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ABSTRACT

Recognition of motor imagery tasks (MI) from electroencephalographic (EEG) signals is crucial for developing rehabilitation and
motor assisted devices based on brain-computer interfaces (BCI). Here we consider the challenge of learning a classifier, based
on relevant patterns of the EEG signals; this learning step typically involves both feature selection, as well as a base learning
algorithm. However, in many cases it is not clear what combination of these methods will yield the best classifier. This paper
contributes a detailed assessment of feature selection techniques, viz., squared Pearson’s correlation (R2), principal component
analysis (PCA), kernel principal component analysis (kPCA) and fast correlation-based filter (FCBF); and the learning algorithms:
linear discriminant analysis (LDA), support vector machines (SVM), and Feed Forward Neural Network (NN). A systematic
evaluation of the combinations of these methods was performed in three two-class classification scenarios: rest vs. movement,
upper vs. lower limb movement and right vs. left hand movement. FCBF in combination with SVM achieved the best results with
a classification accuracy of 81.45%, 77.23% and 68.71% in the three scenarios, respectively. Importantly, FCBF determines, based
on the feature set, whether a classifier can be learned, and if so, automatically identifies the subset of relevant and non-correlated
features. This suggests that FCBF is a powerful method for BCI systems based on MI. Knowledge gained here about procedural
combinations has the potential to produce useful BCI tool, that can provide effective motor control for the users.
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1. INTRODUCTION

A brain-computer interface (BCI) is a system that provides a
person a way to interact with the external world without the
use of the peripheral nervous system nor the motor pathways.
They can be used, for example, to restore functionality of
impaired limbs.[1, 2] Most of the research in BCI is based on
the non-invasive, electroencephalogram (EEG) technique, as

this technology is reliable, affordable, portable, and provides
high temporal resolution of the brain signals.[3] Many of
these systems record and process the ongoing brain activity
associated with a task performed by the user, such as moving
their hands up, which helps to identify the control signals
that can then be used to control external devices.[4, 5] The
most common task is the motor imagery (MI), wherein a sub-
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ject imagines moving a specific part of his/her body, without
actually executing the movement. For example, it is common
to ask the subjects to imagine that they are moving their right
(or left) hand or foot. The BCI system would then learn the
brain patterns, such as changes in the power spectrum of
the brain signals, associated with this action.[6] This task is
preferred to other mental tasks (such as selective attention,[7]

or self-regulation of brain rhythms[8, 9]) because it is more
intuitive and less exhaustive for the user. One can then pro-
duce a BCI for this task: whenever the tool detects a brain
pattern that matches the MI of moving a specific body part,
the system will then actuate a corresponding external device:
e.g., when the pattern corresponds to “move left hand”, the
tool will move the physical device that corresponds to this
action. Therefore, a key component for achieving this goal is
learning which brain activity corresponds to which physical
action.

The challenge of classifying between the actual movement
of the right or left hand, as opposed to just imaging that
movement, using EEG signals has been addressed before
with an accuracy over 96%;[10] however, this accuracy drops
substantially for the scenario of MI. Morash et al. used a
naive Bayes classifier to classify MI of the right hand, left
hand, tongue, and right foot. Their reported accuracy was, on
average, below 65% in binary classification, and below 50%
in multiclass classification.[11] Schlogl et al. reported an
accuracy around 63%, on average, also in a 4-class problem
using MI,[12] while Ge et al. reported an accuracy around
75% in a similar task.[13]

There are some works that report higher accuracy when clas-
sifying MI tasks, for instance Pfurtscheller et al. reported
an accuracy of approximately 80% when distinguishing be-
tween moving the left hand vs the right hand.[6] However,
they only reported the accuracy on 3 (out of 10) participants
in the experiments – selected because they had the largest
EEG differences. This situation is not uncommon. A differ-
ent study excluded the data from 2 (out of 8) subjects from
the experiments due to failure to adequately participate in
the experiment, meaning that the signals that the researches
expected to analyze were not present in their recordings.[11]

This was also done after analyzing their data. Unfortunately,
there is no standard way of determining if the recorded data
contains patterns that can be encoded in a classifier or if the
recordings should be discarded, which constitutes an impor-
tant problem with EEG data: How to determine if a recorded
data is suitable for analysis?

The general approach for applying machine learning in EEG
involves four steps: 1) pre-processing: to improve the signal
quality by reducing noise and artifacts; 2) feature extrac-

tion: to compute relevant task-related information from the
pre-processed EEG signals; 3) feature selection: to find the
features with high discriminative power; and 4) learning a
classifier: to produce a classifier, by applying machine learn-
ing algorithms to the selected features of a pre-processed
training dataset, that can then identify which movements a
user is imaging. Basically, the result of this process is a
classifier that can use the EEG signals, recorded during the
execution of the mental task, to identify the required control
signals that can be used to trigger a device. Although this
approach is well known, there are many methodologies to
perform feature selection and to learn a classifier; unfortu-
nately, how to select the best combination of methods for
this particular task is still an open problem.

Previous works have investigated the performance of sev-
eral classifiers (linear discriminant analysis [LDA], support
vector machines, or k-nearest neighbors for classification)
with a single feature selector[10, 12] or several feature selectors
(principal component analysis [PCA], locality linear projec-
tion, Fisher discriminant analysis, or Wilcoxon rank sum
test) with a single classifier.[14, 15] Despite the high variety of
techniques, very few studies have addressed the evaluation
of combination of methods in an integrated way (i.e. several
feature selection algorithms and several learning algorithms).

These integrated evaluations have been performed in the past
for different tasks involving EEG signals, such as motor tasks
or sleep stage classification.[16, 17] Bai et al.[16] systemati-
cally investigated how combining different methodologies
for spatial filtering, temporal filtering, feature extraction and
classification can influence the discrimination accuracy on
motor-related tasks. They highlighted the difficulty in deter-
mining the most effective way of classifying EEG signals
because there are no systematic approaches, and previous
studies usually investigated several techniques independently,
making it difficult to compare their efficiency. Sen et al.[17]

made a similarly analyzed sleep stage classification, and
found that the selection of the learning algorithm made an
important difference in the classification, but the influence
of the feature selection algorithm was imperceptible. For the
case of MI, Koprinska et al. performed a similar study.[18]

Unfortunately, they did not include non-linear feature selec-
tion techniques such as fast correlation-based filter nor kernel
principal component analysis (kPCA), nor typical classifica-
tion algorithms such as LDA or support vector machines.

This work aims to fill this gap in the MI literature by per-
forming a systematic evaluation of different combinations of
feature selection and classification algorithms in the recogni-
tion of MI tasks from EEG signals. For feature selection we
tested two linear methods: squared Pearson’s correlation (R2)

38 ISSN 1927-6974 E-ISSN 1927-6982



http://air.sciedupress.com Artificial Intelligence Research 2017, Vol. 6, No. 1

and PCA; and two nonlinear methods: fast correlation-based
filter (FCBF) and kPCA. For classifiers, we tested two linear
methods: LDA and linear support vector machine (SVML);
and two nonlinear methods: support vector machine with a
radial basis function kernel (SVMR) and a feed-forward neu-
ral network (NN). All combinations of these methods were
evaluated in three classification scenarios (each using EEG
signals recorded in a MI task): rest vs. movement, upper
vs. lower limb movement and right vs. left hand movement.
Inclusion of these methods turned out to be very important,
since in our experiments the combination of SVM and FCBF
achieved the best results. FCBF also has several advantages
over other well known feature selection techniques, as FCBF
can automatically determine the number of relevant, non-
correlated features to use, as well as determine if there is
enough information in the data to perform accurate classifi-
cation.

The rest of the paper is organized as follows: the EEG dataset,
the feature selections and classification methods, and the
evaluation process are described in Section 2; the results are
described in Section 3; finally Sections 4 and 5 discuss the
results and present the conclusions respectively.

2. METHODS
All combinations of the proposed feature selection and classi-
fication methods were evaluated in three two-class classifica-
tion scenarios using EEG signals from the publicly available
BCI Competition 2008-Graz dataset A.[19, 20]

2.1 EEG dataset
This dataset consists of EEG signals recorded from nine
healthy subjects performing cue-based MI of the left hand,
right hand, both feet and tongue. During the experiments,
the subjects sat in front of a computer screen while auditory
and visual cues instructed them on the execution of the task.
Figure 1 presents the time sequence of a single trial. First, a
visual and auditory cue (in the form of a fixation cross and a
beep, respectively) indicated the beginning of the trial. Two
seconds later, a visual cue in the form of an arrow pointing
either to the left, right, up or down was presented on the
screen for 1.25 seconds. The direction of the arrow indicated
the subsequent MI of the left hand, right hand, both feet or
tongue. The participants carried out the task until the fixation
cross disappeared from the screen. Then, the participants had
a short break of around 1.5 - 2.5 seconds that allowed them to
relax before the next trial. For each subject, the experiment
consisted of two sessions performed in two different days.
Every sessions consisted of 72 trials per each body part.

Figure 1. Temporal sequence of a single trial during the execution of the experiment of the BCI Competition 2008 – Graz
dataset A. The next trial starts just after the rest period.

EEG signals were recorded from 22 Ag/AgCI electrodes lo-
cated around the sensorimotor cortex according to the 10/20
system. The signals were recorded at a sampling frequency
of 250 Hz with the reference at the left mastoid, and ground
at the right mastoid. After the experimental sessions, EEG
signals were bandpass filtered between 0.5 Hz and 100 Hz,
and 50 Hz notch filtered to reduce power line interference.
Then, trials were extracted using the start of the MI as refer-

ence. Finally, the experimenters identified and marked the
artifact-free trials and the noisy trials (contaminated with
electrooculographic and electromyographic activity) by vi-
sual inspection. In our present study, we only used trials that
were marked as artifact-free, and each trial was trimmed to
be only -3 to 3 seconds, thus the time interval [-3, 0)s cor-
responds to rest, while the time interval [0, 3)s corresponds
to the execution of the MI task. In summary, the number of
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trials across all subjects, sessions and MI of the body parts
was on average 65 ± 6 (minimum of 49 and maximum of
72).

2.2 EEG Analysis: Event-related desynchronization
EEG data were analyzed using a time-frequency analysis
based on wavelets.[21] For each trial, the time-resolved power
spectra was computed using complex Morlet wavelets in
the frequency range between 2 Hz to 40 Hz at 1 Hz of
resolution. For the time t and frequency f, the family of
wavelets was w(t, f) = Ae−t

2/2σ2
t with A =

(
σtπ

1/2)−1/2

and σt = (2πσf )−1, which is characterized by the constant
trade-off ratio f/σf that is typically fixed to 7 for the anal-
ysis of EEG signals.[22] Then, the average time-resolved
power spectrum was computed across trials to compute the
Event-Related De-Synchronization:

ERDSi(t, f) = 100×[Pi(t, f)− Pi,rest(f)] /Pi,rest(f)
(1)

of each electrode i, which is the percentage of power in-
crease (or decrease) relative to the rest interval [-3, 0)s, where
Pi(t, f) is the power spectra at time t and frequency f and
Pi,rest(f) is the average of power spectra at the rest interval
[-3, 0)s at frequency f . Finally, we identify which ERDSs are
significant using a bootstrap analysis at the significance level
of α =0.05[23] using as baseline the time interval of the rest
phase [-3, 0)s. Therefore, a significant event-related power
decrease (aka ERD -i.e., cortical activation state, which im-
plied a decrease in synchrony of the underlying neuronal
populations) is observed as a negative value, a significant
event-related power increase (aka ERS -i.e., cortical idling
state) is observed as a positive value, and no significant power
changes are observed as zero values.

2.3 Feature extraction: Power spectral density
It is well known that, in MI scenarios, the spectral power
of alpha and beta rhythms (brain signals whose frequencies
are between 8 Hz and 31 Hz.) changes during the imagined
movement, especially in electrodes placed above the sensory-
motor cortex contralateral to the moved body part.[24, 25] In
consequence, the standard approach for feature extraction in
MI is to compute the power spectral density, which is also
the most robust methods for feature extraction in MI tasks,
and is the most preferred method for the spectral analysis
of short segments and noisy signals, such as the EEG in MI
tasks.[26]

There are several methods for the extraction of features re-
lated to the power spectrum of a signal. Herman, et al.
compared the effect of using power spectral density, atomic

decompositions, time-frequency energy distributions, as well
as continuous and discrete wavelet approaches as feature ex-
tractors for the purpose of classifying EEG signals obtained
in MI tasks. They concluded that PSD are the most robust
and efficient methodology, among the tested technique, for
extracting patterns that can be used for classification of MI
tasks, using classification accuracy as metric.[26]

Intuitively, any stationary time series can be approximated
as a superposition of sinusoids oscillating at different fre-
quencies. The spectral density is an estimation of how the
power of a signal is distributed among these frequencies.
At the population level, the power spectral density (PSD)
is defined as the Fourier transform of the autocovariance
function. Both, the autocovariance function and the spectral
density express the same information, but while the first one
expresses it in terms of lags, the PSD expresses it in terms of
cycles.[27] The periodogram is the sample-based counterpart
of the power spectrum, and it is a tool used for the estimation
of the PSD.[27]

In this work, we used the Welch’s averaged modified pe-
riodogram method to estimate the PSD using Hanning-
windowed epochs of length 500 ms with an overlap of 250
ms. These power spectral features were computed in the
frequency range between 2 Hz and 40 Hz at a resolution of 1
Hz. This procedure yielded 39 power values per electrode,
and resulted in a feature space dimensionality of m = 858
(i.e. 22 electrodes × 39 frequencies). Therefore, the feature
vector is x = (x1, · · · , x858) with an associated class la-
bel y ∈ {rest, right, left, feet, tongue}. These features were
computed for each trial and electrode separately for the rest
interval [-3, 0)s and for the MI interval [0, 3)s. Features com-
puted in the rest interval were labelled as rest, while features
computed in the MI interval were labelled as right, left, feet
and tongue according to the movement that a participant was
instructed to imagine.

2.4 Feature selection algorithms
This subsection describes the technical details of the feature
selection methods evaluated in this study. Given a dataset
{(xi, yi, i = 1, · · · , N)}, where xi ∈ Rm, yi = −1,+1 (as
the methods were evaluated in two-class scenarios), and N
is the number of samples, the goal of the feature selection
is to obtain a low-dimensional representation of the original
dataset, but with high discriminative power.

2.4.1 Square of pearson’s correlation (R2)
The most common approach for feature selection in the recog-
nition of MI tasks from EEG signals is to compute the R2

value for every feature with respect to the class label, and
then select the p features with higher value.[2] This method
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estimates the discriminative power of every feature inde-
pendently by computing the square value of the Pearson’s
correlation coefficient between the values of the jth feature
and the class vectors,

rj =
∑N
i=1(xji − x̄j)(yi − ȳ)√∑N

i=1(xji − x̄j)2∑N
i=1(yi − ȳ)2

(2)

where xji is the ith sample of jth feature, yi is the class label
associated with the ith sample, the bar notation represents
the average value across all samples, and R2

j = r2
j .[28] In

this method, the number of selected features p is heuristically
determined. We selected the p = 15 features with the highest
R2
j values. As the R2 value is computed independently for

each feature, the method does not account for correlations
in the feature space;[28] however, it is very likely that these
correlations occur when using the power spectra of the EEG,
especially between neighboring channels and frequencies.

2.4.2 Fast correlation based filter
FCBF is a multivariate, nonlinear correlation measure used
for automatic feature selection that is based on information
theory. This measure assesses simultaneously correlations
between the features and the class labels, as well as correla-
tions between features. It is based on symmetrical uncertainty
(SU):

SU(X,Y ) = 2
[
H(X)−H(X | Y )

H(X)H(Y )

]
(3)

H(X) = −
∑
i

P (xi)log2[P (xi)] (4)

H(X | Y ) = −
∑
j

P (yi)
∑
i

P (xi | yj)log2[P (xi | yi)]

(5)

where SU(X,Y ) is the SU between the random variables
X and Y , H(X) is the entropy of X and H(X | Y ) is the
conditional entropy ofX given Y .[29] However, SU assumes
that the random variables X and Y are categorical, which
is not the case for features based on the power spectral of
the EEG. This limitation was solved by applying the multi-
interval discretization method.[30] Automatic selection of
features using FCBF involves two steps. In the first step, a
subset of relevant features (i.e., features that are correlated
to the class) is selected by choosing all features for which
SU(X,Y ) > δ, where δ is an heuristically chosen threshold
that determines the minimum required relevance to be ana-
lyzed for redundancy (in this study we choose δ = 0, since
choosing higher values diminished the performance in the
classification stage). In the second step, a redundant feature

X is eliminated if there is a Markov blanket for X within
a set of features F (i.e., X does not provide any new infor-
mation that is not already provided by the set of features
F ). Searching for an optimal subset of features in this way
is combinatorial in nature, and it is prohibitive with a large
number of features. An alternative, is to find this subset
of features using approximate Markov blankets, which are
defined as follows: feature X is an approximate Markov
blanket for feature Y , with respect to Z, if SU(X,Z) ≥
SU(Y, Z) and SU(X,Y ) ≥ SU(Y, Z).[31] In contrast to
the R2 and other methods, FCBF automatically selects the
number of relevant and non-redundant features.

2.4.3 Principal component analysis
Principal component analysis (PCA) is a technique com-
monly used for dimensionality reduction in the task of recog-
nizing MI from EEG signals.[32, 33] This technique projects a
dataset into different components that captures the variance
of the data, where each component is a linear combination
of the features. Moreover, the first component captures the
most variance in the dataset, the second component captures
the second most variance, and so on.[34, 35] Thus, PCA solves
the following optimization problem:

minW,ZJ(W,Z) =
∥∥X − ZWT

∥∥2
F

(6)

subject to WWT = Im, where X ∈ RN,m is the dataset
with zero mean along the columns, W ∈ Rm,m is a ma-
trix of orthogonal vectors, Im is the m × m identity matrix
Z ∈ RN,m is the projection of the data over the orthogonal
vectors, and ‖A‖F =

√
tr(ATA) is the Frobenius norm

of the matrix A. By selecting the first p < m components
in W (which explains most of the variance in the original
dataset), we can reduce the dimensionality to p. Thus, the di-
mension reduced dataset is computed as X̂ = ẐWT , where
Ŵ ∈ Rm,p is the matrix with these p orthogonal components,
and Ẑ ∈ RN,p is a low-dimensional representation of the
original data.[36] In this study, we used the number of com-
ponents required to retain 90% of the variance of the original
dataset. Unlike the R2 and FCBF methods, PCA does not
discard any features from the original dataset, instead, all of
them are transformed into a new lower dimensional space
whose variables are linearly uncorrelated.

2.4.4 Kernel-principal component analysis
While PCA creates a dimension reduced feature space by tak-
ing the linear combination of features, kPCA computes the
principal components in a high dimensionality feature space.
We can view kPCA as applying a nonlinear transformation
to the m-dimensional features x, φ(x) ∈ Rq, to obtain a
higher dimensional representation q � m.[37, 38] However,
this might be computationally expensive, especially if the
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number of dimensions in the original data is high. We there-
fore use the so-called kernel function to obtain the kernel
matrix of the data K(xi, xj), i, j = 1, · · · , N . In kPCA
the orthogonal principal components vectors of the kernel
matrix can be used as the projections of the data onto the
respective principal components.[38] Thus, the dimension-
ality reduced dataset is the first p < m eigenvectors of the
kernel matrix. In this study, we used the radial basis function
kernel, K[xi, xj = exp(−‖xi−xj‖2

2σ2 )] with σ = 10−6 (we
tested different values for this parameter in the training data,
and found that this value provided the best results).

2.5 Learning algorithms
This subsection describes the technical details of the learn-
ing methods assessed in this study. As the methods were
evaluated in several two-class classification scenarios, the
technical details presented here focus on binary classification
problems.

2.5.1 Linear discriminant analysis
The goal of LDA is to find a linear decision boundary
that can separate data from two different classes. The dis-
criminant function takes the form f(x) = wTx. Here,
x = (1, x1, x2, · · · , xn)T represents the (n+1)-dimensional
feature vector of an instance to classify, and w is a learned
vector of weights. Given a training dataset, the discriminant
vector w∗ is obtained by seeking the projection that maxi-
mizes the distance between the mean of the classes while
minimizes their variance, thus providing a classification that
is optimal when the two classes are Gaussian with equal
covariances.[39] This requires solving the optimization prob-
lem:

w∗ =arg maxwJ(w) = wTSBw
wTSWw

(7)

where SB is the between-class covariance, and SW is the
within class covariance.[34] This classifier is very simple
and demands low computational requirements; however, its
performance might be deficient for non-linearly separable
datasets.

2.5.2 SVML and SVMR
The goal of this classifier is to compute a separating hyper-
plane that discriminates between classes in a way that max-
imizes the separating margins between it and the nearest
data points in each class (called support vectors).[40] The
hyperplane is found by solving the following optimization
problem:

minw,b,ζ
1
2 ‖w‖

2 + C

m∑
i=1

ζi (8)

subject to yi[wTφ(xi) + b] ≥ 1− ζi, ζi ≥ 0,∀i = 1, ...,m,
where φ(·) maps x into a higher dimensional space, w is the
weight vector, b is the bias term, ζi are slack variables intro-
duced because a separating hyper-plane might not exist when
there is overlap between classes, and C is a regularization pa-
rameter that determines the trade off between margin width
and training error.[41] When φ(x) = x, the separating hyper-
plane is linear, leading to the linear SVML. It is also possible
to create non-linear decision boundaries through a kernel
function given by K(xi, yi) = φ(xi)φ(xj).[42] The most
common kernel is the radial basis function (RBF), which is
the same as the one used with kPCA. This leads to a Support
Vector Machine with RBF kernel (SVMR), which has been
extensively used in the recognition of MI tasks from EEG
signals.[43] In our experiments, we considered such SVMR,
and selected the best values for parameters C and σ using
the training data.

2.5.3 Feed forward neural network (NN)
Feed Forward NN are general function approximators that
can be used as classifiers. The commonly known multi-layer
perceptron consists of an array of inputs, an intermediate (aka
hidden) layer of neurons with nonlinear activation functions
f(·), and an output layer of neurons with linear or nonlinear
activation functions.[44] This architecture allows us to create
non-linear classification boundaries. The output of the jth
neuron is the result of applying an activation function to the
linear combination of the weights of the connection between
neurons and the neuron’s inputs:

f(
n∑
i=1

xiwij + θj) (9)

where xi denotes the ith input value, wi,j denotes the synap-
tic strength between the ith neuron and the jth neuron, θj is a
bias and n is the number of neurons of the previous layer that
are connected with this jth neuron. In our experiments, the
NN was implemented using a sigmoid activation function, a
single hidden layer with (on different runs) 10, 20, 30 or 40
neurons (the number of neurons to use is determined during
the training phase), and a single output neuron. The number
of input neurons is the number of features in the dataset.

2.6 Evaluation process
The 4 × 4 = 16 combinations of feature selection
and classification methods were evaluated in three two-
class classification scenarios: 1) rest vs. movement ∈
{left, right, feet, tongue}; 2) upper ∈ {left, right} vs. lower
∈ {feet} limb movement; 3) right vs. left hand movement.
To assess performance, we used the data of each subject and
session as an individual dataset. We used eighteen datasets
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in the study, and divided it in two stages: Selection and eval-
uation. In the selection phase, fourteen sets were randomly
selected and used to learn the best combination of feature
selector and classification methods. In the evaluation phase,
the four remaining sets were used to evaluate the quality of
the selected feature selector and classifier that presented the
highest performance in the selection phase. For each set in
the selection phase, the following paradigm was applied:

(1) Randomly separate 80% of the trials as training set,
DT , and use the remaining 20% as validation set, DV .

(2) Use 5-fold cross validation on DT to select the param-

eters of the classifier (if needed). The feature selec-
tion algorithm was embedded in this cross validation
process, i.e. the feature selection algorithms were exe-
cuted in each fold.

(3) Train the classifier using DT and the selected param-
eters. Unlike the previous step, we do not use cross
validation here.

(4) Apply the classification models to DV and compute
the performance metric, defined as the percentage of
correctly classified labels, aka classification accuracy
(ACC).

Figure 2. Graphical representation of the process carried out to assess the performance of the methods. The training set,
DT (80% of the data), is used to train the classifier, while the validation set, DV (20% of the data), is used to assess
performance. The parameters of the classifier, as well as the relevant features, are estimated through an inner 5-fold cross
validation. Note that not all the stages have access to the true labels (represented by a blue bar). In particular, the learner
uses both, the data and the labels, but the learned classifier only have access to the data on DV . The quality of the classifier
is estimated by comparing the predictions on DV with their corresponding true labels.

Figure 2 depicts the evaluation process followed in the work.

This paradigm was applied 30 times, which differed based
on different DT and DV splits.[45] Then, the distributions
of ACC were constructed by gathering the values ACC of
all datasets in the selection phase, and computing the Mean
± STD. across all of them. Finally, we repeated the same
paradigm to the four remaining sets in the evaluation phase.
The only difference is that in the third step, instead of us-
ing all the combinations of learning algorithms and feature
selectors, we used only the one selected in the training stage.

The significant chance level of the classification accuracy
(ACCsig) was computed with the cumulative binomial distri-
bution,[46] using the lowest number of trials across all datasets
(215, 49 and 53 trials for rest vs. movement, upper vs. lower
and right vs. left classification scenario, respectively), the
number of classes Nclasses = 2 and a confidence level of α =
0.05. Therefore, ACCsig for the three classification scenarios
were 56%, 61% and 60%. Significant differences between
the median of the distribution of ACC and the significant

chance level ACCsig were examined using the Wilcoxon
signed rank test at the confidence level of α = 0.05.

3. RESULTS

3.1 ERDS maps
Figure 3 shows the scalp topography map of significant
ERDS activity (relative to the baseline from -2 to 0 s) ob-
tained using all the available data of one session in a repre-
sentative subject (i.e., all trials in one out of the 18 datasets).
These results show significant desynchronization (P < .05)
in all the electrodes during the MI interval [0, 3) s in the
motor-related α (8 Hz-12 Hz) and β (12 Hz-30 Hz) fre-
quency bands; however, no significant desynchronization or
synchronization (P > .05) is observed during the rest inter-
val [-3, 0)s. This ERDS analysis was also carried out for
each type of MI movement independently. The results also
showed significant desynchronization (P < .05) during the
MI interval but in different scalp locations according to the
type of movement (results not presented here). For instance,
the left hand MI revealed more prominent desynchronization
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in electrodes above the contralateral right motor cortex; the
right hand MI revealed more prominent desynchronization
in electrodes located on the contralateral left motor cortex;
while both, feet and tongue MI revealed more prominent

desynchronization in electrodes above the midline. In sum-
mary, this analysis shows significant power-spectral changes
associated with the MI task.

Figure 3. Scalp topographical map of ERDS in one session of a representative subject. Frequency in ordinate from 2 Hz to
40 Hz at a resolution of 1Hz. Time in abscissa from -2 to 3 s. MI onset occurs at t = 0 s (solid black line in all graphs). The
colorbar represent the increase (red) or decrease (blue) of the power spectral density with respect to the baseline. It is
possible to appreciate that after the imagination of the movement starts (t = 0) there is a decrease in the power spectral
density in the alpha and beta bands in the electrodes corresponding to the motor area.

3.2 Feature selection results
Table 1 summarizes the number of selected features across
all datasets. The selected number of features differs in all the
methods. Note that PCA and kPCA perform a data transfor-
mation, thus technically these methods requires all available

features, however the number of components used for classi-
fication is lower than the total number of features. FCBF is
the method with highest variability in the number of selected
features and, in some cases, it did not find any useful feature.

Table 1. Summary (median, minimum and maximum) of selected features across all datasets for the four feature selection
methods in the three classification scenarios. The minimum and maximum values are shown in parenthesis.

 

 

 Rest vs. movement Right vs. left Upper vs. lower 
R2 15 (15 - 15) 15 (15 - 15) 15 (15 - 15) 
FCBF 20 (4 - 307) 3 (0 - 21) 10 (0 - 199) 
PCA 28 (8 - 53) 21 (6 - 39) 22 (7 - 45) 
kPCA 2 (16 - 31) 22 (11 - 31) 23 (11 - 31) 
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3.3 Classification accuracy results: Selection phase
Figure 4 displays, separately for the three classification sce-
narios, the distribution of ACC for all combinations of fea-
ture selection and classification methods. Note that in the
three classification scenarios, the distributions of ACC are

absent for feature selector FCBF in combination with classi-
fiers SVML and NN. This was because, during the training
process, the learning algorithms were not able to create a
separation surface.

Table 2. The Mean ± STD. values of the ACC metric achieved for all combinations of feature selection and classification
methods in classification scenario rest vs. movement.

 

 

 LDA SVML SVMR NN 
R2 66.70% ± 6.18% 67.52% ± 6.59% 75.33% ± 4.10% 71.05% ± 7.04% 
FCBF 72.56% ± 6.39%  79.18% ± 5.50%  
PCA 71.50% ± 6.85% 71.82% ± 7.31% 83.92% ± 5.88% 70.37% ± 7.08% 
kPCA 77.48% ± 5.83% 75.80% ± 6.75% 83.41% ± 4.19% 74.67% ± 6.21% 

 
For the rest vs. movement classification scenario (see Fig-
ure 4a), all combinations of feature selection and classifier
presented a distribution of ACC with median significantly dif-
ferent (P < .05, Wilcoxon signed rank test) and greater than

ACCsig. In this scenario, FCBF-SVMR, PCA-SVMR and
kPCA-SVMR presented the highest averaged performance
with Mean ± STD. of 79.18 ± 5.50, 83.41 ± 4.19 and 83.92
± 5.88%, respectively (see Table 2).

Table 3. The Mean ± STD. values of the ACC metric achieved for all combinations of feature selection and classification
methods in classification scenario upper vs. lower limb movement.

 

 

 LDA SVML SVMR NN 
R2 68.28% ± 6.83% 69.60% ± 5.61% 69.29% ± 5.67% 65.92% ± 5.12% 
FCBF 74.38% ± 7.48%  74.28% ± 7.70%  
PCA 73.19% ± 7.20% 72.58% ± 5.98% 72.58% ± 6.23% 70.15% ± 6.27% 
kPCA 74.09% ± 7.37% 73.36% ± 6.54% 73.41% ± 6.41% 70.54% ± 6.97% 

 
For the upper vs. lower limb movement classification sce-
nario (see Figure 4b), all combinations of feature selection
and classifier also presented a distribution of ACC with me-
dian significantly greater than ACCsig (P < .05, Wilcoxon
signed rank test). In this case, the highest averaged perfor-
mance was achieved by FCBF-LDA and FCBF-SVMR with
mean ± std values of 74.38 ± 7.48 and 74.28 ± 7.70% (see
Table 3). It is important to mention that FCBF could not find

any relevant feature in 2 out of 14 datasets, so we could not
perform classification using this method on these 2 cases.
The reasons for this behavior will be explained in section
4. If we remove these 2 datasets from the analysis, the per-
formance of the other combinations of feature selection and
classifier slightly increases (compared to the results achieved
when they were included).

Table 4. The Mean ± STD. values of the ACC metric achieved for all combinations of feature selection and classification
methods in classification scenario right vs. left limb movement.

 

 

 LDA SVML SVMR NN 
R2 57.68% ± 10.81% 57.55% ± 10.92% 52.53% ± 16.25% 58.55% ± 13.23% 
FCBF 67.46% ± 12.10%  65.79% ± 12.99%  
PCA 60.56% ± 12.90% 60.58% ± 12.76% 60.23% ± 13.00% 58.42% ± 10.73% 
kPCA 66.40% ± 13.89% 65.73% ± 13.80% 65.95% ± 13.36% 62.63% ± 12.36% 

 
Finally, for the right vs. left hand movement classification
scenario (see Figure 4c), combinations of feature selector
FCBF with classifiers LDA and SVMR, and combinations
of feature selector kPCA with classifiers LDA, SVML and
SVMR, presented a distribution of ACC with median signifi-

cantly greater than ACCsig (P < .05, Wilcoxon signed rank
test). In this scenario, the highest averaged performance was
achieved by features selectors FCFB or kPCA in combina-
tion with any of the classifiers LDA, SVML and SVMR with
a Mean± STD. around of 66.00± 15.00% (see Table 4). As
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in the previous scenario, FCBF could not find any relevant
feature in 6 out of 14 datasets. When the ACC results of
these datasets were removed from the other combinations

of feature selection and classifier, their performance also
slightly increases, however the median of the distributions
were not significantly different nor greater than ACCsig .

Figure 4. Distributions of the ACC metric for all combinations of feature selection and classification methods achieved in
the selection phase for three classification scenarios: a) rest vs. movement; b) upper vs. lower limb movement; c) right vs.
left hand movement. The horizontal dotted red line in each classification scenario represents the significant chance level
ACCsig (P < .05). In order to be considered a significant result, the median of the accuracy distribution should be above the
dotted line. It is easy to appreciate that while in scenarios 1 and 2 all the combination of feature selection and classifier did
better than chance, in the third scenario only the non linear methods had a performance better than chance.
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These results show that the best performance in the first
classification scenario was provided by the feature selection
PCA or kPCA in combination with classifier SVMR. For
the second and third scenarios the best feature selector was
FCBF combined with either LDA, or SVMR, with no statis-
tically significant difference in their results. Because of the
ability of FCBF to detect problematic datasets we selected

FCBF as feature selector, while for classification we selected
SVMR because it obtained the highest results across the in
the first scenario (for the second and third scenario LDA
was slightly better, but the difference was not statistically
significant). This combination will be used for evaluation in
the subsequent sub-section.

Figure 5. Distributions of the ACC metric obtained by combination FCBF-SVMR in the four datasets used for evaluation
for three classification scenarios: a) rest vs. movement; b) upper vs. lower limb movement; c) right vs. left hand movement.
The horizontal dotted red line in each classification scenario represents the significant chance level ACCsig (P < .05). In
order to be considered a significant result, the median of the accuracy distribution should be above the dotted line. In almost
all the cases we obtained results above the chance level. In two cases FCBF considered that there were not enough
information in the EEG signals to make a proper classification (Set 3 in the second and third scenario).
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3.4 Classification accuracy results: Evaluation phase
Figure 5 shows the distribution of ACC achieved by feature
selection FCBF in combination with classifier SVMR in the
four datasets used for evaluation. These results are presented
separately for the three classification scenarios. Note that
one distribution of ACC is absent in classification scenar-
ios upper vs. lower limb movement and right vs. left hand
movement, as FCBF could not find any relevant feature and
thus classification was not performed. These results shows
that all but one dataset (the fourth in the right vs. left move-
ment classification scenario) presented a distribution of ACC
with median statistically significantly greater than the signif-
icant chance level of accuracy ACCsig (P < .05, Wilcoxon
signed rank test). The averaged values of Mean ± STD. of
ACC across all four datasets were 81.45 ± 8.26%, 77.23 ±
6.81% and 68.71 ± 13.89% for classification scenarios rest
vs. movement, upper vs. lower limb movement and right
vs. left hand movement, respectively. These results confirm
the significant and high classification accuracy provided by
the feature selection FCBF in combination with classifier
SVMR, and that classification accuracy is highest for the rest
vs. movement classification scenario.

4. DISCUSSION
This work studied the performance of four feature selection
and four classification methods in the recognition of MI tasks
from electroencephalographic brain signals. The ERDS anal-
ysis of the EEG data revealed significant cortical activity in
electrodes located above the motor cortex and in the alpha
and beta frequency bands. This analysis showed the presence
of recognizable power spectral changes associated with the
MI task. Therefore, the question is how to select both: a sub-
set of power spectral-based features and also a classification
method that together best recognize MI tasks.

This work addressed this issue by evaluating combinations
of linear or nonlinear feature selection, and various classi-
fication methods in three two-class classification scenarios:
rest vs. movement, upper vs. lower limb movement and
right vs. left hand movement. The selection phase showed
that all combinations of feature selection and classification
methods presented significant classification accuracy in the
recognition of rest vs. movement and upper vs. lower limb
movement; however, the classification accuracy in the recog-
nition of right vs. left hand movement was significant only
for FCBF with LDA and SVMR, and kPCA with any of
LDA, SVML, SVMR.

Regarding the feature selection methods, FCBF and kPCA
provided the highest performance across the three classifi-
cation scenarios. FCBF automatically selects a subset of
features that are correlated to the class and are not redundant.

This means it can select power spectral features extracted
from the different EEG channels without user intervention.
In contrast, kPCA is required to use all feature as each of its
features is a linear combination of all features contained in
the original dataset. Therefore, FCBF is preferred over kPCA
as FCBF effectively uses only a small subset of the features
contained in the original dataset; this allows us to use only
a subset of the electrodes, i.e., only the ones whose power
spectral features have some discriminative power. This is
important for real applications of EEG-based BCI as using
fewer electrodes reduces the complexity of the initial setup
of the EEG recording system.

Note that FCBF did not find any relevant features in some
evaluation sets. This problem may be due to a discretization
process applied to the data. FCBF assigns a score to each
feature via entropy-based measures, and thus it can only be
used with discrete data. As the power spectral features are
continuous values, we applied a multi-interval discretization,
which separates each feature into bins, using a heuristic that
tries to minimize the information entropy of the classes in
the dataset.[30] In the cases when FCBF could not find any
relevant feature, the number of bins that minimized the in-
formation entropy was one, i.e., all the samples would be
in the same group regardless of the class. If this happens in
all the features, then all the samples would have exactly the
same input vector, but different labels, meaning no feature
would be relevant for classification. Further investigation
is required to understand if this (discretization) is the prob-
lem. Importantly, when we eliminated the evaluation sets for
which FCBF found no relevant features, the performance in
the other combinations of feature selector and classifier also
increased. This indicates that it was the removed evaluation
sets that had low classification accuracy, FCBF automatically
identified by finding no features with discriminative for those
evaluation sets. This property provides FCBF an advantage
over other feature selection algorithms, since it can be useful
for identifying problematic datasets. This means the system
designer can now know when this happens, allowing them to
consider an alternative approach. We recommend, when pos-
sible, not using the datasets where FCBF can find no relevant
features, as eliminating these datasets increased the average
performance of the tested classifiers. However, if removing
entire datasets is not feasible, we would then recommended
using kPCA, which is a non-linear combinations of all the
features in the dataset, and whose results were the closest to
FCBF.

Regarding the classification methods, both LDA and SVMR
achieved the highest performance in the three classification
scenarios. Indeed, no significant differences were found be-
tween the classification accuracy of these classifiers. Given

48 ISSN 1927-6974 E-ISSN 1927-6982



http://air.sciedupress.com Artificial Intelligence Research 2017, Vol. 6, No. 1

that brain signals are non-stationary, a low-variance classi-
fiers such as LDA might outperform more complex classifiers
with lower bias and higher variance, such as SVM.[43] How-
ever, we chose SVMR because it presented slightly higher
average classification accuracy, and because it is the most
common technique used for the recognition of MI tasks from
EEG signals. In summary, the best performance in the three
classification scenarios was provided by the feature selection
FCBF in combination with classifier SVMR.

We evaluated the FCBF in combination with classifier SVMR
over the three classification scenarios. This evaluation phase
showed significant classification accuracy in the three classi-
fication scenarios. Indeed, the average classification accuracy
was 81.45 ± 8.26%, 77.23 ± 6.81% and 68.71 ± 13.89%
for rest vs. movement, upper vs. lower limb movement
and right vs. left hand movement, respectively. Note that
classifying between rest and movement yielded the higher
classification results, while classifying between right vs. left
hand movement yielded the lowest classification results. We
attribute this difference in performance across the three clas-
sification scenarios to two factors: 1) the difference in the
power spectral density of the brain signals are stronger be-
tween imagining a movement vs. imaging no movement,
than between different movements, and 2) we had more sam-
ples for the rest vs. movement than for upper vs. lower limb
movement and right vs. left hand movement, and as expected,
lower number of samples leads to poorer performance.

Note that it is difficult to compare our results with previous
results,[20, 47] as our evaluation process – with the three two-
class classification scenarios and the metrics (see subsection
2.6) – differ from their methodology, which focused on train-
ing the classifier using data from session one and then testing
the resulting system on data from session two, in a four-class
classification problem.

5. CONCLUSION
This paper has characterized the performance of different fea-
ture selection and classification techniques in the context of
MI using EEG signals. The proper combination of both tech-
niques have the potential of improving the development of
brain computer interfaces that aim, among other applications,
to restore the functionality of impaired limbs, control exter-

nal devices, or interact with multimedia applications. Much
of the existing literature compares a single feature selection
algorithm with several learning algorithms, or several feature
selection techniques with a single classifier. The few works
that make a broader comparison do not include, to the best
of our knowledge, the most common learning algorithms,
such as SVM or LDA, nor non-linear algorithms for feature
selection, such as kPCA and FCBF. This paper aimed to fill
this gap. We first analyzed the event-related desynchroniza-
tion to verify the presence of recognizable power spectral
changes associated with the MI task. After that, we used the
power spectral density over 39 frequencies and 22 electrodes
as candidate features in three binary classification problems.
Finally, we compared the performance of all pairs of four
feature selection methods with four learning algorithms. The
combination of Support Vector Machine with Radial Basis
Kernel and the Fast Correlation Based Filter produced the
best results. As far as we know, this is the first time that
FCBF is used in this context. This combination, besides
achieving high accuracy, had the ability to identify datasets
where classification was problematic. When these datasets
were removed, the accuracy of the classifier increased by 6%.
At the same time, the FCBF automatically selected the num-
ber of most relevant, non-redundant features that are required
to perform classification. It is important to note that FCBF
did not work as well when combined with a SVM that uses a
linear kernel, nor with NN (using 10, 20, 30, or 40 neurons
in the hidden layer), emphasizing the need of comparing not
only several feature selectors, but also several learners.These
results also suggest that FCBF might be strong candidate for
being used in real-time classification of EEG signals. The
behavior of this feature selector under this scenario is part of
the future work.
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