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3. Proposed Weighting Scheme (CFR-ISW)

1. Causal Inference from Observational Data

Ultimate Goal: Finding a model that estimates the Individual Treatment Effect ITE(x) = y1(X) - y°(X) Our Goal: Improving the accuracy of estimating ITE by incorporating the information extracted
from an observational dataset in the formof {[x.,t.,y.1}:.1 . from the context of each instance ¢(x), in addition to its respective treatment
with: X: personal features t , to assigh sample-specific weights in the factual loss term.
- e.g., values of age, blood work, etc. —> For example, if an instance x. (with assigned treatment t.)
t: received treatment chosen from a set of options is far from other instances with the same assigned v+ .+ .
- e.g., { 0: surgery, 1: medication } treatment (e.q., in figure) then we force our * +
y: the observed outcome after receiving the corresponding treatment outcome prediction network to learn this instance well. .t
- e.g., survival time .

T=0 T=1 Proposed weights: .
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Gender | Age | BMI = - |
ender | Age PI‘( (I)(:CZ) |tz) m(ti|P(xi)) - Pr(P(x;)) 1 — Pr( @) 7T(tf@|q)(33i))

Mr. Smith Male 35 20 | 0] 15 Pr(t;)
Mr. Green Male 22 32 | 0] 22
where mt(t | ®(x)) is the probability of assigning treatment t given the context in ¢ representation
Ms. Jones | Female 20 23 |1 31 .
space (a.k.a., propensity score).
- We use Logistic Regression (LR) with parameters [W, b] to fit the propensity score function:
1
t| P
Challenges: m(t]®(z)) = 1 + e~ @Ct=1)(®(x)-W+b)
1. Partial information data. i.e., depending on the received treatment t, we observe (factual outcome y!) and learn the parameters by minimizing: mm - Z C’ W, b, (I> ) ]

either y° or y3, but never both. The other outcome (counterfactual outcome y) is unobservable.

where C| W, b, ®(z),t]| = —log| 7 (t;|P(x;)) |

2. Sample selection bias. i.e., both outcome y and the

A
treatment t assignment are dependent on (some) context - We try to solve this multi-objective optimization problem that iteratively in two steps:

information x. g i. Minimize J(h, ®) to update the parameters of the representation ¢ and hypothesis h networks
= e.g., younger {older} patients ( part of x ) are more likely § ii. Minimize C[W, b, ¢, t] with fixed h and & parameters to update parameters of the propensity
to receive treatment t: surgery {medication} because they 5 score function (i.e., W and b).

tend to have a faster {complicated} recovery ( outcome vy ).
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4. Experiments

2. Shalit et al. (2017) Model Overview (CFR)

)
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. Evaluation Criteria: ENoRMSE = | — 1 - — with 4
Their Goal: Reducing the sample selection bias by learning a common representation space ®(x) such that: \ n €; € = y,g — y?
= Pr(®(x) [ t=0) and Pr(®(x) | t=1) are as close as possible to each other where V indicates an outcome predicted by the trained model
- provided that ®(x) retains enough information to accurately predict factual outcomes
—> by a learned hypothesis network for each treatment arm ( i.e., ht (x) ) that estimate Hyperparam eter Se|eCt|On As counterfactual outcomes are inherently unobservable,
the corresponding outcomes it is not possible to use standard internal cross-validation to select hyperparameters (e.g., a, A, etc.).
gk Control  t=0 + - An estimation of the true effect is needed as a surrogate for the e term.
A @® Treatment t=1, + + + % Shalit et al. (2017) used the observed outcome Yii) of the nearest neighbor in the
- .+ O X space (referred to as 1-nn) in the alternative treatment group t;; = ~t; = 1 -t
c + .++ “* In addition to 1-nn, we explored two alternatives:
E . . . 1. 1-nnin the ¢ space;i.e., 1-nn,
© . . . 2. outcome predicted by the Bayesian Additive Regression Trees (BART)
S $(- : > :
features X 9 representation® Synthetic Datasets: From the 2018 Atlantic Causal Inference Data Challenge
(I) bt - The x matrix is sampled from the Linked Birth and Infant Death Data (LBIDD)
Model netﬁork networks +%* 100,000 instances, each with 177 features
( \ A - 24 synthetic datasets were generated from LBIDD;
Structure: G ( N
t=1 categorized into 6 groups in terms of the number of instances n € {1, 2.5, 5, 10, 25, 50} X 103
Seot Py Lkt @), y=y)
X > > -+ —> P(x)
t=0 h°
‘ t I § 2 IPMg({o}t=1, {&}t=0) We compare performance of the following four different methods in terms of ENORMSE:
» 1-nn: One nearest neighbor method for finding the counterfactual outcomes
. . » BART: Bayesian Additive Regression Trees method (Chipman et al., 2010) for finding the ITE
Objective: argminJ(h,®) = arg mm [ Zwi L[ h'i (®(x;)), y; | Y e ( nipman ) 5
h.® » CFR: CounterFactual Regression method proposed in (Shalit et al., 2017) for which the best set of
hyperparameters is determined based on ENoRMSE
+ « - IPMG {(I) £Lq }1 t: =01 {‘1)(&,"‘?)}1 tt=1) | . | BART | | |
» CFR-ISW: CounterFactual Regression with Importance Sampling Weights (i.e., the proposed method)
+A-R(h) ] = regularization term Tables report the aggregated ENORMSE (lower is better). The entry in bold is the best for each row.
5 Comparison of various ITE estimation methods Hyperparameter selection methods:
where L[ hti ((I)(LCZ)), n ] _ [htq; ((I)(SCZ)) . yz} > factual loss against the proposed CFR-ISW ENORMSE, ., vs. ENORMSEgxr
DATASETS 1-NN BART CFR CFR-ISW CFR CFR-ISW
" 1 — ¢ ALl | 7530 0 03 2 90 T 07 DATASETS 1-NN BART 1-NN BART
w; = — A i 1).} with w = =) t; = Pr(t=1) ' | | ' ALL | 15.04 892 | 523  1.07
U — U n
= 2 1k | 86.44 141.58 10.51 1.72 ., 1| 808 1051 5 91 177
1 Pr(t;) 1—Pr(t;) Pr(—t;) O 25k | 4745 2335 1527 0.73 S 25k | 3633 1527 | 082  0.73
= = | = 14 “ < S5k ]3804 951 281 093 2 5k| 579 281| 105  0.93
PI‘( t; ) PI‘( ti ) PI‘( t; ) PI‘( L ) c; 10 £ | 40.25 2.96 1.22 0.81 = 10 1 45 1.22 | 1511 0.81
- 25k | 25.69 1.52 0.89 1.03 Z 25k | 1.01 0.89 | 1.28 1.03
IPMa({®(z:)}i: 1.—0, {®(z;)}i: 1.21) = Integral Probability Metric (IPM) is a = 50k | 9445  16.13 11.12 1.14 ¥ 50k | 17.98 11.12 | 1.11 1.14
measure of closeness between two probability distributions; e.g., Maximum Mean Discrepancy (MMD) Get th
- | . Selected References: ctine
(Gretton et al., 2012) or Wasserstein distance (Attouch et al., 2014; Cuturi & Doucet, 2014). : :
_ N S » (Chipman etal., 2010) Chipman, Hugh A, George, Edward I, and McCulloch, Robert E. “BART:
Here, IPM measures the discrepancy between empirical Pr(®(x)|t=0) and Pr(®(x)|t=0) distributions Bayesian additive regression trees.” The Annals of Applied Statistics, 2010.
o dol o , gi 1 and 0 o , ¢ > (Shalit etal., 2017) Shalit, Uri, Johansson, Fredrik D., and Sontag, David. “Estimating
Once the model is trained, we can use it to predict y* and y~, given as input a feature vector X individual treatment effect: generalization bounds and algorithms.” In Proceedings of the 34th
This will give us the individual treatment effect ITE(x) = y!(x) - y°(x) for any (novel) x International Conference on Machine Learning (ICML), pp. 3076-3085, 2017.




