

CounterFactual Regression with Importance Sampling Weights (CFR-ISW)

Negar Hassanpour^{*} (hassanpo@ualberta.ca) and Russell Greiner^{*} Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada

Our Goal:

1. Causal Inference from Observational Data

3. Proposed Weighting Scheme (CFR-ISW)

Improving the accuracy of estimating **ITE** by incorporating the information extracted

 $\Pr(t_i)$

 $-\pi(t_i|\Phi(x_i))$

))]

Get the

paper

@

Ultimate Goal: Finding a model that estimates the <u>Individual Treatment Effect</u> $ITE(x) = y^{1}(x) - y^{0}(x)$ from an observational dataset in the form of $\{ [x_i, t_i, y_i] \}_{i=1...n}$

> **x**: personal features with:

> > $\rightarrow e.g.$, values of age, blood work, etc. t: received treatment chosen from a set of options

> > > \rightarrow e.g., survival time

 \rightarrow e.g., { 0: surgery , 1: medication } **y**: the observed outcome after receiving the corresponding treatment

Y⁰

ID

from the context of each instance $\Phi(\mathbf{x})$, in addition to its respective treatment t, to assign sample-specific weights in the factual loss term. \rightarrow For example, if an instance \mathbf{x}_i (with assigned treatment \mathbf{t}_i) is **far** from other instances with the same assigned treatment (*e.g.*, samples in figure) then we force our outcome prediction network to learn this instance well.

Proposed weights:

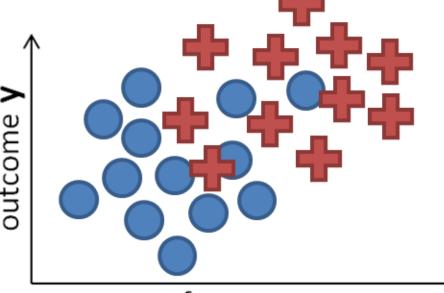
 $\Pr(\Phi(x_i) \mid \neg t_i)$



T=1

Challenges:

- **<u>Partial information data</u>**. *i.e.*, depending on the received treatment **t**, we observe (factual outcome **y**^t) either y^0 or y^1 , but never both. The other outcome (counterfactual outcome y^{-t}) is <u>un</u>observable.
- Sample selection bias. *i.e.*, both outcome y and the treatment t assignment are dependent on (some) context information **x**.
 - \rightarrow e.g., younger {older} patients (part of x) are more likely to receive treatment t: surgery {medication} because they tend to have a faster {complicated} recovery (outcome y).



features X

2. Shalit et al. (2017) Model Overview (CFR)

Their Goal: Reducing the sample selection bias by learning a common representation space $\Phi(x)$ such that: \rightarrow Pr($\Phi(x) | t = 0$) and Pr($\Phi(x) | t = 1$) are as close as possible to each other \rightarrow provided that $\Phi(\mathbf{x})$ retains enough information to accurately predict factual outcomes

 $\pi(t_i | \Phi(x_i)) \cdot \Pr(\Phi(x_i))$ $1 - \Pr(t_i)$ $\pi(t_i|\Phi(x_i))$ $\Pr(\Phi(x_i))$ $\overline{\Pr(t_i)}$

where $\pi(t \mid \Phi(x))$ is the probability of assigning treatment t given the context in Φ representation space (a.k.a., propensity score).

 \rightarrow We use Logistic Regression (LR) with parameters [W, b] to fit the propensity score function:

$$\begin{aligned} \pi\left(t \mid \Phi(x)\right) &= \frac{1}{1 + e^{-(2t-1)(\Phi(x) \cdot \mathbf{W} + \mathbf{b})}}\\ \text{and learn the parameters by minimizing:} & \min_{\mathbf{W}, \mathbf{b}} \ \frac{1}{n} \sum_{i=1}^{n} C[\mathbf{W}, \mathbf{b}, \Phi(x), t]\\ & \text{where } C[\mathbf{W}, \mathbf{b}, \Phi(x), t] = -\log[\pi(t_i \mid \Phi(x_i + \mathbf{b}))] \end{aligned}$$

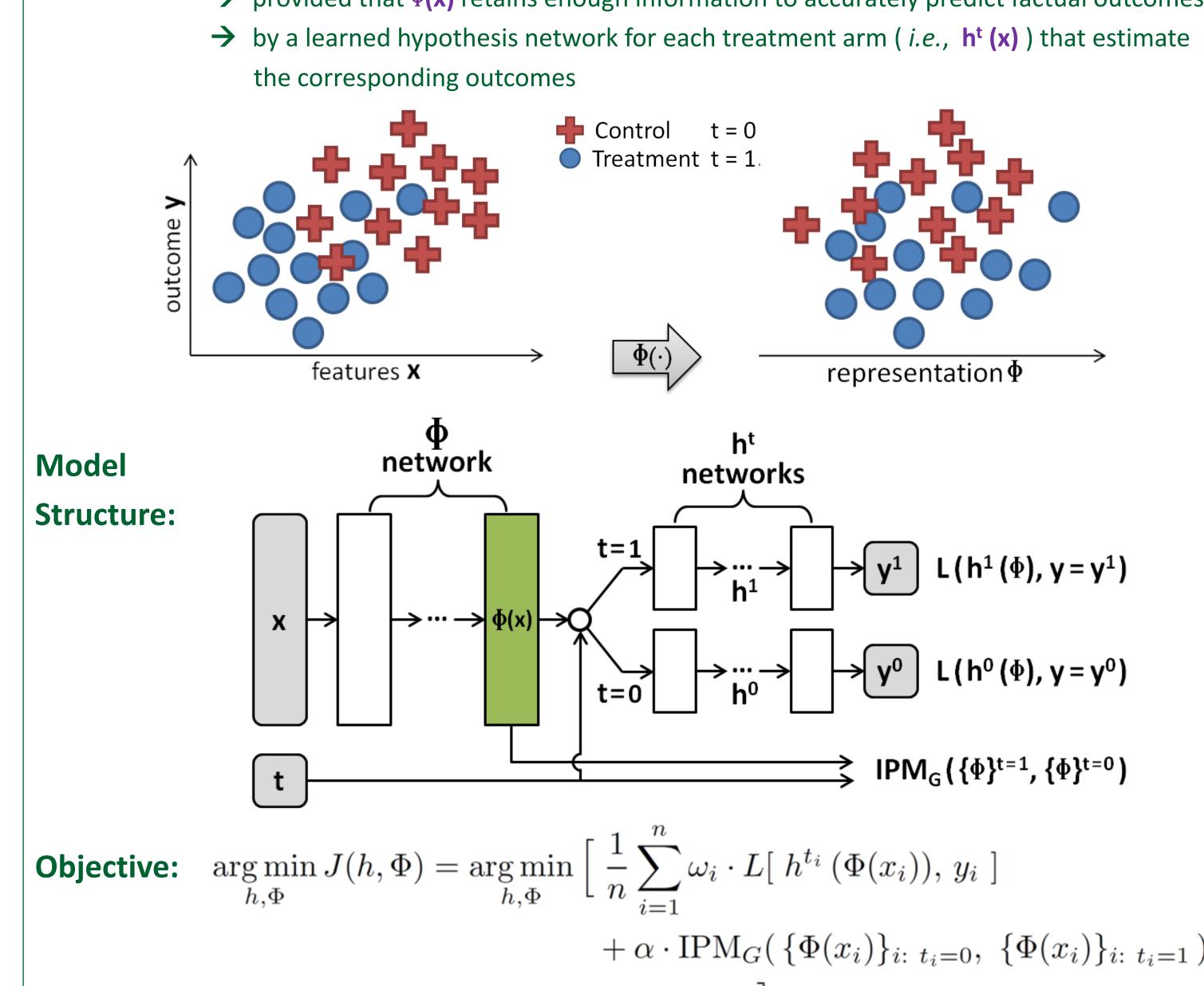
We try to solve this multi-objective optimization problem that iteratively in two steps: Minimize $J(h, \Phi)$ to update the parameters of the representation Φ and hypothesis h networks Minimize $C[W, b, \Phi, t]$ with fixed h and Φ parameters to update parameters of the propensity ii. score function (*i.e.*, **W** and **b**).

4. Experiments

Evaluation Criteria: ENoRMSE = $\sqrt{\frac{1}{n}\sum_{n=1}^{\infty} (1 - 1)^n}$

$$\frac{\hat{e}_i}{e_i}\right)^2 \quad \text{with} \quad \begin{cases} \hat{e}_i = \hat{y}_i^1 - \hat{y}_i \\ e_i = y_i^1 - \hat{y}_i \end{cases}$$

where $\hat{\mathbf{y}}$ indicates an outcome predicted by the trained model



Hyperparameter Selection: As counterfactual outcomes are inherently unobservable, it is not possible to use standard internal cross-validation to select hyperparameters (e.g., α , λ , etc.). \rightarrow An estimation of the true effect is needed as a surrogate for the **e** term.

- Shalit *et al.* (2017) used the observed outcome $y_{i(i)}$ of the nearest neighbor in the **x** space (referred to as **1-nn**) in the alternative treatment group $\mathbf{t}_{i(i)} = -\mathbf{t}_i = \mathbf{1} - \mathbf{t}_i$
- In addition to 1-nn, we explored two alternatives:
 - 1. 1-nn in the Φ space; *i.e.*, **1-nn**_{Φ}
 - 2. outcome predicted by the Bayesian Additive Regression Trees (BART)

Synthetic Datasets: From the 2018 Atlantic Causal Inference Data Challenge

- \rightarrow The x matrix is sampled from the Linked Birth and Infant Death Data (LBIDD)
 - ✤ 100,000 instances, each with 177 features
- \rightarrow 24 synthetic datasets were generated from LBIDD;

categorized into 6 groups in terms of the number of instances $n \in \{1, 2.5, 5, 10, 25, 50\} \times 10^3$

5. Results

We compare performance of the following four different methods in terms of ENoRMSE:

- **1-nn**: One nearest neighbor method for finding the counterfactual outcomes
- **BART**: Bayesian Additive Regression Trees method (Chipman *et al.*, 2010) for finding the ITE
- CFR: CounterFactual Regression method proposed in (Shalit et al., 2017) for which the best set of hyperparameters is determined based on ENoRMSE_{BART}
- **CFR-ISW**: CounterFactual Regression with Importance Sampling Weights (*i.e.*, the proposed method)

 $+ \lambda \cdot \mathcal{R}(h) \mid \Rightarrow$ regularization term

 $L[h^{t_i}(\Phi(x_i)), y_i] = [h^{t_i}(\Phi(x_i)) - y_i]^2 \rightarrow \text{factual loss}$ where

$$\omega_{i} = \frac{t_{i}}{u} + \frac{1 - t_{i}}{(1 - u)}, \quad \text{with} \quad u = \frac{1}{n} \sum_{i=1}^{n} t_{i} = \Pr(t = 1)$$

$$= \frac{1}{\Pr(t_{i})} = \frac{\Pr(t_{i})}{\Pr(t_{i})} + \frac{1 - \Pr(t_{i})}{\Pr(t_{i})} = 1 + \left(\frac{\Pr(\neg t_{i})}{\Pr(t_{i})}\right)$$

 $\operatorname{IPM}_G(\{\Phi(x_i)\}_{i: t_i=0}, \{\Phi(x_i)\}_{i: t_i=1}) \rightarrow \operatorname{Integral Probability Metric (IPM) is a}$ measure of closeness between two probability distributions; *e.g.*, Maximum Mean Discrepancy (MMD) (Gretton *et al.*, 2012) or Wasserstein distance (Attouch *et al.*, 2014; Cuturi & Doucet, 2014). Here, IPM measures the discrepancy between empirical $Pr(\Phi(x) | t=0)$ and $Pr(\Phi(x) | t=0)$ distributions

Once the model is trained, we can use it to predict y^1 and y^0 , given as input a feature vector x This will give us the individual treatment effect $ITE(x) = y^{1}(x) - y^{0}(x)$ for any (novel) x

Tables report the aggregated ENoRMSE (lower is better). The entry in **bold** is the best for each row.

Comparison of various ITE estimation methods against the proposed CFR-ISW						Hyperparameter selection methods: ENoRMSE _{1-nn} vs. ENoRMSE _{BART}					
DATASETS		1- NN	BART	CFR	CFR-ISW	DATASETS		CFR		CFR-ISW	
	ALL	75.32	20.03	8.92	1.07	DA	ALL	1- NN	BART 8.92	1-NN	BART 1.07
# INSTANCES	1 k 2.5 k 5 k 10 k 25 k 50 k	86.44 47.45 38.04 40.25 25.69 94.45	$141.58 \\ 23.35 \\ 9.51 \\ 2.96 \\ 1.52 \\ 16.13$	10.51 15.27 2.81 1.22 0.89 11.12	1.72 0.73 0.93 0.81 1.03 1.14	# INSTANCES	ALL 1 k 2.5 k 5 k 10 k 25 k 50 k	8.04 8.08 36.33 5.79 1.45 1.01 17.98	10.51 15.27 2.81 1.22 0.89 11.12	2.21 0.82 1.05 15.11 1.28 1.11	1.07 1.72 0.73 0.93 0.81 1.03 1.14

Selected References:

- > (Chipman *et al.*, 2010) Chipman, Hugh A, George, Edward I, and McCulloch, Robert E. "BART: Bayesian additive regression trees." The Annals of Applied Statistics, 2010.
- > (Shalit *et al.*, 2017) Shalit, Uri, Johansson, Fredrik D., and Sontag, David. "Estimating individual treatment effect: generalization bounds and algorithms." In Proceedings of the 34th International Conference on Machine Learning (ICML), pp. 3076–3085, 2017.