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Abstract

Established associative classification algorithms have shown to be very

effective in handling categorical data such as text data. The learned model

is a set of rules that are easy to understand and can be edited. How-

ever, they still suffer from the following limitations: first, they mostly

use the support-confidence framework to mine classification association

rules which require the setting of some confounding parameters; second,

the lack of statistical dependency in the used framework may lead to the

omission of many interesting rules and the detection of meaningless rules;

third, the rule generation process usually generates a sheer number of

rules which puts in question the interpretability and readability of the

learned associative classification model.

In this paper, we propose a novel associative classifier, SigDirect, to

address the above problems. In particular, we use Fisher’s exact test

as a significance measure to directly mine classification association rules

by some effective pruning strategies. Without any threshold settings like

minimum support and minimum confidence, SigDirect is able to find non-

redundant classification association rules which express a statistically sig-

nificant dependency between a set of antecedent items and a consequent

class label. To further reduce the number of noisy rules, we present an

instance-centric rule pruning strategy to find a subset of rules of high qual-

ity. At last, we propose and investigate various rule classification strate-

gies to achieve a more accurate classification model. Experimental results

∗The work was done when the author was at University of Alberta
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on real-world datasets show that SigDirect achieves better performance

in terms of classification accuracy when measured with state-of-the-art

rule based and associative classifiers. Furthermore, the number of rules

generated by SigDirect is orders of magnitude smaller than the number

of rules found by other associative classifiers, which is very appealing in

practice.

Keywords. Associative Classification; Rules; Statistical Significance

1 Introduction

The concept of association rule mining was first introduced by Agrawal et al. [1]
and extensively studied in the past two decades [2, 19, 3]. Association rules
describe correlation between items in a transaction database. Assume a trans-
action database D consists of a set of items I = {i1, i2, ..., im}, then an associ-
ation rule is an implication of the form “X → Y (support, confidence)”, where
X and Y are disjoint subsets of I. The support indicates the probability that
X and Y appear together in the transaction database. The strength of the rule
is measured by the confidence, which is the conditional probability of Y given
X . The problem of discovering association rules consists of generating rules
that have a support and a confidence value higher than given thresholds. It
has a variety of applications ranging from market basket analysis [18], web link
analysis [28] to spatial colocation pattern discovery [22, 20].

Classification is another canonical task in the data mining and machine
learning community. Given a set of attributes for an object, a classifier tries
to assign the object to one or more pre-defined classes. A typical classification
method consists of two steps: firstly, it builds a model on the training dataset
whose attributes and class labels are known in advance; then the ability of the
model to correctly classify objects in the test dataset is evaluated.

Recent studies on associative classification integrates association rule min-
ing and classification together [25, 23, 4, 9]. These associative classifiers have
proven to achieve competitive classification accuracies as decision trees [27], rule
inductions [26, 13], näıve-bayes [15] as well as some probabilistic methods [24].
Besides, instead of taking a greedy algorithm as most rule-based classifiers, as-
sociative classification directly mines the complete set of rules to avoid missing
any important ones. Another advantage of associative classification is that each
individual rule in the model is human readable. To classify an object, associative
classifiers first adopt association rule mining techniques to mine classification as-
sociation rules (CARs) with given support-confidence thresholds and constrain
the consequent of the rule to be a class label. Then a subset of CARs after
pruning are selected to form the classifier, the selection is usually made by uti-
lizing the database coverage heuristic [25]. Finally, once the classifier is built, it
chooses one or more matching CARs to make predictions on the test dataset.

The existing associative classification methods mine the complete set of
CARs mostly in an apriori-like fashion [2] or through a FP-growth way [19].
Although the rule generation process might be slightly different, all of them use
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Table 1: An illustrative example of type 1 error and type 2 error.
Items Class Label Frequency

x c1 4400
y c2 80
z c2 5480

x, y c1 20
y, z c2 15

x, y, z c3 5

the support-confidence framework to find CARs for classification. However, it
is difficult to determine the appropriate support and confidence thresholds for
each dataset without any prior knowledge. Furthermore, traditional association
rule mining methods are based on frequency to prune infrequent patterns. The
strength of a rule is decided afterwards with its confidence value. Therefore,
CARs cannot capture the actual statistical dependency between attributes and
corresponding class. In the worst case, it may only find spurious CARs while
leaving statistically significant dependent CARs undiscovered. These two types
of scenarios are called type 1 error and type 2 error. Table 1 shows an example
of these two types of errors.

Example 1 A transaction database is shown in Table 1. Let min support = 1%
and min confidence = 50%. On one hand, through an Apriori-like or a FP-
growth method, we generate some CARs. The CAR: y → c2 is among them
because its support is 1% and confidence is around 79% which meets the support-
confidence thresholds. Although the confidence value is high, there is a very
weak dependency between y and c2, because the support of c2 is much higher
than the support of y. In other words, y might happen to appear together with
c2, and in fact, they are more likely to be independent of each other. This is a
typical example of type 1 error. On the other hand, it misses an strong CAR:
(x, y, z) → c3. The CAR is not found because it has a very low support, which
is 0.05%, but the confidence value is 100%. Besides, c3 and itemsets (x, y, z)
always co-occur which demonstrates that it is a CAR with strong dependency
and the missing of this CAR is considered as an example of type 2 error.

To avoid missing any strong CARs, most associative classifiers maintain a
small minimum support threshold, but it is still possible to encounter the type 2
error and at the same time it introduces a new problem: association rule mining
methods end up generating a huge number of CARs making them impossible
to be manually edited and even defeating the readability of the classification
model. From another perspective, some post-processing strategies have been
proposed to alleviate the type 1 error [23, 7, 11, 32], but the discovered CARs
are still not statistically significant and are more or less confronted with type 1
error and type 2 error. In addition, even though that we could find statistically
significant CARs, it is still not clear how to reduce noisy CARs and how to
make use of multiple informative CARs for a final classification model.
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Therefore, in this paper, we propose a novel associative classifier, SigDi-
rect (Statistically SIGnificant Dependent ClassIfication Association RulEs for
ClassificaTion). The main contributions of this work are as follows:

• We propose a novel associative classifier, SigDirect. It achieves a compet-
itive or even better classification performance as the state-of-the-art rule
based and associative classifiers while generates an order of magnitude less
of classification association rules.

• By pushing the rule constraint in the Kingfisher algorithm, we are able to
find the complete set of CARs that show statistically significant depen-
dencies efficiently.

• To reduce noisy CARs, we propose an instance-centric rule pruning strat-
egy to find a globally optimal CAR for each instance in the training dataset
without jeopardizing the classification accuracy.

• In the classification phase, we propose and investigate different rule clas-
sification methods to study how to make a label prediction with multiple
matching CARs.

The remainder of the paper is organized as follows: Section 2 gives a view
of related work on associative classifiers. In Section 3 we introduce the general
steps to build the proposed associative classifier SigDirect. Section 4 presents
the experimental results. We summarize our work in Section 5.

2 Related Work

This section first gives a brief introduction about associative classification and
then introduces some popular associative classifiers.

The first reference to using association rules as CARs is credited to [10],
while the first classifier using these CARs, CBA, was introduced in [25] and
later improved in CMAR [23], ARC-AC and ARC-BC [4]. The idea is very
straightforward. Given a training dataset modeled with transactions where each
transaction contains all features of an object in addition to the class label of the
object, we can constrain the mining process to generate association rules that
always have as consequent a class label. In other words, the problem consists
of finding the subset of strong association rules of the form X → C, where C

is a class label and X is a conjunction of features. After modeling the dataset
into transactions, there are three steps in building an associative classifier:

• Rule Generation: In this phase, a mining algorithm is used to find classi-
fication association rules (CARs) of the form set of items → class label

given the minimum support and minimum confidence thresholds. CBA
and ARC use an apriori-like [2] fashion to mine the complete set of CARs,
while CMAR utilizes the FP-growth [19] method for CARs generation.
Both methods push the rule consequent constraint in the rule generation
process.
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• Rule Pruning: The rule generation process usually generates a large num-
ber of CARs, especially when the minimum support threshold is very low.
Pruning techniques are used to discover the best subset of CARs that can
cover the training dataset, meanwhile, they weed out noisy CARs that
may mislead or overfit the classification model. Database coverage [25] is
the most widely used pruning method which checks the extent of exposure
of CARs in the training dataset.

• Classification: In this phase, the model is able to make a class label pre-
diction for a new unlabeled object. How to utilize the set of left CARs
to make a correct prediction is a challenging problem. CBA [25] classifies
an object using the matching CAR with the highest confidence. How-
ever, making a prediction with a single CAR may lead to poor results.
CMAR [23] adopts a chi-square weighting scheme to make a prediction,
while ARC [4] predicts new objects using the average confidence of the
selected matching CARs within a confidence margin.

There are some other variants for associative classification: Harmony [30]
is an example which directly mines CARs, it directly finds the highest confi-
dent rule for each training instance and builds the classification model from
the union of these rules. It shows to be more effective and scalable than other
associative classifiers. 2SARC [5] is a two-stage classification model that is able
to automatically learn to select the rules for classification. In the first stage, an
associative classifier is learned by standard techniques. Second, multiple pre-
defined features are computed on the associative classifier, they act as input to
a neural network model to weigh different features of the associative classifier
to achieve a more accurate classification model. CCCS [7] uses a new mea-
sure, “Complement Class Support” (CCS) to mine positively correlated CARs
to tackle the imbalanced classification problem. It forces the measure of CCS
to be monotonic, thus the complete set of CARs are discovered by a row enu-
meration algorithm. An associative classifier is then built upon these positively
correlated CARs. SPAR-CCC [29] is another associative classifier designed for
imbalanced data. It integrates another new measure, “Class Correlation Ratio”
(CCR) into the statistically significant rules, the classifier works comparably
on balanced dataset and outperforms other associative classifiers on imbalanced
dataset. ARC-PAN [6] is the first associative classifier that uses both positive
and negative CARs. It proposes to add Pearsons correlation coefficient on the
basis of the support-confidence framework to mine positively and negatively cor-
related CARs. The ability of negative CARs have been demonstrated by their
usage in the classification phase. Li and Zaiane [21] proposed to leverage both
positive and negative CARs that show statistically significant dependencies for
classification and the proposed classifier achieves competitive and even better
performance compared with other rule based and associative classifiers.
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3 Proposed Method

This section introduces the proposed associative classifier, SigDirect. Similar as
most existing associative classifiers, SigDirect consists of three phases: rule gen-
eration, rule pruning and rule classification. Before talking about the detailed
steps, we introduce some notations and definitions used in this paper.

3.1 Basic Notations and Definitions

Definition 1 Dependency of a CAR
Let D be a transaction database, it consists of a set of items I = {i1, i2, ..., im}
and a set of class labels C = {c1, c2, ..., cn}. Each transaction T in D is asso-
ciated with a set of items X and a particular class label ck, where X ⊆ I and
ck ∈ C. A CAR is in the form of X → ck, the antecedent part and the conse-
quent class label of the CAR is dependent if and only if P (X, ck) 6= P (X)P (ck),
where P (X) denotes the probability of itemset X.

Definition 2 Fisher’s exact test
The dependency of the CAR X → ck is considered to be statistically significant at
level α, if the probability p of observing equal or stronger dependency in a dataset
complying with a null hypothesis is not greater than α. In the null hypothesis,
X and ck are assumed to be independent of each other. The probability p, i.e.,
p-value, can be calculated by Fisher’s exact test [16, 17]:

pF (X → ck) =

min{σ(X,¬ck)σ(¬X,ck)}
∑

i=0

(

σ(X)
σ(X,ck)+i

)(

σ(¬X)
σ(¬X,¬ck)+i

)

(

|D|
σ(ck)

)

where σ(X) denotes the support count of X. The significance level α is usually
set to be 0.05.

Definition 3 Confidence
The confidence of the CAR X → ck is:

conf(X → ck) =
σ(X, ck)

σ(X)

Definition 4 Parent and Child CAR
Let the CAR X → ck be as before. The CAR Y → ck is considered as its parent
CAR if Y ( X and |Y | = |X | − 1. Meanwhile, X → ck is considered as the
child CAR of the rule Y → ck.

Definition 5 Non-redundant CARs
The CAR X → ck is non-redundant, if there does not exist any CARs in the
form of Y → ck such that Y ( X and pF (Y → ck) < pF (X → ck).

Definition 6 Minimality
The CAR X → ck is minimal, if and only if X → ck is non-redundant, and,
there does not exist any CARs in the form of Z → ck such that X ( Z and
pF (Z → ck) < pF (X → ck).
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3.2 Rule Generation

To find the relevant rules for classification, SigDirect first needs to generate
the complete set of statistically significant dependent CARs. It means to find
rules in the form of X → ck which has a relevant small pF -value, i.e., pF (X →
ck) ≤ α. Since the pF -value is not a monotonic property, it is impossible for
us to do some pruning as apriori-like algorithms. One possible solution is to
enumerate the whole search space. However, the size of the whole search space
is |P(I)|.|C|, where P(I) is the power set of I, it grows exponentially with
the size of antecedent items. Recently, Kingfisher [16, 17] was proposed to find
the complete set of rules that show statistically significant dependencies. Still,
it was designed for the discovery of general rules, not specifically for CARs.
Therefore, adaption of the Kingfisher algorithm to enable the discovery of only
CARs is necessary as it can reduce the number of discovered rules. To find
statistically significant CARs, we extend the Kingfisher algorithm by pushing
the rule constraint in the rule generation phase. First, two theorems in [16, 17]
are given as follows:

Theorem 1 [16, 17] In a transaction database D, assume R is the set of all

items, for any item A ∈ R and X ⊆ R\A, it has pF (X → A) ≥ σ(A)!σ(¬A)!
|D|! ;

if σ(A) ≤ |D|
2 , then for any B ∈ R, X ⊆ R\{A,B}, it has pF (XA → B) ≥

σ(A)!σ(¬A)!
|D|! . Therefore, there exists a threshold γ ≤ 0.5, when σ(A) < γ|D|, the

item A cannot appear in any statistically significant rules.

Theorem 2 [16, 17] In a transaction database D, assume R is the set of all
items, for any item A ∈ R, X ⊆ R\A and Q ⊆ R\{X,A}, if σ(X) ≤ σ(A)

holds, then it has pF (XQ → A) ≥ σ(¬X)!σ(A)!
|D|!(σ(A)−σ(X))! .

Given these two theorems, we derive three corollaries that enable us to gen-
erate statistically significant CARs.

Corollary 1 There exists a threshold γ ≤ 0.5 such that the item I ∈ I is
impossible to be in any statistically significant CARs if its support count is
smaller than γ|D|.

Proof: Corollary 1 is a special case of Theorem 1 when I ∈ I. First we assume
that I can be in the consequent part of the rule, then according to Theorem 1,
we can find a threshold γ ≤ 0.5 such that when σ(I) < γ|D|, I cannot appear
in any statistically significant rules. Since we only intend to find CARs where
item I can only be in the antecedent part, if the condition σ(I) < γ|D| holds,
item I can cannot appear in any statistically significant CARs. �

Some impossible items are pruned before further analysis by Corollary 1. It is
assumed that s items (s ≤ m) are left. The remaining s items are reordered and
renamed in an ascending order by their support count, i.e., Irest = {i1, i2, ..., is},
where σ(i1) ≤ σ(i2) ≤ ... ≤ σ(is). Then in order to traverse the whole search
space, an enumeration tree is built over Irest. For each node in the tree, the an-
tecedent part is a combination of items in the power set of Irest (Figure 1). Since
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Figure 1: Enumeration of the whole search space.

the enumeration tree lists the whole search space, for each node in the enumera-
tion tree, we check all the n possible CARs X → ck(X ⊆ Irest, k ∈ {1, ..., n}) to
see if they are statistically significant, where X denotes the antecedent itemsets
in the corresponding node, as illustrated in Figure 1.

Corollary 2 For any X ⊆ Irest, Q ⊆ (Irest\X), if σ(X) ≤ σ(ck) holds, we

can get pF (XQ → ck) ≥
σ(¬X)!σ(ck)!

|D|!(σ(ck)−σ(X))! .

Proof: Corollary 2 can be considered as a special case of Theorem 2 when ck
is the consequent part of a rule. �

According to Corollary 2, the lowest value of pF (XQ → ck) provides the
lower bounds for pF (X → ck). Therefore, if the lower bound exceeds α, the
corresponding CAR X → ck is not statistically significant and can be directly
pruned. Otherwise, the CAR X → ck is considered as PSS, i.e., “Potentially
Statistically Significant”.

Definition 7 The CAR X → ck is defined as PSS, i.e., “Potentially Statis-
tically Significant”, if it meets either of the following conditions: (1) σ(X) ≤

σ(ck) holds, and the lower bound σ(¬X)!σ(ck)!
|D|!(σ(ck)−σ(X))! is smaller than or equal to α;

(2) σ(X) > σ(ck) holds.
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If a CAR is PSS, we need to calculate the exact p-value to see if it is indeed
statistically significant.

Corollary 3 If CAR X → ck is PSS, then any of its parent rule Y → ck is
also PSS, where Y ( X and |Y | = |X | − 1.

Proof: There are two situations making X → ck being PSS. The first sit-
uation is when σ(X) > σ(ck), since Y ( X , thus σ(Y ) > σ(X) > σ(ck), and
it is easy to see the parent rule Y → ck is also PSS. The second situation is
when X → ck but lowerbound(pF (XQ → ck)) < α, where Q ⊆ (Irest\X). Now
let XQ = Y (X\Y )Q = Y R, because (X\Y ) ⊆ (Irest\Y ) and Q ⊆ (Irest\X) ⊆
(Irest\Y ), thus R = (X\Y )Q ⊆ (Irest\Y ) and therefore, there must exists
R ⊆ (Irest\Y ) making lowerbound(pF (Y Q → ck)) < α, i.e., rule Y → ck is
PSS. �

With these three corollaries, the whole search problem can be summarized
as follows. We first use Corollary 1 to prune impossible items, sort and rename
the remaining items in an ascending order by their support. Next, all candidate
CARs with only one antecedent item are listed. We then use Corollary 2 to
check if they are PSS, non-PSS candidate CARs can be pruned directly with-
out further analysis. PSS CARs are further checked to see if they are indeed
statistically significant. From PSS 1-itemset CARs, we generate candidate PSS
2-itemset CARs by Corollary 3. The process repeats until no PSS CARs are
generated at a certain level. It also needs to be mentioned that in the searching
process, the minimality of the CARs is considered, if the CAR is marked as
minimal, we stop the expansion from this CAR because all of its children CARs
are impossible to get a lower p-value. In fact, checking minimality for a CAR is
difficult, because we have to consider its whole subtree. We use a well-proven
result from [16, 17] that if P (ck|X) = 1, the corresponding CAR X → ck is min-
imal. In other words, the property of minimality can be detected by calculating
the conditional probability of ck given X . Therefore, for a certain CAR, we
do not need to check all its children CARs in its subtree to see if it is minimal
anymore. The rule generation process is presented in Algorithm 1.

3.3 Rule Pruning

In the rule generation phase, we have taken the non-redundancy property into
consideration. However, the number of statistically significant dependent CARs
could still be very large. One possible disadvantage of a large number of CARs
is that it could contain some noisy information which may mislead the classifi-
cation process. Another drawback is that a large number of CARs will make the
classification process slower. This could be a problem in applications where fast
responses are required. Moreover, in classification applications where evidence
checking is required, rule-based models are an advantage but a large number of
rules is a significant drawback and defeats the purpose. In order to reduce the
number of CARs in the classification phase, many associative classifiers take a
sequential database coverage paradigm. However, the final set of CARs may
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Data: Transaction database D, set of antecedent itemset I, class set C, significance
level α = 0.05.

Result: Statistically significant dependent classification association rules set R.
Prune impossible antecedent items with Corollary1 1;
Irest: the arranged and renamed antecedent itemset;
Create root node and level-1 nodes, set l = 1;
while l ≤ |Irest| do

for each candidate rule r in level l do
if all parent CARs of r are PSS and not minimal then

if pF (r) ≤ α then

if r is non-redundant then

if r is minimal then

r.minimal = true;
R.add(r);

else

R.add(r);
end

end

end

else

prune CAR r and all its children CARs from the enumeration tree;
end

end

l = l+ 1;

end

Algorithm 1: Rule Generation Phase.

Data: Set of statistically significant dependent CARs R found in the rule generation
phase, transaction database D.

Result: A subset of CARs Rnew for the classification process.
for each instance t in the transaction database D do

Scan the set of CARs in R to find the matching CAR r, i.e.,
(r.antecedent ⊆ t.antecedent and r.class = t.class) with the highest confidence
value;
if r /∈ Rnew then

Rnew .add(r);
r.count = 1;

else

r.count += 1;
end

end

Algorithm 2: Rule Pruning Phase.

not be the globally best CARs for some instances in the training dataset. In
order to reduce the number of CARs and to find the globally best CARs for
all training instances, we propose an instance-centric rule pruning approach to
select the best CAR for each instance in the training dataset, the best CAR is
defined as the matching CAR with the highest confidence value. Each candidate
CAR may be selected by multiple training instances, therefore, each candidate
CAR is associated with an attribute “count”, it records how many times the
CAR is selected in the pruning process. The detailed algorithm is shown in
Algorithm 2.
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3.4 Classifying New Instances

After the rule pruning phase, the subset of the most statistically significant
dependent CARs form the actual classifier. In this phase, we utilize the built
classifier to make new predictions. Given a new instance without a class label,
the classification process searches the subset of CARs matching the new instance
to make a class label prediction. This subsection discusses three approaches that
we take to label new instances.

A simple solution is to select the matching CAR in Rnew with the highest
confidence value or the lowest pF -value and assign its label to the new instance.
Another alternative is to divide all matching CARs into groups according to
their class labels. The groups are then ordered according to the average confi-
dence value or average pF -value. The class that has the highest average confi-
dence value or the lowest average pF -value will be assigned to the new instance.
However, these two classification heuristics are often biased to minority classes.
To solve this problem, an intuitive way is to calculate the total confidence value
or total pF -value instead of the average values. But pF -value is different from
confidence, the lower the value, the better the CAR is, therefore, simply sum
up the pF -value is not a solution. Therefore, we transform the pF -value to its
log scale, subsequent steps are on a log-transformed value.

Then, we propose three different heuristics, denoted as S1, S2 and S3, to
consider the sum of ln(pF ), sum of confidence and sum of ln(pF ).confidence of
matching CARs in each class, respectively:

• S1: Calculate the sum of ln(pF ) of matching CARs in each class, the class
label of the new instance is determined by the class of the lowest value.

• S2: Calculate the sum of confidence of matching CARs in each class, the
class label of the new instance is determined by the class of the highest
value.

• S3: Calculate the sum of ln(pF ).confidence of matching CARs in each
class, the class label of the new instance is determined by the class of the
lowest value.

Algorithm 3 describes three heuristic classification methods for an unlabeled
new instance.

4 Experiments

4.1 Datasets

We evaluate our SigDirect method on 20 datasets from UCI Machine Learning
Repository [8]. In these datasets, the numerical attributes have been discretized
by the author of [12], the discretization strategy is different from that used
in [25, 23], thus the classification performance may be different from the results
reported before. All the following experimental results on each dataset are
reported as an average of a 10-fold cross validation.
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Data: A new instance o to be classified. Set of CARs Rnew from rule pruning phase.
Result: Class label of the new instance o.
T = ∅ ; // set of CARs matching o
for each CAR r in Rnew do

i = 1;
while i ≤ r.count do

if r.antecedent ⊆ o.antecedent then

T .add(r);
end

i = i+ 1;

end

end

divide T into n subsets by class labels: T1, T2, ..., Tn;
// Classification with S1

for each subset T1, T2, ..., Tn do

sum up the ln(pF ) values of matching CARs in each subset;
end

assign the class with the lowest sum of ln(pF ) value to the instance o;
// Classification with S2

for each subset T1, T2, ..., Tn do

sum up the confidence values of matching CARs in each subset;
end

assign the class with the highest sum of confidence value to the instance o;
// Classification with S3

for each subset T1, T2, ..., Tn do

sum up the ln(pF ).confidence values of matching CARs in each subset;
end

assign the class with the lowest sum of ln(pF ).confidence value to the instance o;

Algorithm 3: Classification Phase.

4.2 Classification Accuracy

We evaluate our SigDirect with three different classification strategies S1, S2,
S3 against two rule-based classifiers C4.5 [27] and FOIL [26], two associative
classifiers CBA [25], CMAR [23] and a hybrid between rule-based and associative
classifier CPAR [31] on the previous mentioned 20 discretized UCI datasets. The
results are reported in the form of average classification accuracy over 10-folds.
All classification methods are evaluated on the same generated 10-folds to ensure
a fair comparison. The parameters of C4.5 are set as default values [27]. In
FOIL, we allow a maximum of 3 attributes in the antecedent of a rule. In CBA
and CMAR, the minimum support is set to be 1%, the minimum confidence is
50%, the maximum number of antecedent items and the maximum number of
mined CARs are set to be 6 and 80, 000, respectively. In CPAR, we also follow
the same parameter settings as [31], minimum gain threshold set to 0.7, total
weight threshold to 0.05 and decay factor to 2/3.

Table 2 presents the classification accuracy of the following methods: C4.5,
FOIL, CBA, CMAR, CPAR and our SigDirect method with three different
classification heuristics S1, S2 and S3. Along with the accuracy result, the
name of the dataset, the number of antecedent attributes on the discretized
transaction dataset, the number of classes and the number of records are also
reported.
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Table 2: Comparison of classification results: C4.5, FOIL, CBA, CMAR, CPAR
and SigDirect

Dataset #attr #cls #rec C4.5 FOIL CBA CMAR CPAR
SigDirect

S1 S2 S3

adult 97 2 48842 78.8 84.6 84.2 81.3 77.3 84.0 83.9 84.0
anneal 73 6 898 76.7 98.8 94.5 90.7 95.1 92.1 91.6 93.5
breast 20 2 699 91.5 89.3 94.1 89.9 93.0 91.4 91.7 91.6

cylBands 124 2 540 69.1 74.1 76.1 76.5 70.0 74.8 76.1 75.2
flare 39 9 1389 82.1 83.8 84.2 84.3 63.9 80.6 81.8 81.6
glass 48 7 214 65.9 66.5 68.4 71.1 64.9 66.3 69.2 68.7
heart 52 5 303 61.5 55.2 57.8 56.2 53.8 55.8 58.1 57.4

hepatitis 56 2 155 84.1 77.8 42.2 79.6 75.5 83.2 85.2 82.6
horseColic 85 2 368 70.9 83.4 78.8 82.3 81.2 81.0 80.2 81.0
ionosphere 157 2 351 84.6 86.6 32.5 91.5 88.9 90.0 90.3 90.3

iris 19 3 150 91.3 94.0 93.3 94.0 94.7 89.3 89.3 89.3
led7 24 10 3200 73.9 60.5 73.1 73.2 71.3 73.5 73.4 73.6

letRecog 106 26 20000 50.4 50.0 32.5 28.3 58.2 48.0 58.8 52.4
mushroom 90 2 8124 92.8 99.5 46.7 100.0 98.5 100.0 100.0 100.0

pageBlocks 46 5 5473 92.0 92.4 90.9 90.1 92.5 91.2 91.2 91.2
penDigits 89 10 10992 70.5 84.1 92.3 87.4 80.5 84.3 88.4 84.6

pima 38 2 768 71.7 71.9 74.6 74.4 74.0 74.6 75.1 74.6
soybean 118 19 683 60.3 88.0 89.2 88.1 83.1 89.3 89.9 89.6
wine 68 3 178 75.8 88.2 49.6 92.7 88.2 92.7 93.3 92.7
zoo 42 7 101 91.0 93.1 40.7 93.0 94.1 94.1 94.1 94.1

Average 76.7 81.1 69.8 81.2 79.9 81.8 83.1 82.4

As can be observed from Table 2, the proposed SigDirect with S2 achieves the
best overall classification accuracy, followed by SigDirect with S3 and SigDirect
with S1. All of these three classifiers outperform C4.5, FOIL, CBA, CMAR and
CPAR on the average over the 20 datasets.

To have a more fair comparison between these classifiers, we show how many
times the classifier is the best and how many times it is the runner-up. Table 3
shows the comparison results, SigDirect with S2 (classify by the sum of confi-
dence) is still the best among these classifiers. It wins 7 out of 20 datasets, i.e.,
35% of all datasets, and is the runner-up 5 times. CMAR, in the second place,
wins in 5 datasets and gets the runner-up three times. Combing the comparison
results from Table 2 and Table 3 together, SigDirect with S2 is always the best,
SigDirect with S1 and SigDirect with S3 can be considered as competitive clas-
sifiers. It demonstrates that in the classification accuracy aspect, our SigDirect
classification method can be viewed as a better classifier when measured against
state-of-the-art rule based and associative classifiers.

4.3 Number of Rules

In associative classification, the number of CARs before and after rule pruning
are both very important indicators to measure a classifier. On one hand, if
we get a small number of CARs after rule generation, people are able to sift
through these rules to determine validity, to choose a subset of them or even to
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Table 3: Best and runner-up counts comparison.
Classifiers Best Runner-up

C4.5 1 2
FOIL 3 4
CBA 2 4
CMAR 6 2
CPAR 3 3

SigDirect with S1 3 4
SigDirect with S2 8 5
SigDirect with S3 2 5

edit them to inject domain knowledge not reflected in the training data. More-
over, rule pruning strategies are possible since these rules are more readable. On
the other hand, a small number of rules after rule pruning can make the clas-
sification phase faster. In addition, after rule pruning, because of transparency
of the rules, manually updating some rules is favourable and practical in many
applications if the number of rules is reasonable. Therefore, in this subsection,
we evaluate the number of CARs generated by our SigDirect algorithm and the
number of CARs after pruning strategy. Table 4 shows the number of rules of
two associative classifiers CBA, CMAR and our SigDirect method. The number
of rules before and after rule pruning are both presented. We also list the num-
ber of rules in C4.5, FOIL and CPAR in Table 4. All the parameter settings
of these classifiers are the same as the previous subsection. We also need to
notice that CBA and CMAR use Apriori and FP-growth to generate CARs.
The number of rules generated by these two methods should be the same. In
CBA and CMAR, the rule generation stops if the number of rules is larger than
80,000, but even in this situation, we can find that the number of CARs gener-
ated by SigDirect is much smaller than that generated by CBA and CMAR. In
most datasets, the number is even an order of magnitude smaller. It can also be
observed, after rule pruning, the number of rules by SigDirect is smaller than
that by CBA in 13 datasets, when compared with CMAR, the number of rules
are smaller in all 20 datasets. Furthermore, in 17 datasets, the number of rules
is below 100, which make it more readable and more manually editable.

All in all, SigDirect dramatically reduce the number of CARs compared with
CBA and CMAR in the rule generation phase without jeopardizing accuracy
and even improving it. After rule pruning, the number of rules for classification
is still smaller than that by CBA and CMAR. The overall smaller number
of rules makes SigDirect superior to other associative classifiers when there is
slight difference between classification accuracies. The number of rules remains
comparable and even smaller than the case of C4.5, FOIL and CPAR.

4.4 Effects of Pruning Strategies and Classification Heuris-

tics

In SigDirect, we propose an instance-centric method to do rule pruning to reduce
the number of CARs. Here, we first compare the effect of this pruning strategy
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Table 4: Comparison of the number of rules generated by different classifiers

Dataset C4.5 FOIL CPAR
CBA CMAR SigDirect

before rule
pruning

after rule
pruning

before rule
pruning

after rule
pruning

before rule
pruning

after rule
pruning

adult 1176.5 229.4 84.6 87942.6 691.8 87942.6 2982.5 136.1 50.1
anneal 17.0 29.5 25.2 89101.9 27.3 89101.9 208.4 340.5 23.2
breast 8.8 13.9 6.0 2711.4 13.5 2711.4 69.4 19.8 10.1

cylBands 37.2 45.5 35.8 64194.3 135.4 64194.3 622.8 700 34.2
flare 54.4 95.5 48.1 11910.2 115.1 11910.2 347.1 600.9 45.1
glass 14.8 47.1 34.8 10171.0 63.7 10171.0 274.5 340.5 23.2
heart 23.9 63.4 44.0 41899.4 78.4 41899.4 464.2 19.8 10.1

hepatitis 8.1 23.6 14.3 181441.1 2.3 181441.1 165.7 185.7 19.0
horseColic 25.6 64 19 178353.3 116.4 178353.3 499.9 319.9 33.3
ionosphere 18.3 24.9 22.8 95242.1 27.3 95242.1 272.7 284.3 15.8

iris 8.4 7.9 7.4 171.0 12.3 171.0 63.4 8.1 6.0
led7 63.2 79.1 31.7 453.6 71.2 453.6 206.3 269.0 108.7

letRecog 1565.2 559.3 789.1 2402.9 151.4 2402.9 1132.5 19252.9 468.0
mushroom 121.2 11.7 11.1 104666.3 2.0 104666.3 102.6 906.4 16.0
pageBlocks 16.3 43.6 29.9 1546.6 7.6 1546.6 80.6 230.1 25.8
penDigits 758.3 163.3 135.1 91125.5 657.6 91125.5 4501.5 8406 212.0

pima 24.4 58.7 21.7 1769.6 43.2 1769.6 203.3 116.8 33.2
soybean 57.1 46.3 76.6 26912.0 65.8 26912.0 293.2 314242 31.5
wine 12.8 15.9 15.2 82120.6 4.7 82120.6 122.7 8721.7 11.1
zoo 5.3 9.9 16.9 82616.7 2.0 82616.7 35.0 4597 7.8

with the database coverage paradigm. In Table 5, the classification results with
these two different rule pruning strategies are presented and compared. As
can be observed, the classification accuracy indeed improves when we take the
instance-centric pruning strategy, no matter what kind of classification heuristics
are used. The average classification accuracy is higher around 1% to 2%.

In order to investigate the efficacy of some measurement M (ln(pF ), confi-
dence or ln(pF ).confidence), to see if classifying by the sum of M can overcome
the bias problem caused by classifying with only the best rule or by the average
of M , we compare S1, S2 and S3 with their corresponding alternatives (B1, A1),
(B2, A2) and (B3, A3). The compared classification heuristics B1, A1, B2, A2,
B3 and A3 are listed below:

• B1: Select the matching rule with the lowest ln(pF ) value, the class label
of the new instance is determined by the selected rule

• A1: Calculate the average value of ln(pF ) for matching rules in each class,
the class label of the new instance is determined by the class of the lowest
value

• B2: Select the matching rule with the highest confidence value, the class
label of the new instance is determined by the selected rule

• A2: Calculate the average of confidence value for matching rules in each
class, the class label of the new instance is determined by the class of the
highest value

15



Table 5: Comparison of instance-centric and database coverage pruning meth-
ods.

Dataset
S1 S2 S3

instance
centric

database
coverage

instance
centric

database
coverage

instance
centric

database
coverage

adult 83.9 83.9 83.9 83.2 84.1 83.6
anneal 96.8 96.1 94.0 88.0 96.7 94.4
breast 91.4 90.7 91.7 91.3 91.6 90.7

cylBands 74.4 73.3 73.7 72.0 74.4 73.9
flare 83.0 80.3 84.2 83.2 84.2 83.7
glass 66.8 66.4 69.6 72.0 68.7 67.8
heart 56.4 57.1 58.1 56.8 57.4 56.4

hepatitis 83.2 82.6 85.2 83.2 82.6 81.9
horseColic 81.3 80.2 80.7 76.7 81.3 80.7
ionosphere 87.2 88.9 85.5 85.0 87.2 88.9

iris 94.0 93.3 94.0 94.7 93.3 93.3

led7 73.8 73.5 73.8 73.5 73.7 72.7
letRecog 48.2 46.7 58.8 61.8 52.6 51.1
mushroom 100.0 100.0 100.0 100.0 100.0 100.0

pageBlocks 91.2 90.7 91.2 91.1 91.2 90.7
penDigits 84.3 81.5 88.4 90.3 84.6 81.5

pima 74.6 68.5 75.1 67.7 74.6 68.6
soybean 89.5 87.6 90.0 89.6 89.8 88.4
wine 92.1 92.7 92.7 88.2 92.1 92.7

zoo 94.1 93.1 94.1 93.1 94.1 94.1

Average 82.3 81.3 83.2 82.1 82.7 81.8

• B3: Select the matching rule with the lowest ln(pF ). confidence value, the
class label of the new instance is determined by the selected rule

• A3: Calculate the average of ln(pF ).confidence value for matching rules
in each class, the class label of the new instance is determined by the class
of the lowest value

As shown in Table 6, S1, S2 and S3 have a better classification performance
than their counterpart (B1, A1), (B2, A2), (B3, A3), respectively. Table 7 shows
the count of wins, losses and ties for S1, S2 and S3 when compared with their
alternatives.

From these two tables, it can be concluded that the classification heuristics
in the “A” category are always the worst, “B” category heuristics are better
than “A” category, but are still not as good as “S” category heuristics. There-
fore, the classification heuristic that classifying a new instance by the sum of
measurement M (ln(pF ), confidence or ln(pF ).confidence) of all matching rules
in SigDirect indeed helps to improve the classification performance. When the
measurement M is the rule’s confidence, the associative classifier is the best.

4.5 Statistical Analysis

From Table 2, we can conclude that our SigDirect algorithm gets better classi-
fication performance compared to other methods and the confidence is a better
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Table 6: Comparison of classification heuristics S1 with (B1, A1), S2 with (B2,
A2) and S3 with (B3, A3)

Dataset
SigDirect

S1 B1 A1 S2 B2 A2 S3 B3 A3

adult 84.0 73.4 71.4 83.9 81.0 77.4 84.0 80.6 80.7
anneal 92.1 92.9 92.1 91.6 92.9 90.9 93.5 90.5 89.8
breas 91.4 89.7 88.1 91.7 90.0 90.0 91.6 91.4 90.7

cylBands 74.8 69.3 68.7 76.1 73.7 73.1 75.2 69.3 69.8
flare 80.6 78.2 77.0 81.8 82.1 82.1 81.6 81.4 81.5
glass 66.3 64.5 62.6 69.2 71.5 68.7 68.7 65.9 65.4
heart 55.8 55.4 55.8 58.1 51.5 52.1 57.4 55.4 56.4

hepatitis 83.2 75.4 73.5 85.2 85.8 83.2 82.6 81.3 80.0
horseColic 81.0 81.0 78.5 80.2 70.9 74.7 81.0 81.0 78.8
ionosphere 90.0 90.9 87.7 90.3 86.0 85.2 90.3 91.2 88.9

iris 89.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3

led7 73.5 69.7 68.3 73.4 70.9 69.8 73.6 70.5 69.3
letRecog 48.0 27.7 18.8 58.8 54.4 49.2 52.4 42.3 39.5
mushroom 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

pageBlocks 91.2 90.6 90.6 91.2 90.7 90.7 91.2 90.7 90.7
penDigits 84.3 68.0 50.9 88.4 87.4 84.2 84.6 74.6 63.3

pima 74.6 74.6 74.6 75.1 75.1 75.3 74.6 74.6 74.6

soybean 89.3 85.5 81.6 89.9 89.9 90.2 89.6 87.1 87.0
wine 92.7 91.6 91.0 93.3 84.8 80.9 92.7 93.3 91.0
zoo 94.1 93.1 93.1 94.1 93.1 93.1 94.1 94.1 94.1

Average 81.8 78.0 75.7 83.1 81.1 80.0 82.4 80.2 79.0

measure when measured against ln(pF ) and ln(pF ).confidence in the classifica-
tion phase. Table 4 shows that SigDirect gets a small number of CARs both
before and after rule pruning phase. Table 5 and Table 6 indicate the superi-
ority of the proposed instance-centric rule pruning strategy and the summation
effect when perform classification, respectively. These conclusions are obtained
mainly by measuring average classification accuracies and winning times. Al-
though it gives us some intuition about the lead of a certain classifier, a certain
rule pruning or a classification strategy, the conclusion is not forceful since the
dominance is unsurpassed over all 20 datasets.

To better validate the conclusions we get, we use Demsar’s [14] method, con-

Table 7: Classification heuristics S1, S2, S3 compared with their alternatives
wins losses ties

S1 vs. B1 14 2 4
S1 vs. A1 15 0 5
B1 vs. A1 14 1 5
S2 vs. B2 12 4 4
S2 vs. A2 15 3 2
B2 vs. A2 10 4 6
S3 vs. B3 13 2 5
S3 vs. A3 16 0 4
B2 vs. A2 11 4 5
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ducting a set of non-parametric statistical tests to compare different classifiers
over multiple datasets.

In the first step, Friedman test is applied to measure if there is a significant
difference between different classification models on Table 2. We first rank
different classifiers on each dataset separately, rji denotes the j-th of k classifiers
on i-th of N datasets. Then the average rank of j-th classifier is computed as
Rj = 1

N

∑

i r
j
i . In the null hypothesis, the average ranks of different classifiers

are equivalent, and the Friedman statistic is:

χ2
F =

12N

k(k + 1)
(
∑

j

R2
j −

k(k + 1)2

4
)

when N > 10 and k > 5. If the Friedman statistic exceeds a critical value,
the null hypothesis is rejected and we conduct post-hoc tests to make pairwise
comparisons between classifiers, otherwise, there is no statistically significant
difference among the k classifiers over these N datasets.

The Friedman statistic of 8 classification methods from Table 2 exceeds the
critical value, so we continue to use Wilcoxon signed-ranks test to compare
the differences between different methods pairwisely. In Wilcoxon signed-ranks
test, di denotes the classification accuracy difference on the i-th of N datasets.
We then rank the difference di according to their absolute values, if ties occur,
average ranks are assigned. Next, the sum of ranks R+, R− are calculated on
datasets which the second classifier outperforms the first classifier and the first
classifier outperforms the second classifier, respectively:

R+ =
∑

di>0

rank(di) +
1

2

∑

di=0

rank(di)

R− =
∑

di<0

rank(di) +
1

2

∑

di=0

rank(di)

Let T be the smaller value of these two sums, when N ≥ 20, Wilcoxon W

statistic tends to form a normal distribution, then we can use z-value to evaluate
the null hypothesis that there is no statistical difference between these two
classifiers. The z-score is:

z =
T − 1

4N(N + 1)
√

1
24N(N + 1)(2N + 1)

If z < −1.96 then the corresponding p-value is smaller than 0.05, therefore, the
null hypothesis is rejected.

A series of Wilcoxon signed-ranks tests from Table 2, Table 4, Table 5 and
Table 6 are listed in Table 8. It shows the count of wins, losses, ties and
corresponding p-value for pairwise post-hoc comparisons. Rows 2-6 show the
differences between the proposed SigDirect algorithm with 5 other well-known
rule based and associative classifiers. SigDirect is significantly better than C4.5,
FOIL, CBA and CPAR and is as good as CMAR. From Rows 7-8, we can
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Table 8: Statistical analysis of Table 2, Table 4, Table 5 and Table 6 ; (*)
indicates statistically significant difference with a p-value of 0.05.

row comparisons wins losses ties p-value

2 SigDirect(S2) vs. C4.5* 17 2 1 0.001
3 SigDirect(S2) vs. FOIL* 13 6 1 0.040
4 SigDirect(S2) vs. CBA* 14 5 1 0.033
5 SigDirect(S2) vs. CMAR 12 5 3 0.136
6 SigDirect(S2) vs. CPAR* 13 6 1 0.010

7 SigDirect(S2) vs. SigDirect(S1) 10 4 6 0.158
8 SigDirect(S2) vs. SigDirect(S3) 11 5 4 0.214

9 #bef. prun: SigDirect vs. CBA* 18 2 0 0.004
10 #bef. prun: SigDirect vs. CMAR* 18 2 0 0.006
11 #aft. prun: SigDirect vs. CBA 9 11 0 0.435
12 #aft. prun: SigDirect vs. CMAR* 19 1 0 0.001

13 S1: instance-cetric vs. db coverage* 15 3 2 0.001
14 S2: instance-cetric vs. db coverage 15 4 1 0.056
15 S3: instance-cetric vs. db coverage* 15 2 3 0.008

16 SigDirect(S1) vs. SigDirect(B1)* 16 2 2 0.001
17 SigDirect(S1) vs. SigDirect(A1)* 15 3 2 0.001
18 SigDirect(S2) vs. SigDirect(B2)* 13 5 2 0.006
19 SigDirect(S2) vs. SigDirect(A2)* 15 3 2 0.001
20 SigDirect(S3) vs. SigDirect(B3)* 15 1 4 0.001
21 SigDirect(S3) vs. SigDirect(A3)* 16 2 2 0.001

see that the difference between three different classification heuristics is not
statistically significant, but since S2 gets a more higher average classification
accuracy, we choose to use S2 in the classification phase. Rows 9-12 list the
number of CARs differences between SigDirect, CBA, CMAR before and after
rule pruning phase. SigDirect gets a significantly smaller number of CARs in
the rule generation phase when measured against CBA and CMAR, the number
of CARs is still significantly smaller than CMAR even after the rule pruning
phase. The effect of the instance-centric rule pruning strategy is shown in Rows

13-15, when classification heuristics S1 and S3 are used, the instance-centric
method is significantly better than the database coverage method. Although
the difference is not statistically significant with S2, the corresponding p-value
is still very close to 0.05 and the instance-centric strategy wins 15 time and only
loses 4 times. Therefore, the instance-centric rule pruning strategy is better than
the database coverage method. The last 6 rows compare different classification
heuristics, the “S” category is much better than the “B” and “A” category. In
this way, to classify a new instance, we should choose to sum up the measure
M of multiple matching CARs to make a final prediction.

5 Conclusions

In this paper, we study the problem using statistically significant dependent
CARs for classification and propose a novel associative classifier SigDirect. The
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proposed associative classifier consists of three steps: rule generation, rule prun-
ing and rule classification. In the first phase, we adapt upon the Kingfisher
algorithm by pushing the rule constraint in the rule generation phase to enable
the discovery of statistically significant CARs. After the rule generation step,
there are still many noisy CARs which may jeopardize the classification phase
or overfit the model, therefore we propose an instance-centric rule pruning strat-
egy to select a subset of CARs of high quality. At the last step, we present and
compare different rule classification methods to ensure the correct prediction of
unlabeled data.

The experimental results are very encouraging. The proposed SigDirect
classifier achieves better classification results on many real-world datasets when
measured against state-of-the-art rule based and associative classifiers. Apart
from the promising classification performance, the number of CARs before and
after rule pruning phase are both very small, making SigDirect more appealing
than other methods when there is little difference in classification performance.
The number of CARs before rule pruning phase is even an order of magnitude
smaller than that by CBA and CMAR. After rule pruning phase, the number of
rules is still very small. The small set of CARs in both phases makes it possible
and practical for users to sift through them to edit and update according to
their own needs, which can be very important in many applications.
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[21] Jundong Li and Osmar R Zäıane. Associative classification with statis-
tically significant positive and negative rules. In Proceedings of the 24th
ACM International Conference on Conference on Information and Knowl-
edge Management. ACM, 2015.
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