collab-

oratively developed by members of industry and academia.

The book enumerates 15 areas of knowledge in software engi-

neering such as requirements, design, maintenance, and test-

ing. Fifteen word lists were extracted from these areas.

(2.) Domain-specific context: This context, though not directly related to

any specific project, is much more meaningful to projects than the

general software-engineering context. For example, for the Eclipse

project, Java compilers/interpreters serve as an example that is

not project specific, but rather, generic to the project’s function-

ality. For each of the 4 projects we study, we include one such

context.

(a) Operating system context: These word lists were extracted

from the chapters of Love19 “Linux kernel development” to

produce 13 word lists. The word lists describe features like

devices, input/output, memory, and process management. The

topics are all specific to the Linux operating system upon

which Android is based.

(b) Integrated development environment (IDE) context: These word

lists were extracted from a book on compilers for Java by

Andrew et al.20 The documentation was split into 14 differ-

ent word lists based on Java compiler specific concepts such

as lexical scope, object oriented programming, semantics, and

garbage collection.

(c) Office context: These word lists were extracted from the book

that serves as a guide to using Microsoft Office.21 The docu-

mentation was split into 11 different word lists relating to var-

ious components, such as designing, work-flows, applications,

and syncing.

(d) Web context: These word lists were extracted from Connolly

et al22’s book on web development. The documentation was

split into 15 different lists relating to various components

such as HTML, Javascript, CSS, and security.

(3.) Project-specific context: This is the lowest, most specific, level of

context, and represents the project-specific contexts, directly

related to the projects being studied. For each of the 4 projects, one

such context has been considered.

(a.) Android development: Ten word lists for the Android project

were extracted from Murphy23 describing features such as

widgets, activities, and databases. The lists were all related

specifically to Android application development.

Eclipse documentation: The Eclipse platform documentation

for Eclipse 3.124 was split into 19 different word lists relating

to Eclipse, such as debugging and IDE features.

(b.) Open Office documentation: The developer documentation for

Open Office 3.025 was split into 22 different word lists relat-

ing to various components such as spreadsheets, text doc-

umentation, database access, Application program interface

design, and graphical user interface.

(c.) Mozilla documentation: Unlike Eclipse and Open Office, there

is no one central documentation for Mozilla products. The

online developer guide for Mozilla26 consists of several web-

pages, with very short descriptions catering to an online audi-

ence. The documentation was split into 13 different word

lists relating to using various components such as browser,

Javascript, debugging tools, and testing.

All these contexts and their word lists were extracted by labeling

chapters on the basis of the software-engineering processes such as

maintenance or testing. During labeling, text from similar chapters

were grouped together under a single label. For instance, chapters

titled “Software testing techniques” and “Software testing strategies”

were grouped under software testing.

The office domain context is problematic but Open Office seeks to

clone much of Microsoft Office’s functionality thus due to the lack of

a general text on office software. Thus, we opted for the inspiration of

Open Office’s functionality.

This process of labeling chapters was done by a single person

who is familiar with software development and software development

AGGARWAL ET AL. 5 of 15

processes. Since, this is aimed at minimizing time efforts as well as

allowing developers to use the literature they think is relevant to the

domain, the labeling process was done by a single person.

To build these lists, the frequency of word occurrences in the text

under each label was recorded. Then, every word that appeared on

a comprehensive list of stop words27 was removed. Every remaining

word that occurred less than 100 times was also removed. The thresh-

old of 100 was used as it appeared to the authors to be the cut-off point

between domain-specific language and generic words. This choice is

relatively arbitrary and what a good threshold is will likely depend

on the size of the documents and the breadth of their vocabulary. No

frequency cutoff was used for the extraction of features from docu-

mentation, as documentation tends to be far more concise than other

forms of technical literature. Hence, the 3 project specific lists—Eclipse,

Mozilla, and Office documentation word-lists were extracted without

any frequency cutoffs. It took about half of a person-hour to construct

each of these 5 word lists. These word lists were used for generating

contextual features as described in Section 3.5. The scripts to generate

these word lists are included in the data-set data-dump.

3.2 Bug-report preprocessing

The bug reports were pre-processed following the methodology used

by Alipour et al4

• Bugs that were missing significant amounts of information were

discarded—bugs without Bug IDs as well as bugs marked as a dupli-

cate where the corresponding duplicate Bug ID was not found in the

repository—were removed.

• Stop words were removed from the description and title fields using

a comprehensive list of English stop words.27

• The reports were organized into “buckets”, as done by Sun et al3 Each

bucket contains a master bug report along with all duplicates of that

report. The master bug report is the report with the earliest open

time in that bucket.

• A bucket that contained a very large set of duplicate bugs was

removed from the Android dataset. If the cluster was included, it

would have strongly biased our results upwards, as such large clus-

ters of duplicates are uncommon.

After the preprocessing step, 3 different subsets of the bug reports

were constructed for each dataset, each containing a different ratio

of duplicate to non-duplicate reports. The differing ratios are used to

observe the effects of different ratios on accuracy. The same procedure

was used in our previous work7 as a robustness measure. The 3 subsets

used include a set with 10%, 20% and 30% duplicates (as per Alipour

et al). In each case, random selection without replacement from the

original dataset was used, selecting as many reports as possible while

maintaining the desired ratios. There is no difference in relative per-

formance among the datasets being compared, and there is no relative

gain by using any particular ratio. Emphasis is placed on the 20% dupli-

cate/80% non-duplicate split used by Alipour et al in order to provide

a comparison level of performance. We use the 20% to 80% ratio in

order to provide easier comparisons with previously published results.

We make no claim that the 80/20 is “better” or more realistic than the

other ratios.

3.3 Textual similarity features

After the bug-report pairs are built, we compute the textual and cate-

gorical similarity of the bug pairs. While extracting textual/categorical

features, reports were compared in a pairwise manner and similarity

ratings were generated for each primitive field in each pair of reports.

Each of the following comparison methods were adapted from the

paper by Sun et al3 and were used in by Alipour et al4,5

Title and description fields were compared between bug reports

using a customized version of BM25F, including both a unigram com-

parison (words treated individually) and bigram comparison (words

treated in pairs).

3.4 Categorical similarity features

Categorical fields (component and type) were compared using a sim-

ple binary rating resulting in a value of 1 if matching and 0 otherwise.

The comparison also included a comparison for a product field; how-

ever, this field was not specified in the Android reports, and hence the

product-field comparison was omitted on the Android reports. The 2

remaining fields (priority and version) were compared using a simple

distance metric resulting in a value between 0 and 1 (where 1 indi-

cates identical values). A total of 7 textual and categorical features were

obtained.

The exact formulas used are below, where d1 and d2 indicate sample

bug reports3,4:

textual1(d1, d2) = BM25F(d1, d2)unigram (1)

textual2(d1, d2) = BM25F(d1, d2)bigram (2)

categorical1(d1, d2) =
{

1 if d1.prod = d2.prod
0 otherwise

(3)

categorical2(d1, d2) =
{

1 if d1.comp = d2.comp
0 otherwise

(4)

categorical3(d1, d2) =
{

1 if d1.type = d2.type
0 otherwise

(5)

categorical4(d1, d2) =
1

1 + |d1.prio − d2.prio| (6)

categorical5(d1, d2) =
1

1 + |d1.ver − d2.ver| (7)

In the above equations, prod, comp, prio, type, and ver refer to the

product, component, priority, type (defects or enhancement types), and

version field in the bug reports, respectively. Equation (1) applies for

unigram scores using BM25F while equation (2) uses bi-grams to cal-

culate the similarity scores. An example of the textual and categorical

features table can be seen in Table 3.

3.5 Contextual features and table generation

After the computation of the textual and categorical features of

the pairs of bug reports, contextual features were constructed using

BM25F similarity scores of bug reports with word lists.

BM25F scores for word lists: The bug-report contextual features

were computed using the BM25F algorithm for the comparison of the

6 of 15 AGGARWAL ET AL.

TABLE 3 Example textual and categorical feature table

BugID1 BugID2 BM25Funi BM25Fbi Product Component Priority Type Version Class

14518 14516 1.484 0 0 1 1 1 1 dup

7186 7185 1.440 0.16 0 0 1 1 0 non

TABLE 4 Example contextual features table

BugID Process Manage Design Test … Re-Eng

14518 0.377 6.887 2.847 4.997 … 0.753

14516 0.377 6.887 2.847 4.997 … 0.753

14690 0.681 7.923 3.175 7.954 … 1.718

word lists with bug-report titles and descriptions. Each bug report was

compared to the set of word lists generated for the given context (as

mentioned in Section 3.1), where each word list was treated as text.

This process results in a set of features corresponding to the word lists

of that context. For example, the general software-engineering context

contains 13 word lists, so there are 13 software-engineering contex-

tual features for each bug report. This procedure was repeated for

each of the contextual categories under investigation: general software

engineering, domain-specific, and project specific. An example of the

general software-engineering context features can be seen in Table 4.

Feature table generation: Next, the contextual features for individ-

ual bug reports are calculated. Using these tables, a comparison feature

table is constructed for pairs of bugs. Initially, pairwise comparisons

are generated for the textual and categorical features, as discussed in

Section 3.3. The contextual features are subsequently added for each

of the bug reports along with a cosine similarity feature based on the

contextual feature vectors of the 2 bug reports. With n as the number

of contextual features generated using n word lists for each bug report

and Ci (with i = 1, 2) being the vector representation of the similarity

metrics computed for each of the features, the cosine similarity of 2

reports is defined as follows:

cosine_sim(b1, b2) =
∑n

i=1 C1i · C2i√∑n
i=1 C12

i

√∑n
i=1 C22

i

(8)

The resulting table is an all-features table containing the textual, cat-

egorical, and contextual ratings for all pairs of bugs. Table 5 illustrates

the final table representation. The labels Proc1, Proc2 stand for the con-

text Process in Table 4 for the bug reports 1 and 2 being considered in

this pair.

The textual features can be interpreted as the similarity between 2

bug reports based on purely their description, whereas contextual fea-

tures are the similarity between a bug report and the context at hand,

for example, UI design. If 2 bug reports have many words in common,

but do not have common context, we expect our features to capture

that commonality. In case the pair of bug reports has a lot of common

words with the contextual word list but not with each other, it will be

captured by the textual similarity score calculated by BM25F. Previous

works4,5,7 show that contextual features are able to capture such infor-

mation over the conventional textual similarity methods,3 increasing

accuracy by over 11-12%.4 Hence, this approach captures both bug pair

similarity as well as their contextual similarity.

Tables containing only contextual-feature ratings for all pairs of

bugs were also generated to evaluate the effects of training on only

contextual ratings. The tables were generated by simply removing the

textual and categorical features from the all features table to see how

these features perform on their own. Once the data was prepared, it

was passed on to the machine-learning classifiers for training, testing,

and evaluation.

3.6 Machine learning and evaluation criteria

The data tables described in the previous section are meant to be pro-

vided as input to machine-learning algorithms, in order to produce clas-

sifiers that can recognize a pair of bugs as “duplicate” or “non-duplicate”.

Unlike in the work of Sun et al,3 which queries only duplicate bugs, we

consider true-negatives in the evaluation measure the accuracy of com-

paring 2 non-duplicates. This is especially important in scenarios where

duplicates are not explicitly marked. The tables were provided as an

input to Weka,28 which runs a number of standard machine-learning

classifiers. The model obtained through Weka was tested to see how

well it performed on the task of assigning the correct label to a pair

of bugs — “duplicates,” if the 2 bugs are duplicates or “non-duplicates,”

if they are not. 10-fold cross validation was used as an added

robustness measure.

The performance of these models was evaluated in terms of accuracy

and Cohen’s Kappa coefficient. Accuracy is defined as the ratio of num-

ber of correctly classified instances to the total number of instances.

Cohen’s Kappa coefficient is a modified version of the accuracy score

that attempts to compensate for blind luck. It measures the accuracy

of a classifier in comparison to the probability of randomly assigning

the correct classification. We follow the lead of Weka28 and define

Kappa in Equation (9), where P(e) is the chance of correctly classify-

ing the sample using the majority classification, ie, using the ZeroR

learner or a naïve Bayes classifier. The naïve Bayes classifier is one

of the simplest classifiers, and using this definition for Kappa allows

for a “classifier-to-classifier” comparison. In this specific case, P(e) is

equal to the number of non-duplicates expressed as a percentage of the

data-set.

𝜅 ∶= Accuracy − P(e)
1 − P(e)

(9)

C4.5 (Weka’s J48) decision-tree classifiers were used with the default

parameters to evaluate the performance of software-literature context

method features. We chose C4.5 as it was the best performing clas-

sifier in our previous work,7 and thus allows for a direct comparison

of results.

4 RESULTS

How well do our generated software-literature context features,

extracted from documentation and textbooks, help answer the ques-

tion, “are these two bug reports duplicates or not?” Using bugs from

each project repository, tables with a ratio of pairs of duplicates to

non-duplicates of 20-80 were sampled. The classification algorithms

AGGARWAL ET AL. 7 of 15

TABLE 5 Example of final features table. Only selected features are shown here for representational
purposes— BM25Funigram from textual similarity features, Version from categorical features, and
Process/Re-Engineering from categorical features

Bug pair Features

BugID1 BugID2 BM25Funigram Vers Proc1 ReEng1 Proc2 ReEng2 Cosine_Similarity Class

21756 21750 10.78 0 2.96 3.86 1.11 0 0.928 dup

8542 8541 3.07 0 0 1.20 0.56 1.80 0.926 non

TABLE 6 Accuracy and Kappa scores using different contextual feature combinations for the
Android dataset by using C4.5 decision tree algorithm

Project-specific context Domain-specific context General context Accuracy Kappa

In-context

Android development Operating system Pressman 92.50 0.770

Android development IDE Pressman 92.37 0.760

Android development Office Pressman 92.07 0.751

Android development Web Pressman 92.18 0.755

Android development Operating system SWEBOK 92.42 0.760

Android development IDE SWEBOK 92.30 0.759

Android development Office SWEBOK 92.07 0.750

Android development Web SWEBOK 92.39 0.760

Out-of-context

Eclipse documentation IDE Pressman 92.06 0.750

Mozilla documentation Web Pressman 91.96 0.745

OpenOffice documentation Office Pressman 91.82 0.739

Eclipse documentation IDE SWEBOK 92.00 0.747

Mozilla documentation Web SWEBOK 92.16 0.754

OpenOffice documentation Office SWEBOK 91.81 0.739

Best performing features from our previous work7

Labeled LDA … … 93.62 0.799

Android development … Pressman 92.36 0.756

IDE, Integrated development environment; LDA, Latent Dirichlet Allocation; SWEBOK, software body of
knowledge guide.

were applied on 2 different sets of features: the contextual fea-

tures by themselves (software-literature context method), andtegori-

cal features (features from Sun et al3). The results are summarized in

Tables 6–9.

Each dataset has 3 hierarchical contexts—general software engi-

neering, domain-specific, and project-specific. In order to evaluate the

effectiveness of each additional context, we combine these contexts

with all of the other contexts for all of the other datasets and eval-

uate each combination. As all of these hierarchical contexts are eval-

uated for each dataset, the objective is to measure the effectiveness

of in-context and out-of-context word lists for a dataset, eg, Android,

the in-context word lists are those corresponding to Android develop-

ment and the operating system. Out of these, only Android develop-

ment is project specific whereas the operating system context is more

abstractly related to the project, though still less generic than the gen-

eral software-engineering context. The general software-engineering

context is in-context, but not nearly as explicitly related to the dataset

as the other 2 word lists. We divide our results for each section into

2: tables having at least 1 in-context feature and tables having no

in-context features.

4.1 Android bug reports

For the Android dataset, the domain specific context comes from the

operating system (Linux) feature lists, and the project-specific context

comes from the Android development feature lists.

The results are summarized in Table 6. The out-of-context features

perform worse than the in-context features. The SWEBOK context fea-

tures perform at par with the general software-engineering contextual

features from the Pressman textbook. The table containing operating

system and Android development contexts, which are directly rele-

vant with Android, performs the best. These directly applicable fea-

tures combined with the Pressman context perform best with an accu-

racy score of 92.50%, followed closely by the in-context features with

SWEBOK.

The contextual tables containing the project-specific context,

Android development performed better than the tables with the

out-of-context contextual features consisting mainly of general

software-engineering context, as expected. The added context pro-

duces a marginal improvement in the best performing features from

our previous work,7 though still performing lower than the labeled

8 of 15 AGGARWAL ET AL.

TABLE 7 Accuracy and Kappa scores using different contextual feature combinations for the
Eclipse dataset by using C4.5 decision tree algorithm

Project-specific context Domain-specific context General context Accuracy Kappa

In-context

Eclipse documentation IDE Pressman 93.03 0.780

Eclipse documentation Operating system Pressman 92.87 0.775

Eclipse documentation Office Pressman 92.78 0.771

Eclipse documentation Web Pressman 92.86 0.774

Eclipse documentation IDE SWEBOK 93.18 0.784

Eclipse documentation Operating system SWEBOK 92.83 0.774

Eclipse documentation Office SWEBOK 93.05 0.780

Eclipse documentation Web SWEBOK 93.00 0.779

Out-of-context

Android development Operating system Pressman 92.62 0.770

Mozilla documentation Web Pressman 92.58 0.769

OpenOffice documentation Office Pressman 92.34 0.759

Android development Operating system SWEBOK 92.61 0.769

Mozilla documentation Web SWEBOK 92.67 0.772

OpenOffice documentation Office SWEBOK 92.68 0.772

Best performing features from our previous work7

LDA … … 92.90 0.775

Eclipse documentation … Pressman 92.81 0.772

Eclipse documentation … … 92.86 0.775

IDE, Integrated development environment; LDA, Latent Dirichlet Allocation; SWEBOK, software body of
knowledge guide.

TABLE 8 Accuracy and Kappa scores using different contextual feature combinations for the
Open Office dataset by using C4.5 decision tree algorithm

Project-specific context Domain-specific context General context Accuracy Kappa

In-context

OpenOffice documentation Office Pressman 91.57 0.728

OpenOffice documentation IDE Pressman 91.38 0.721

OpenOffice documentation Operating system Pressman 91.37 0.722

OpenOffice documentation Web Pressman 91.51 0.723

OpenOffice documentation Office SWEBOK 91.42 0.724

OpenOffice documentation IDE SWEBOK 91.36 0.721

OpenOffice documentation Operating system SWEBOK 91.23 0.719

OpenOffice documentation Web SWEBOK 91.32 0.720

Out-of- context

Eclipse documentation IDE Pressman 90.82 0.707

Mozilla documentation Web Pressman 91.22 0.716

Android development Operating system Pressman 90.94 0.710

Eclipse documentation IDE SWEBOK 90.75 0.703

Mozilla documentation Web SWEBOK 91.17 0.715

Android development Operating system SWEBOK 90.93 0.709

Best performing features from our previous work7

LDA … … 90.71 0.699

OpenOffice documentation … Pressman 91.51 0.728

IDE, Integrated development environment; LDA, Latent Dirichlet Allocation; SWEBOK, software body of
knowledge guide.

LDA features, albeit marginally. Our table contains 36 contextual

features, 10 from Android development, 13 from the operating system,

and 13 from Pressman’s book, while the labeled LDA approach uses 72

features from 72 word lists.

For Android RQ1, RQ2, and RQ3, we can see that 3 in-context

contexts produce the best performance; from Table 10, we can see

that each context does provide some value over just BM25F-based text

comparisons.

AGGARWAL ET AL. 9 of 15

TABLE 9 Accuracy and Kappa scores using different contextual feature combinations for the
Mozilla dataset by using C4.5 decision tree algorithm

Project-specific context Domain-specific context General context Accuracy Kappa

In-context

Mozilla documentation Web Pressman 93.07 0.779

Mozilla documentation IDE Pressman 92.84 0.771

Mozilla documentation Operating system Pressman 92.83 0.771

Mozilla documentation Office Pressman 92.83 0.771

Mozilla documentation Web SWEBOK 92.96 0.775

Mozilla documentation IDE SWEBOK 92.82 0.770

Mozilla documentation Operating system SWEBOK 92.88 0.772

Mozilla documentation Office SWEBOK 92.93 0.773

Out-of-context

Android development Operating System Pressman 92.72 0.769

Eclipse documentation IDE Pressman 92.69 0.768

OpenOffice documentation Office Pressman 92.71 0.769

Android development Operating System SWEBOK 92.75 0.769

Eclipse documentation IDE SWEBOK 92.70 0.768

OpenOffice documentation Office SWEBOK 92.77 0.770

Best performing features from our previous work7

LDA … … 93.14 0.780

Eclipse documentation … Pressman 92.89 0.772

4.2 Eclipse bug reports

The 3 hierarchical contexts for Eclipse are general software engi-

neering, IDE, and Eclipse documentation. The in-context features are

Eclipse documentation and IDE. Eclipse documentation is project spe-

cific, whereas the IDE context is domain-specific.

The results are summarized in Table 7. The out-of-context features

perform worse than the in-context features. The SWEBOK context

features perform marginally better than the contextual features from

pressman textbook context. The table containing all the features that

are directly relevant with Eclipse, IDE and Eclipse documentation, per-

form the best. These directly applicable features with SWEBOK con-

text clocked the highest accuracy, coming in at 93.18%, followed closely

by the in-context features with context from the Pressman book.

The contextual tables containing the project-specific context, per-

formed better than the tables with the out-of-context contextual fea-

tures, ie, in-context features from other projects. The new context aug-

mented with the domain-specific context produces a marginal improve-

ment in the best performing features from our prior work,7 performing

better than the LDA features. Our contextual table contains 48 contex-

tual features, 19 from Eclipse documentation, 14 from IDE, and 15 from

SWEBOK book, while LDA uses 20 features.

For Eclipse RQ1, RQ2, and RQ3, we can see that 3 in-context con-

texts produce the best performance. However, Table 10 shows that 2

contexts can provide nearly equivalent performance.

4.3 Open office bug reports

The 3 hierarchical contexts for the Open Office dataset are general

software engineering, office-book, and Open Office documentation.

The in-context features are Open Office documentation and office

software.21

The results are summarized in Table 8. The out-of-context features

perform worse than the in-context features. The Pressman context

features perform marginally better than contextual features from the

SWEBOK textbook. The table containing all the features that are

directly applicable to Office, office software domain specific and Open

Office documentation, perform the best. These features combined with

Pressman context clocked the highest accuracy of 91.57%.

The contextual tables containing the project-specific context, Office

documentation performed better than the tables with out-of-context

contextual features, ie, in-contexts from the other projects, as expected.

The new context padded with Office text-book domain-specific context

produces a very marginal improvement in the best performing features

from our previous work,7 performing better than the LDA features.

For OpenOffice RQ1, RQ2, and RQ3, we can see that 3 in-context

contexts produce the best performance. For OpenOffice, the project

documentation seems especially strong.

4.4 Mozilla bug reports

The 3 hierarchical contexts for the Mozilla dataset are general soft-

ware engineering, web development, and Mozilla documentation. The

in-context features are Mozilla documentation and web development.

Mozilla documentation constitutes the project-specific context, while

web development serves as the domain-specific context.

The results are summarized in Table 9. As can be observed, the

out-of-context features perform worse than the in-context features.

Pressman context features perform at par with contextual features

from SWEBOK textbook. The table containing all the features that are

directly relevant with Mozilla, Web development and Mozilla docu-

mentation, perform the best. These features combined with Pressman

context performed with the highest accuracy of 93.07%.

10 of 15 AGGARWAL ET AL.

TABLE 10 Only in-context contexts per each project. This table shows how adding contexts tends to slowly
improve the performance of the machine learner. “… ” indicates the context is not used. Classified with a
C4.5 Decision Tree Algorithm using 10-fold cross validation

In-Context

Project Project Context Domain Context General Context Accuracy Kappa

Android … … … 89.55 0.6589

Android Android Documentation … … 92.05 0.7495

Android … Operating System … 91.61 0.7353

Android … … Pressman 92.07 0.7514

Android … … SWEBOK 91.52 0.7306

Android Android Documentation Operating System … 92.33 0.7584

Android Android Documentation … Pressman 92.32 0.7577

Android … Operating System Pressman 92.17 0.7541

Android Android Documentation … SWEBOK 92.06 0.7487

Android … Operating System SWEBOK 91.97 0.7456

Android Android Documentation Operating System Pressman 92.38 0.7598

Android Android Documentation Operating System SWEBOK 92.20 0.7541

Eclipse … … … 91.32 0.7354

Eclipse Eclipse Documentation … … 92.62 0.7681

Eclipse … IDE … 92.69 0.7707

Eclipse … … Pressman 92.47 0.7639

Eclipse … … SWEBOK 92.63 0.7680

Eclipse Eclipse Documentation IDE … 92.87 0.7751

Eclipse Eclipse Documentation … Pressman 92.81 0.7732

Eclipse … IDE Pressman 92.66 0.7683

Eclipse Eclipse Documentation … SWEBOK 92.86 0.7743

Eclipse … IDE SWEBOK 92.78 0.7715

Eclipse Eclipse Documentation IDE Pressman 92.86 0.7749

Eclipse Eclipse Documentation IDE SWEBOK 92.95 0.7778

Mozilla … … … 91.27 0.7233

Mozilla Mozilla Documentation … … 92.75 0.7677

Mozilla … Web … 92.82 0.7695

Mozilla … … Pressman 92.74 0.7663

Mozilla … … SWEBOK 92.63 0.7626

Mozilla Mozilla Documentation Web … 92.90 0.7722

Mozilla Mozilla Documentation … Pressman 92.90 0.7729

Mozilla … Web Pressman 92.86 0.7711

Mozilla Mozilla Documentation … SWEBOK 92.79 0.7690

Mozilla … Web SWEBOK 92.79 0.7687

Mozilla Mozilla Documentation Web Pressman 92.91 0.7731

Mozilla Mozilla Documentation Web SWEBOK 92.87 0.7722

OpenOffice … … … 88.92 0.6451

OpenOffice OpenOffice Documentation … … 91.44 0.7238

OpenOffice … Office … 90.98 0.7069

OpenOffice … … Pressman 90.89 0.7056

OpenOffice … … SWEBOK 91.04 0.7102

OpenOffice OpenOffice Documentation Office … 91.46 0.7245

OpenOffice OpenOffice Documentation … Pressman 91.38 0.7215

OpenOffice … Office Pressman 91.23 0.7167

OpenOffice OpenOffice Documentation … SWEBOK 91.31 0.7205

OpenOffice … Office SWEBOK 91.25 0.7173

OpenOffice OpenOffice Documentation Office Pressman 91.43 0.7234

OpenOffice OpenOffice Documentation Office SWEBOK 91.45 0.7248

IDE, Integrated development environment; LDA, Latent Dirichlet Allocation; SWEBOK, software body of knowl-
edge guide.

AGGARWAL ET AL. 11 of 15

Mozilla documentation performed better than the tables with

out-of-context contextual features, ie, in-contexts from the other

projects. The new context, augmented with Web development

domain-specific context, produces a marginal improvement compared

to the best performing features from our previous work,7 but performs

marginally worse than the LDA features.

For Mozilla RQ1, RQ2, and RQ3, all 3 contexts matter, which is also

evident in the next section.

4.5 The effects of context

We seek to understand the effect of context on model performance. In

this section, we re-run the experiments of the prior section 10 times

on contexts relevant to the projects themselves. We then apply fac-

tor analysis to determine if the different kinds of context matter. We

apply these tests to all of the projects’ kappa and accuracy performance

at once.

Table 10 depicts the median performance of 10 repeated

10-cross-folds validations—each with a different cross-fold split ran-

dom seed—over the in-context contexts of each project. This results in

4800 model evaluations (10-folds, 480 times) over relevant contexts,

resulting in 480 accuracy and kappa values. In all cases, we can see

that adding context improves both accuracy and kappa values (versus

not adding context). This difference is significant according to the Stu-

dent t test (P < 2 × 10− 16). Individually evaluating each combination

of contexts (general, domain-specific, and project-Specific), we find

that all relevant context combinations have statistically significant

performance, better than no context at all.

We applied analysis of variance (ANOVA) factor analysis on con-

texts versus kappa performance. We found positive and significant

effects (P < 3 × 10− 05) on performance given general, domain-specific,

and project-specific contexts, including interactions between general,

domain-specific, and project-specific contexts. By applying the Tukey

Honest Significant Differences (Tukey HSD) test, we observed the 95%

confidence intervals, related to the effect of having general con-

texts, domain-specific contexts, or project-specifics contexts on kappa

scores, were [0.011, 0.020], [0.0091, 0.018], and [0.013, 0.022] respec-

tively, with positive mean effect all greater than 0.013 (p < 2 × 10− 16).

This implies that that the introduction of relevant in-context contexts,

regardless of the level of context, tends to have a positive interaction on

Kappa scores. Similar behavior is observed for accuracy scores.

Thus, for RQ1, RQ2, RQ3 all 3 levels of context—project-specific,

domain-specific, and general—help deduplicate bug reports. None of

them hinder deduplication.

The general context and domain-specific context seem to interact

more negatively, as the difference between the combination of general

contexts combined with domain contexts versus just general contexts

is not statistically significant after adjustment. The significant inter-

actions tend to be context versus lack of context. So interactions in

general are significant as per the ANOVA, but the Tukey HSD does not

find the majority of comparisons within an interaction to be signifi-

cant. A 2-context interaction was significant: general context combined

with project-specific context had a statistically significantly kappa dif-

ference: 0.007 with P < 0.028. The same was a true for accuracy:

0.232 with P < 0.016. Of the 3 context interactions, all 3 contexts

together—general, domain-specific, and project-specific contexts—had

a statistically significant difference (P < 0.025) of 0.013 for kappa per-

formance, similar accuracy performance: 0.39 with P < 0.012.

Thus for RQ4 we can see that having more than 1, preferably 3,

in-context contexts helps deduplication performance in terms of accu-

racy and kappa scores.

If we look at the cosine-similarity between contexts of duplicate

and non-duplicate bug-report pairs, we find that, for Eclipse, OpenOf-

fice, and Android, the distributions are significantly different accord-

ing to the Wilcoxon rank sum test (p < 2 × 10− 6). Yet for Mozilla,

many of the duplicate and non-duplicate cosine differences are not

statistically significant. Overall the median cosine-similarity of dupli-

cate pairs is different than those of non-duplicate pairs according

to a Wilcoxon (P < 0.0056) applied across projects. This is inter-

esting because it means that there’s a difference between median

cosine-similarity of duplicate pairs, and the cosine pairs tend to have

larger cosine-similarities.

In some of the tables, SWEBOK and Pressman produce different lev-

els of performance; are these significant? A Wilcoxon rank sum test

of Kappa scores between SWEBOK and Pressman contexts suggests

that the differences in performance are not significant with a P-value

of 0.5361. TukeyHSD suggests that the 95% confidence interval of the

difference between SWEBOK and Pressman is [− 0.010, 0.005] with a

insignificant P-value of 0.77.

Thus, we conclude that relevant context matters: context positively

improves kappa and accuracy performance, and 3 contexts are bet-

ter than just 1 in terms of kappa and accuracy performance, across

the projects. Based on these results, we believe the most power-

ful contexts are the general contexts and the project specific con-

texts, our domain-specific contexts only seemed effective in combi-

nation with other contexts. Analysis of cosine-similarity shows that

cosine-similarity between contexts is a relevant feature in deciding if a

pair is a duplicate or not.

4.6 BM25F scores distributions over contexts

We present the distribution of BM25F scores of 5 contexts over Open

Office bug reports. We take 4 contexts—General Software Engineer-

ing (Pressman and SWEBOK), Office domain-specific context, and

Office project-specific context. As a baseline, we take an additional

context—random context generated by randomly created A-Z words

lists of English words, same as used by Alipour et al.4,5 The plots showing

the BM25F scores over the Office bug reports with these 5 contextual

word lists are shown in Figures 3–7. As can be observed in Figure 3, ran-

dom context has very low BM25F similarity scores with bug reports,

in-fact nearly 0. The project-specific, Office documentation context has

very high BM25F scores, much more than other contexts. Within the

General Software Engineering context, the Pressman book has, on aver-

age, lower scores than SWEBOK. As we can see from the results in the

previous section, the SWEBOK context performs better than Press-

man on the OpenOffice Corpus, though only marginally. The Office

domain-specific context has much lower BM25F scores on average

over the features than OpenOffice documentation context, though a

bit higher than General Software Engineering contexts. These visu-

alizations show that these different contexts add information to the

12 of 15 AGGARWAL ET AL.

FIGURE 3 BM25F scores over random English words context (Junk context)

FIGURE 4 BM25F scores over Pressman General Software Engineering context

FIGURE 5 BM25F scores over software body of knowledge guide (SWEBOK) General SE context

deduplication task, since different contextual features have overlaps

with the different bug reports. They do not add any random information

like the one demonstrated in the case of random context, having mini-

mal overlap with the Office bug reports. Similar trends are observed in

other datasets as well.

Summary As can be observed, in all the 4 bug-report datasets,

combinations of in-context features performed quite well, whereas

the out-of-context features performed worse, despite being combined

with general software-engineering contextual features. It is important

to note, though, the differences in performance of various contextual

feature sets is between 1-2% but since our dataset consists of 80%

non-duplicates and 20% duplicates, the 1-2% additional gain in accu-

racy should be viewed as 5-10% gain in detecting pair of duplicates

using these features. The best performing classifier, C4.5 Decision Tree,

has unigram similarity at the top of the tree over all the experiments,

implying that textual similarity between the bug reports is the most

important factor in deciding whether a pair of bugs reports represent a

duplicate bug. The contextual features come next, providing additional

AGGARWAL ET AL. 13 of 15

FIGURE 6 BM25F scores over Office domain context

FIGURE 7 BM25F scores over OpenOffice documentation context

cues to classify as duplicate bugs or not. Previous works4,5,7 have shown

that additional contextual features capturing similarity of bug reports

with the contextual word lists provides gains over the popular textual

similarity features.

Our hierarchy of contexts, with added layer of domain specific con-

text, performs better than our only-project specific, or combination

of project-specific and general software-engineering contexts, used in

our previous study.7 SWEBOK features, added for additional general

software-engineering literature context perform similarly to the Press-

man features. Alipour et al4,5 showed how adding context (contextual

word lists as features) to the textual bug-deduplication methods can

drastically improve the performance of detection. Our previous work7

demonstrated on how we can use software-engineering literature for

building that context. This work examines the software-engineering lit-

erature context further by adding more abstracted contexts, as well

as validates our previous work by showing a contrast with out of

context features.

5 THREATS TO VALIDITY

Construct validity is threatened by the literature sources selected for

extracting the word lists and the word-list topics selected, that is, the

topics according to which the chapters in the literature were labeled.

Labeling could have been improved by multiple round and multiple

author coding/labeling process to ensure agreement of labels. Label-

ing could also suffer from correctness as chapters and documentation

might not be as on-topic as the authors hope. Another threat is the word

list of English words used to filter the frequent words to only use con-

textual words for the similarity score calculation. Construct validity is

further hampered the sources of data, as the correctness of the dupli-

cate bug report labels or the lack of duplicate bug report labels depends

on the developers who marked the bug reports that way.

External validity is threatened by our choice of 4 platforms used

here. We try to address it using these domain-diverse set of platforms,

which have a long history of bug-tracking systems.

6 DISCUSSION

In this study, we have built upon our “Software-literature context

method” for capturing additional contextual space with the hierarchy of

contexts. Besides the hierarchy of contexts, we also use additional

context from SWEBOK to incorporate contextual features at a gen-

eral software engineering level. The combined hierarchy of contex-

tual features performed better than all the previous contextual fea-

tures that were exploited in our previous study.7 We also demonstrate

the effectiveness of domain-specific features by contrasting their effi-

14 of 15 AGGARWAL ET AL.

cacy with less specific, cross-domain features from other datasets.

The hierarchy of contextual features extracted using our method fared

either better or at-par than the LDA contexts, but fared slightly worse

than the labeled-LDA approaches. As labeled-LDA is an extremely

time-intensive approach, we consider that a reasonable trade off.

In the case of the Android data set, the 3-layered hierarchical context

features performed slightly worse than labeled-LDA features, though

better than our previous features. However, the software-literature con-

text features took much less time to produce, only half a person-hour

compared to 60 person-hours taken to create labeled LDA lists, while

suffering only a minor loss in accuracy. Labeled LDA features are labor

intensive and not available for all projects such as Eclipse, Mozilla, and

Open Office. Alipour et al used unsupervised LDA for these datasets.

Our software-literature context method performs better than LDA across

the Eclipse and Open Office datasets, while performing at par on

the Mozilla dataset. As established in previous work,7 the features

extracted using software-literature context method are simple, general,

easy to extract, and share, as compared to LDA approaches. LDA

requires extraction of all the bug descriptions, knowledge of how to

use rather sophisticated tools, and requires that the parameters be

appropriately tuned. Additionally, for both variants of LDA, the time and

resources required increases over time as the lists need to be updated

when the number of bug reports in the bug-tracker system increases.

In contrast, our method requires a very simple chapter by chap-

ter labeling of (contextual) software literature such as books, guides,

or documentation, then, a simple conversion to word lists that can be

done easily using command line. The method for constructing BM25F

similarity scores is same for both LDA and our method. The output

word lists are easily share-able across the projects. As well, these word

lists do not require any updates over time across the whole corpus to

extract latent topics unlike LDA. For example, word lists for operating

system (OS) can be shared across open source OS projects. There is

also potential to use these lists to detect bugs inherited by source code

reuse.

The domain-specific context provides additional gains in the accu-

racy scores, and consistently performs better than the out-of-context

features used for cross-domain analysis. The major advantage of

domain-specific context is that it can be applied across a variety of

projects. For example, the operating-system context can be applied

across projects related to Android, Linux, BSD, and Sun OS. The devel-

opers can share these domain-specific features across their projects in

the same domain, from the relevant software literature.

The process involves labeling chapters from software-literature

sources and extracting word lists with simple tokenization. The word

lists extracted from general software-engineering literature, are rele-

vant across all software projects and performed consistently well along

with other software project-specific features or project-domain fea-

tures. In our previous work,7 we had demonstrated the utility of the

general software-engineering features with just one literature source

from the Pressman book. In this study, added features from the SWE-

BOK, the industry accepted guide to software-engineering practices,

has been used to reinforce our previous conclusion.

In this work, we also demonstrated the effects of using an

out-of-context contextual feature hierarchy, ie, features not directly

related to the project on our datasets. These features performed

consistently worse than the feature hierarchies containing the

project-specific features. This reinforces our observations in

previous work on the superiority of contextual features. The per-

formance of the generic software-engineering literature features,

demonstrated with 2 literature sources, Pressman and SWEBOK,

suggests that even higher-level contexts, that are not specific to the

project domain but rather to the general software domain, provide a

useful and reusable context, effective for bug-report deduplication.

Furthermore, higher-level contexts can be freely shared and reused by

practitioners with little or no effort compared to extracting features

from domain-specific texts, or using LDA.

7 CONCLUSIONS

Our work establishes a method to improve the detection of duplicate

bug reports using hierarchical contextual information extracted from

software-engineering textbooks, project-related software literature,

and project documentation. The method is an extension of our previ-

ous work,7 which introduced the software-literature context method, a

method of using automatically generated contextual features to iden-

tify and deduplicate bug reports.

We show the effectiveness of more specific contextual fea-

tures by comparing the results from using in-context features,

such as project-specific documentation, with the results from using

out-of-context features, such as project-specific context from other

datasets. We refer to the differing levels of abstraction as a hierarchy

of contexts; the lower the context is on the hierarchy, ie, the more

directly related the context is, the better performance we find in our

classification results.

Compared to our previous work, we find that the domain-specific

context provides additional gains in accuracy, while being able to be

applied across a variety of projects with no additional processing.

For instance, the operating-system contextual features can be applied

across projects based on the Linux kernel, such as Android, all Linux

distributions, BSD, and Sun OS. This general applicability enables us to

eliminate our dependence on project-specific word lists that must be

generated for each project, and to further decrease the labor required

to deduplicate bug reports.

This enhances our previous study by showing the contrast between

our semi-automated method with the LDA-based approaches, which

are project-specific and need to be updated manually to incorporate

data from new bug reports. This new method, by comparison, does not

need to be updated to incorporate new bug reports. When new bug

reports arrive, the only work that needs to be done is to calculate the

feature values for the new bug reports. The improved performance

on all 4 of the datasets that we use demonstrates the utility of these

domain-specific contextual features, which, though much less generic

than the general software-engineering contextual features, can still be

shared across a number of projects in the same domain.

As well, by using contextual features generated from SWEBOK in

addition to Pressman, our study reinforces the superiority of general

software-engineering features. The extremely general nature of the

features, general software-engineering and domain-specific features,

means that they can be used across a wide array of software projects,

as demonstrated on the 4 diverse datasets that we test the features

AGGARWAL ET AL. 15 of 15

on. The terms generated from the general software-engineering litera-

ture are used across all software platforms, and hence the contextual

features generated from this literature are applicable across all

software platforms. Evaluating the generic features alongside

the additional contextual features shows the robustness of our

software-literature contextual method.

This paper reinforces the software-literature context method, pro-

posed in our previous work, and demonstrates the importance and

effectiveness of domain in the task of automating bug deduplication, in

order to reduce manual effort. We confirm clearly through factor anal-

ysis that project documentation (RQ1), domain-specific context (RQ2),

and general contexts (RQ3) help deduplicate bug reports, but also that

the interaction of these contexts significantly improves deduplication

performance (RQ4).

In this work, we used 4 bug-tracking systems—diverse platforms

having a long history of development. The method can be used on

bug-tracking systems of freely available platforms such as Linux,

Debian, and Apache as well. Future directions include automating the

process of context extraction, exploiting ontological relationships, and

comparison of different representations of context.

REFERENCES

1. Runeson P, Alexandersson M, Nyholm O. Detection of duplicate defect
reports using natural language processing. 29th International Con-
ference on Software Engineering, ICSE 2007, IEEE, Minneapolis, MN;
2007:499–510.

2. Sun C, Lo D, Wang X, Jiang J, Khoo S-C. A discriminative model
approach for accurate duplicate bug report retrieval. Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering-Volume
1, ACM, Cape Town, South Africa; 2010:45–54.

3. Sun C, Lo D, Khoo S-C, Jiang J. Towards more accurate retrieval of dupli-
cate bug reports. Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering, IEEE Computer Society,
Honolulu, Hawaii; 2011:253–262.

4. Alipour A, Hindle A, Stroulia E. A contextual approach towards more
accurate duplicate bug report detection. Proceedings of the Tenth Inter-
national Workshop on Mining Software Repositories, IEEE Press, San Fran-
cisco, CA; 2013:183–192.

5. Alipour A. A contextual approach towards more accurate duplicate bug
report detection. Master’s Thesis, 2013.

6. Han D, Zhang C, Fan X, Hindle A, Wong K, Stroulia E. Understand-
ing android fragmentation with topic analysis of vendor-specific bugs.
2012 19th Working Conference on Reverse Engineering (WCRE), IEEE,
Kingston, Canada; 2012:83–92.

7. Aggarwal K, Rutgers T, Timbers F, Hindle A, Greiner R, Stroulia E.
Detecting duplicate bug reports with software engineering domain
knowledge. 2015 IEEE 22nd International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER), IEEE, Montréal, Canada;
2015:211–220.

8. Bettenburg N, Premraj R, Zimmermann T, Kim S. Duplicate bug reports
considered harmful. really? IEEE International Conference on Software
Maintenance, ICSM 2008, IEEE, Beijing, China; 2008:337–345.

9. Jalbert N, Weimer W. Automated duplicate detection for bug track-
ing systems. Dependable Systems and Networks with FTCS and DCC,
2008. DSN 2008. IEEE International Conference on, IEEE, Anchorage, AK;
2008:52–61.

10. Tian Y, Sun C, Lo D. Improved duplicate bug report identification. 2012
16th European Conference on Software Maintenance and Reengineering
(CSMR), IEEE, Szeged, Hungary; 2012:385–390.

11. Dang Y, Wu R, Zhang H, Zhang D, Nobel P. Rebucket: a method for clus-
tering duplicate crash reports based on call stack similarity. Proceedings
of the 2012 International Conference on Software Engineering, IEEE Press,
Zürich, Switzerland; 2012:1084–1093.

12. Sureka A, Jalote P. Detecting duplicate bug report using character
n-gram-based features. Software Engineering Conference (APSEC), 2010
17th Asia Pacific, IEEE, Sydney, Australia; 2010:366–374.

13. Nguyen AT, Nguyen TT, Nguyen TN, Lo D, Sun C. Duplicate bug
report detection with a combination of information retrieval and topic
modeling. 2012 Proceedings of the 27th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), IEEE, Essen, Germany;
2012:70–79.

14. Klein N, Corley CS, Kraft NA. New features for duplicate bug detection.
Proceedings of the 11th Working Conference on Mining Software Reposito-
ries, ACM, Hyderabad, India; 2014:324–327.

15. Lazar A, Ritchey S, Sharif B. Improving the accuracy of duplicate
bug report detection using textual similarity measures. Proceedings
of the 11th Working Conference on Mining Software Repositories, ACM,
Hyderabad, India; 2014:308–311.

16. Thung F, Kochhar PS, Lo D. Dupfinder: integrated tool support for
duplicate bug report detection. Proceedings of the 29th ACM/IEEE Inter-
national Conference on Automated Software Engineering, ACM, Västerås,
Sweden; 2014:871–874.

17. Pressman RS, Jawadekar WS. Software Engineering. New York 1992;
1987.

18. Bourque P, Fairley RE, et al. Guide to the Software Engineering Body
of Knowledge (SWEBOK (R)): Version 3.0. IEEE Computer Society Press;
2014.

19. Love R. Linux Kernel Development. Pearson Education; 2010.

20. Andrew WA, Jens P. Modern Compiler Implementation in java. 2002.

21. Wilson K. Microsoft office 365. Using office 365. Springer; 2014:1–14.

22. Connolly R, Hoar R. Fundamentals of Web Development. Pearson Higher
Ed; 2015.

23. Murphy ML. The Busy Coder’s Guide to Advanced Android Development.
CommonsWare, LLC; 2009.

24. Kiezun A. Basic tutorial eclipse 3.1.

25. Sun M. Openoffice.org 3.0 developer’s guide. 2008.

26. Mozilla Developer Network and individual contributors. Mozilla devel-
oper guide.

27. Buckley C, Salton G. Stop word list; 2013.

28. Holmes G, Donkin A, Witten IH. Weka: a machine learning workbench.
Proceedings of the 1994 Second Australian and New Zealand Confer-
ence on Intelligent Information Systems 1994, IEEE, Brisbane, Australia;
1994:357–361.

How to cite this article: Aggarwal K, Timbers F,

Rutgers T, Hindle A, Stroulia E, Greiner R. Detect-

ing duplicate bug reports with software engineering

domain knowledge. J. Softw. Evol. Proc. 2017;29:e1821.

https://doi.org/10.1002/smr.1821

https://doi.org/10.1002/smr.1821

	Detecting duplicate bug reports with software engineering domain knowledgexmltex	?>
	Abstract
	Introduction
	Related Work
	Methodology
	Contextual-features extraction
	Bug-report preprocessing
	Textual similarity features
	Categorical similarity features
	Contextual features andxmltex	?> table generation
	Machine learning andxmltex	?> evaluation criteria

	Results
	Android bug reports
	Eclipse bug reports
	Open office bug reports
	Mozilla bug reports
	The effects ofxmltex	?> context
	BM25F scores distributions over contexts

	Threats toxmltex	?> Validity
	Discussion
	Conclusions
	References

