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Background: Neurocognitive impairments are frequently observed in schizophrenia and major depressive disor-
der (MDD). However, it remains unclear whether reported neurocognitive abnormalities could objectively iden-
tify an individual as having schizophrenia or MDD.
Methods: The current study included 220 first-episode patients with schizophrenia, 110 patients with MDD and
240 demographically matched healthy controls (HC). All participants performed the short version of the
Wechsler Adult Intelligence Scale-Revised in China; the immediate and delayed logical memory of theWechsler
Memory Scale-Revised in China; and seven tests from the computerized Cambridge Neurocognitive Test Auto-
mated Battery to evaluate neurocognitive performance. The three-class AdaBoost tree-based ensemble algorithm
was employed to identify neurocognitive endophenotypes that may distinguish between subjects in the catego-
ries of schizophrenia, depression and HC. Hierarchical cluster analysis was applied to further explore the
neurocognitive patterns in each group.
Results: The AdaBoost algorithm identified individual's diagnostic class with an average accuracy of 77.73%
(80.81% for schizophrenia, 53.49% for depression and 86.21% for HC). The average area under ROC curve was
0.92 (0.96 in schizophrenia, 0.86 in depression and 0.92 in HC). Hierarchical cluster analysis revealed for MDD
and schizophrenia, convergent altered neurocognition patterns related to shifting, sustained attention, planning,
working memory and visual memory. Divergent neurocognition patterns for MDD and schizophrenia related to
motor speed, general intelligence, perceptual sensitivity and reversal learning were identified.
Conclusions:Neurocognitive abnormalities could predict whether the individual has schizophrenia, depression or
neither with relatively high accuracy. Additionally, the neurocognitive features showed promise as
endophenotypes for discriminating between schizophrenia and depression.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Schizophrenia and major depressive disorder (MDD) are two of the
most common psychiatric disorders (Kessler et al., 2005; Walker et al.,
2004). Depression is an important co-occurring syndrome in schizo-
phrenia to the extent that approximately 50% of patients with schizo-
phrenia present with comorbid depression (Buckley et al., 2009).
Depression in schizophrenia is, however, heterogeneous and the best
approaches to its understanding and treatment are based on
h Centre, West China Hospital,
ichuan, China.
appropriate differential diagnosis (Siris, 2000). The proposal for
neurocognitive endophenotypes as biomarkers has shed some light on
the identification of transdiagnostic processes in these disorders
(Bentall et al., 2009). Cognitive abnormalities are widely acknowledged
as significant aspects of both schizophrenia and depression. Compared
to individuals with MDD, individuals with schizophrenia have more se-
rious cognitive deficits in working memory and selective attention
(Egeland et al., 2003a; Egeland et al., 2003b) and MDD with psychotic
features is associated with greater levels of cognitive impairment
(Busatto, 2013). Both schizophrenia and depression could have signifi-
cant impairments on working memory, planning and shifting (Barch
et al., 2003; Snyder, 2013). Despite these observations, it remains un-
clear whether these two disorders are associated with distinctly differ-
ent neurocognitive patterns.
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Unfortunately, conventional statistical group differences might not
translate to discovering deviations from normal on a single-subject
level and therefore are not sufficient as a significant diagnostic aid.
However, machine learning offers a variety of tools that to develop
models that may predict the disease status of each individual subject.
Previous research has demonstrated that individuals with schizophre-
nia may be distinguished from healthy subjects with a reasonable clas-
sification accuracy based on genetic, neuroimaging or neurocognitive
data (Aguiar-Pulido et al., 2010; Lu et al., 2012; Schnack et al., 2014;
Shen et al., 2014). Patients with MDD may also be distinguished from
healthy subjects using pharmacogenomics or neuroimaging data
(Guilloux et al., 2015;Mwangi et al., 2012). One neuroimaging study re-
ported a multi-class classification of schizophrenia versus depression
versus healthywith an accuracy rate of 80.9% (Yu et al., 2013). However,
those studies did not determine whether multi-class classification
methods could use neurocognitive features to distinguish individuals
with schizophrenia or depression from healthy controls.

To our knowledge, no studies have investigated whethermulti-class
machine learning classification methods can find patterns in
neurocognitive features that can distinguish individuals with schizo-
phrenia versus depression, versus healthy controls. The purpose of cur-
rent study was: (1) to classify each individual into one of three
categories - schizophrenia, depression or healthy control. Classification
of individuals into various disease categoriesmay improve clinical treat-
ment by enablingmore effective screening, diagnosis andmonitoring of
disease trajectory. (2) To examine neurocognitive features to develop
further the concept of a neurocognitive hierarchy in the heterogeneous
neuropsychological profile of the illness.

2. Methods

2.1. Subjects

This study recruited 570 participants, including 220 first-episode pa-
tients with schizophrenia, 110 patients with major depressive disorder
and 240 healthy controls. Table S1 summarizes the demographic and
clinical characteristics of the subjects. Patients were recruited at the
Mental Health Center of West China Hospital, Sichuan University.
Healthy controls were recruited by advertisements in local communi-
ties. All groups were matched for age, gender and education level. All
subjects were right-handed Han Chinese between the ages of 16 and
50 years. Ethical approval for this study was granted by the ethics com-
mittee of the West China Hospital, Sichuan University, in accord with
the Declaration of Helsinki.

2.2. Neuropsychological assessments

Level of intelligence was estimated at the initial assessment of both
patients and healthy controls using the short version of Wechsler
Adult Intelligence Scale – Revised in China (WAIS-RC) (Gong, 1992).
The seven subtests of WAIS-RC included information, arithmetic, digital
symbol, digital span test, block design, picture completion, and
similarities.

Both immediate and delayed logical memory were evaluated with
the Wechsler Memory Scale–Revised in China (WMS-RC) (Gong,
1989). Lower raw scores represent poorer neuropsychological
performance.

The computerized Cambridge Neurocognitive Test Automated Bat-
tery (CANTAB - http://www.cambridgecognition.com), which com-
prises visuo-spatial tasks, is sensitive to cognitive impairments in
psychiatric disorders (Sahakian and Owen, 1992). Seven CANTAB tests
are recognized as sensitive to frontal (including frontostriatal,
frontotemporal and frontoparietal), cingulate and temporal brain func-
tions. The variables of CANTAB are also considered as predictive for psy-
chosocial functioning in individuals with schizophrenia and other
mental disorders (Johnston et al., 2015; Levaux et al., 2007). The
CANTAB tests included the Big Circle/Little Circle (BLC), the Rapid Visual
Information Processing (RVP), the Delayed Matching to Sample (DMS),
the Pattern Recognition Memory (PRM), the Spatial Working Memory
(SWM), the Stockings of Cambridge (SOC) and the Intra/extra Dimen-
sional Set Shift (IED). Perceptual sensitivity was also assessed through
the principles of Signal Detection Theory (SDT) in DMS and RVP (Yang
et al., 2015). Variables of interest across tasks included reaction time, ac-
curacy, errors, trials completed and strategy (Haring et al., 2016;
Robbins et al., 1998; Wu et al., 2016). These neurocognitive tasks and
measurements are briefly described in Table S2 and Table S3. The char-
acterization for each subject was based on 65 features.

2.3. Machine learning analysis

The overall approach used for machine learning analysis involved
the following steps: (1) The data was first cleaned, and each feature
was normalized using Z-scores. (2) The data was randomly divided:
60% as the trainingmodel set and the remaining 40% for testing as hold-
out data set. (3) In the training model set, the SMOTE + Tomek links
method was applied to help balance the classes, then the three-class
AdaBoost algorithmwas approached to learn a classifier. (4) The perfor-
mance of this classifier was evaluated on holdout dataset. The diagram
was described in Fig. 1. All analyses were performed on Python 2.7.10
(https://www.python.org), scikit-learn 0.17.0 (http://scikit-learn.org/
stable/), and SciPy (http://scipy.org/).

2.3.1. SMOTE + Tomek
Class-imbalance issues become very pronounced inmulti-class clas-

sification approaches, as the minority class is more likely to be
misclassified than the majority class (Rahman and Davis, 2013). Syn-
thetic minority over-sampling technique (SMOTE) is often used to ad-
dress this problem (Chawla et al., 2002). In this study, the participant
sample was partially unbalanced (220 in schizophrenia group, 110 in
MDD group and 240 in control group). To address this issue, we applied
the SMOTE + Tomek links approach (https://github.com/fmfn/
UnbalancedDataset) in the training model set. This method constructs
additional “synthesized” instances of the minority class, to make the
training model set more balanced, based on k-Nearest Neighbor algo-
rithm, here using Euclidean distance and k = 5 (Mani and Zhang,
2003). The fraction of the number of MDD group elements to generate
was selected as ratio=1. Before and after the SMOTE+Tomekmethod,
the averages of age and education level were computed to assess distri-
bution of the data.

2.3.2. AdaBoost tree-based ensemble algorithm
AdaBoost is a meta-estimator that tries to produce a strong classifier

by combining several weak classifiers (Freund and Schapire, 1995). In
this study, we used the multi-class AdaBoost-SAMME (Stagewise Addi-
tive Modeling) algorithm with Classification and Regression Trees
(CART) as the base learner (Zhu et al., 2009). To train each individual
CART classifier, we used the Gini impurity to measure the quality of
splits, and set the maximum depth to 5 and the minimum samples per
leaf to 15. The number of estimators (CART classifier) was set to 250.

2.3.3. Cross-validation and model grid-search
We used stratified 5-fold cross-validation on the training model set

to determine the optimal parameter values, considering each possible
combination of parameter values: for CART: maximum depth {3, 4, 5,
6, 7} and minimum samples per leaf {5, 10, 15, 20, 25, 30}; and for
AdaBoost classifier: the tree estimator values {50, 100, 150, 200, 250,
300}.

2.4. Hierarchical cluster analysis

Hierarchical cluster analysis was performed with average linkage
and the Euclidean distance to reveal close relationships among the

http://www.cambridgecognition.com
https://www.python.org
http://scikit-learn.org/stable
http://scikit-learn.org/stable
http://scipy.org
https://github.com/fmfn/UnbalancedDataset
https://github.com/fmfn/UnbalancedDataset


Fig. 1. Data processing diagram.

Table 1
Confusion matrix for results in holdout data set.

Classes Predicted Subjects

MDD SCZ HC

Actual subjects MDD 23 3 17
SCZ 4 80 15
HC 9 3 75

The rowsof thismatrix present the groups of the subjects (ground truth), and the columns
present the predictions by the classifier. The cells in each row contain the number of trials
in which subjects responded with the category indicated by the column.
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neurocognitive features. The Gini importance of each feature was com-
puted to identify which neurocognitive features contributed to the dis-
criminative ability of the classifier (Hastie et al., 2005; Ritchie et al.,
2014). The formula was based on the work of Louppe et al. (2013).

Here, hierarchical clustering analysis was performed on the original
normalized data set (without the SMOTE over-sampling). We selected
the 18 neurocognitive featureswith the highest Gini importance scores,
then hierarchically clustered to produce a “neurocognitive hierarchy”,
generating a dendrogram for each group (see Table S4 & Fig. 4). Each
dendrogram illustrates how each cluster is composed by drawing a U-
shaped link between a non-singleton cluster and its sub-nodes. The Sil-
houette Coefficientwas used to evaluate clustering, in terms of the clus-
ters' cohesion and separation (in the Supplementary material).

2.5. Performance measures

2.5.1. Accuracy
Predictive accuracy is the performancemeasure generally associated

withmachine learning algorithms: accuracy is defined as the fraction of
correct predictions.

2.5.2. Precision-Recall curve
Precision-Recall curves are typically used in binary classification to

study the output of a classifier. A high value for area under the Preci-
sion-Recall curve (AUPRC) represents both high recall and high
precision.

2.5.3. Receiver Operating Characteristic (ROC) curve
ROC curves represent the family of best decision boundaries for rel-

ative costs of TP and FP. The AUROC is a useful metric for classifier
performance as it implicitly considers a range of criterion and prior
class probabilities. A classifier associated with an AUROC value greater
than 0.8 is considered good.

3. Results

3.1. Classification results

We applied a multi-class AdaBoost tree-based ensemble algorithm
onto neurocognitive features in individuals with schizophrenia, individ-
uals with depression and healthy controls (Table S1 in Supplemental in-
formation illustrates subject characteristics). Three-class machine
learning classification (schizophrenia vs. MDD vs. healthy control)
achieved an average accuracy on the holdout data of 77.73% at the indi-
vidual level (80.81% for patients with schizophrenia, 53.49% for patients
with MDD and 86.21% for healthy controls). Table 1 illustrates the con-
fusionmatrix for results in the holdout data set. All of these results were
based on the optimal parameter setting based on the cross validation.
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The average area under the Precision-Recall curve (AUPRC) of the
three groups was 0.88. The AUPRC was 0.96 in the schizophrenia
group, 0.63 in the depression group and 0.87 in the healthy control
group (Fig. 2).

The average AUROC of the three groups was 0.92. The AUROC was
0.96 in the schizophrenia group, 0.86 in the depression group and 0.92
in the healthy control group (Fig. 3).
3.2. Hierarchical cluster analysis

The dendrogram of the healthy control group revealed a separation
of features into two main clusters: general intelligence in WAIS-RC
and WMS-RC, and visual-spatial neurocognitive function in CANTAB. It
also illustrated that completing the cognitive items tends to require
higher and higher neurocognitive function from right to left (Fig. 4(A)).

The dendrogram of the depression group had twomain clusters, but
the clustering sequence and its distancewere different from those of the
HC dendrogram. In the depression dendrogram, the hierarchy of the
general intelligence cluster was lower than the cluster including cogni-
tive items of CANTAB. This may reflect that individuals with depression
could have more deficits in visual-spatial neurocognitive function com-
pared to their general intelligence. The hierarchy of motor speed
(BLC_CRL), shifting (IED_CST), sustained attention (RVP_ML), working
memory (SWM_MLR, SWM_MTP) and visual memory (DMS_MCLS,
PRM_MCLi) in the depression group were different from those in HC
group. This may reflect significant neurocognitive impairments in
motor speed, shifting, sustained attention, working memory and visual
memory in the MDD group. The smaller clustering distance in theMDD
group is likely indicative of similarities in the level of difficulty in terms
of cognitive abilities required to complete the subtest tasks. These re-
sults probably reflected the broad neurocognitive decline in depression,
especially in motor speed and shifting (Fig. 4(B)).
Fig. 2. The Precision-Recall curve. Average precision was calculated from predict
The dendrogram of the schizophrenia group had three clusters. The
hierarchy of neurocognition in schizophrenia was as follows: Cluster 1:
shifting (IED_CST), perceptual sensitivity (RVP_BDP), and general intel-
ligence; Cluster 2: working memory (SWM_MFR), reversal learning
(IED_EB9) and shifting (IED_EB8); Cluster 3: planning, visual memory,
motor speed and sustained attention. The schizophrenia group had an
obviously different neurocognitive hierarchy sequence compared to
the healthy control group. Moreover, the greater clustering distance in
the schizophrenia group is likely indicative of differences in the level
of difficulty in terms of cognitive abilities required to complete the sub-
set tasks (Fig. 4(C)). These results were consistent with the generalized
dysfunction of neurocognition in the schizophrenia group, especially in
general intelligence, shifting, perceptual sensitivity, reversal learning,
working memory, planning and sustained attention.

Individuals with MDD and those with schizophrenia exhibited con-
vergent patterns in altered neurocognition patterns related to shifting,
sustained attention, planning, working memory and visual memory.
By contrast, individualswithMDDandwith schizophrenia, respectively,
had different clustering distances and hierarchy orders. Divergent
neurocognition patterns of MDD and schizophrenia were related to
motor speed, general intelligence, perceptual sensitivity and reversal
learning.

4. Discussion

To our knowledge, this is the first study on multi-class (three-class)
machine learning classification of individuals with schizophrenia, de-
pression and healthy controls on the basis of neurocognitive tests. In
this study, the AdaBoost tree-based ensemble classifier was trained to
perform the three-class classification task using 65 features including
general intelligence and executive function. It also confirmed that
motor speed, shifting, general intelligence, perceptual sensitivity,
reversal learning, sustained attention, working memory and planning
ion scores which corresponded to the area under the precision-recall curve.



Fig. 3. The ROC curve. Average ROC was calculated from prediction scores which corresponded to the area under the ROC curve.
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(as endophenotypic features) may be used to distinguish among indi-
viduals with schizophrenia or depression relative to healthy subjects.

In this study, although classification for the depression group (i.e.
depression vs. non-depression) had relatively lower precision and re-
call, the AUROC was higher than 0.80. This inconsistency between the
Precision-Recall curve and the AUROC was probably due to the unbal-
anced sample size in these three groups (Davis and Goadrich, 2006).

We also computed hierarchical clustering to explore further the
neurocognitive patterns in schizophrenia, depression and healthy con-
trol. Compared with healthy controls, individuals with depression and
with schizophrenia exhibited altered neurocognitive patterns in motor
speed, sustained attention,workingmemory and planning. Thismay ac-
count for overlap in symptoms such as psychomotor slowing, difficulty
concentrating and remembering details, and a decline inworkingmem-
ory and learning seen in these two disorders. Consistent with previous
research, the major depression was associated with broad impairments
on neuropsychological measures of executive function including
shifting, processing speed, working memory, planning and problem-
solving (Snyder, 2013). The abnormality of motor speed in depression
group could be tightly linked to psychomotor retardation (Albus et al.,
1996; White et al., 1997). The impairment in shifting and inhibition
could result in difficulty with respect to regulating negative informa-
tion, associated with rumination in major depression (Snyder, 2013).
Schizophrenia is associated with generalized neurocognitive dysfunc-
tion and more serious deficits in general intelligence, perceptual sensi-
tivity, reversal learning, working memory, selective attention relative
to major depression (Albus et al., 1996; Blanchard and Neale, 1994;
Egeland et al., 2003a; Egeland et al., 2003b; Mussgay and Hertwig,
1990). The results of the current study suggest that schizophrenia and
depression are not only associated with convergent cognitive deficits
in shifting, sustained attention, planning, working memory and visual
memory, but also potential divergent neurocognitive patterns. The lat-
ter are manifest as differences in motor speed, general intelligence,
perceptual sensitivity and reversal learning associated with these two
disorders.

Numerous neuroimaging studies have supported the involvement of
brain regions significantly related to emotion processing and to models
of psychotic symptoms in schizophrenia and depression. These include
the hippocampus, insula, prefrontal cortex and inferior parietal cortex
(Bernstein et al., 2016; Busatto, 2013). A considerable degree of overlap
in the regional pattern of brain abnormalities across these two diagnos-
tic categories is notable. Recently, genetic research also provided some
evidence related to the pathogenesis of both schizophrenia and depres-
sion, including Retinoic acid-inducible or induced gene 1, theα-1C sub-
unit of the L-type voltage-gated calcium channel and immune genes
(Bufalino et al., 2013; Fillman et al., 2013; Green et al., 2010;
Haybaeck et al., 2015). Convergent findings in neuroimaging and genet-
ics of depression and schizophrenia provide a plausible biological basis
for similar neurocognitive impairments observed in previous studies
and the current one.

Connections associated with the prefrontal cortex and the affective
network have been reported to be differentially influenced by schizo-
phrenia and depression (Yu et al., 2013). Additionally, bilaterally re-
duced claustral volumes could relate to sensory processing
impairments in schizophrenia, in contrast to a possible association
with disturbance in salience in major depression (Bernstein et al.,
2016). Individuals with schizophrenia or depression could also have
characteristic differences in their cortical responses to dynamic affective
stimuli, potentially related to pathology-specific problems in social cog-
nition (Regenbogen et al., 2015). In accord with this overall pattern of
findings, the current study also revealed differences in neurocognitive
patterns associated with schizophrenia and depression, providing fur-
ther evidence for different mechanisms underlying pathology in these
two disorders.

Although the classification results of the present study are encourag-
ing, possible limitations should be considered. Firstly, the current study



Fig. 4. The dendrograms of hierarchy clustering analysis in schizophrenia, depression and control. The X-axis represents the feature. The Y-axis of the dendrogram represents the dissimilarity or Euclidean distance between neurocognitive features.
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appliedmachine learning analysis only to neurocognitive data. The abil-
ity to determine the specific clinical and neuropsychological profiles as-
sociated with each disorder may be improved by the addition of data
related to genetic, neurobiological and environmental variables
(Nolen-Hoeksema and Watkins, 2011). Secondly, distinguishing psy-
chotic and affective symptoms remains a dilemma of psychiatric classi-
fication. In the future studies, it will be fruitful to evaluate both
psychotic and affective symptoms in individuals with schizophrenia
and depression, respectively, in an attempt to build a differential diag-
nosis paradigm for comorbid schizophrenia and depression symptoms.
Thirdly, although some of the relapsed depressive patients had not
taken antidepressants in the preceding three months or more, it is
hard to evaluate the significance of previous medication effects. Fourth-
ly, the comparisons of inter-group dendrograms as the results of hierar-
chical clustering analysis were not based on the evidence of statistical
significance, more relative algorithms were urgently demanded.

In conclusion, we trained a data-driven multi-class classifier that
used an individual's neurocognitive features, as potential
endophenotypes could potentially be used to predict classification of
that individual as meeting criteria for MDD, schizophrenia, or as a
healthy control. Our results support the proposal that neurocognitive
features could potentially be used to reveal some convergent and diver-
gent neurocognitive patterns of symptomatology for schizophrenia and
depression, respectively. Moving forward with the development of a
clear hierarchy of neurocognitive deficiencies in schizophrenia and
major depression could improve diagnostic decision making and may
prove beneficial for longitudinal monitoring of therapeutic advances.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.schres.2017.06.004.
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