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Abstract

Data that encompasses relationships is represented by a graph of interconnected nodes. Social network analysis is
the study of such graphs which examines questions related to structures and patterns that can lead to the understanding
of the data and predicting the trends of social networks. Static analysis, where the time of interaction is not considered
(i.e., the network is frozen in time), misses the opportunity to capture the evolutionary patterns in dynamic networks.
Specifically, detecting the community evolutions, the community structures that changes in time, provides insight into
the underlying behaviour of the network. Recently, a number of researchers have started focusing on identifying criti-
cal events that characterize the evolution of communities in dynamic scenarios. In this paper, we present a framework
for modeling and detecting community evolution in social networks, where a series of significant events is defined for
each community. A community matching algorithm is also proposed to efficiently identify and track similar commu-
nities over time. We also define the concept of meta community which is a series of similar communities captured
in different timeframes and detected by our matching algorithm. We illustrate the capabilities and potential of our
framework by applying it to two real datasets. Furthermore, the events detected by the framework is supplemented by
extraction and investigation of the topics discovered for each community.
c© 2011 Published by Elsevier Ltd.
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1. Introduction

We define social networks as information networks that are represented by graphs and depict the interactions
between individuals or entities. In these networks, each individual is represented by a node in the network, and there
is an edge between two nodes if an interaction has occurred, or a relationship exists, between the two individuals
during the observation time. For instance, the exchange of ideas, information, and experiences between people in the
web can be modeled as a social network.

The analysis of social networks is of interest to many fields such as sociology (Wasserman & Faust, 1994), epi-
demiology (Meyers et al., 2006), recommendation systems (Palau et al., 2004), email communication (Tyler et al.,
2003), criminology (Calvo-Armengol & Zenou, 2003), etc. The need to identify communities, which are densely
connected subset of individuals that are loosely connected to others (Newman & Girvan, 2004), has recently driven
significant attention in the research community. The analysis of communities can help determine the structural proper-
ties of the networks as well as facilitate applications such as targeted marketing and advertising (Kempe et al., 2003),
and finding influential individuals (Berger-Wolf & Saia, 2005).
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Most networks, such as social media, blogs, and co-authorship networks, are dynamic as they tend to evolve gradu-
ally, due to frequent changes in the activity and interaction of their individuals (Newman & Park, 2003). Furthermore,
the communities inside a dynamic network could grow or shrink, and the community membership of the individuals
shifts regularly (Backstrom et al., 2006; Leskovec et al., 2005). In these dynamic networks, researchers may be inter-
ested in the evolution of communities and membership of individuals such as author communities in the blogosphere
(Lin et al., 2008), the analysis of mobile subscriber networks (Wu et al., 2009), and evolution of research communities
(Palla et al., 2007). However, past community detection analyses of social networks modeled the dynamic network as
a static graph by discarding the temporal information. This static representation misses the opportunity to detect the
evolutionary behavior of the network and the communities.

One way to model the structural changes in dynamic networks is to convert an evolving network into static graphs
at different snapshots (Berger-Wolf & Saia, 2006). Such dynamic analysis of social network, especially assessing the
evolution of communities, provides various insights into: 1) understanding the structures of the complex networks;
2) detecting a drastic change in the interaction patterns; 3) making predictions on the future trends of the network,
etc. The evolution of communities in dynamic social networks can be tracked by identifying critical events that char-
acterize the changes in a community over time (Palla et al., 2007; Asur et al., 2007; Greene et al., 2010; Takaffoli
et al., 2010, 2011). In this paper, we propose a two-stage framework in order to analyze the dynamic evolution of
communities. In this framework, we assume that in each snapshot the communities are independently extracted, thus,
our framework is independent of the community mining algorithms. In the first stage of the framework, a one-to-one
matching algorithm, based on weighted bipartite matching (Kuhn, 1955), is proposed to match the communities ex-
tracted at different time steps. Then, a meta community is constructed for each series of similar communities detected
by the matching algorithm in different timeframes. The Meta community provides the evolution of its constituent
communities. In the second stage, a collection of significant events are identified and used to explain the differences
between the communities of a meta community over time.

In order to evaluate our proposed framework, we consider two social network datasets: The Enron dataset, which
provides emails between employees of the Enron Corporation; and the DBLP dataset, which contains a computer
science co-authorship network. Our results are supplemented by an automatic extraction of the topics for each com-
munity to provide more reasonable results in terms of events discovered vis-à-vis the topics of discourse. The rest
of the paper is organized as follows: In the next section, we provide a brief overview of existing research in the area
of dynamic community mining. The problem formulation is described in Section 3, followed by the explanation of
events in Section 4. Section 5, describes a community matching algorithm. The evaluation of the proposed algorithm
on two real datasets is given in Section 6. Section 7 concludes with a summary and suggestions for future work.

2. Related Work

There has been a considerable amount of work done to detect communities in static graphs, such as modularity
methods (Newman, 2006; Newman & Girvan, 2004; Chen et al., 2009), spectral clustering methods (White & Smyth,
2005), stochastic methods (Handcock et al., 2007; Airoldi et al., 2008; Choi et al., 2010), and heterogeneous clustering
methods (Sun et al., 2009a,b; Doreian et al., 2004, 2005). Although most social networks evolve gradually (Newman
& Park, 2003), these methods model the dynamic network as a static graph by removing information about the time
of the interactions.

Recently, the temporal evolution of social networks has attracted many researchers. White et al. (1976) is the first
proposed approach for finding community structure applied to network observed over time as well as over different
relations. Leskovec et al. (2005) study the patterns of growth for large social networks based on the properties of large
networks, such as the degree of distribution and the small-world phenomena. They also propose a graph generation
model to produce networks satisfying the discovered patterns. Backstrom et al. (2006) approximate the probability
of an individual joining two explicitly defined communities based on defining critical factors and then analyze the
evolution of these communities. Kumar et al. (2006) provide the properties of two real-world networks and then
analyze the evolution of structure in these networks. However, in these cases the properties on the graph level are
studied while the properties on the level of communities are not observed.

Berger-Wolf & Saia (2006) propose a mathematical and computational framework that enables tracking the evo-
lution of communities. The same team in their later work (Tantipathananandh et al., 2007) formulate the detection
of dynamic communities as a graph colouring problem. They provide a heuristic technique that involves greedily
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matching detected communities at different snapshots. However, they only consider matching across two consecutive
snapshots and focus mostly on tracking the membership of a given individual. Falkowski et al. (2006) discover the
evolution of communities by applying clustering on a graph formed by all detected communities at different time
points.

A number of researchers are working on identifying critical events that characterize the evolution of communities
in dynamic social networks. Palla et al. (2007) identify events by applying Clique Percolation Method (CPM) commu-
nity mining (Palla et al., 2005) on a graph formed by the communities discovered at two consecutive snapshots. Then,
based on the results of the community mining algorithm, events pertaining to the communities are specified. Asur
et al. (2007) define critical events between detected communities at two consecutive snapshots which are implement
in the form of bit operations. However, these events do not cover all of the transitions that may occur for a particular
community. Takaffoli et al. (2010) provide an event-based framework to capture all of the transitions between com-
munities at two consecutive snapshots. In a later work (Takaffoli et al., 2011), the event definition formula is improved
to track the transitions of communities over the entire observation time, not only between two consecutive snapshots.
Moreover, the results are validated via the extraction of the topics for each community. Greene et al. (2010) describe
a weighted bipartite matching to map communities and then characterized each community by a series of events.

All of the above work focus on analyzing the evolution of communities by using a two-stage approach. In this
approach the communities are first detected independently for each snapshot, and then compared to determine the
evolution. This two-stage approach is suitable for the social networks with highly dynamic community structures.
Another approach is to use evolutionary community mining, where the community mining at a particular time is in-
fluenced by the communities detected in previous time. Thus, this time-dependent community mining approach finds
a sequence of communities with temporal similarity and hence, is suitable for networks with community structures
that are more stable over time. Sarkar & Moore (2005) develop the Latent space model with temporal change to find
communities that are consistent with the network at the current time and with the communities detected at a previous
time. Mucha et al. (2010) generalize the Laplazian dynamics approach in order to extend modularity maximization
to study community structure across multiple times in dynamic social network. Time-dependent community min-
ing approach, which considers both current and historic information into the objective of the mining process, is also
proposed (Chakrabarti et al., 2006; Lin et al., 2008; Falkowski et al., 2008; Tang et al., 2008; Asur & Parthasarathy,
2009; Sun et al., 2010). However, this approach cannot detect the evolution of communities and events related to
them in dynamic social network with explicitly defined communities. Furthermore, most of the algorithms using
time-dependent community mining approach can only discover small changes in communities in consecutive time
frames and any drastic change in short time remains undetected.

Analogous to community mining and related to our work there are recent studies on the evolution of clusters.
Ganti et al. (2002) propose a change detection framework called FOCUS. In FOCUS, two datasets are compared by
computing a deviation measure between them. Chakrabarti et al. (2006) discover clusters and their transitions at the
same time. They obtain high-quality clusters at the current timestamp while maintaining similarity with the clusters
identified in previous timestamps. Spiliopoulou et al. (2006) propose an event-based framework called MONIC to
model and track cluster transitions. They also introduce the concept of cluster matching to simplify the detection
and evaluation of the cluster events that occurred. Oliveira & Gama (2010) tackle the problem of monitoring the
transitions experienced by clusters over time by identifying the temporal relationships among them.

In summary, none of the previous work cover all of the changes a community may experience during the observa-
tion time of a dynamic social network. However, finding patterns of interaction and predicting the future structure of
communities is attractive for many areas such as disease modelling (Eubank et al., 2004), information transmission
(Kempe et al., 2003; Tyler et al., 2003), and business management (Bernstein et al., 2002), but is only possible by cap-
turing all the transitions of the communities in the dynamic social network. Thus, we propose a two-stage approach
to analyze the dynamic evolution of communities and detect all the events related to the communities. These events
can be used as a building block to predict the future structure of communities by discovering the patterns of events in
the dynamics of the network.

3. Problem Formulation

We model the dynamic social network as a sequence of graphs {G1,G2, ...,Gn}, where Gi = (Vi, Ei) represents a
graph with only the set of individuals and interactions at a particular snapshot i. Unlike previous approaches (Palla
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Figure 1: Examples to illustrate the similarity measure: (a) Two communities with 110 and 120 members where they
have 30 mutual members; (b) Two communities with 100 and 30 members where they have 20 mutual members; (c)
Two communities with 100 and 40 members where they have 40 mutual members.

et al., 2007; Tantipathananandh et al., 2007; Falkowski et al., 2006), the communities at any snapshot can be the
result of any static community mining algorithm. The ni communities detected at the ith snapshot are then denoted
by Ci =

{
C1

i ,C
2
i , ...,C

ni
i

}
, where community Cp

i ∈ Ci is also a graph denoted by (V p
i , E

p
i ). In this paper, we distinguish

between the terms community and meta community. A community contains individuals that are densely connected to
each other at a particular time snapshot. On the other hand, a meta community is a series of similar communities at
different time snapshots and represents the evolution of its constituent communities ordered by time of the snapshots.
Here, the meta community is denoted by M = {ct1 , ct2 , ..., ctm }, where t1 < t2 < ... < tm, and cti represents its instance
community at time ti. Meta community M with lifetime m contains m communities and any of its two consecutive
communities are similar with respect to specific k. In this paper, we reduce the problem of detecting the transition
and evolution of communities to identify meta communities and also the events characterizing the changes of the
communities across the time of observation.

In the literature there are different taxonomies to categorize the changes of clusters, communities, or patterns that
evolve over time (Spiliopoulou et al., 2006; Oliveira & Gama, 2010; Asur et al., 2007; Palla et al., 2007). In this
work, to capture the changes that are likely to occur for a community, we consider five events including split, survive,
dissolve, merge, and form. A community may split at a later snapshot if it fractures into multiple communities. It can
survive if there exists a similar community in a future snapshot. In the case where there is no similar community at
a later snapshot, then the community dissolves. A set of communities may also merge together at a later snapshot.
Furthermore, at any snapshot there may be newly formed communities, where there is no similar community at a
previous snapshot. The meta community can then be interpreted as a sequence of communities ordered by time, from
the timeframe where it first appears to the timeframe where it is last observed.

The key concept for the detection of the events, and also the meta community, is the concept of similarity between
communities at different times. Two communities that are discovered at different snapshots are similar if a certain
percentage, k ∈ [0, 1], of their members are mutual. The similarity threshold k captures the tolerance to member
fluctuation, and can be set based on the characteristic of the underlying network. A high similarity threshold would
be expected in a network with stable communities that have many members who participate over a long time and less
fluctuating members. In highly dynamic social networks, where the structure changes over time, there are unstable
communities such that the members of a community leave gradually while new ones join. This community may
exist for a long time, even if all of its original individuals have left. Thus, to identify groups that make up this
unstable community, a low similarity threshold would be preferred. The formal definition of similarity between two
communities is defines as follows:

Community Similarity: Let Cp
i and Cq

j be the community detected at snapshot i and j respectively (i � j). The two
communities Cq

j and Cp
i are similar if and only if their shared members make up at least k proportion of the biggest

community:

sim(Cp
i ,C

q
j ) =

⎧⎪⎪⎨⎪⎪⎩
|V p

i ∩Vq
j |

max(|V p
i |,|Vq

j |)
i f

|V p
i ∩Vq

j |
max(|V p

i |,|Vq
j |)
≥ k

0 otherwise
(1)

Dividing the number of members that exist in both communities by the size of the biggest community (Equation 1)
scales for different sizes of communities. Figure 1a illustrates an example when two communities are about the same
size. These two communities shared 30 members, thus, they are similar if the similarity threshold k is less than 0.2
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(i.e., 30
120 ≥ 0.25). Figure 1b shows an example when one of the communities is considerably smaller than the other

and they have 20 mutual members. Hence, setting k ≤ 0.2 marks them as two similar communities since 20
100 ≥ 0.2.

An example when one community contains all the members of the other community is shown in Figure 1c. The
mutual members of these two communities are 40 individuals, thus, with k ≤ 0.4 these communities are similar (i.e.,
40
100 ≥ 0.4). The choice of the similarity threshold k is depend on the characteristic of the underlying network. In the
following sections, we provide an algorithm to determine k for an arbitrary dynamic social network.

In order to detect the meta communities and the events, the set of communities at a given snapshot have to be
matched to the communities at previous snapshots based on their similarity. However, since a community may have
similarity with several communities at the same time, the matching process becomes non-trivial. The optimization
problem that arises here is to find a match that maximizes the pair wise similarity over all selected matches, not only
the direct preceding snapshot but potentially other previous snapshots.

4. Dynamic Community Analysis

There are several taxonomies that define the fundamental events that can be used to characterize the evolution of
dynamic communities (e.g. Spiliopoulou et al., 2006; Asur et al., 2007; Takaffoli et al., 2010). Given the definition of
meta communities, similarity, and similarity threshold k, a community Cp

i at the ith snapshot may undergo different
transitions in later snapshots. Community Cp

i splits at snapshot j > i if it fractures into multiple communities with
at least k proportion of their members from Cp

i . Community Cp
i survives if there is a community Cq

j at snapshot
j > i such that their meta communities are identical. In the case where there is no such community, Cp

i dissolves.
Only the survive and dissolve events are mutually exclusive, while the split event can be combined with the other
two. Community Cp

i splits and survives at the jth snapshot if it fractures into more than one community and one of
these communities has the same meta community as Cp

i . Community Cp
i splits and dissolves at the jth snapshot if it

fractures into other communities and none of these communities have the same meta community as Cp
i .

In addition to the three events mentioned above, a set of communities in Ci can merge together in community Cq
j

at snapshot j > i. The merge event occurs when at least k proportion of the members from multiple communities in
Ci, exist in Cq

j . Furthermore, at any snapshot there may be newly formed communities. These communities are the
ones that do not belong to any of the already existing meta communities.

In the following, the formal definitions of these events are provided, where match(Cp
i , j) denotes the optimal match

for Cp
i at jth snapshot which is the results of the optimal matching algorithm for community Cp

i :

Form: A community Cp
i forms at ith snapshot if there is no community match for it in any of the previous snapshots:

form(Cp
i , i) = 1 i f f ∀ j < i match(Cp

i , j) = ∅ (2)

Dissolve: A community Cp
i dissolves at ith snapshot if there is no community match for it in any of the next snapshots:

dissolve(Cp
i , i) = 1 i f f ∀ j > i match(Cp

i , j) = ∅ (3)

Survive: A community Cp
i survives at ith snapshot if there exists a snapshot j > i that contains a community match

for Cp
i :

survive(Cp
i , i) = 1 i f f ∃ j > i and ∃Cq

j ∈ C j match(Cp
i , j) = Cq

j (4)

Split: A community Cp
i at ith snapshot splits to a set of communities C∗j =

{
C1

j , ...,C
n
j

}
at snapshot j > i if at least k

proportion of the members of the communities in C∗j are from community Cp
i . Also in order to prevent the case where

most of the members of Cp
i leave the network, the mutual members of the union of the communities in C∗j with Cp

i
should be greater than k proportion of Cp

i :

split(Cp
i , i) = 1 i f f ∃ j > i and ∃C∗j =

{
C1

j , ...,C
n
j

}
∈ C j where

1)∀Cr
j ∈ C∗j

|V p
i ∩Vr

j |
|Vr

j | ≥ k 2)
|(V1

j ∪V2
j ...∪Vn

j )∩V p
i |

|V p
i |

≥ k
(5)
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Merge: A set of communities C∗i =
{
C1

i , ...,C
n
i

}
at ith snapshot merge to Cq

j at snapshot j > i if Cq
j contains at least

k proportion of the members from each community in C∗i . Also to prevent the case where most of the members of
Cq

j did not exist before, the mutual members of the union of all communities in C∗i with Cq
j should be greater than k

proportion of Cq
j :

merge(C∗i =
{
C1

i , ...,C
n
i

}
, i) = 1 i f f ∃ j > i and ∃Cq

j where

1)∀Cr
i ∈ C∗i

|Vr
i ∩Vq

j |
|Vr

i | ≥ k 2)
|(V1

i ∪V2
i ...∪Vn

i )∩Vq
j |

|Vq
j |

≥ k
(6)

5. Community Matching Algorithm

After the communities have been extracted at each time step, the set of communities at consecutive snapshots
have to be matched with each other. This raises the problem of finding the match of a given community at time t
among the communities at time t−1. A simple approach would be to match communities from consecutive time steps
in descending order of their similarity. Since a community may overlap with several other communities at the same
time, the matching of the communities based on solely their similarity becomes a complicated process. Furthermore,
a community may not necessarily be observed at all the snapshots after its formation and may be missing from one or
more snapshots. This reflects that, although a community was absent, after a few snapshots it may suddenly reappear
in the network. To consider this scenario, a matching between communities at time t and all of the other communities
at time t′ < t could be considered. However, this solution is computationally expensive and it may lead to noisy results
in scenarios where individuals participate in several communities but are active in different communities at different
snapshots.

In this paper, we propose a matching algorithm that maximizes the amount of similarity preserved from one
snapshot to the next, while considering the case of absent communities.We obtain series of weighted bipartite graphs
by proceeding in increasing order of time steps. Initially, each community at snapshot 0 is considered as a newly
formed community and a new meta community is created for each of them. In iteration t, in order to give more
chance to similar communities in close temporal proximity, we first construct a weighted bipartite graph between
communities at snapshot t and communities at t − 1. The weight between communities is calculated with the notion
of similarity introduced before. Then, the maximum weight bipartite matching (Kuhn, 1955) is applied to connect
communities at time t to communities at time t − 1. If community Cp

t matches to community Cq
t−1, then we can

say that Cp
t is the survival of Cq

t−1 (i.e. Cq
t−1 survives to Cp

t ). Thus, the Cp
t is added to the meta community that

constitutes community Cq
t−1. For the communities at time t which are left with no counterpart from Ct−1, another

bipartite matching is constructed between them and the communities at time t − 2 whose meta communities have not
been selected yet. Once again, the maximum weight bipartite matching is applied to detect survival events and also
to update meta communities. The process of constructing the bipartite graph is continued until all the communities
at time t match a community at time 0 ≤ t′ < t or all existing meta communities are already taken. We consider the
communities left with no matches from {C0, ...,Ct−1} as newly formed communities and build a new meta community
for each of them. After every community at time t is assigned to one meta community, we move to the next iteration.

The meta communities detected by the above algorithm represent the evolution of its constituent communities
ordered by time of the snapshots. The last community of every meta community is marked as dissolve since it is
unmatched for all of the next snapshots.

6. Experiments

In this section, we validate the effectiveness and feasibility of our algorithms through experiments on two real
datasets. The first test bench is the Enron email dataset which is the message exchange of people within the Enron
Corporation, while the second dataset is a subset of DBLP, which is a computer science bibliography dataset. On both
these datasets, we gain insights on the impact of the similarity threshold on the evolution of the communities. Fur-
thermore, for each dataset the optimal similarity threshold is selected by automatic extraction and the investigation of
the topics of communities. Our framework is integrated into Meerkat (Chen et al., 2010), which enables us to preview
the graph of each timeframe and the events for a particular community. As noted previously, our dynamic evolution
detection is independent of the choice of the underlying static community mining algorithm. Due to computational
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(a) (b)

Figure 2: Experiments on Enron email dataset: (a) Communities transitions for different values of similarity threshold
k; (b) The average topic continuation for different values of similarity threshold k.

efficiency, we apply the local community mining algorithm (Chen et al., 2009), that is also implemented in Meerkat
to produce sets of disjoint communities for each snapshot.

6.1. Enron email dataset

The well known Enron dataset is chosen to test whether our framework can detect interesting events in real
networks. Particularly, we extract 250 email addresses from the original dataset, and consider the email exchanges
between these addresses. Moreover, we only consider the last year of Enron Corporation (2001) to create monthly
snapshots. For each of the 12 snapshots, one graph is constructed from email exchanges between these extracted
addresses. In our experiments, we investigate the impact of similarity threshold k on the community evolution. The
similarity threshold is varied from 0.1 to 1.0 in steps of 0.1 and the number of events occurring during the 12 snapshots
is counted for each k step (Figure 2a). We see from Figure 2a that the choice of the similarity threshold k has
a noticeable effect on the transitions of communities: the number of survival, merge, and split events drops as k
increases, while there are more dissolution and formation. With low values of k, more communities are matched
together, thus, we can observe a significant number of surviving communities. On the other hand, high values of k
result in more a conservative matching behaviour and short-life communities.

The question that arises here is which similarity threshold results in the most appropriate community evolutions
for the Enron dataset. In order to evaluate the community evolutions and select the optimal similarity threshold, we
incorporate automatically extracted topics for each community. The Keyphrase Extraction Algorithm (KEA) (Witten
et al., 1999) is applied to produce a list of the keywords discussed in the emails within each community. The topics
for each community corresponds to its 10 most frequent keywords, as extracted by KEA. We expect that a community
which survives multiple timeframes is more likely to continue discussions of the same topics (Takaffoli et al., 2011).
Topics that persist in a community from one snapshot to the other are called mutual topics. The average mutual topics
between any two survival communities during the observation time for different similarity thresholds is shown in
Figure 2b. The survival communities mostly discuss the same topics, thus, the similarity threshold that corresponds to
the highest average mutual topics illustrates the transition of the communities better than the others. Figure 2b shows
that as k increases from 0.1 to 0.5 the average number of mutual topics also increases. However, for k > 0.5 the number
of mutual topics decreases sharply. Based on this observation, we can conclude that for the Enron dataset the choice
of k = 0.5 results in the most meaningful community transitions since it has highest average mutual topics. It is worth
mentioning that for some applications, more than one k may results in maximum mutual topics. In this case based on
the characteristic of the social network, one of the k that results in the maximum mutual topics is selected: A high
similarity threshold k is required for the networks with rather stable communities, while a low similarity threshold k is
selected for the network with highly dynamic communities. Furthermore, the appropriate similarity threshold might
also be defined based on the theoretical considerations.

As mentioned before, in this paper a community refers to individuals that are densely connected to each other at a
particular snapshot, while a meta community is a series of similar communities at different snapshots and represents
the evolution of its constituent communities ordered by time of the snapshots. After determining the appropriate
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Figure 3: Average members fluctuation and lifetime of Enron meta community.

(a) (b)

Figure 4: Experiments on DBLP co-authorship dataset: (a) Communities transitions for different values of similarity
threshold k; (b) The average topic continuation for different values of similarity threshold k.

similarity threshold for the Enron dataset, we consider two basic quantities characterizing a meta community: its
member fluctuation and its lifetime. The lifetime of a meta community represents the number of snapshots between
the formation and dissolution of it (i.e. the time difference between its first instantiation and its last instantiation), while
member fluctuation characterizes the average similarity of its constituent communities between consecutive snapshots.
Consider a meta community M = {ct1 , ct2 , ..., ctm } with lifetime m containing m communities, where t1 < t2 < ... < tm,
and cti represents its instance community at time ti. We define the member fluctuation of the meta community M as:

fluctuation(M) = 1 −

m−1∑

i=1

sim(cti , cti+1 )

m − 1
(7)

We observe an interesting effect when investigating the relationship between the lifetime and the members fluc-
tuation. In Figure 3 the average lifetime as a function of the members fluctuation is depicted for similarity threshold
k = 0.5. The figure indicates that meta communities with average low fluctuating members usually tend to live longer,
while meta communities with higher fluctuation dissolve sooner.

6.2. DBLP co-authorship dataset

We extract our next dataset from DBLP where the co-authorship network for three major data mining conferences:
ICDM, SIGMOD, and KDD from 2004 to 2009 is chosen. The resulting network contains 7500 individuals where the
duration of a snapshot is defined to be one year. The impact of the similarity threshold k on the community evolution
is also investigated for the DBLP network (Figure 4a). Again, we observe that the choice of the similarity threshold
k has a noticeable effect on the transitions of communities. Low values of k lead to a significant number of surviving
communities, while high values of k results in more dissolutions and short-life communities.
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The evolution of communities in the DBLP dataset is also validated by extracting the topics of the papers published
within communities. The average mutual topics between two survival communities for different similarity threshold
is shown in Figure 4b. We can observe that setting k = 0.4 in the DBLP dataset results in the highest mutual topics
between survival communities. Furthermore, for similarity threshold k = 0.4, again the same trend as in the Enron
dataset can be observed where meta communities with average low fluctuating members have longer lifetime. The
difference between the optimal similarity threshold of the DBLP and the Enron dataset is due to their different struc-
ture: the Enron email dataset has rather stable communities with a considerable amount of members who participate
over a long time and a small amount of fluctuating members. Thus, a high similarity threshold (k = 0.5) is required.
On the other hand, in the DBLP co-authorship network, communities can be highly dynamic where members leave
gradually, while new ones join. Hence, a rather low similarity threshold (k = 0.4) is used to analyze the evolution of
communities in this network.

7. Conclusion

In this paper, we present a framework for the monitoring of community transitions and evolutions over time.
Our framework encompasses community matching algorithm and also an event detection model to capture all of
the possible events that occur for communities. This includes tracing the formation, survival and dissolution of
communities as well as identifying meta communities, series of similar communities at different snapshots, for any
dynamic social network. Additionally, we apply our framework on the Enron Email dataset, and DBLP co-authorship
dataset. On these two datasets, our framework uncovers communities with different evolutionary characteristics and
addresses the noticeable effect of the similarity threshold on the transitions of communities. We therefore, propose
extracting and investigating frequently used topics for each community and select the appropriate similarity threshold
based on the continuation of topics. Finding patterns of social interaction within a dynamic network has a wide-range
of applications such as disease modeling and information transmission. In our future work, we plan to extend our
framework so that it can detect patterns of evolution in dynamic social networks. This includes using the framework
to predict the future structure of communities by capturing abstract patterns of evolution in the social network.
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