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Abstract
Perhaps the most pressing concern of a patient
recently diagnosed with cancer is her life ex-
pectancy for various treatment options. Answer-
ing such questions requires estimating the unob-
served (i.e., counterfactual) outcomes of the treat-
ments that were not administered for each patient
in the training data. This “counterfactual chal-
lenge” applies not only to healthcare, but also
to other fields such as education, economics, etc.
This paper extends the work of Shalit et al. (2017)
for estimating Individualized Treatment Effect
(ITE) in two directions: modifying (i) the ob-
jective function by adding importance sampling
weights, and (ii) the procedure for finding the
best set of model hyperparameters. Our eval-
uation on the synthetic datasets from the 2018
Atlantic Causal Inference Conference Data Chal-
lenge1 demonstrated significantly better perfor-
mance of the proposed weighting scheme over
that of (Shalit et al., 2017).

1. Introduction
Precision medicine – i.e., the customization of healthcare
tailored to each individual patient – requires making pre-
dictions about causal effects of various treatments. This
requires identifying which medical procedure would benefit
each individual patient the most. Such analysis is not limited
to healthcare, as it can be used in any field where personal-
ization would be of value, including education, economics,
public welfare, etc.

In datasets that we work with, for each instance i (e.g., a
patient), we have some context information xi (e.g., her
age, blood work, etc.), the administered treatment ti cho-
sen from a set of treatment options T (e.g., {0: surgery,
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1: medication}) and the respective observed outcome yi
(e.g., her survival time) after receiving treatment ti. These
are observational studies – i.e., the principal investigator
who collects the data has no control over the treatment
assignment procedure (which might be biased by the clini-
cian’s decisions) and merely records the values of interest.

In such datasets, both outcome and the treatment assignment
are dependent on some or all of the context information. 2

This is why sample selection bias is an inherent character-
istic of observational datasets. The probabilistic graphical
model of observational studies is illustrated in Figure 1(a).
Figure 1(b) shows an example observational dataset, where
a doctor prescribes surgery (t = 0) to younger patients
and medication (t = 1) to older ones3. Note that, for
each patient i, we only observe the outcome yi of the re-
ceived treatment ti (i.e., either surgery or medication, but
not both). Figure 1(b) uses a + to denote a patient who
received surgery (ti = 0) or a • for a patient who received
medication (ti = 1). The performance system can never
observe her counterfactual outcome – i.e., the outcome of
the alternative treatment that was not administered; how-
ever, in synthetic datasets, counterfactuals are available for
evaluation purposes. These are shown as • (+) for patients
who – in reality– received treatment 0 (1).

Estimating causal effects from observational data is dif-
ferent from standard supervised machine learning in that
training data never contains the counterfactual outcomes.
This is closely related to “learning from logged bandit feed-
back” in the literature (cf. (Strehl et al., 2010; Li et al.,
2010; 2011; 2015; Swaminathan & Joachims, 2015)). The
only distinction here is that, unlike applications such as ad-
placement (Bottou et al., 2013), we do not have access to
the underlying mechanism for treatment assignment.

2. Method
This paper extends the work of Shalit et al. (2017) in the
following two directions: modifying (i) the objective func-

2 This work assumes the “ignorability assumption”: there are
no covariates that contribute to both treatment selection and out-
come (a.k.a., confounders), but are not recorded in x.

3Perhaps because recovery after surgery is much faster for
younger patients; and that it is just not cost effective to perform
such an invasive procedure on older patients.
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(a) Probabilistic Graphical Model

(b) Best viewed in color – Blue dots and red pluses illustrate
the assigned treatment t with their respective observed out-
come y. Light-blue dots and pink pluses illustrate the true
counterfactual outcomes; these are never observed. Note that
samples with higher (lower) x values have been assigned to
t = 1 (t = 0) more frequently; hence we have sample selec-
tion bias.

Figure 1. Observational Dataset

tion by adding sample-specific importance sampling weights
(see Sec. 2.2), and (ii) the procedure for finding the best set
of model hyperparameters (see Sec. 3.2).

2.1. (Shalit et al., 2017)’s Model Overview

Shalit et al. (2017) attempt to reduce sample selection bias
by learning a common representation space Φ(x) (Bengio
et al., 2013) in which Pr(x | t = 0 ) and Pr(x | t = 1 ) are
as close4 as possible to each other, provided Φ( · ) retains
enough information that a learned regression model ht( Φ )
can generalize well on factual outcomes. See Figure 2 for
the model architecture; ht( Φ ) and Φ(x ) are parameterized
by deep neural networks trained jointly in an end-to-end
fashion.

4This “closeness” is measured based on the Integral Probabil-
ity Metric (IPM) measure of distance. Specifically, they use the
following two IPMs: (i) Maximum Mean Discrepancy (Gretton
et al., 2012) and (ii) Wasserstein distance (Attouch et al., 2014;
Cuturi & Doucet, 2014).

Figure 2. The neural network architecture proposed by (Shalit et al.,
2017) for estimating the Individualized Treatment Effect (ITE).

The following is (Shalit et al., 2017)’s objective function:

J(h,Φ) = min
h,Φ

1

n

n∑
i=1

ωi · L[ hti (Φ(xi)), yi ] + λ · R(h)

+ α · IPMG( {Φ(xi)}i: ti=0, {Φ(xi)}i: ti=1 )
(1)

where L[ hti (Φ(xi)), yi ] = [hti (Φ(xi))− yi ]
2 is the

squared loss of predicting the factual outcome for sample i,

ωi =
ti
2u

+
1− ti

2(1− u)
, with u =

1

n

n∑
i=1

ti (2)

R(h) is the regularization term for penalizing model com-
plexity, and IPMG ({Φ(xi)}i: ti=0, {Φ(xi)}i: ti=1) is the
measure of distance between the two distributions Pr(x | t =
0 ) and Pr(x | t = 1 ).

The first term of J(h,Φ) minimizes a weighted sum of the
factual loss, which is a standard supervised machine learn-
ing objective. More specifically, we can see from Eq. (2)
that 2ωi = 1

Pr(ti)
, where Pr( ti ) is simply the frequentist

probability of assigning ti ∈ {0, 1} to the whole popula-
tion. Notice that 2ωi can be rewritten as follows:

1

Pr( ti )
=

Pr( ti )

Pr( ti )
+

1− Pr( ti )

Pr( ti )
= 1 +

Pr(¬ti )

Pr( ti )
(3)

where ¬ti represents the alternative treatment that was not
administered to patient i.

This weighting scheme makes sense because the first ad-
dend, “1” (corresponding to the “factual part” of the weight
function) minimizes the factual loss (on the observed out-
comes); this is the simplest mission of any regression model.
The second weight term (i.e., Pr(¬ti )

Pr( ti ) ; corresponding to the
“counterfactual part” of the weight function), on the other
hand, attempts to re-weight the factual loss to emphasize
the loss for the instances in the treatment arm that has fewer
instances.

2.2. Proposed Weighting Scheme

The weights in Eq. (3) attempt to balance the factual loss
in accordance with the number of instances within each
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treatment arm. However, it might be beneficial to have
weights that incorporate the context information of each
instance x, in addition to its respective treatment t. For
example, if an instance xi (with assigned treatment ti) is
“far” from other instances with the same assigned treatment
5, then we want to make sure that our outcome prediction
network learns this instance well. To do so, we replace the
counterfactual part of the weight function in Eq. (2) with
the following importance sampling weights:

Pr( Φ(xi) | ¬ti )

Pr( Φ(xi) | ti )
=

π(¬ti|Φ(xi)) · Pr(Φ(xi))
Pr(¬ti)

π(ti|Φ(xi)) · Pr(Φ(xi))
Pr(ti)

=
Pr(ti)

Pr(¬ti)
· π(¬ti|Φ(xi))

π(ti|Φ(xi))

=
Pr( ti )

1− Pr( ti )
· 1− π(ti|Φ(xi))

π(ti|Φ(xi))

(4)

where π( t |Φ(x) ) is the probability of assigning treatment
t given the context in the Φ representation space (a.k.a.,
propensity score). We use a Logistic Regression (LR) model
to fit the propensity score function:

π(t|Φ(x)) =
1

1 + e−(2t−1)(Φ(x)·W+b)
(5)

To learn the LR parameters [W, b], we attempt to minimize
the following cost function:

min
W,b

1

n

n∑
i=1

C[W, b,Φ(x), t ] (6)

where C[W, b,Φ(x), t ] = − log[π(ti|Φ(xi)) ] (7)

Since π depends on Φ, we update [W, b] with every update
of the parameters of Φ and h.

Hence, this is a multi-objective6 optimization problem that
we try to solve interactively. That is, each training iteration
consists of two steps:

(i) minimize Eq. (1) using stochastic gradient descent and
update the parameters of the representation and hy-
pothesis networks (i.e., U and V ). Note that ωis in the
factual loss term are calculated based on Eq. (4), with
parameters W and b held fixed during optimization.

(ii) minimize Eq. (6) with U and V held fixed and update
the parameters of the propensity score function (i.e.,
W and b).

This procedure is described in more details in Algorithm 1.
Also note that both objective functions are computed for
one mini-batch at a time.

5 Consider the one • instance on the top left of Figure 1(b), as
there are no other t = 1 instances close by.

6Indeed, there are two objectives to optimize: Eqs. (1) & (6).

Algorithm 1 CFR-ISW: CounterFactual Regression with
Importance Sampling Weights

1: Input: Factual samples (x1, t1, y1), ..., (xn, tn, yn),
scaling parameter α > 0, regularization parameter
λ > 0, loss function L(·, ·), representation network
ΦU with initial weights [U ], outcome network hV with
initial weights [V ], function family G for IPM, propen-
sity network πW with initial weights [W, b], and limit
on the total number of iterations I .

2: Estimate probabilities Pr( t ) for t ∈ {0, 1}
3: for iter = 1 to I do
4: Sample mini-batch {i1, i2, ..., im} ∈ {1, 2, ..., n}
5: Calculate the gradient of the IPM term:

g1 = ∇U IPMG({ΦU (xij )}tij =0, {ΦU (xij )}tij =1)
6: Calculate the proposed importance sampling weights

ωij from W and Pr( t ) following Eq. (4)
7: Calculate the gradients of the empirical loss:

g2 = ∇U 1
m

∑
j ωij · L[h

tij
V (ΦU (xij )), yij ]

g3 = ∇V 1
m

∑
j ωij · L[h

tij
V (ΦU (xij )), yij ]

8: Obtain step size scalar or matrix η1 with standard neu-
ral net methods (e.g., Adam (Kingma & Ba, 2015))

9: Update weights of the representation and hypothesis
networks:

[U, V ] ← [U−η1(αg1+g2), V −η1(g3+2λV )]
10: Calculate gradients of the propensity network’s cost

function:
g4 = ∇W 1

m

∑
j C(W, b,ΦU (xij ), tij )

g5 = ∇b 1
m

∑
j C(W, b,ΦU (xij ), tij )

11: Obtain η2

12: Update the propensity network’s weights:
[W, b] ← [W, b]− [η2g4, η2g5]

13: end for

3. Experiments
3.1. Evaluation Criteria

We use Effect-Normalized Root Mean Squared Error

ENoRMSE =

√√√√ 1

n

n∑
i=1

(
1− êi

ei

)2

with

{
êi = ŷ1

i − ŷ0
i

ei = y1
i − y0

i

(8)
to measure the accuracy for Individualized Treatment Effect
Estimation (ITE), where ŷ1

i and ŷ0
i are predicted outcomes

for treatments 1 and 0 respectively. Note that only one of y1
i

or y0
i is observed during training (including hyperparameter

selection). Therefore, ENoRMSE can be calculated only if
the dataset is synthetic and the true counterfactual outcomes
are available.
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3.2. Hyperparameter Selection

As counterfactual outcomes are inherently unobservable,
it is not possible to use standard cross-validation to select
hyperparameters. We therefore need to provide some es-
timation of the true effect as a surrogate for the e term in
denominator of Eq. (8).

Shalit et al. (2017) used the observed outcome yj(i) of the
nearest neighbor (nn7) j(i) to instance i in the alternative
treatment group tj(i) = ¬ti = 1− ti as a surrogate for the
counterfactual outcome for instance i. They then calculate
enn = (2ti− 1)(ytii − y

¬ti
j(i)). Substituting enn with the true

e in denominator of Eq. (8) gives ENoRMSEnn which is a
proxy for the true ENoRMSE. Finally, Shalit et al. (2017)
rank models trained with different sets of hyperparameters
based on ENoRMSEnn and select the best one.

We explore this approach, considering ENoRMSEnn cal-
culated using the one nearest neighbor method based on
either the original x space (i.e., ENoRMSEnn) or the com-
mon representation space Φ(x) (i.e., ENoRMSEnnΦ ). How-
ever, our empirical results on synthetic datasets showed
that neither ENoRMSEnn nor ENoRMSEnnΦ

gave a de-
cent ranking of the models trained with different sets of
hyperparameters in terms of the true ENoRMSE. There-
fore, in this paper, we decided to use a stronger method
for finding a surrogate for the true individualized treatment
effect e: the Bayesian Additive Regression Trees (BART)
method (Chipman et al., 2010). Our empirical results show
that ENoRMSEBART provides rankings that are much closer
to those of the true ENoRMSE and therefore, the hyperpa-
rameters selected based on its rankings yield models with
better performance.

3.3. Datasets

We use synthetic datasets provided at the 2018 Atlantic
Causal Inference Data Challenge. The x matrix for each
of these datasets are sampled from a covariates file of a
real-world medical measurements taken from the Linked
Birth and Infant Death Data (LBIDD)8. LBIDD’s covariate
file is comprised of 100,000 instances, over 177 features.

There are 24 synthetic datasets (number of instances
nm ∈ {1, 2.5, 5, 10, 25, 50}×103 for m ∈ {1, ..., 24})
for which we have access to both the factual as well as the
counterfactual tables. Factual tables contain treatment bits
as well as the observed outcomes. Counterfactual tables –
which are only to be used for evaluation purposes – contain
the true outcomes for treatments 0 and 1 (i.e., y0 and y1

respectively). For each synthetic dataset, a data generating
process determines t, y0, and y1 given the respective sam-

7In (Shalit et al., 2017), the nearest neighbor is identified based
on a distance metric defined on the x space.

8Source: National Center for Health Statistics

Table 1. The aggregated ENoRMSE (lower is better). The model
hyperparameters for both CFR and CFR-ISW methods are selected
based on the ranking provided by ENoRMSEBART (see Sec. 3.2).
The entry in bold is the best for each row.

DATASETS 1-NN BART CFR CFR-ISW

ALL 75.32 20.03 8.92 1.07

#
IN

ST
A

N
C

E
S 1 k 86.44 141.58 10.51 1.72

2.5 k 47.45 23.35 15.27 0.73
5 k 38.04 9.51 2.81 0.93

10 k 40.25 2.96 1.22 0.81
25 k 25.69 1.52 0.89 1.03
50 k 94.45 16.13 11.12 1.14

Table 2. Comparison of the two hyperparameter selection methods;
i.e., ranking based on either ENoRMSE1-NN or ENoRMSEBART

(see Sec. 3.2) in terms of the true aggregated ENoRMSE (lower is
better). The entry in bold is the best for each ITE method.

CFR CFR-ISW
DATASETS 1-NN BART 1-NN BART

ALL 15.04 8.92 5.23 1.07
#

IN
ST

A
N

C
E

S 1 k 8.08 10.51 2.21 1.72
2.5 k 36.33 15.27 0.82 0.73

5 k 5.79 2.81 1.05 0.93
10 k 1.45 1.22 15.11 0.81
25 k 1.01 0.89 1.28 1.03
50 k 17.98 11.12 1.11 1.14

pled x matrix. This data generating processes have not been
revealed by the challenge organizers.

3.4. Results and Discussions

Table 1 summarizes the performance of four different meth-
ods in terms of ENoRMSE. The four methods are:

• 1-NN: The one nearest neighbor method for finding
the counterfactual outcomes as described in the first
paragraph of Sec. 3.2.

• BART: Bayesian Additive Regression Trees method
(Chipman et al., 2010) for finding the ITE.

• CFR: CounterFactual Regression method proposed in
(Shalit et al., 2017) whose best set of hyperparameters
is determined based on ENoRMSEBART.

• CFR-ISW: CounterFactual Regression with Impor-
tance Sampling Weights; the proposed method.

The first row of Table 1 reports the aggregated ENoRMSE
of all the 24 datasets (i.e., A). The next rows report the
aggregated ENoRMSE for datasets with the same number
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of instances – i.e.,An for n ∈ {1, 2.5, 5, 10, 25, 50 }×103.
An and A respectively are calculated as follows:

An =

√
1

|Dn|
∑
i ∈ Dn

ENoRMSE(Dn)

A =

√
1∑

n ∈ S n
·
∑
n∈S

n ·A2
n (9)

where Dn is set of all the datasets that have n instances and
S = { 1, 2.5, 5, 10, 25, 50 } × 103 is set of the different
dataset sizes.

Results in Table 1 show that incorporating the proposed
importance sampling weights into the factual loss improves
the ENoRMSE measure on almost all datasets by a large
margin. Also, results in Table 1 show that, although neither
1-NN nor BART ITE methods perform well in terms of
ENoRMSE, results in Table 2 show that hyperparameter
selection for both CFR and CFR-ISW ITE methods based on
ENoRMSEBART results achieves far better results in terms
of ENoRMSE compared to that of ENoRMSE1-NN.
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