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Abstract Purpose To develop a classification algorithm

and accompanying computer-based clinical decision sup-

port tool to help categorize injured workers toward optimal

rehabilitation interventions based on unique worker char-

acteristics. Methods Population-based historical cohort

design. Data were extracted from a Canadian provincial

workers’ compensation database on all claimants under-

going work assessment between December 2009 and Jan-

uary 2011. Data were available on: (1) numerous personal,

clinical, occupational, and social variables; (2) type of

rehabilitation undertaken; and (3) outcomes following

rehabilitation (receiving time loss benefits or undergoing

repeat programs). Machine learning, concerned with the

design of algorithms to discriminate between classes based

on empirical data, was the foundation of our approach to

build a classification system with multiple independent and

dependent variables. Results The population included

8,611 unique claimants. Subjects were predominantly

employed (85 %) males (64 %) with diagnoses of sprain/

strain (44 %). Baseline clinician classification accuracy

was high (ROC = 0.86) for selecting programs that lead to

successful return-to-work. Classification performance for

machine learning techniques outperformed the clinician

baseline classification (ROC = 0.94). The final classifiers

were multifactorial and included the variables: injury

duration, occupation, job attachment status, work status,

modified work availability, pain intensity rating, self-rated

occupational disability, and 9 items from the SF-36 Health

Survey. Conclusions The use of machine learning classi-

fication techniques appears to have resulted in classifica-

tion performance better than clinician decision-making.

The final algorithm has been integrated into a computer-
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based clinical decision support tool that requires additional

validation in a clinical sample.

Keywords Rehabilitation � Musculoskeletal diseases �
Compensation and redress � Machine learning �
Classification � Prediction

Background

Work-related musculoskeletal conditions are some of the

most burdensome health conditions internationally in terms

of personal, societal and economic costs [1–3]. While the

majority of individuals with such conditions return to work

quickly, a small minority remain off work for longer

periods of time and are responsible for the majority of

associated health care and compensation costs [4]. Ideally,

those most at risk of delayed recovery and return-to-work

(RTW) should be identified and effective interventions

targeted towards this high-risk group implemented [5–7].

This is the process of risk-factor classification, which

involves assigning patients to appropriate interventions or

rehabilitation programs based on individual characteristics

and clinical findings [8]. Selecting the optimal intervention

that will lead to successful RTW remains a challenging

task for clinicians and funders of health care.

As mentioned, many work-related musculoskeletal con-

ditions recover quickly and spontaneously, and often do not

require treatment beyond reassurance and advice to stay

active [9–11]. It appears that intensive exercise and reha-

bilitation in the first few weeks may be counter-productive

and actually delay recovery in some cases [12, 13]. However,

too large of a delay between injury and appropriate reha-

bilitation has also been found associated with delayed

recovery and RTW [14]. Most evidence-based guidelines

recommend further assessment and intervention if recovery

has not occured within 4–6 weeks to avoid progression to

chronic pain and disability [11, 15], In this sub-acute stage

various types of rehabilitation interventions have been rec-

ommended including physical conditioning or functional

restoration programs [16], worksite-based interventions

[17], and interdisciplinary biopsychosocial rehabilitation

(i.e. chronic pain management programs) [18].

Systematic reviews of these interventions have reported

some supportive evidence [16–18]. However, individual

response to these interventions is highly variable with some

patients benefiting greatly while others do not improve or

experience worsening of their problems [19]. Currently,

clinicians are unable to identify with complete accuracy

what patients will respond best to the various rehabilitation

options and referral is often made in a trial-and-error

fashion [8]. Individual factors such as expectations of

recovery and previous health care seem to predict in

general who will respond to rehabilitation [20, 21], but

only recently have researchers explored whether specific

characteristics can be used to target interventions to

achieve optimal outcomes [6, 7, 22–24]. One major limi-

tation of these studies is that most are limited to patients

with low back pain. While back pain makes up the largest

diagnostic category of injured workers, it typically

accounts for less than 40 % of all claimants off work with

musculoskeletal conditions [25, 26]. Development of

broader classification algorithms are needed to address the

needs of all injured workers requiring rehabilitation.

Considerable efforts have been made to increase

awareness and appreciation among clinicians of the psy-

chological, social and workplace factors contributing to

musculoskeletal disability [5, 27–29]. Unfortunately,

uptake in clinical practice has been slow, partly because

easy-to-use tools that integrate these factors into routine

clinical decision making are lacking [30–32]. Advances in

computing technology have allowed the development of

expert computer-based clinical decision support (CDS)

tools, such as apps for handheld computing devices [33].

These are attractive options given the widespread utiliza-

tion of handheld computing devices such as tablet com-

puters and smartphone devices. Computers have the ability

to rapidly execute advanced statistical algorithms that

integrate many factors into decision-making, matching

individual patient characteristics with a knowledge base to

provide patient-specific recommendations [34]. The use of

computerized CDS has the potential to greatly augment

clinician decisions [34–37] and was found beneficial in the

diagnosis of back pain and use of lumbar spine imaging

modalities [38, 39]. To our knowledge computer-based

CDS tools have not been evaluated for their ability to

augment treatment selection in the realm of work-related

musculoskeletal disorders.

The purpose of our project was to develop a classifica-

tion algorithm and accompanying computer-based CDS

tool to help categorize individuals who were not working

due to a wide variety of musculoskeletal disorders. The

overall aim was to categorize workers based on individual,

work-related and clinical characteristics according to their

likelihood of successful RTW following various types of

rehabilitation. We examined a variety of characteristics

likely to influence RTW including self-report measures of

physical, functional and psychosocial factors.

Methods

Design

A population-based historical cohort design was used, with

data extracted from a Canadian provincial compensation

598 J Occup Rehabil (2013) 23:597–609

123



database (WCB-Alberta). Ethical approval was obtained

from the University of Alberta’s Health Research Ethics

Board.

Population

Province-wide data was available on all 8,611 WCB-

Alberta claimants with musculoskeletal injuries referred to

RTW assessment facilities throughout the province. WCB-

Alberta’s administrative database was augmented by clin-

ical data from rehabilitation providers who are contracted

to file reports at time of claimants’ admission and discharge

from rehabilitation programs. For this study, data were

extracted on all claimants undergoing RTW assessment

within the jurisdiction between December 1, 2009 and

January 1, 2011.

Rehabilitation of Injured Workers Within the Alberta

Context

For the past decade, rehabilitation of injured workers in

Alberta has been undertaken within the context of a con-

tinuum of care model (shown in Appendix I (ESM)), which

has been defined as a coordinated array of settings, ser-

vices, providers, and care levels in which health, medical,

and supportive services are provided in the most appro-

priate care setting [40]. Details of the Alberta model, its

province-wide implementation, and a description of its

positive impact on return to work outcomes have been

discussed elsewhere [41]. In brief, the model includes a

staged approach to rehabilitation, from single service pro-

viders through interdisciplinary rehabilitation and complex

pain management programs. Progress through the various

stages is based on a duration model of occupational dis-

ability [4, 42]. Minimal intervention is advocated in early

stages followed by interdisciplinary RTW assessment if

required.

Claimants are referred for RTW assessment when they

have met or surpassed expected injury healing times (i.e.

4–8 weeks for soft tissue injury, longer for specific inju-

ries), have not yet returned to work (not functionally

improving or returning to work following a course of sin-

gle-service physical therapy, chiropractic or medical care),

and/or report ongoing difficulties related to their compen-

sable condition. This predominantly represents claimants in

the sub-acute phase of recovery, but at times claimants

with injuries of longer duration are also assessed. These

claimants are evaluated for purposes of: (1) determining

readiness to RTW; and (2) need for additional rehabilita-

tion. Based on clinician interpretation of assessment find-

ings, claimants are referred to the most appropriate

rehabilitation program. This RTW assessment process and

the various tools used for determining readiness for RTW

have been previously studied [43–47]. However, little

research has been done examining decisions regarding

what type of rehabilitation, if any, is required to facilitate

recovery and return-to-work.

Various rehabilitation options are currently available

that include:

1. Provider Site-Based Program: Interdisciplinary func-

tional restoration at a designated rehabilitation facility.

Treatment focuses largely on graded activity, func-

tional restoration, and specific exercise programs, but

also includes communication/negotiation with relevant

stakeholders such as employers.

2. Worksite-based Rehabilitation: In this program all

intervention takes place at the worksite instead of at a

rehabilitation facility. Treatment focuses more on

maintaining linkages with the workplace, participatory

ergonomics and identification of suitable duties to help

claimants stay at work.

3. ‘‘Hybrid’’ Functional Restoration/Worksite-based

Rehabilitation: This is a combination of provider and

worksite based programs. Claimants spend time at both

the workplace and rehabilitation facility for treatment.

This option is commonly used for claimants with

cumulative activity related disorders as opposed to

traumatic injuries.

4. Complex Interdisciplinary Biopsychosocial Rehabili-

tation: This is a comprehensive pain management

program for claimants with chronic pain and multiple

complex barriers to RTW. Treatment includes coun-

seling psychology sessions to improve coping,

decrease stress and overcome emotional burdens,

functional restoration with a cognitive-behavioural

approach, and RTW planning through stakeholder

negotiation.

5. ‘Other’ intervention: This involves either no rehabil-

itation or referral back to a single service provider (i.e.

physical therapy or chiropractic).

In all of the rehabilitation programs education is pro-

vided related to the nature of the injury, normal healing

phases and strategies for coping with pain. For this study,

information was extracted on the specific rehabilitation

option(s) undertaken by each claimant in the database. We

also extracted outcome status (RTW or other) following the

program and duration of the program.

Measures

All data for this study was extracted from archived WCB-

Alberta provincial databases. Data were available on: (1)

numerous personal, clinical, occupational, and social

variables measured at time of RTW Assessment; (2) type

of rehabilitation undertaken (as just described) and whether

J Occup Rehabil (2013) 23:597–609 599
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a repeat program was needed; and (3) RTW outcomes

following the intervention. Specific measures from the

RTW assessment included:

1. Duration of injury: calendar days between accident

and admission for rehabilitation

2. Age in years

3. Sex

4. Marital status

5. If an interpreter was required

6. Education level

7. Job attached status (whether the worker had a job to

return to)

8. Currently working? Yes or no.

9. Modified duties available? Yes or no.

10. Number of previous compensation claims

11. Primary diagnosis: ICD9 code

12. If comorbidity were present?

13. Mechanism of injury code [48]

14. Nature of injury code [48]

15. Part of Body code [48]

16. National Occupational Classification code [49]

17. Pain VAS: Pain severity was rated on a visual

analogue scale in which the client places a mark on a

line, anchored by 0 and 10, to measure their level of

pain most of the time. Zero corresponds to no pain

and 10 to the worst pain imaginable. Analogue pain

scales have been previously shown to have adequate

reliability and validity and to be consistently associ-

ated with RTW [50].

18. Pain Disability Index (PDI)—The PDI is a commonly

used self-report questionnaire measuring perceived

disability due to pain [51]. Pollard initially developed

this tool and it has since been tested extensively in a

variety of populations [52–56]. The PDI asks claim-

ants to rate their level of disability on a 0–10 scale on

seven areas of activity: family/home responsibility,

recreation, social activity, occupation, sexual behav-

iour, self-care, and life-support activity. Scores on

these seven items are summed and a total out of 70 is

obtained. The higher the individual’s score, the

higher the individual’s level of perceived disability.

The PDI has been reported to have good psychomet-

ric properties, such as test–retest reliability, concur-

rent validity and internal consistency [52–56].

Individual PDI items were used in analysis of the

current study.

19. SF-36v2: This is a commonly used patient assessed

generic health outcome measure [57]. It consists of

eight scaled scores, which are weighted sums of the

items in their section [58]. The eight scales include

vitality, physical functioning, bodily pain, general

health perceptions, physical role functioning,

emotional role functioning, social role functioning,

and mental health. These scales are used to calculate

physical and mental health summary measures. The

SF-36 has previously been used in research with

individuals with musculoskeletal conditions and work

disability [59–62]. Individual SF-36 items were used

in analysis of the current study.

Data on the rehabilitation program recommended by the

assessing clinician was also available for each claimant, as

well as the anticipated duration of each program. Duration

was used in calculating a ‘clinician baseline’ for accuracy

in making treatment recommendations for comparison to

the machine learning algorithm.

Outcomes

Since our primary goal was to develop a classification model

of successful RTW, we extracted RTW outcome measures

commonly used in program evaluation within the WCB-

Alberta jurisdiction. This included number of days receiving

wage replacement benefits after assessment. For sufficient

variability in the measure and to ensure that outcomes were

linked to the rehabilitation program, we examined whether

the worker was receiving wage replacement benefits at

30 days after assessment. Reception of benefits is a surrogate

indicator of RTW, but is commonly used as an outcome

within studies of compensation claimants. We also extracted

information on whether the worker underwent a subsequent

rehabilitation program. Successful RTW was judged when

workers were no longer receiving wage replacement benefits

at 30 days after assessment and did not undertake a sub-

sequent program during the one-year follow-up.

Analysis

Descriptive statistics were calculated including means and

standard deviations for continuous variables, modes and

percentages for categorical variables. Significant differ-

ences across the rehabilitation programs were determined

using Chi square and t-tests. Machine learning, concerned

with the design of algorithms to discriminate between

classes based on empirical data, was the foundation of our

approach to build a classification system with multiple

independent and dependent variables [63]. Machine

Learning can help overcome human errors inherent in

making complex classifications using multiple features or

variables. The goal of machine learning is to build a con-

cise model of the distribution of class labels in terms of

predictive features [63]. In our case, the ‘label’ is the

appropriate rehabilitation program for each claimant and

the predictive features are the various measures available

on each claimant at time of assessment. We will describe
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the process of model development (i.e. build) and evalua-

tion (i.e. test) that involved identifying desirable charac-

teristics of the final decision support system, data pre-

processing, machine learning algorithm selection and

‘training’ (i.e. model build) and finally evaluation of the

model and comparison with the clinician baseline (See

Fig. 1). Readers are referred to the review paper by Kot-

siantis for more detail about machine learning and the

process of model development and testing [63].

Desirable Characteristics of the Final Decision Support

System

We wanted the final clinical decision support system to

have some fundamental characteristics that would increase

the likelihood of usage. We wanted the model to be

interpretable and editable. Users should be able to insert

their own expertise to modify the model and see the evi-

dence supporting recommendations made by the system,

therefore, rule-based algorithms were deemed more desir-

able. We also wanted the system to consider multiple

recommendations so users could choose the most appro-

priate one under different considerations. Lastly, the sys-

tem should use web-based technology to provide easy and

ubiquitous access to users with all kinds of computer

devices. These desirable characteristics guided our selec-

tion of analysis strategies.

Data Pre-processing

To recommend a rehabilitation program leading to suc-

cessful RTW, the machine learning algorithm needed to

‘learn’ from data consisting of previous cases with a suc-

cessful RTW result (off benefits at 30 days and no addi-

tional rehabilitation programs within 1 year). Thus, we

extracted 4,876 successful cases from the dataset as the

initial training/development dataset. The rest of the cases

were used to train/develop another model of negative rules

(i.e. rules indicating what program to avoid).

The training/development dataset consisted of five cat-

egories or ‘classes’, each representing a specific rehabili-

tation program; however, the class distribution in the

dataset was severely imbalanced (very few claimants

underwent complex, workplace-based or hybrid interven-

tions). With the presence of class imbalance, a classifica-

tion model normally will be biased towards the majority

classes while the minority classes may be shadowed or be

insufficient for learning. To resolve this problem we used

an over-sampling technique on the minority classes to

mitigate the severity of imbalance. To avoid overfitting and

generalizing the decision boundary, we used the Synthetic

Minority Over-sampling Technique (SMOTE) [64].

SMOTE is a procedure for dealing with imbalance across

classes, and blends under-sampling of majority classes with

over-sampling of minority classes. These methods are

commonly used in machine learning computation to

address imbalanced data [64]. Additionally, we used the

Tomek Link method to overcome class overlaps after

sampling in order to avoid minority data generated from

SMOTE from invading the majority class too deeply and

causing classification difficulties [65]. The Tomek Link

method is an analytical procedure that removes borderline

cases between classes and helps to reduce noise in the

dataset, thereby resulting in optimal classification [65].

Since we had more variables or features than desired in

our final model, Correlation-based Feature Subset Evalu-

ation [66] with Linear Forward Search [67] feature selec-

tion process was undertaken. In general, this algorithm

favors individual features that are highly correlated with

the class but much less correlated with other features. After

feature selection, all the numeric features are further dis-

cretized since many machine learning algorithms work

better with discrete features. After feature selection, 30

variables remained in consideration in the final model.

Machine Learning Algorithm Development

Decision Trees (C4.5), Repeated Incremental Pruning to

Produce Error Reduction (RIPPER), and Naı̈ve Bayes

Classifiers were all investigated; however, the best results

were obtained with the RIPPER algorithm and this method

Fig. 1 Process of machine learning (modified from Kotsiantis [63])
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was used to train the final classification model. RIPPER is

an inductive rule-based learner that builds a set of rules to

identify the classes while minimizing the amount of error.

The error is defined by the number of training examples

misclassified by the rules. RIPPER has generally been

demonstrated to be more effective than decision-tree

learners and more efficient on large samples [68]. RIPPER

generates classification rules that follow a specific logical

formula that are easily interpreted [69]. The output is a

series of first-order logical statements following an ‘IF—

THEN’ framework for recommendations (see Appendix II

(ESM) for more information). RIPPER forms rules through

a process of repeated growing and pruning. During the

growing phase, the rules are made more restrictive in order

to fit the training data as closely as possible. During the

pruning phase, the rules are made less restrictive in order to

avoid overfitting, which can cause poor classification per-

formance [69]. Concisely, the algorithm proceeds itera-

tively starting with an empty rule set, and in each iteration,

the training data is split into a growing set and a pruning

set, then a rule is grown from the growing set and imme-

diately pruned or simplified based on the pruning set. If the

error rate of the new rule on the pruning set does not

exceed some threshold, the rule is added to the rule set

representing the learned model and all examples in the

training data covered by this rule are removed before being

split again for the next repetition. Otherwise, the iteration is

stopped and the rule set is returned. Growing a rule consists

of starting with an empty conjunction of conditions and

considers adding any condition of the form An = v,

Ac B h, or Ac C h, where An is a nominal attribute and v is

a legal value of An, or Ac is a continuous variable and h is

some value for Ac that occurs in the growing set. The

condition that maximizes any information gain criteria is

Table 1 Characteristics of injured workers in the database

Entire

sample

Full data on

questionnaires

Missing data

(n = 8,611) (n = 7256) (n = 1355)

Mean (SD) or percent

Age (years) 42.8 (11.9) 42.8 (11.9) 43.0 (11.9)

Accident to admissiona

(days)

210.5 (419.9) 215.1 (426.1) 185.9 (384.1)

Median = 71 Median = 74 Median = 61

Number of previous claimsa 4.2 (5.3) 4.2 (5.3) 4.0 (5.1)

Sex (% male) 64 64 65

Education level

Grade 8 or less 3 3 3

Partial high school 11 11 9

High school diploma 17 18 14

Partial technical school 5 5 3

Technical diploma 13 13 9

Partial university 3 3 2

University degree 5 5 5

Not specifieda 44 42 55

Marital status

Married/common law 37 39 29

Single 17 17 15

Divorced/separated 7 7 6

Widowed 1 1 1

Not specifieda 38 36 50

Job Attacheda 85 84 88

Currently working 46 46 46

Modified work availablea

(% yes)

55 54 58

Diagnosis

Sprain/straina 44 44 48

Joint disorder 28 29 24

Fracture 12 12 11

Contusion 5 5 5

Laceration 3 2 4

Dislocation 2 2 1

Nerve damage 1 2 1

Other 5 5 6

Part of body neck or backa 21 20 24

Comorbiditya (% with sec.

diagnosis)

29 31 20

Interpreter requireda (% yes) 3 3 5

Assessment

recommendationa

No intervention required 6 6 6

Single service provider 18 19 11

Provider-based RTW

program

54 52 62

Worksite-based RTW

program

1 2 2

Hybrid RTW program 9 9 11

Complex RTW program 4 4 2

Medical consult 3 3 3

Other 4 5 2

Actual program undertakena

No rehabilitation 19 19 18

Table 1 continued

Entire

sample

Full data on

questionnaires

Missing data

(n = 8,611) (n = 7256) (n = 1355)

Single service provider 17 18 13

Provider-based RTW

program

50 50 55

Worksite-based RTW

program

1 2 1

Hybrid RTW program 9 9 11

Complex RTW program 3 4 2

Receiving TTD benefits at

assess (% yes)

45 46 44

TTD 30-days post

assessmenta (% yes)

25 26 23

Repeat program 8 8 8

a Statistically significant difference between those with and without missing

data
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continually added until the rule covers no negative exam-

ples from the growing dataset. The algorithm uses an

information gain function that measures the expected

reduction in entropy caused by adding the attribute.

Information gain represents the expected amount of

information that would be needed to specify whether a new

instance should be classified into one class or the other,

which is based on the notion of entropy measuring the

impurity of a variable. The information gain is equal to the

total entropy for an attribute if for each of the attribute

Table 2 Characteristics of claimants in various rehabilitation programs undertaken

No rehab Community PT Functional restoration Worksite-based rehab Hybrid Complex pain

n = 1,640 n = 1,448 n = 4,331 n = 124 n = 774 n = 294

Mean (SD) or percent

Age (years) 43.6 (12.2) 42.9 (12.1) 42.5 (11.7) 41.3 (12.7) 42.4 (11.6) 44.6 (10.5)

Accident to admission (days) 394.2 (636.8) 144.4 (289.7) 150.9 (291.5) 103.1 (254.2) 119.1 (193.6) 675.6 (780.0)

Number of previous claims 4.4 (5.6) 4.3 (5.2) 4.2 (5.2) 3.0 (3.8) 3.6 (5.0) 4.5 (5.2)

Sex (% male) 70 62 64 53 57 67

Education level

Grade 8 or less 2 2 3 2 2 8

Partial high school 10 11 12 5 7 17

High school diploma 18 18 17 7 14 17

Partial technical school 5 6 5 0 3 3

Technical diploma 12 15 12 8 12 12

Partial university 3 3 2 0 3 3

University degree 4 5 5 4 7 6

Not specified 44 39 44 74 53 34

Marital status

Married/common law 38 42 36 17 33 44

Single 17 18 17 9 12 20

Divorced/separated 7 8 6 5 6 8

Widowed 1 1 1 1 1 1

Not specified 37 32 39 69 48 27

Job attached 74 90 86 99 98 59

Currently working 48 50 38 75 84 16

Modified work available (% yes) 48 60 52 73 81 33

Diagnosis

Sprain/strain 38 46 45 51 54 29

Joint disorder 25 27 28 32 30 41

Fracture 14 10 12 7 6 17

Contusion 6 6 5 6 4 2

Laceration 5 2 2 2 2 2

Dislocation 2 3 2 0 1 3

Nerve damage 3 2 1 1 1 3

Other 8 4 5 3 3 4

Part of body neck or back 17 11 23 19 23 27

Comorbidity/(% with secondary diagnosis) 32 32 28 12 19 43

Interpreter required (% yes) 3 3 3 3 2 5

Assessment recommendation

No intervention required 25 7 1 1 1 1

Single service provider 28 59 4 3 3 5

Provider-based RTW program 24 14 91 7 13 11

Worksite-based RTW program 3 1 1 86 1 0

Hybrid RTW program 5 3 1 3 81 0

Complex RTW program 2 1 0 0 0 82

Medical Consult 4 10 1 0 0 0

Other 10 7 2 0 2 2

Receiving TTD benefits at assessment (% yes) 29 44 56 20 10 77

TTD benefits 30-days post assessment (% yes) 13 25 32 0 2 74

Repeat program 7 19 6 1 2 12
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values a unique classification can be made for the result

attribute. High entropy means there is uniform distribution

of the variable values in the sample leading to lack

of predictability of the values, while low entropy means

the distribution varies and has peaks and valleys leading to

predictability.

To prune a rule, RIPPER considers deleting any final

sequence of conditions from the rule and chooses the

deletion that maximizes the function (p - n)/(p ? n)

where p is the number of positive examples and n is the

number of negative examples in the pruning set. Finally,

RIPPER post-processes the rule set by re-pruning or sim-

plifying each rule in the order they were learned. A rule is

simplified by deleting any single condition chosen in such a

way that the resulting new set of rules yields the greatest

reduction of error on the training set [68]. RIPPER handles

multiple classes by ordering them from least to most pre-

valent and then treating them each sequentially as distinct

two-class problems (i.e. individual rehabilitation program

vs. others).

In Machine Learning, the algorithm ‘learns’ from suc-

cessfully classified cases within a ‘build’ dataset. The

contrast is formed from the classes (i.e. rehabilitation

programs) within the data. Multiple classes are ordered

from least to most prevalent and then treated sequentially

as individual two-class problems (i.e. individual rehabili-

tation program vs. others). In our multi-class situation (i.e.

multiple rehabilitation programs could be selected), the

rules generated from the RIPPER algorithm are ranked in

ascending order based on the number of examples in the

class. Unknown instances are tested against the rules in that

order. The first rule that covers the test instance ‘‘fires’’ and

the testing phase ends. Since we were expecting the model

to make multiple recommendations, we modified the

algorithm to track all of the rules that cover a given test

instance and grouped together the rules recommending the

same program. In this way, the model generated a ‘reha-

bilitation intervention’ recommendation pool from which

the user could choose based on different criteria that will be

discussed.

Using data from claimants with unsuccessful outcomes,

we also developed a set of negative rules by applying the

same procedures as described above. The negative rules

apply for all programs except for Worksite-based rehabil-

itation since there was only one instance of failure in the

training data, which resulted in insufficient power for

analysis. The duration of a rehabilitation program was also

considered an important factor to consider when making

recommendations; therefore, we built a linear regression

model with 20 features that included the 19 features

extracted in the earlier section along with the ‘Program’

label included as a covariate. This linear regression model

predicts the duration of the rehabilitation program based on

the clinical characteristics of the claimant and the program

undertaken.

Evaluation of Machine Learning Model and Clinician

Baseline

The clinician baseline was defined as the rate of clinician

recommendations of the ‘correct’ rehabilitation program.

The clinician recommendation was deemed successful

when the recommendation matched the actual program

undertaken, led to successful RTW and no repeat program

was undertaken. Both clinician baseline and the machine

learning model were evaluated using Sensitivity, Speci-

ficity, the Geometric Mean of Sensitivity and Specificity,

and Receiver Operating Characteristic (ROC) Area. We

examined each of these measurements with tenfold cross

validation [70], which is a technique to estimate the pre-

dictive ability of a model in practice. In tenfold cross

validation, the original dataset is randomly partitioned into

10 subsets. A single subset is used as a validation set while

the other 9 subsets are used as training set. The process

repeats 10 times as each subset is used as the validation set

exactly once. Since this was a multi-label classification

problem, with multiple rehabilitation program options,

each program was considered as a binary classification

problem (i.e. Sensitivity and Specificity were calculated for

each program individually). All the results are then aver-

aged to provide a single estimation of Sensitivity, Speci-

ficity and the ROC calculated from the ‘validation’

datasets. The true and false positive scores for these cal-

culations were obtained by determining the proportion of

cases classified by the model compared to actual labels (i.e.

actual rehabilitation programs) for those cases within the

validation dataset.

Sensitivity = True Positive/True Positives ? False

Negatives

True Positives = Situations where the classifier cor-

rectly labeled the claimant as requiring a particular rehab

program and in fact that is the program they underwent

False Negative = Situations where the classifier incor-

rectly labeled the claimant as NOT requiring a particular

rehab program when in fact that is the program they

underwent

Specificity = True Negative/True Negative ? False

Positive

True Negative = Situations where the classifier cor-

rectly labels the claimant as NOT requiring a particular

rehab program and in fact they did not undertake that

program

False Positive = Situations where the classifier incor-

rectly labeled the claimant as requiring a particular rehab

program when in fact they did not undertake that program
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Descriptive analyses were conducted with SPSS 19 while

machine learning analyses were conducted using the Waikato

Environment for Knowledge Analysis (WEKA) [71, 72].

Results

Population Characteristics

The dataset included 8,611 unique injured workers with

compensation claims for a wide variety of musculoskeletal

disorders. Subjects were predominantly employed (85 %)

males (64 %) with diagnoses of sprain/strain (44 %).

Table 1 provides a full description of characteristics and

Table 2 displays full characteristics of those subjects

undergoing the various rehabilitation programs. The largest

group of subjects (50 %) underwent functional restoration

programs, followed by no rehabilitation (19 %), community

physical therapy, and hybrid programs (9 %). Small minor-

ities underwent chronic pain (3 %) or workplace based (1 %)

rehabilitation. A portion of subjects (16 %) did not have

complete data on the self-report questionnaires. Due to the

large sample sizes, these subjects had a large number of

statistically significant differences from those without

missing data. Differences deemed clinically meaningful

included a shorter duration of injury (186 vs. 215 days),

fewer comorbidities (20 % vs. 31 %) and involvement of an

interpreter (5 % vs. 3 % in those with missing data).

Clinician Baseline

Table 3 shows the accuracy of clinician baseline recom-

mendations, which were accurate with an average sensitiv-

ity, specificity and ROC of 0.81, 0.95 and 0.86 respectively.

Baseline clinician classification performance was high

(sensitivity = 0.81, specificity = 0.95, ROC = 0.86) for

selecting programs that led to successful RTW.

Data Pre-processing, Feature Selection

and Discretization

During the SMOTE procedure, the final sampling per-

centage obtained from each minority class was: Complex:

900 %, Worksite-Based: 900 % and Hybrid: 300 %. Fig-

ure 2 depicts the final class distribution comparison after

all data processing was completed. During feature selec-

tion, nineteen features were identified and discretized.

Machine Learning Model Development and Evaluation

Using the RIPPER algorithm, seventeen features were

identified as important in the final rule set. The final clas-

sifiers were multifactorial and included the variables: job

attachment and working status at time of RTW assessment,

availability of modified work, National Occupational

Classification Code, ICD9 diagnostic group, calendar days

injury to assessment, the ‘Occupation’ item from the PDI,

Pain VAS out of 10, and the following SF36 items: 2, 4, 5,

7, 12, 14, 18, 21, 25). Appendix II (ESM) lists all of the

unique rules.

Table 3 compares the final tenfold cross validation

analysis on this final processed dataset shown in compar-

ison to the clinician baseline recommendations. Machine

performance was substantially higher than clinician deci-

sions (sensitivity = 0.89, specificity = 0.97 and

ROC = 0.94). The rule model consists of 61 rules: 24 rules

for worksite-based programs, 11 rules for complex pain

management programs, 10 rules for hybrid programs, 13

rules for ‘other’, and 1 default rule for provider-based

functional restoration programs. Classification perfor-

mance for machine learning techniques in the final pro-

cessed dataset outperformed the clinician baseline

(sensitivity = 0.89, specificity = 0.97, ROC = 0.94).

Table 4 shows the tenfold cross validation of the negative

rule set. The negative rule set consists of 21 rules. Overall

performance was high (sensitivity = 0.95, specific-

ity = 0.98 and ROC = 0.95).

Discussion

The use of machine learning classification techniques

resulted in classification performance greater than clinician

Table 3 Performance of the ‘clinician baseline’ recommendation

compared to the final machine learning algorithm

Sensitivity Specificity Geometric

mean

ROC

area

Provider-based

functional

restoration

0.86/0.98 0.85/0.88 0.85/0.93 0.86/0.94

Complex pain

management

program

0.75/0.94 0.994/0.992 0.86/0.96 0.87/0.97

Worksite-based

program

0.89/0.76 0.99/0.99 0.94/0.87 0.94/0.94

Hybrid

(functional

restoration

with workplace

component)

0.81/0.96 0.97/0.99 0.89/0.97 0.90/0.98

Other (single

service or no

rehabilitation)

0.75/0.62 0.91/0.98 0.83/0.78 0.83/0.86

Weighted

averages

0.81/0.89 0.95/0.97 0.88/0.93 0.86/0.94

a All values represent clinician/machine learning algorithm

performance
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decision-making for selecting rehabilitation programs that

lead to successful RTW. Both positive and negative rules

were identified and internal validation indicated high levels

of performance (ROC [ 0.9). The factors included in the

rule sets are also theoretically supported because they

include several of the variables identified in a previous

hypothetical risk-factor model for classification of patients

with work-related back pain [7]. Factors included in the

final rule set include whether the worker has a job to return

to, whether modified duties were available, duration of the

condition/injury, pain intensity levels, and reported dis-

turbance in physical functioning.

Computer Interface and Development of Clinical

Decision Support Tool

The final algorithm was integrated into a computer-based

clinical decision support tool that requires additional vali-

dation in a clinical sample. This Clinical Decision Support

(CDS) tool is a Web-based application that is accessible on

all platforms with JavaScript enabled. Appendix III (ESM)

provides a screenshot picture of the tool. The tool inte-

grates both the positive and negative models generated by

the RIPPER algorithm. To use the tool to make recom-

mendations for a certain claimant, the user simply selects a

value in each of the drop-down menus or enters a value in

the textbox according to the characteristics of that claim-

ant, and then presses the ‘‘Predict’’ button. Recommenda-

tions made by the system are presented under the data entry

form. Each recommendation has the following attributes:

• The name of the rehabilitation program recommended.

• The prediction of the program duration if the claimant

were to utilize that program.

• The average rule confidence of the underlying rules

supporting a recommendation (interpreted as a proba-

bility from 0 (zero likelihood of success) to 1 (complete

likelihood of success).

• The number of rules supporting a recommendation.

The user can also view the details of the underlying

rules by pressing the ‘‘Rules’’ button. These features pro-

vide a way to measure the quality of the recommendations

in order for users to make clinical decisions with more

confidence. To determine whether the clinical decision

support tool augments and improves human decision-

making, randomized controlled trials will be needed to

compare clinical outcomes when clinicians make decisions

that are informed by the tool versus routine clinical deci-

sions not informed by the CDS tool.

Resolving Rule Conflict

Since both the positive and negative models are integrated

into the system, it is possible that a given instance is

covered by both positive and negative rules, thereby

making contradictory recommendations. To resolve this

conflict, users can compare different metrics of the rec-

ommendations or view the specific rules to decide to accept

or reject a recommendation.

1828

84

2286

96

582

2924

840

2286

960

2328

981

419

2286

202

1190

0 Other 3 Complex 4 Provider -based 5 Worksite -based 6 Hybrid

Class Distribution

Before sampling After sampling After cleaning

Fig. 2 Final class distribution

comparison after all data pre-

processing was completed

Table 4 Performance of the negative rule training data

Sensitivity Specificity Geometric

mean

ROC

area

Provider-based

functional

restoration

0.98 0.91 0.94 0.95

Complex pain

management

program

0.97 0.996 0.98 0.98

Hybrid (functional

restoration with

workplace

component)

0.96 1 0.98 0.98

Other (single service

or no

rehabilitation)

0.85 0.99 0.91 0.93

Weighted averages 0.95 0.98 0.96 0.95
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Limitations of this research include the reliance on data

already available in the WCB-Alberta datasets. Other vari-

ables may have allowed for more accurate rule sets; however,

a wide variety of variables were available and this resulted in

high levels of classification performance. Another limitation

is the severe imbalance in rehabilitation classes. An imbal-

ance in the proportions of subjects undergoing the various

rehabilitation programs posed some difficulty for this

research, and necessitated the use of SMOTE techniques.

While not ideal, these techniques are commonly used in the

development of rule sets in machine learning analyses [64].

Given the increasing evidence for workplace involvement in

the RTW process [16, 73, 74], it was surprising that so few

workers underwent workplace-based interventions. But

employer involvement and worksite evaluations are typi-

cally integrated into all of the rehabilitation programs from

the outset and often occur as part of the other rehabilitation

programs in the Alberta jurisdiction [41].

Conclusions

The use of machine learning classification techniques

appears to have resulted in classification performance

higher than clinician decision-making. The final algorithm

has been integrated into a computer-based clinical decision

support tool that requires additional validation and impact

evaluation in clinical samples, ideally through randomized

controlled trials.
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