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Abstract. Machine learning techniques often require many training in-
stances to find useful patterns, especially when the signal is subtle in
high-dimensional data. This is especially true when seeking classifiers of
psychiatric disorders, from fMRI (functional magnetic resonance imag-
ing) data. Given the relatively small number of instances available at any
single site, many projects try to use data from multiple sites. However,
forming a dataset by simply concatenating the data from the various
sites, often fails, due to batch effects – that is, the accuracy of a classifier
learned from such a multi-site datasets, is often worse than of a classifier
learned from a single site. We show why several simple, commonly used,
techniques – such as including the site as a covariate, z-score normaliza-
tion, or whitening – are useful only in very restrictive cases. Additionally,
we propose an evaluation methodology to measure the impact of batch
effects in classification studies and propose a technique for solving batch
effects under the assumption that they are caused by a linear transfor-
mation. We empirically show that this approach consistently improve
the performance of classifiers in multi-site scenarios, and presents more
stability than the other approaches analyzed.
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1 Introduction

Over the last years, many researchers have been seeking tools that can help with
the diagnosis and prognosis of mental health problems. Research groups have
used machine learning approaches in the analysis of fMRI data in order to build
predictors that can diagnose, for example, attention deficit and hyperactivity
disorders, mild cognitive impairment and Alzheimer’s disease, schizophrenia, or
autism [2]. The reported accuracy of the different tasks varies from chance level
to > 85%, depending on the task, dataset, features, and learning algorithm used
for creating the classifier.

One of the main obstacles that limits the usability and generalization capa-
bilities (to new instances) of machine learning approaches is the usually small
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number of instances (n) of the datasets used to train the models [2]. This is es-
pecially problematic when there are a large number of features (p), which might
range from a few hundreds to millions depending on the approach, known as
“small n, large p” [8]. This situation is undesirable because machine learning
approaches assume that the training sample is a good approximation of the real
distribution of the data, which might not be the case with only a few instances
in a high dimensional space.

1.1 Multi-site data and batch effects

In order to mitigate this problem, many researchers use a larger datasets, formed
by aggregating fMRI scans obtained at different locations into a single dataset.
Unfortunately, inter-scanner variability, possibly caused by field strength of the
magnet, manufacturer and parameters of the MRI scanner or radio-frequency
noise environments [7], creates a second problem known as batch effects [12],
which is technical noise that might confound the real biological signal. The main
consequence of batch effects in prediction studies is that researchers have ob-
served a decrease in classification accuracy on multi-site studies compared with
that obtained using a single site [12, 16, 3].

An underlying assumption of machine learning is that the training set and
test set are sampled from the same probability distribution. Because of batch
effects, data coming from different sites follow different probability distribu-
tions, which might cause the predictors to have a decrease in performance.
These discrepancies between the training and test sets are known as dataset
shift [14]. This paper focuses on a specific subcase: Let PA(X,Y ) be the joint
distribution of the covariates X (the features extracted from the fMRI data)
and the label Y (e.g., healthy control or schizophrenia) of scanning site A, and
PB(X,Y ) be the corresponding probability distribution for a scanning site B,
then PA(Y |X ) 6= PB(Y |X ), and PA(X ) 6= PB(X ), but there is a function
g(X) such that PA(Y |X ) = PB(Y | g(X) ), and PA(X ) = PB( g(X) ). This
concept is exemplified in Figure 1.

Fig. 1: (a) The dataset sampled from the scanning site 1 follows a different prob-
ability distribution than data scanned on site 2. (b) After applying g(X) to the
data of site 1 both sites follow the same probability distribution.
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The problem of removing batch effects is closely related to that of domain
adaptation in the computer vision community [5]. Although some of these ap-
proaches have been tested on fMRI data, the performance of classifiers learned
from multi-site datasets is in many cases lower than using a single site [16]. The
objective of this paper is to analyze some techniques for removing batch effects
and the situations where they can be effectively used.

2 Machine learning and functional connectivity graphs

The standard approach for applying machine learning to fMRI data begins by
parcellating the (properly preprocessed) brain volumes into m regions of interest.
It then forms a symmetric m×m pairwise connectivity matrix, whose (i, j) entry
each correspond to some measure of statistical dependence between regions i and
j, whose upper-triangle is vectorized into a vector of length p = 1

2m(m− 1).
The vectors corresponding to each of the n subjects in the training set are

arranged into a matrix X of dimensions n × p. Similarly, a vector Y of length
n, contains the labels of X. Finally, this labeled training data (X, Y ) is given to
a learning algorithm, that produces the final classifier. A detailed description of
this procedure can be found elsewhere [15, 16].

A critical aspect in assessing the impact of batch effects in classification
studies, as well as the effectiveness of the techniques applied to removed them,
is the methodology used to measure the performance of the classifiers. Some
studies pool together the data from the different sites and then randomly split
the data into a training and test set, while others use the data from (r− 1) sites
for training and the rth site for testing [6, 11, 12, 1]. The first approach might
mask the influence of batch effects because it artificially makes the distribution
of the training set and test set more similar. This is an unrealistic scenario. In a
real application, a clinician cares about the performance of the classifier on the
patients that s/he is evaluating. The second approach is more realistic, but also
more complicated. If there is indeed a function g(X) that makes P1(Y |X ) =
P2(Y | g(X) ) then we need information from both scanning sites to learn it.

Therefore, we propose a third evaluation scenario: Fix the test set to be a
specific subset of the data from site A. Then consider two training sets: just
the remaining instances from site-A versus those remaining site-A instances
and also the instances from site B. This approach, illustrated in Figure 2, has
the advantage of identifying if there is a benefit of mixing data from different
sites, or if it is better to train one classifier independently for every site. Note
that this methodology requires having a labeled dataset from both scanning
sites.

3 Batch effects correction techniques

3.1 Adding site as covariate

This technique involves augmenting each instance with its site information –
encoded as a 1-hot-encoding. (That is, using r additional bit features, where the
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Fig. 2: Evaluating a classifier in single site (a) and multi-site (b) scenarios.

jth feature is 1 if that instance comes from the jth site, and the other features
here are 0.)

When using a linear classifier, this method assumes that the only difference
between sites is in the threshold that we use to classify an instance as belonging
to one class, or another. If we assume that the decision function for one site
is given by wTx = 0, where the x vector represent the features and w is the
vector of the coefficients (or weights) of the features, then the decision function
for a second site is given by wTx + c = 0. This method is effective when the
batch effect is caused by a translation (adding a constant) to each instance of the
dataset, but it will be ineffective otherwise. Figure 3(a) shows an illustration of
this case. Note how the learned decision boundary is appropriate for one of the
sites (red), but suboptimal for the other (blue). Note that this technique forces
both decision boundaries to have the same slope, and only the bias changes.

3.2 Z-score normalization

This approach modifies the probability distribution of the features extracted
from both sites, A and B, by making the values of each individual feature, for
each site, zero-mean with unit variance – i.e., for each site, for the ith feature,
subject its mean (for that site), and divide by its empirical standard deviation
(for that site). Using this technique, only the marginals are the same in both sites,
but the covariance structure is not. Applying this “Z-score normalization” to the
data from every scanning site independently, will effectively remove batch effects
caused by translation and scaling of features (see Appendix A.1). However it fails
with more complex transformations, such as rotations or linear transformations
in general; see Figure 3(b). Note that this scaling and translation is in the feature
space, and so it is different to the affine transformations that are corrected during
the preprocessing stage (which are applied in the coordinate space).

3.3 Whitening

Whitening is a linear transformation that can be viewed as a generalization
of the z-score normalization. Besides making the mean of every feature equal
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Fig. 3: Examples of linear transformation where the methods fail. (a) Including
site as covariate, (b) z-score normalization, (c) whitening.

to zero and its variance equal to one, it also removes the correlation between
features by making the overall covariance matrix the identity matrix. One of
the most common procedures to perform this process is PCA Whitening [10].
This transformation first rotates the data, in each site, by projecting it into its
principal components, and then it scales the rotated data by the square root of
its eigenvalues (which represent the variance of each new variable in the PCA
space). Applying this whitening transformation to every dataset independently
will remove the batch effects caused by a rotation and translation of the datasets,
since in this cases the principal components of the different sites will be aligned;
see Appendix A.2 for the mathematical derivation. However, since there is no
guarantee that the principal components will be aligned in general, it might not
work with other linear transformations; see Figure 3(c).

3.4 Solving linear transformations

Note that z-score normalization and whitening solve specific cases of

XB = αXA + β α ∈ Rp×p, β ∈ Rp (1)

(corresponding to Equation 5 in Appendix A.2.) Z-score solves batch effects
when the associated matrix α is diagonal, while whitening solves them when α
is orthogonal with determinant 1. Nevertheless, both methods fail to solve batch
effects for a general matrix α. Note also that the previous approaches did not
explicitly compute α and β, but instead, applied a transformation that removed
their effects under the specified circumstances. Of course, if we could compute
α and β, or even a good approximation α̂ and β̂, we could then solve for any
batch effect corresponding to an arbitrary linear transformation.

For any two random vectors XA and XB , such that XB = αXA + β :

µB = E[XB ] = E[αXA + β] = αE[XA] + β = αµA + β

ΣB = COV [XB ] = COV [αXA + β] = αCOV [XA]αT = αΣAα
T

(2)
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Although we can obtain empirical estimates of µA, µB , ΣA, ΣB from the
dataset, the problem is in general ill-defined – i.e., there is an infinite number of
solutions. Now note that every site includes (at least) two different subpopula-
tions – e.g., healthy controls versus cases (perhaps people with schizophrenia).
Each subpopulation has its own mean vector and covariance matrix (µHCA , µSCZA ,
µHCB , µSCZB , and ΣHC

A , ΣSCZ
A , ΣHC

B , ΣSCZ
B ) . A reasonable assumption is that

the batch effects affect both populations in the same way, but by computing
the mean and covariance matrix of every population and site independently we
are effectively increasing the number of equations available. We can then get an
estimate for α and β as follows:

α̂, β̂ = arg min
α,β

∑
j∈{HC,SCZ}

√
p||µjB − (αµjA +β)||2 + ||Σj

B − (αΣj
Aα

T )||F (3)

where p is the dimensionality of the feature set, and || · ||F is the Frobenius
norm of a matrix. Note that it is possible to combine data from more than two
datasets by finding a linear transformation for every pair of sites.

4 Experiments and Results

4.1 Dataset

We applied the four aforementioned methods to the task of classifying healthy
controls and people with schizophrenia using the data corresponding to the Au-
ditory Oddball task to the FBIRN phase II dataset, which is a multisite study
developed by the Function Biomedical Informatics Research Network (FBIRN).
Keator et al. provides a complete description of the study [9].

After preprocessing the data, we eliminated the subjects who presented head
movement greater than the size of one voxel at any point in time in any of the
axis, a rotation displacement greater than 0.06 radians, or that did not pass
a visual quality control assessment. The original released data contains scans
extracted from 6 different scanning sites; however, we only used 4 of them. One
of the sites was discarded because it lacked T1-weighted images, which were re-
quired as part of our preprocessing pipeline. The second discarded site contained
only 6 subjects (5 with schizophrenia) after the quality control assessment, so it
was not suitable for our analysis. In summary, we have 21 participants from Site
1, 22 from Site 2, 23 from Site 3 and 23 from Site 4. In all cases, the proportion
of healthy controls vs people with schizophrenia is ∼ 50%.

4.2 Experiments and results

To obtain the feature vector of every fMRI scan, we used the subset correspond-
ing to the Fronto-Parietal Network for a total of k = 25 out of the 264 regions
of interest defined by Power et al. [13]. The time series corresponding to every
region was simply the average time series of all the voxels inside the region. In
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Table 1: Average accuracy after correcting batch effects. The number in entry
(i, j) is the accuracy, over instances from the target site i, of the classifier learned
by adding all of site j to the training subset of site i. The colored cells indicate
results whose difference improves (green) or decrease (red) relative to the single
site classification.

S 1 S 2 S 3 S 4

S 1 62.8 72.3 65.7 67.3
S 2 67.8 66.4 70.0 59.5
S 3 55.0 60.9 58.3 56.9
S 4 62.3 57.8 76.4 71.4

(a) No correction

S 1 S 2 S 3 S 4

S 1 62.8 70.7 64.7 68
S 2 67.1 66.4 68.1 57.6
S 3 55.7 57.6 58.3 56.9
S 4 67.1 57.6 75.7 71.4

(b) Site as covariate

S 1 S 2 S 3 S 4

S 1 62.8 64.7 57.6 65.7
S 2 68.5 66.4 67.6 62.3
S 3 48.0 54.0 58.3 58.0
S 4 63.5 56.0 74.0 71.4

(c) Z-score normalization

S 1 S 2 S 3 S 4

S 1 62.8 55.7 52.8 49.5
S 2 51.6 66.4 52.1 50.4
S 3 54.2 54.2 58.3 53.8
S 4 50.7 47.3 52.6 71.4

(d) Whitening

S 1 S 2 S 3 S 4

S 1 62.8 65.9 66.4 66.2
S 2 66.6 66.4 67.8 67.8
S 3 49.5 50.2 58.3 51.4
S 4 73.5 72.8 73.5 71.4

(e) Linear transformation

order to obtain the functional connectivity matrix, we computed the Pearson’s
correlation between the time series of all

(
k
2

)
pairs of regions.

We produced classifiers using a support vector machine (SVM) with linear
kernel using the SVMLIB library [4]. The parameters of the SVM were set using
cross validation. We applied the batch effect correction techniques previous to
merging the datasets into a single training set, and repeated the experiment 15
times with different train/test splits. All the parameters required for the batch
effects correction techniques were obtained using only the training sets. Table 1
reports the average accuracy over the 15 rounds.

5 Discussion

In each of the sub-tables in Table 1, the (i, j) entry represent the average accuracy
when the training set has instances from the ith and j th site, and the test set
has instances only from the ith site. Ideally, all the off-diagonal values should
be higher than the diagonal ones; however, this is not the case. In most of the
cases we have mixed and inconsistent results. The only method that consistently
improves the performance of the classifiers is the one that solves for arbitrary
linear transformations (Table 1e). Note that site S3 is an exception, where we
do not see any improvement; however, this particular site has a low performance
even in the single site scenario. It is likely that the signal in this particular site
is too low and cannot be properly detected by the used methods.

These results reinforce the idea that batch effects play predominant role in
classification studies, and motivate the need to develop techniques that address
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them in order to be able to effectively combine multi-site datasets. We can
additionally conclude that whitening, z-score normalization and adding the site
as covariate are insufficient to solve batch effects in fMRI data. Our method for
solving linear transformations is the one who consistently improves the results
in a multi-site scenario, indicating that it is a step in the right direction.
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A Mathematical derivations

A.1 z-score normalization

Let XA
i and XB

i represent the values of the ith feature extracted from scanning
sites A and B respectively. Then, we can represent the operations of scaling and
translation as:

XB
i = αiX

A
i + βi, i = 1, 2, . . . ,m (4)

where αi and βi are the scaling and translation coefficients of the ith feature. In
order to apply Z-score normalization we need to subtract the mean of every fea-
ture and divide by the standard deviation. Then the z-score normalized features
from scanning sites A and B, X̄A

i , X̄
B
i , are:

X̄A
i =

XA
i − E[XA

i ]√
V ar(XA

i )

X̄B
i =

XB
i − E[XB

i ]√
V ar(XB

i )

=
αiX

A
i + βi − E[αiX

A
i + βi]√

V ar(αiXA
i + βi)

=
αi
(
XA
i − E[XA

i ]
)√

α2
iV ar(X

A
i )

=
XA
i − E[XA

i ]√
V ar(XA

i )
, for αi > 0

= X̄A
i

Therefore, after applying Z-score normalization, we are effectively removing
the effects of translation and scaling.

A.2 Whitening

To see why whitening removes the effects of rotation and scaling, consider the
case where the datasets XB is a rotation and translation of XA. This can be
represented in matrix form as:

XB = XAα+ 1βT α ∈ Rp×p, β ∈ Rp (5)

where α is a rotation matrix – i.e., is an orthogonal matrix with determinant
det(α) = 1. The zero-mean datasets, X̄A, can be obtained as:

X̄A = XA − 1E[XA] (6)

E[XA] = [ E[X1
A], E[X2

A], . . . , E[Xp
A] ]
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while for the case of X̄B :

X̄B = XAα+ 1βT − 1E[XAα+ 1βT ]

= XAα+ 1βT − 1
(
E[XAα]− E[1βT ]

)
= (XA − 1[XA])α

= X̄Aα

(7)

The eigenvalues of the covariance matrix ΣA = 1
n−1X̄

T
AX̄A are obtained by

solving the equation det(ΣA−λI) = 0. For the special case when α is a rotation
matrix1, αT = α−1, the eigenvalues of the covariance matrix of X̄B :

0 = det

(
1

n− 1
(X̄Aα)T (X̄Aα)− λI

)
= det

(
1

n− 1
αT X̄T

AX̄Aα− λI
)

= det
(
αTΣAα− λI

)
= det

(
α−1ΣAα− α−1λIα

)
= det

(
α−1(ΣA − λI)α

)
= det(α−1) det(ΣA − λI) det(α)

= det(ΣA − λI) (8)

As for the eigenvectors: if v is an eigenvector of ΣA with an associated eigen-
value λ, then ΣAv = λv. Doing some mathematical manipulations:

αΣAv = αλv

αΣAIv = αλv

αΣAα
−1αv = λαv

ΣB(αv) = λ(αv)

(9)

Equations 8 and 9 show that, when the transformation matrix α is an or-
thogonal matrix with positive determinant, XA and XB will have the same
eigenvalues, and the eigenvectors of XB are just a rotation of the eigenvectors
of XA. Therefore, by projecting the data into those eigenvector, we obtain the
exact same representation, removing the effects of translation and rotation.

1 All orthogonal matrices α have a determinant equal to +1, or -1. If it is positive, α
is a rotation matrix. When the determinant is negative, it is a reflection matrix.


