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Abstract.
This paper introduces a new outlier detection approach and discusses and extends a new

concept, class separation through variance. We show that even for balanced and concentric classes
differing only in variance, accumulating information about the outlierness of points in multiple
subspaces leads to a ranking in which the classes naturally tend to separate. Exploiting this leads
to a highly effective and efficient unsupervised class separation approach. Unlike typical outlier
detection algorithms, this method can be applied beyond the ‘rare classes’ case with great success.
The new algorithm FASTOUT introduces a number of novel features. It employs sampling of
subspaces points and is highly efficient. It handles arbitrarily sized subspaces and converges to an
optimal subspace size through the use of an objective function. In addition, two approaches are
presented for automatically deriving the class of the data points from the ranking. Experiments
show that FASTOUT typically outperforms other state-of-the-art outlier detection methods on
high dimensional data such as Feature Bagging, SOE1, LOF, ORCA and Robust Mahalanobis
Distance, and competes even with the leading supervised classification methods for separating
classes.

Keywords: Outlier Detection; Classification; Subspaces; Concentration of Measure; Curse and
Blessing of Dimensionality.

1. Introduction

A common problem in many data mining and machine learning applications is, given a
dataset, to identify data points that show significant anomalies compared to the majority
of the points in the dataset. These points may be noisy data, which one would like to
remove from the dataset, or may contain information that is particularly valuable for the
identification of patterns in the data.
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Fig. 1. A point that is an outlier in a 2-dimensional space but not in any of the two corresponding 1-
dimensional spaces.

The domain of outlier detection (Chandola, Banerjee and Kumar, 2009; Petrovskiy,
2003) deals with the problem of finding such anomalous data, called outliers. Outlier
detection can be viewed as a special case of unsupervised binary class separation in the
case of ‘rare classes’. The dataset is separated into a large class of ‘normal cases’ and a
small class of ‘rare cases’ or ‘outliers’.

Outlier detection is particularly problematic as the dimensionality d of the given
dataset increases. Problems are often due to sparsity or due to the fact that distance-
based approaches fail because the relative distance between any pair of points tends to
become relatively the same, see (Beyer, Goldstein, Ramakrishnan and Shaft, 1999).

One idea to overcome such problems is to rank outliers in the high-dimensional
space according to how consistently they are outliers in low-dimensional subspaces,
in which outlierness is easier to assess. To this end, Lazarevic and Kumar developed
Feature Bagging (Lazarevic and Kumar, 2005) and He et al. SOE1 (He, Xu and Deng,
2005), both taking an ensemble approach combining the outlier results over subspaces.
SOE1 is remarkably simple, summing the local densities of each point for each in-
dividual attribute. While SOE1 looks only at 1-dimensional subspaces (i.e., at single
attributes), Feature Bagging combines the results of the well-known LOF outlier de-
tection method (Breunig, Kriegel, Ng and Sander, 2000) applied to random subspaces
with d/2 or more attributes (out of a total of d attributes). However, both methods have
weaknesses.

SOE1. Looking only at 1-dimensional subspaces is very efficient but not always
effective. It is simple to give examples showing when this may lead to missed informa-
tion; Figure 1 illustrates such a case. The point in the upper right corner is not a clear
outlier with respect to either attribute 1 or attribute 2, but is obviously an outlier in the
two-dimensional space. In two dimensions this is obvious, but the likelihood of such a
scenario arising and being significant clearly declines as the subspace size increases —
due to the phenomenon explored in (Beyer et al., 1999).

Feature Bagging. Once the LOF algorithm, applied in the subspaces, becomes less
effective (as d/2 rises beyond the dimensionality barrier shown by (Beyer et al., 1999),
see Section 2), bagging will become less effective, too.

Motivated by that, we propose a method that employs a stable outlier detection
algorithm for subspaces of a fixed low dimensionality k, 1 < k << d, and combines
the results of that algorithm over all explored k-dimensional subspaces to provide an
outlier ranking in d dimensions.

This results in two major and novel contributions.

Contribution to Outlier Detection

We provide a new approach to outlier detection in an arbitrary number of dimensions,
based on rankings obtained by investigating low-dimensional subspaces (as opposed to
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Feature Bagging) that consist of more than one attribute (as opposed to SOE1). Experi-
ments show that our method is superior not only to SOE1 and Feature Bagging, but also
to state-of-the-art outlier detection algorithms designed for multi-variate data. Those
algorithms are the two distance-based methods ORCA (Bay and Schwabacher, 2003)
and Robust Mahalanobis Distance (RMD) (Rousseeuw and Driessen, 1999), and the
density-based LOF-method (Breunig et al., 2000) as well as our recently presented al-
gorithms T*ENT and T*ROF (Foss, Zaı̈ane and Zilles, 2009).

Contribution to Class Separation

Our outlier ranking can be applied to unsupervised class separation even when neither
one of the classes is ‘rare’ — with marked success. Class separation by means of an
outlier score has, incidentally, been used indirectly for the sole purpose of validating
outlier detection approaches (He et al., 2005; Lazarevic and Kumar, 2005). For lack
of ground truth, unbalanced binary class training data were used with the assumption
that the rare class points are outliers vis-à-vis the dominant class (Aggarwal and Yu,
2001). In this work, we not only separate balanced as well as unbalanced classes of high
dimensional data but also elucidate the phenomenon that allows this class separation.

The problems we address here are binary and multiple class separation problems
in which the classes are assumed to differ in variance. We argue that, for two or more
underlying classes {A,B, . . . } of different variance, our outlier ranking basically sepa-
rates the majority of points in A from those in B and so forth, even if the classes overlap
completely and are of the same size. As we will explain below, this is because points
in a class of higher variance are more likely to be outliers consistently in many low-
dimensional subspaces than those of a lower variance class and are thus ranked higher
in the resulting outlier ranking.

We test this experimentally with positive results: our method effectively separates
both balanced and unbalanced classes and can even compete with supervised classifica-
tion methods, which are fed with labelled training data.

In this paper, we show and discuss that the effectiveness of this approach improves
with increasing dimensionality in the data. The more dimensions the data has, the more
effective the outlier ranking is and the better the outlier ranking, the more effective is
the class separation.

2. Related Work

Only few existing methods can cope with the problem of outlier detection in high-
dimensional data, due to sparsity. The effectiveness of most common methods declines
because they rely on distances between points, something that becomes less meaningful
in high dimensionality, because the distance between any two points tends to become
relatively the same, cf. (Beyer et al., 1999). Real-world datasets frequently have large
numbers of attributes so this poses a significant problem especially because approxima-
tion schemes in general and tree indices in particular tend to break down with more than
10-15 dimensions (Beyer et al., 1999). Beyond this dimensionality barrier, algorithms
that work in the full dimensional space face considerable challenges in both efficiency
and effectiveness.

This is the primary motivation for using information about outliers in lower-dimen-
sional subspaces of the full high-dimensional space in order to determine which points
are outliers in the full space.

While the literature on anomaly detection is vast, very few methods aim at investi-
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Table 1. Comparison of Ensemble Outlier Methods.

Method Dimensions Computation Basis
/ Subspace

FASTOUT Unrestricted Nearest neighbour clustering
T*ENT (Foss et al., 2009) 2 TURN* (Foss and Zaı̈ane, 2002)
T*ROF (Foss et al., 2009) 2 TURN*/ROF (Fan et al., 2009)
SOE1 (He et al., 2005) 1 Inverse of density histogram
Feature Bagging (Lazarevic and Kumar, 2005) ≥ |d|/2 LOF (Breunig et al., 2000)

gating subspaces in high-dimensional data. Aggarwal and Yu (Aggarwal and Yu, 2005)
developed an evolutionary search algorithm to find low density subspaces, though the
predominance of such spaces poses challenges, cf. (Zhang and Wang, 2006). Knorr and
Ng (Knorr and Ng, 1999) computed a dendogram to show the intensional knowledge in
the hierarchy of subspaces in which a point is an outlier. Zhang and Wang (Zhang and
Wang, 2006) proposed HighDOD, a method that uses a sample based learning process
based on the sum of the distances to the k nearest neighbours (k-NN) to identify the
subspaces in which a given point is an outlier.

SOE1 (He et al., 2005) and Feature Bagging (Lazarevic and Kumar, 2005) represent
the current state-of-the art as far as ranking points according to their outlierness using
subspaces is concerned.1

Validating outlier detection methods was largely lacking until the idea of using rare
classes as outliers in unbalanced supervised classification training data was introduced
in (Aggarwal and Yu, 2001). Since then, others have used the separation of a rare class
from a dominant class as a means to validate an outlier detection approach. However,
the stated objective was never class separation per-se and the data used was typically
heavily unbalanced for the exact purpose of validating outliers. Exploiting outliers for
genuine class separation was never intended or explained.

In our earlier work (Foss et al., 2009), we introduced the novel concept of classifica-
tion through variance and two highly effective algorithms for this, T*ENT and T*ROF,
both based on a framework we call T* which uses an ensemble of 2D subspaces for
computing an outlier measure. T* is based on the efficient and effective clustering al-
gorithm TURN* (Foss and Zaı̈ane, 2002). T*ENT produces a binary measure for each
subspace while T*ROF provides a real-valued measure, first proposed in (Fan, Zaiane,
Foss and Wu, 2009), and benefits from being entirely parameter-free. Both these mea-
sures were only demonstrated on binary class problems. In this paper we extend this to
3D and higher subspaces, improve efficiency and explore multiple class problems using
the new algorithm FASTOUT and its variant FASTOUT-R. We also provide more theo-
retical analysis of the problem. Table 1 lists the ensemble outlier detection methods and
their principle differences.

We also present a semi-supervised approach to classification using FASTOUT. Help-
ful discussions of different semi-supervised approaches to classification can be found in
(Zhou and Li, 2009) and (Hido, Tsuboi, Kashima, Sugiyama and Kanamori, 2009).

1 The work of Knorr and Ng (Knorr and Ng, 1999) could be developed further to rank outliers, but they have
not pursued this direction so far.
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3. Outlier Detection and Classification Through Variance

In this paper we expand upon an entirely new concept in data mining, classification
through variance rather than spatial location first discussed in (Foss et al., 2009). As can
be seen from the results, the success of the new methods is notable, however a number
of important questions have to be addressed. Firstly, a formal basis of this concept is re-
quired and it would be desirable to explore it extensively using synthetic datasets which
would allow us to clearly distinguish this phenomenon from possible spatial effects.
If classes can be separated by variance alone, then concentric and identically shaped
distributions, differing only in variance should be separable, something that cannot be
achieved using supervised classification, such as Support Vector Machines (SVMs), or
unsupervised classification, i.e. clustering. This has to be demonstrated in the controlled
environment of a synthetic dataset and this is addressed extensively in Section 4. In this
section, we discuss the curses and blessings of high dimensionality and show how the
primary blessing, concentration of measure, can be exploited to yield class separation.

3.1. Curses and Blessings of Higher Dimensionality

Many papers in data analysis, including outlier detection and clustering in higher dimen-
sionality, cite the ‘curse of dimensionality’ first described as such by Bellman (Bellman,
1961). Donoho (Donoho, 2000), reviewing a large body of work in Mathematics, enu-
merates one curse and three blessings. The curse is that described by (Bellman, 1961),
which is based simply on the exponential increase in the number of subspaces as dimen-
sionality increases. Alternatively, one can note the exponential increase in the volume
of the data space, which, for a d dimensional hypercube space with normalised side l,
is ld. This means the data, if at all homogeneous in the space, is increasingly sparse.

The first blessing is referred to as ‘concentration of measure’ (CofM), first described
by V. Milman (Milman, 1988) for a common property of probabilities on product spaces
in high-dimensionality. It asserts that a ‘reasonable’ function f : X → ℜ defined on a
‘large’ probability space X ‘almost always’ yields values close to the mean of f on X .
A reasonable function would have a finite and unique mean and this is the case for a
broad class, Lipschitz functions1. In fact, CofM has been shown to apply to many types
of dependent variables (Dubhashi and Panconesi, 2009). CofM is a generalisation of the
law of large numbers.

For example, given a Lipschitz function on a d-dimensional sphere on which we
place a uniform measure P , then for a random variable X, d→∞

∀ϵ > 0, P{|f(x)− Ef(x)| ≥ ϵ} ≤ C1e
−C2ϵ

2

(1)

where C1, C2 are constants independent of f and d. Thus, the measure is nearly constant
and the tails behave, at worst, as a scalar Gaussian random variable with absolutely con-
trolled mean and variance (Donoho, 2000). This principle is not confined to a sphere and
has wide applicability. One probabilistic aspect of concentration of measure is that a ran-
dom variable that depends (smoothly) on the influence of many independent variables,
but not especially on any one, is essentially constant at the mean value (Ledoux, 2001).
The requirement of smoothness is provided by functions being Lipschitz.

1 A Lipschitz continuous function is such that a line joining any two points on the graph of the function
is never steeper than a certain constant, the Lipschitz constant for the function. To prove a finite mean, the
constant should be finite.
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Another example is coin tosses. If a coin of unknown bias p is thrown m times, then,
from the Chernoff bound, we have

∀ϵ > 0, P

(∣∣∣∣∑m
i Xi

m
− p

∣∣∣∣ ≥ ϵ

)
≤ 2e−2ϵ2m (2)

For example, if a balanced coin is thrown once there is complete uncertainty regarding
the outcome. If the coin is thrown 1000 times, the number of heads will, in all proba-
bility, be rather close to 500. The larger the number of tosses, the more predictable the
outcome, which well illustrates the blessing.

The other blessings cited by Donoho (Donoho, 2000) are not unrelated to this phe-
nomenon but are not discussed here as they are not directly relevant to this analysis.

3.2. Data Mining and Concentration of Measure

CofM is closely related to the law of large numbers and the Central Limit Theorem
which are basic to probability theory. Even though we have not seen any explicit refer-
ence to CofM in the related data mining literature, results based on probability theory,
notably the often cited work of Beyer et al.(Beyer et al., 1999), exploit this phenomenon.
Beyer et al. showed that for a large class of problems, distance approximations designed
to speed calculations, in particular tree indices, break down above just a few dimensions.
Beyer et al. derive their result subject to a condition that the measures examined – in-
terpoint distances – converge on a mean with increasing dimensionality. They showed
that this was valid for a wide range of dataset scenarios (Beyer et al., 1999).

The phenomenon which makes distance computations decreasingly useful in the
high-dimensional space, as shown by (Beyer et al., 1999), is thus a consequence of the
convergence on the mean (as in Equations 1 and 2), which is in itself a blessing if we
wish to estimate the mean or exploit this convergence. Thus concentration of measure is
itself the problem and the blessing. The problem is that individual points or subspaces
cease to be ‘special’, i.e. notably different from others, which is the very basis of the
notion of outlierness (for example). On the other hand, while this notion is being taken
away, determination of the mean c or probability p is being facilitated. One important
utility of that with reference to outlier detection is explored in this paper.

In particular, we will present an algorithm that will exploit CofM to separate classes
by estimating their variances. In the output, the members of each class will tend to
collect around specific values related to the class variance. We will demonstrate that
the effectiveness of separation improves asymptotically with increasing dimensionality
exactly as predicted by the theory.

3.3. Class Separation by Variance

Having touched on the key idea, we can proceed to take advantage of both theoretical
and empirical work on this measure to prove the following assertion:

Assertion 1: In general, an ensemble of subspaces of size m can provide a measure
that distinguishes classes {A,B, ..} if each class has (at least) different variances σ, has
a Lipschitz distribution and m, the size of the ensemble, is greater than some empirical
constant m′.

Let the dataset be D with d independent dimensions and the arity of the subspaces
measured be k. We proceed as follows:

First we need to show that CofM applies, starting with determining the number of
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Fig. 2. Local density measure example on two attributes.

independent variables in the application. For this, we define an outlier score measure,
which can be applied to a subspace, and then estimate the number of independent sets
of subspaces in an ensemble. This result is then generalised. This is necessary because
if subspaces larger than 1D are combined, it can be objected that these subspaces are
not independent as they are made of combinations of the original attributes.

Second, if the measure employed converges on its mean, we show that this allows
classes with different variance to separate within a ranking of the outlier scores.

Consider a two-dimensional subspace {Ai, Aj} (e.g. Figure 2) in which a simple
generic approach to outlier determination is followed as in (He et al., 2005) which ap-
plies a grid and uses the count in the grid as the (inverse) measure of sparsity for scoring
the points. (He et al., 2005) only applied this to the single dimensions but Figure 2 is
an example of where there is a clear benefit if a larger subspace grid is used. Let δl(x)
be the density measure (cell count) for point x on attribute or attribute set l. In Figure 2
point x has δi(x) = 4, δj(x) = 4, δij(x) = 1. Purely for the sake of this example, let
the outlier score over m spaces (each of size 1D, 2D or kD) be

ϕ(x) =
m∑
l

N

δl(x)

Thus in the 1D analysis, ϕ(x) is accumulated over m (= d) independent variables.
In the 2D case, subspaces overlap due to shared attributes but in each space {Ai, Aj}
the only dependency of δij(x) on the attributes is an upper (lower) bound provided by
exactly one attribute. If all k > 1 size subspaces of d attributes are inspected such that
m =

(
d
k

)
, at most one attribute will provide the upper bound for

(
d−1
k−1

)
subspaces, an-

other for at most
(
d−2
k−1

)
and so forth. This results in a set of at least d−k+1 independent

subsets of subspaces of decreasing size where each set has a common dependency, al-
beit weak. Thus, in the ‘worst case’ scenario, the number of independent measures is
still at least d − k + 1. This result applies to any measure that shows a dependence on
at most one attribute. If a measure was dependent on a combination of 2 or more at-
tributes, then the number of independent variables would be larger than d as the number
of distinguishable subspaces size k > 1 is greater than d. Thus the bound is general to
any measure: Any outlier method computed on ensembles of

(
d
k

)
subspaces will have

at least d − k + 1 independent sets of subspace results. For a fixed k, especially with
k ≪ d, this is O(d).

So far we have assumed the attributes are independent. This is reasonable because,
whatever the dimensionality of a dataset, it can always be transformed into a possibly
smaller number of essentially independent dimensions by any of the standard means.

Therefore, the concentration of measure phenomenon will apply to the outlier mea-
sure ensemble score ϕ if 1) the measures are Lipschitz and 2) the number of attributes



8 A. Foss et al

0

50

100

150

200

250

300

350

Class 1

Class 2

Observed

Threshold T

Cluster Boundaries

0-xB xB

Fig. 3. Clustering a mixture of two Gaussians.

is sufficiently large for CofM to practically apply. Regarding (1), underlying classes are
usually Lipschitz unless strong boundary effects are evident. The measure we are tak-
ing here amounts to an estimate of a part of the probability distribution function which
will be Lipschitz if the underlying distribution is. Regarding (2), Equation 2 shows an
exponential convergence on the mean suggesting convergence even for low dimension-
ality. The empirical results of Beyer et al. (Beyer et al., 1999) suggest 10-15 dimensions
are sufficient. Later we present our results (Section 4.7) showing how this phenomenon
rapidly intensifies at similar low dimensionality. Thus we can take m′ ≈ 15.

Now we have to show how the classes are separable. Figure 3 shows an example
of a difficult case for class separation, separating two concentric classes. There is no
spatial differentiation to exploit but the difference in the variance results in one class
contributing the majority of the distribution tails. In one dimension, that would only
allow us to collect a small number of points from the extreme tails, which likely belong
to high variance Class 2. However, as dimensionality increases, CofM means that the
points belonging to each class Ci will tend to yield a measure relatively close to some
constant ci. If this measure has a dependency on the class variance, then c1 ̸= c2 if the
variances differ causing the classes to separate in the measure ranking.

Let us consider some common approaches to the problem. Following (He et al.,
2005) we can define a measure on each point x based on the local density observed
around x. This density will be dependent on the observed distribution which, in Figure 3,
is the sum of the probability distribution functions (PDF) of the two classes. However,
the position of x relative to the mean is solely due to the PDF of its class Ci. Suppose
we take an approach that applies a threshold T and only those points detected in areas
with local density below T are inspected (∀x ∈ D | δ(x) < T ). T effectively creates
a cluster boundary (e.g. as in Figure 3). We can either define a measure that is based
on local density as in the earlier part of this proof or on the distance from the cluster,
however defined. This will yield a real value estimate of ‘outlierness’ but is also a direct
consequence of the PDF of the underlying class. Alternatively, we can take a binary
measure giving equal score to any points found beyond the cluster boundary. However,



Class Separation through Variance: A new Application of Outlier Detection 9

over multiple attributes or subspaces, this measure is again dependent on the PDF of
the underlying class since the variance of the class determines the likelihood of the
point appearing in the tail. This binary score approach is like the coin flipping case of
Equation 2. For a probability distribution function F (N,µ, σ), the outlier measure will
converge on the probability pi for attribute i where (assuming no boundary effects)

pi = 1−
∫ xB

−xB
F (N,µ, σ)∫∞

−∞ F (N,µ, σ)

If we treat N and µ as constants and set the total cumulative distribution function as C,
for example, by normalising the distributions, then

pi = 1− 1

C
f(xB , σ)

making clear the dependence of p on σ. From this we can expect that such an approach
to outlier scoring will cause entire classes with different σ to converge their scores
around different values.

As it has been shown that the tails of the (outlier) measure (for Lipschitz functions)
are approximately Gaussian (Equation 1), if we plot the ranked outliers by rank and
score for all x ∈ D such that for rank i xi ≥ xi+1, then each class will produce an
’S’ shaped curve. The outlier score of most points in a class will cluster around some
constant giving a close to linear plot with ‘tail’ points having scores increasingly larger
(smaller) than this constant. Exactly this can be seen in both synthetic and real datasets
in the figures in Section 6.2. Thus, as postulated, classes with different variances will
tend to separate in an outlier ranking.

Therefore, under the appropriate conditions discussed, the assertion is accepted.

The intuition behind this in terms of an outlier method can be expressed as follows:

If a point is contained in a class of high variance, then this point is likely to be an
‘outlier’ in many low-dimensional subspaces, and vice versa.

Let us explain this intuition in more detail, assuming a density-based Outlier method
applied in k-dimensional subspaces.

First, assume a point x is ranked high in the outlier ranking. Then, for ‘many’ k-
dimensional subspaces DS of D, where S = {i, j, ...}, |S| = k, x is assigned a high
outlier degree in DS by the corresponding Outlier method.

This means that, for ‘many’ subspaces DS of D, x is isolated (i.e., an outlier). Sup-
pose two classes {A,B} where the variance of A is less than that of B. Since the class
A has low variance, points in A are expected to be not isolated in ‘most’ k-dimensional
subspaces. Hence x is more likely to belong to B than to belong to A. Consequently, if
a point has a score value above a certain threshold, this point is most likely to belong
to B.

Second, assume a point x is ranked low in the outlier ranking. Then, for ‘most’
k-dimensional subspaces DS of D, x is not considered an outlier in DS by the cor-
responding Outlier method. This means that, for ‘most’ subspaces DS of D, x is in a
dense region. Since the class B has high variance, points in B are expected to be iso-
lated in ‘many’ subspaces. Hence x is more likely to belong to A than to belong to B.
Consequently, if a point has a score value below a certain threshold, this point is more
likely to belong to A.

In particular, if the difference between the variance of A and the variance of B is
sufficiently large, and if d is high enough to provide an adequate number of subspaces,
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Fig. 4. In Example (i) two classes with equal variance show no separation in the outlier ranking. In Example
(ii), the difference in variance leads to a degree of separation.

we expect thus to separate basically all points in B from all points in A — just because
basically all points in B will have higher outlier scores than any point in A.

Since this observation is totally independent of the mean µ around which the points
in a class are distributed, our algorithm works well even if two classes overlap com-
pletely — as long as the two classes differ significantly in variance.

Figure 4 illustrates the general phenomenon. In Example (i), there are two equal
variance classes and this results in their members being well mixed in the outlier score
ranking. However, in Example (ii), the variances of the two classes are different and
there is a tendency for the higher variance class cv to populate the higher outlier score
rankings. If the classes are heavily overlapping, in any given subspace, only a few mem-
bers of cv will visually appear as outliers. However, as their underlying variance is
higher, accumulating over multiple subspaces, eventually almost all can differentiate
themselves from the lower variance class.

In fact, for many real-world datasets it is the case that they contain two or more
classes that differ significantly in variance. For instance, when considering medical data,
it is often the case that the class representing healthy cases has lower variance than the
class representing unhealthy cases. To date, outlier detection has been understood as
beneficial in separating two such classes in the case of an extreme class imbalance,
i.e., if the ‘healthy’ class is predominant in the sense that it contains many more data
points than the ‘unhealthy’ class. However, our outlier detection method allows for un-
supervised class separation even in the case of perfectly balanced classes, as long as the
classes differ in variance.

In this section, we have seen that an approach that sums or computes a mean of
outlierness for data points over an ensemble of variables, here outlier scores in different
subspaces, should cause classes with different variances to separate. In this section, we
anticipated that, due to Concentration of Measure, separation should intensify exponen-
tially with increasing dimensionality. In the following sections, an algorithmic approach
is proposed which analyses ensembles of subspaces and this effect is extensively inves-
tigated. As will be seen, the results are in line with the theoretical expectations.
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4. Methodology: FASTOUT

The algorithm FASTOUT employs a novel subspace ensemble outlier detection ap-
proach based on a new linear cost nearest neighbour technique. This approach can ex-
ploit an arbitrary size of subspace rather than 1D (He et al., 2005), 2D (T*ENT, T*ROF)
or αD, where α ≥ d/2 for d dimensions (Lazarevic and Kumar, 2005). We also show
that only a sample of all the possible subspaces is sufficient to achieve high effective-
ness, making it very efficient.

Earlier we discussed various approaches to outlier scoring (See, for example, Sec-
tion 2, Table 1). In particular, it was shown that a binary scoring based on ‘clustered’/‘not-
clustered’ in each subspace accumulated over sufficient subspaces (to be defined later)
should provide the desired potential for class separation on the basis of differences in
class variance. We therefore developed an efficient and effective algorithm for cluster-
ing within a given subspace (of any size), using an efficient nearest neighbour scheme.
The algorithm is referred to as FASTOUT.

We start by providing certain definitions and then introduce our methodology for
exploiting these for outlier detection. We then show how outlier detection can be used
to sort, unsupervised, binary or even higher multiple underlying classes even when their
distributions are fully overlapping.

4.1. Definitions

We assume a dataset D ⊂ Rd with d dimensions A = {1, 2, . . . , d}. For every point
x ∈ D and every i ∈ {1, . . . , d} we denote by xi the value in the ith attribute of x, i.e.,
x = (x1, . . . , xd).

Definition 4.1. k-Subspace S and subspace projection DS .

S = {i1, . . . , ik} ⊆ {1, . . . , d}. DS is the projection of D on S.

Definition 4.2. Subspace (Nearest) Neighbours.

Let x, x′ ∈ DS . Then x is a nearest neighbour to x′ with respect to S (an S-NN) iff
1) for any categorical attribute Ai ∈ A, xi = x′

i,∀si ∈ S. That is, the Hamming
distance between x and x′ is zero for S; or 2) for any numerical attribute Aj ∈ A,
|xi − x′

i| ≤ ϵ,∀si ∈ S for some ϵ ≥ 0.

Definition 4.3. Subspace Cluster C.

Let x, x′ ∈ DS . Then x is said to be reachable from x′ if there are points n0, . . . , nz in
DS such that x is an S-NN of n0, nm is an S-NN of nm+1 for all m < z, and nz is an
S-NN of x′. A cluster C in DS is a maximal set of points that are pairwise reachable in
DS . Let C = {C1, . . . , Cm} be the set of all clusters in DS

Definition 4.4. Outlier.

Let x ∈ D. Then x is an outlier in DS iff ∀Ci ∈ C , x /∈ Ci or x ∈ Ci, |Ci| < ρ, i.e. Ci

is small. OS ∈ DS is the set of outliers for subspace S.

Definition 4.5. Outlier Score (Binary).

Let x ∈ D and E = {S1, . . . , S|E|} be the set of all subspaces. The outlier score
ϕ(x) =

∑
S∈E f(S, x) where
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f(S, x) =

{
1 x ∈ OS

0 otherwise (3)

Definition 4.6. Outlier Ranking.

∀x ∈ D the outlier ranking is the sorted list {1, . . . , |D|} indexed by i of outlier scores
such that ϕ(xi) ≥ ϕ(xi+1).

4.2. Finding Nearest Neighbours

In order to find the close neighbours of each point we hash the points into bins on each
attribute. The number of bins NumBins is O(|D|) and for attribute Ai

BinWidth(Ai) =
Max(Ai)−Min(Ai)

NumBins
(4)

where Max(.) and Min(.) represent the maximum and minimum values of the points
on an attribute. As NumBins is dependent on the size of the dataset, we define a
parameter Q independent of dataset size, which is defined as

Q =
|D|

NumBins
(5)

Q determines the average number of points in a bin and is O(1) as NumBins is
chosen to keep Q a fixed constant.

Unless the data is already normalised over some range, a pass over the database
allows the minimum and maximum values of each attribute to be computed. From this,
the bin width on each attribute is computed and another pass over the data allows the
points to be assigned a bin number and a count be made for each bin. Then a |D| ×
d index can be created of the points sorted in each bin. This allows enumeration of
the points in a bin without any searching at the cost of one more pass over the data
(Algorithm 4.1).

To find the neighbours of a point x ∈ D over subspace S ⊆ A, where the attributes
are numerical, we look for all points that are within half a bin width (w/2) of x on all
members of S. Let x be in bin j. Then we calculate the distance on attribute si ∈ S
over all points in bin j and keep those within w/2 of x. If x is in the first half of the bin
j then we repeat over bin j− 1, or, if in the second half, over bin j+1. This is repeated
over all attributes in S keeping only those points that are neighbours on all members of
S. For categorical attributes, points with the same value are clustered. This process has
a complexity of O(|D|d) with an approximately linear dependency on Q.

4.3. Creating Clusters in Subspaces

After collecting a vector v of the nearest neighbours of a point p ∈ D, each member
can be assigned a cluster number c. Then all the neighbours of each point u ∈ v, that
have not been given a cluster number, are collected and also assigned c. This continues
through a recursive process until no more points can be assigned. Since a point is only
assigned a cluster number once and the number of nearest neighbours to be inspected
is, on average, Q for each dimension, the process is O(Q|A||D|) (Algorithm 4.1).
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Algorithm 4.1 RankedOutliers() – Detecting, Scoring and Ranking Outliers
Input sample size sample, subspace size k, parameter Q
Output set of points S sorted (ranked) by outlier score

∀a ∈ A Compute Bin Widths (Q)
∀x ∈ D ∀a ∈ A Count Numbers in Bins
∀x ∈ D ∀a ∈ A Assign to Bins
for i← 1 to sample do

Choose Random set of k attributes s
c← 0
for all x ∈ D, x.clustered = 0 do
c← c+ 1
x.clustered← c
Collect vector v of all unclustered points that are neighbours of x or neighbours
of members of v ∀a ∈ s {Collect recursively until no additions can be made.
Neighbour defined in text}
if v = ∅ then
x.clustered← 0

else
∀q ∈ v, q.clustered← c

end if
end for
for all x ∈ D do

if x.clustered > 0 then
x.clustered← 0, x.score← x.score+ 1

end if
end for
∀x ∈ D, S ← x

end for
Sort S by score
return S

Algorithm 4.2 Theta() – Gets Ranked Outlier List and Computes θ
Input sample size sample, subspace size k, points to rank n, parameter Q
Output θ and set of points S sorted (ranked) by outlier score

S ← RankedOutliers(sample, k,Q) {Algorithm 4.1}
θ ← Number of Points with Score Equal To n in S
return {θ, S}

4.4. Outlier Detection

All points not assigned a cluster number, due to not having any neighbours or being
in a very small cluster, are flagged as outliers in the given subspace (Algorithm 4.1).
We have consistently used 1% of the dataset as the minimum cluster size as this proved
robust (see Section 4.7).
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Algorithm 4.3 OptimisedRanking() – Automates Parameter Setting
Input maximum acceptable value of θ target {normally 1}
Input sample size sample, points to rank n
Output optimised ranked outlier list S

k ← 3
Q← 5
maxQ← n/4
stepQ← 10
lastθ ← n
{θ, S} ← Theta(sample, k,Q)
while (θ > target or θ < lastθ or Q < maxQ) do

if (θ ≤ target) then
return S

end if
if (θ ≥ lastθ) then
{Effectiveness declining so try next k}
k ← k + 1
Q← Q− stepQ {Only need to back up 1 step}
lastθ ← n

else
{Try next Q}
Q← Q+ stepQ
lastθ ← θ

end if
{θ, S} ← Theta(sample, k,Q)

end while
return S

4.5. Outlier Ranking Using Subspaces

Given a subspace size k = |S|, all possible subspaces or a sample of them are clustered
and the number of times each point is an outlier is tallied. This becomes the outlier score
for each point. These scores are then sorted and thus the points are ranked for outlier
tendency or ‘outlierness’ (Algorithm 4.1).

4.6. Subspace Sampling

Enumerating all possible subspaces, rapidly becomes intractable (even with potential
parallelisation of the algorithm). Thus, we experimented with a random sample from all
the possible subspaces of a particular size k. Obviously using sampling provides a large
benefit in efficiency (see Section 6.4).

4.7. Optimising Parameter Setting

Class separation depends on the members of different classes occupying different re-
gions in the outlier ranking and knowing the ranks at which the predominance of one
class gives way to the next. Later we will address how these ‘cut’ points may be deter-
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mined. At this stage, let knowledge of these points be assumed. If there are 2 classes,
let the cut point be at rank r. If the point at r has score ϕr, let θ be the number of points
with identical score ϕr. θ is determined in Algorithm 4.2.

FASTOUT has a number of parameters. The key sensitive parameters are subspace
size k and bin width Q. For FASTOUT, these are set automatically by Algorithm 4.3
based on an objective. This objective is based on the observation that high accuracy
coincides with small θ. For example, Tables 7 and 8 show how values of θ ≃ 1 coincide
with the highest accuracy. A minor exception is for k = 2 which tends to produce lower
accuracies than k ≥ 3, likely due to the smaller sample size. Algorithm 4.3 scans across
a range of values of Q for increasing k until θ = 1 or θ values for the current k are
higher than for k − 1 indicating the optimum has already been passed. Normally scans
start at k = 3, Q = 5.

That θ ≃ 1 is optimal is an empirical observation but it is the condition for the best
separation of points in the ranking. For larger values of θ, multiple points have the same
outlier score and thus cannot be separated. Thus the accuracies quoted are in themselves
approximate. So one would naturally prefer a low value of θ. The algorithm converges
rapidly, in our experiments, as θ changes sharply with both k and Q as can be seen from
Tabless 7 and 8.

We also tested the sensitivity to our choice of 1% of the data size for the mini-
mum cluster size (ρ, see Definition 4.4). On synthetic and real-world data this typically
worked well. In some cases in the real-world data, 1% of the data was in low single
digits and in these cases a slightly larger value (≈ 10) produced better results. In Algo-
rithm 4.3 a stopping condition maxQ is defined but this limit was never reached in our
experiments. It simply reflects the fact that if the number of bins becomes very small,
outlier detection is moot.

4.8. Semi-Supervised Class Assignment

If we have a ranking in which the classes have separated into different regions of the
list and we have some labels, it is possible to attempt to classify unlabelled points based
on their proximity to labelled data. No training is implied here but having got a final
ranking, the class of each point is predicted based on the votes of the nearest labelled
points. The class with the most votes is assigned. Ties are broken arbitrarily.

We tested a voting scheme with the nearest z labelled points voting for the class of
an unlabelled point x. Varying z from 2 to 10 had very little effect on the results on all
test datasets except in case of very small classes and larger z. Thus z = 2 was adopted.

4.9. Large Datasets and a Real Valued Measure

The binary ‘clusterd/not clustered’ measure for outlier scoring has two key advantages.
First, it is easy to motivate on the basis of Equation 2 and Theorem 1. Simply put, if
a point is not clustered it is likely in the tail of whatever distribution it might belong
to and we do not, therefore, have to determine that membership. If we proposed a real-
valued measure based on the distance from its distribution mean (for example) and
there were several clusters found, it would be very difficult to justify which cluster
to take. Selecting the nearest would obviously be unsafe as normal and many other
distributions have infinite tails. Second, the binary approach provides an effective way
of automatically setting the key parameters.

On the other hand, the binary approach has certain disadvantages. If the dataset is
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very large and thus, for efficiency, the ensemble size m ≪ |D|, θ, the number of co-
equal points can become large. This has implications for finding class boundaries and
the semi-supervised assignment of class labels (Section 4.8) may be influenced by arti-
facts in the presentation order of the data. One way of handling the later is to randomly
sort the data prior to scoring and the semi-supervised approach can be applied to the
sorted but unscored data to provide a base line, which amounts to guessing based on
the label frequency in the training data. Both these approaches are applied in Section
6.7 for the analysis of intrusion detection. However, while these two strategies can give
us confidence in the results, they do not resolve the main issues. It would, therefore, be
advantageous to find a real-valued measure that satisfactorily reproduces the character-
istics of the binary measure ϕ.

The binary measure’s differentiation of points is related to the frequency of points
similarly scored on the subspace. That is, if a point is not clustered but most others
are, then its score will have more weight on the final result than if many points are
not clustered. To capture this, a measure ϕR is defined that is the normalised inverse
product of the entropy of the point and the entropy of the subspace. That is, for a point
i in cluster Cj where pi = pCj =

|Cj |
|D|

ϕR =
log( 1

|D| )
2

|D|pilog(pi)
∑

Ck∈C pklog(pk)
(6)

Thus ϕR decreases both due to the point being in a larger cluster (less likelihood
of being an outlier) and to the higher entropy of the subspace (many outliers). ϕR pro-
vides a strongly non-linear bias to exceptional outliers. ϕR ∈ [1,∞[ but the asymptote
occurs when all points are in a single cluster and that is not scored. This modification of
FASTOUT is referred to as FASTOUT-R.

Since ϕR can not be optimised in the same way as ϕ using θ ≈ 1 as an objective but
gives similar results to ϕ with the same parameters on the synthetic data, fixing k and
Q can be done by using the binary approach with a small ensemble (for efficiency) and
choosing the k and Q that give a θ minimum to use for scoring the data with ϕR.

All the results are for the binary approach except in Section 5 and Section 6.7 as the
purpose is to demonstrate the phenomenon of class separation in the most straightfor-
ward way.

4.10. Categorical Attributes

Large datasets typically contain a mixture of categorical and real valued/multinomial
data. FASTOUT handles categorical values automatically as indicated in Definition 4.2.

4.11. The γ Heuristic

With some categorical attributes and large |D| it could occur that a point exists in very
dense bins on all attributes of a subspace. This results in a large cluster being discovered
and is an unnecessary cost for outlier detection. Since all attributes are binned, this issue
extends to all attribute types. Therefore a heuristic was added to FASTOUT-R that if the
least dense bin inhabited by a point is larger than γ|D|, the point is not classed as an
outlier but placed in a cluster with all other such points. This heuristic is purely optional
and improves efficiency without any significant effect on accuracy. This was only used
on the KDD Cup 99 data with γ = 0.01 (Section 6.7).
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Table 2. Class sizes, dataset size and number of attributes.

|D| d Target class Other class

Ionosphere 351 32 126 225
SPECTF 267 44 212 55
Sonar 208 60 111 97
WDBC 569 30 212 357
Parkinsons 195 22 148 48
Spambase 4601 57 1813 2788
Creditcard 1000 24 700 300
Musk 476 166 207 269
Insurance 5822 85 348 5474

5. Experimental Results

The new and comparison algorithms were tested on all UCI Repository (Blake and
Merz, 1998) binary problem datasets, with 20 or more attributes, which they would all
reasonably be expected to complete. This meant requiring non-categorical data with-
out missing values or a very large number of attributes (≥ 500) since most contender
algorithms could not handle all of these. While these limitations could be reduced by
modifying certain of the algorithms, they serve as a useful set of conditions to define a
group of datasets that is both broad in scope and free of any question of experimenter
bias. Out of the 12 datasets that meet these criteria, two were left out each being one
of a pair of datasets based on the same data. For example, the SPECTF data with the
highest number of attributes was chosen. The ’Hill-Valley’ dataset was omitted since
the task should not be amenable to this approach. Whether a sequence has a peak or
a trough does not imply any likely difference in variance between the classes. On the
other datasets, it is reasonably possible that the two classes may have different variances
due to some meaningful tendency in the data.

Table 2 gives an overview of these datasets showing that they represent various class
balances including a preponderance of the class B expected to be more often contribut-
ing outliers. Hardly any would meet the usual ‘rare’ class criterion. For example, the
WDBC set consists of 569 samples labelled in two classes, 212 malignant and 357 be-
nign with 30 attributes for each sample. In this dataset as in many medical scenarios,
normal biopsies tend to have quite strongly clustered results while abnormal ones ex-
hibit a higher variance.

The results on the UCI datasets are summarised in Tables 3 and 4. Our results show
that overall FASTOUT and our previously reported algorithms T∗ROF and T∗ENT
(Foss et al., 2009) were the most effective though Robust Mahalanobis Distance (RMD)
(Rousseeuw and Driessen, 1999) and SOE1 (He et al., 2005) performed well. RMD is
also hampered by high run time and SOE1 by parameter sensitivity. The most effec-
tive approaches also require minimal parameter setting. T∗ROF is parameter free and
FASTOUT automatically adjusts its parameters. These therefore have a clear edge as
effective and user friendly approaches.

An extensive, but not necessarily exhaustive, literature search for the best results on
these datasets using supervised classifiers yielded the following:
Ionosphere: Wang (Wang, 2006) using a range of kNN classifiers and 10-fold cross-
validation (MCV) achieved an accuracy of 87.8%. A Support Vector Machine (SVM)
ensemble tested with 10-fold MCV achieved 95.20% (Kim and Park, 2004).
SPECTF (Cardiac): Previously, the CLIP3 algorithm was used to generate classifi-
cation rules that were 81.34% accurate (as compared with cardiologists’ diagnoses)
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Table 3. Area under the curve (AUC) and percent accuracy on the target class for various UCI datasets.
†Could not compute covariance matrix.

Ionosphere SPECTF Sonar WDBC Parkinsons

AUC % AUC % AUC % AUC % AUC %

FASTOUT 0.8400 85.78 0.7816 87.74 0.6449 62.16 0.9578 87.74 0.7514 85.71
FASTOUT-R 0.8297 85.33 0.7915 87.74 0.5894 60.36 0.9211 82.08 0.6835 82.99
T*ROF 0.8915 74.60 0.8849 90.57 0.9255 83.51 0.9574 87.74 0.7405 83.67
T*ENT 0.8429 84.89 0.8959 92.45 0.6235 61.26 0.8474 85.85 0.5319 80.27

SOE1 0.7691 80.00 0.7642 84.43 0.601 56.76 0.9203 80.66 0.7456 80.95
FBAG 0.6048 69.78 0.436 78.30 0.5018 54.05 0.5161 39.63 0.4239 72.11
LOF 0.5836 66.22 0.4154 77.83 0.4954 54.96 0.4699 35.85 0.4386 72.79
ORCA 0.4575 60.89 0.5569 80.19 0.5056 49.48 0.5091 39.62 0.5169 76.19
RMD 0.9479 87.40 0.7527 84.36 0.5857 62.73 0.9131 77.25 †
T*LOF 0.4297 63.56 0.3753 75.94 0.4836 52.25 0.4834 38.21 0.4249 72.79

Table 4. Area under the curve (AUC) and percent accuracy on the target class for various UCI datasets.
†Could not compute covariance matrix. *Exceeded time limit.

Spambase Credit Card Musk Insurance

AUC % AUC % AUC % AUC %

FASTOUT 0.7294 59.96 0.4675 69.29 0.6911 72.12 0.5363 8.05
FASTOUT-R 0.7255 72.74 0.5274 72.00 0.7736 69.57 0.4763 8.33

T*ROF 0.9077 79.15 0.3237 63.14 0.7055 58.45 0.5213 4.31
T*ENT 0.7278 78.26 0.7689 89.14 0.3297 28.99 0.5386 10.06

SOE1 0.7078 58.36 0.4422 69.14 0.3359 29.95 0.5489 10.63
FBAG 0.4742 37.51 0.5201 68.57 0.4967 43.48 0.4999 8.33
LOF 0.4668 36.62 0.494 69.14 0.4906 43.00 0.4994 6.61

ORCA 0.4909 38.44 0.5551 71.71 0.5084 46.38 0.5359 8.62
RMD † † † †

T*LOF 0.4825 39.33 0.5168 71.57 0.4958 42.51 *

(Kurgan, Cios, Tadeusiewicz, Ogiela and Goodenday, 2001). Ali et al. (Ali, Rueda and
Herrera, 2006) report that the best Linear Dimensionality (LD) reduction Quadratic
classifier had an error of 4.44% while the LD Linear classifier studied had an error rate
of 17.64%.
Sonar: The Sonar dataset is known to be difficult to separate. Harmeling et al. (Harmeling,
Dornhege, Tax, Meinecke and Müller, 2006) tested a wide variety of supervised meth-
ods including Gaussian mixtures, Support Vector Data Description (SVDD), Parzen, a
k-means based approach, and several k-NN methods. Their concept was using various

Table 5. Subspace size and Q determined by FASTOUT for the results in Tables 3 and 4.

k Q

Ionosphere 3 5
SPECTF 4 25
Sonar 5 25
WDBC 5 60
Parkinsons 5 45
Spambase 4 5
Credit Card 4 25
Musk 7 75
Insurance 4 25
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local density based measures to rank the points for their degree of being typical, as an
outlier method does. Results varied from AUC 0.596 (SVDD) to 0.870 (new γ kNN
method).
WDBC: Jiang and Zhou used a neural network to edit the training data for kNN classi-
fiers (Jiang and Zhou, 2004). With a minimum of 250 points used as training data, 100%
separation of the classes was been achieved. With 200 training points they achieved 96%
accuracy. Ali et al. (Ali et al., 2006) report that the best Linear Dimensionality (LD) re-
duction Quadratic classifier had an error of 4.02% while the LD Linear classifier studied
had an error rate of 2.99%.
Parkinsons: No comparable supervised classification results were located in our litera-
ture search.
Spambase: Neural Expert networks have been reported with an accuracy of 85% (Petrushin
and (Eds), 2007) using 10 fold MCV.
Credit Card: This is the Statlog (German Credit Card) dataset. Eggermont et al. used
Genetic Programming and compared with C4.5 with Bagging and Boosting and other
algorithms. The best result was a 27.1% misclassification rate (Eggermont, Kok and
Kosters, 2004).
Musk: This is a highly studied dataset. For example, Zafra and Venture report accu-
racy with SVMs of 87% and 93% with a genetic algorithm (Zafra and Ventura, 2007).
This dataset is only nominally two-class as both musks and non-musks are made up of
multiple classes and thus is possibly not suitable for the outlier approach.
Insurance: This was part of the COIL 2002 competition and proved difficult for all
algorithms. Caravan ownership is to be predicted based on other factors in an insurance
application. The best results were only a few percentage points better than the best in
Table 4 (See e.g. (Zadrozny and Elkan, 2002)).

The very best supervised classifiers outperform the outlier methods on most datasets
tested but the margins are generally small. Remarkably, one of our unsupervised ap-
proaches achieved the best result on two datasets – Sonar (T*ROF) and Credit Card
(T*ENT). FASTOUT, FASTOUT-R, T*ENT and T*ROF are remarkably competitive
considering that they simply exploit the difference in variance between the classes and
operate unsupervised. Obviously, different datasets are suited to different algorithms but
overall FASTOUT and T*ROF put in the best performance with respect to effectiveness.
FASTOUT-R is significantly more efficient, requiring 25% or less subspace sample size
to produce similar results to FASTOUT which is, itself, substantially more efficient than
the T* methods that fully enumerate the 2D subspaces.

6. Further Exploring Class Separation with FASTOUT

In order to elicit the understanding of the concept of class separation through variance, it
is advantageous to investigate synthetic datasets with known characteristics. After that,
we look at the scheme that classifies using the outlier ranking and a small proportion of
labelled data. These experiments were performed using a 2.6GHz AMD processor and
2G of RAM.

All the results in this section are for the binary scored approach (FASTOUT) except
in Section 6.7 as the purpose is to demonstrate the phenomenon of class separation in
the most straightforward way. In Section 6.7, a large database is studied that requires
the greater efficiency of FASTOUT-R.
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Fig. 5. Example plots of the weakly and fully overlapping datasets DS1w and DS1f on two typical attributes.

Table 6. Synthetic datasets with d identical attributes and their classes in the form {N,µ, σ} (size, mean,
standard deviation); ri indicates randomly assigned location on each attribute.

Designation d Classes

DS0w 30 {500, r1, 2}, {500, r2, 2}
DS1w 30 {500, r1, 2}, {500, r2, 3}
DS2w 30 {500, r1, 2}, {500, r2, 4}
DS1f 30 {500, 0, 2}, {500, 0, 3}

6.1. Synthetic Datasets

We hypothesised that if a dataset contained two clusters with different variances, then
the two groups of points can be separated because the points with the greater variance
will be outliers more often. If the variances are the same, then this should fail. This is
illustrated in Figure 4. While the outliers are all scored correctly, only in the case where
the underlying classes differ in variance do their members’ scores inhabit (largely) dif-
ferent regions of the outlier ranking. We investigated this effect with synthetic datasets
with weakly spatially overlapping clusters, labelled ‘w’, and then with fully overlapping
clusters, labelled ‘f’. E.g. DS1f means fully overlapping classes with standard deviation
differing by 1. Figure 5 illustrates these two cases in a sample 2D space.

Table 6 lists the characteristics of the data sets. All the datasets contain classes with
Gaussian distributions over all attributes differing only in class size, variance and in
some cases class mean µ.

Two scoring approaches are taken. First, for binary class data the area under the
ROC curve (AUC) is computed. Second, if the class C with the highest variance has
size n, then the percentage of members of C in the top n ranked outliers is computed.
This is referred to as the ‘accuracy’. If there are several classes, then the percentage of
the class found in the expected region of the ranking is quoted as the accuracy. These
two measures tend to be closely related so both values are not always given in the results.

Table 7 shows the results for the weakly overlapping datasets. This shows very
clearly that this approach can separate classes based on a variance difference. Even with
classes σ = 2 vs. σ = 3, 100% of the class members appeared in distinct regions of
the outlier ranking. On the other hand, where there was no difference in variance (Data-
set DS0w), no separation took place. This is as postulated in the theoretical discussion
(Section 3).

A more challenging case is when the classes are concentric as we might expect the
central core of the cluster to contain indistinguishable members of both classes. Table 8
shows that, with the right parameter setting, a 94.0% separation occurs for DS1f. Figure
6 shows that over a range of dimensions from 5 to 60, AUC values quickly rise to better
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Table 7. Effectiveness in separating two clusters in synthetic datasets. Q = 35, Sample = 2000. Accuracy
values above and θ values below (see Section 4.7). *All points are equally outliers.

k 1 2 3 4 5

DS0w 49.8% 50.0% 48.6% * *
DS1w 58.4% 93.0% 100% * *
DS2w 59.4% 97.8% 100% 95.8% *

θ, DS0w 894 12 4 1000 1000
θ, DS1w 672 2 1 1000 1000
θ, DS2w 760 4 1 523 1000

Table 8. Effectiveness on the fully overlapping dataset DS1f, d = 30 for various Q and sample size 2000.
Accuracy values across subspace sizes k above and θ values below. *All points are equally outliers.

k 1 2 3 4 5

Q=35 68.4% 93.2% 76.4% * *
Q=70 58.0% 88.8% 92.6% 85.0% *
Q=100 53.4% 89.4% 94.0% 91.0% 85.0%

θ, Q = 35 709 3 75 1000 1000
θ, Q = 70 883 13 1 14 1000
θ, Q = 100 924 33 1 2 28

than 0.99 (at d ≥ 40). Thus, given sufficient dimensions, the concentric case is only
slightly more difficult than the weakly overlapping case.
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Fig. 6. AUC at different dimensionalities for DS1f type datasets at two different sampling sizes.
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Table 9. Synthetic datasets with identical attributes A and their classes in the form {N,µ, σ} (size, mean,
standard deviation); ri indicates randomly assigned location on each attribute. ‘U’ in the dataset name
indicates containing unbalanced classes.

Dataset d Classes

DS3f 30, 60, 90 {500, 0, 2}, {500, 0, 3}, {500, 0, 4}
DS4f 30 {500, 0, 1}, {500, 0, 2}, {500, 0, 3}, {500, 0, 4}
DS4Uf 30 {500, 0, 1}, {100, 0, 2}, {500, 0, 3}, {100, 0, 4}
DS4U2f 30 {30, 0, 1}, {100, 0, 2}, {300, 0, 3}, {500, 0, 4}
DS4U3f 30 {15, 0, 1}, {30, 0, 2}, {30, 0, 3}, {500, 0, 4}

Table 10. Separation of 3 fully overlapping clusters of differing variance (DS3f with d = 30)

Class (Deviation σ)

Ranked Points 4 3 2

Top 500 85.4% 14.6% 0%
Mid 500 14.6% 79.4% 6.0%
Bottom 500 0% 6.0% 94.0%

6.2. Multiple Class Separation

Having confirmed that both non-concentric and concentric classes can be separated and
that separating concentric classes is a more difficult task, we now consider only such
classes. So far only balanced classes were analysed. Table 9 shows the characteristics of
a number of synthetic datasets with multiple classes and both balanced and unbalanced
class sizes.

Tables 10, 11 and 12 show the effectiveness of FASTOUT for three class synthetic
data DS3f {C1, C2, C3} at three different dimensionalities. There is a clear improve-
ment in separation with increasing dimensionality. Tables 13, 14, 15 and 16 show that
this effectiveness of separation extends to 4 classes even if the classes are unbalanced
(Datasets DS4f, DS4Uf, DS4U2f and DS4U3f). This data shows that large low variance
classes separate well as do high small variance classes relative to them (e.g. Table 16).
However, larger higher variance classes can partially overlap with smaller classes of
similar variance. For example, σ = 3 and σ = 4 classes separate with markedly lower
effectiveness than σ = 2 and σ = 4 classes. It is clear that the greater the difference in
variance as well as the larger the dimensionality, the greater the effectiveness of separa-
tion. This is well illustrated in Figure 6 and Tables 10 and 11.

Table 11. Separation of 3 fully overlapping clusters of differing variance (DS3f with d = 60)

Class (Deviation σ)

Ranked Points 4 3 2

Top 500 94.0% 6.0% 0%
Mid 500 6.0% 92.2% 1.8%
Bottom 500 0% 1.8% 98.2%
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Table 12. Separation of 3 fully overlapping clusters of differing variance (DS3f with d = 90)

Class (Deviation σ)

Ranked Points 4 3 2

Top 500 96.8% 3.2% 0%
Mid 500 3.2% 96.6% 0.2%
Bottom 500 0% 0.2% 99.8%

Table 13. Separation of 4 fully overlapping clusters of differing variance (DS4f).

Class (Deviation σ)

Ranked Points 4 3 2 1

Top 500 77.8% 22.2% 0% 0%
Next 500 22.2% 70.4% 7.4% 0%
Next 500 0% 7.4% 92.6% 0%
Bottom 500 0% 0% 0% 100.0%

6.3. Class Variance Estimation

Consider the 3 class synthetic data presented above (DS3f). This dataset consists of 3
normal distributions {C1, C2, C3} = {{0, 2}, {0, 3}, {0, 4}} where each Gaussian is
defined by its mean and standard deviation {µ, σ}. Figure 7 shows 3 fully overlapping
Gaussians. The cumulative probability distribution (Φ) for a Gaussian evaluated up to
(cluster boundary) XB is

Φ(µ, σ,XB) =
1

σ
√
2π

∫ XB

−∞
e

−(u−µ)2

2σ2 du (7)

The binary valued process of outlier detection first clusters and then assigns an out-
lier score of 1 to points falling outside the cluster. Earlier (Section 3) it was argued
that, summing over multiple subspaces, is sufficient to permit an estimation of the prob-
ability of a point being an outlier. If this is so, then the cumulated outlier score of a
class should approximate the cumulative probability distribution (Equation 7) with re-
spect to the boundary of the cluster ±XB . That is, for the points xj , 1 ≤ j ≤ Ni in
Ci = {Ni, µi, σi}

1

Ni

∑
Ci

ϕ(xj) ≃ α Φ(µi, σi, XB) (8)

where α is a constant of proportionality for constant subspace size.
If we set the approximate boundary of the clustering of DS3f, say, at XB = 5.1, then

Table 14. Separation of 4 fully overlapping unbalanced clusters of differing variance (DS4Uf).

Class (Deviation σ)

Ranked Points 4 3 2 1

Top 100 60.0% 8.0% 0% 0%
Next 500 40.0% 89.8% 11.0% 0%
Next 100 0% 2.2% 89.0% 0%
Bottom 500 0% 0% 0% 100.0%
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Table 15. Separation of 4 fully overlapping unbalanced clusters of differing variance (DS4U2f).

Class (Deviation σ)

Ranked Points 4 3 2 1

Top 30 60.0% 12.0% 0% 0.2%
Next 100 40.0% 71.0% 5.7% 0%
Next 300 0% 17.0% 94.0% 0.2%
Bottom 500 0% 0% 0.3% 99.8%

Table 16. Separation of 3 small and one larger fully overlapping clusters of differing variance (DS4U3f).

Class (Deviation σ)

Ranked Points 4 3 2 1

Top 15 93.3% 3.3% 0% 0%
Next 30 6.7% 96.7% 0% 0%
Next 30 0% 0% 100% 0%
Bottom 500 0% 0% 0% 100%

the relative proportions of Φ(XB) for the three classes is 3.44%, 29.32%, and 67.24%.
If we total the outlier scores for the four classes in the DS3f synthetic dataset, their
relative proportions are 2.29%, 30.10% and 67.60%, which is closely similar, given
stochastic effects in the randomly generated synthetic dataset and approximations in
the numerical integration (Table 17). Dataset DS4f yielded a similar result (Table 17) as
also did the unbalanced datasets, for example DS4Uf (Table 18). Thus the binary-valued
outlier measure of FASTOUT provides a very good approximation to the probability
distribution function for normal distributions.

From this we could estimate the σi if we assume normal distributions and can es-
timate XB relative to µ. Φ for a Gaussian has no closed form solution, so numerical
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Table 17. Comparison of Σϕ to Φ(XB) for two synthetic datasets. Σϕ for actual classes.

DS3f

Class (σ) 2 3 4

Σϕ 2.29% 30.10% 67.60%
Φ(XB = 5.1) 3.44% 29.32% 67.24%

DS4f

Class (σ) 1 2 3 4

Σϕ 1.72% 24.13% 35.36% 38.79%
Φ(XB = 1.6) 5.73% 23.23% 32.83% 38.21%

Table 18. Comparison of Σϕ to Φ(XB) for unbalanced class dataset DS4U2f with correction for dataset size
N as per Equation 8.

Class (σ) 1 2 3 4

N 500 300 100 30

(Σϕ)/N 6.56% 27.24% 32.49% 33.71%
Φ(XB = 1.2) 9.95% 24.56% 31.03% 34.48%

integration is used to approximate it. The approach we take is an iterative approach
where a series of solutions are computed within a reasonable range of the parameters
and the best selected and then refined by computing within an increasingly tight region.
The ratios of the left hand side of Equation 8 computed for the discovered classes is
used as the objective and ratios of the right hand side computed for various values of σ
and XB with progressive refinement to give a fit within some ϵ. Thus α drops out.

Excellent solutions already exist for separating classes with well separated means.
The approach described here is of special utility for the difficult case of heavily over-
lapping classes and this permits us to assume the means are approximately identical.
Therefore, for spherically symmetric distributions, we can assume an approximately
spherical form of the clustering which can be captured by its radius XB , rather than
some complex shape. This assumption is only relevant if we try to reverse engineer the
variances from the outlier scores.

It should be noted that the approach of this section does not require a Gaussian or any
other specific distribution and thus should apply to any continuous tailed distribution.

6.4. Sampling

Full enumeration (FE) of all subspaces is intractable for larger k. Therefore we inves-
tigated sampling. If the sample size is S′ then the number of subspaces summed for the
outlier measure S∗ = min(S′, FE). Sampling was tested on DS1f over d = 5 to 60 for
S′ = {100, 1000}. Figure 6 shows the results. In our other experiments a similar pattern
emerged with only a small effectiveness gain for larger samples or full enumeration.

6.5. Scaling

Synthetic datasets are often used for demonstrating scaling. The advantage is that the
structure of the data is known but the disadvantage is that the simple type of datasets
often used may not adequately test the algorithms. Purely for the purpose of this scal-
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Fig. 8. Scaling by dataset size for comparison outlier algorithms.

ing experiment, the WDBC dataset was used as a seed to create datasets 10×, 50×
and 100× the size. This was done by creating multiple points from each point adding
a random amount of jitter to each, not exceeding 1%, thus preserving the core charac-
teristics of the dataset. The class labels cannot be applied safely to these larger datasets
so no investigation was made into effectiveness. Similarly, to test scaling with respect
to the number of attributes, the WDBC data was used as a seed with up to 10% jitter to
minimize correlation effects.

Figure 8 shows run time over increasing dataset sizes and Figure 9 shows run time
over increasing dimensionality. The data can be found in Table 19. RMD, Feature Bag-
ging (FB) and T*LOF could not complete the larger datasets in a reasonable time. This
is because RMD is cubic in complexity due to the matrix manipulation and FB has a
run-time of about 50 x LOF which is itself quadratic for higher dimensionality where
tree indices are not helpful. T*LOF is

(
d
k

)
× LOF and run times are not shown in the

Figures but appear in Table 19. While T*ENT and T*ROF scale reasonably, FASTOUT,
SOE1 and ORCA are highly efficient. The efficiency of FASTOUT reflects both the ef-
ficiency of the algorithm and the use of sampling. FASTOUT-R results are not given
because the core algorithm has the same efficiency as FASTOUT but is usually run at
a smaller sample size so the net efficiency is even greater by the relative sample size.
The γ efficiency heuristic was not employed in any of these experiments. If applied, it
further enhances the efficiency of the FASTOUT and FASTOUT-R algorithms.

6.6. Automatic Class Separation

In Section 3.3 it was theoretically anticipated that the shape of the outlier ranking graph
would exhibit an ‘S’ shape for each class of different variance as long as the class had a
smooth probability distribution function. This is clearly visible in Figure 10 especially
for the highest variance class in the d = 30 case and all the classes where d = 60. The
higher the class variance, the larger the class mean outlier score and the other scores are
concentrated around this value (region R2, Figure 10 lower left) with a spreading out
at the extreme of each tail (regions R1 and R3). As the relative difference between the
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Table 19. Run time: scaling by dataset size for various algorithms (30 attributes) and scaling by number of
attributes (569 data points). †Could not complete.

Algorithm Dataset Size # Attributes

569 5,690 28450 56,900 30 60 90 120

FASTOUT 0.7 7.2 43.5 96.7 1.0 1.9 2.0 2.1
T*ENT 43.4 317.4 821.0 1782.2 43.4 174.8 405.0 704.5
T*ROF 43.6 321.0 828.4 1798.3 43.6 178.3 411.5 717.0

SOE1 0.0 0.1 0.7 1.5 0.0 0.0 0.0 0.1
FBAG 20.4 1620.5 † † 20.4 30.2 42.9 53.8
LOF 0.5 44.0 1309.7 4331.9 0.5 0.8 1.2 1.5
ORCA 0.6 0.8 1.0 1.2 0.6 0.8 1.2 1.2
RMD 188.5 2225.1 † † 188.5 729.9 1619.1 2635.2
T*LOF 77.7 5907.9 † † 77.7 393.7 1178.4 1990.8

variances declines, the overlap between the class outlier score tails increases. While it is
clear, in the 30D case, that the SD 2 and SD 4 class members separate well (in fact with
99.4% effectiveness) the SD 3 class overlaps sufficiently so that the upper graph which
shows the full rank/score graph does not exhibit any clear ‘join’ between the classes.

In the 60D case (Figure 10), the SD 2 and SD 3 classes separate enough that there
is an obvious inflexion in the full rank/score graph between them. A smaller, but still
clearly visible, inflexion is seen between SD 3 and SD 4. In these cases we can locate
these ‘joins’ algorithmically. As the graph is not strictly linear but shows some tendency
to a steeper slope in the regions where classes overlap, some simple heuristics can be
devised for detecting such locations in addition to either visual inspection or some semi-
supervised approach.
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Fig. 10. Three class synthetic data (DS3f) with d = 30 and 60 showing improved separation for higher
dimensionality. Complete outlier ranking graph at top, ranking within classes at bottom.

Let G be the {ϕ, rank} graph as in Figure 10. The separation or ‘join’ points we
wish to identify are associated with inflection points in G. Finding the inflection points
is simple in principle as the sign of the second differential of the series changes at these
points. The difficulty lies in the small stochastic variations. Dataset DS3f was generated
randomly and any realistic dataset will have some stochastic variations. Thus a moving
average (N/50 points) was employed to smooth the series and the first differential of
that taken. A histogram of the first differential was generated and a low pass filter ap-
plied at the most frequent value f . This yields zero values for the most linear regions of
G.

From the first differential, the peaks of all the regions of non-zero values are taken.
As the moving average introduces a ‘delay’ in the peak, the index of the peak is reduced
by n/100, i.e. half the window. End-effects will usually occur and are not shown. The
result on DS3f, amplified ten times for presentation purposes is seen in Figure 10. In
the 30D data, no inflexion is detected but in the 60D data the inflections around 500
and 1000 are well marked (Figure 10, top right). As each class contains 500 points this
is essentially correct. Obviously the difference between the σ = 2 and σ = 3 classes
will be more pronounced than that between the σ = 3 and σ = 4 classes. Looking
for the leading peaks in the smoothed totals of the first differential was more useful
than looking for a change of sign in the second differential as this occurs at every peak,
whatever size, and is thus more prone to stochastic effects.

This approach can be used when a suitable shape is seen in output graph G. Gen-
erally, the real world data with which we experimented did not permit sufficient sepa-
ration to be suited to this. Therefore, in the next section, we propose a semi-supervised
approach to extracting the classes from the output.
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6.7. Semi-Supervised Class Assignment

In this section, the real-valued measure version of FASTOUT is used, FASTOUT-R, as
well as the binary version. FASTOUT-R was developed to deal with very large datasets
as discussed in Section 4.9.

In order to test the concept of classifying points based on labelled neighbours in
the ranked list, the KDD Cup 99 data was used (ACM, 1999). This dataset is for de-
tecting computer intrusion. Attacks on computers can be analysed in different ways.
For example (Jiang and Zhu, 2009) assess the behaviour of the attacker. In our ap-
proach, we investigate if the variables associated with different types of attack can be
distinguished by their inherent variance. Each tuple in the dataset has 41 attributes, 3
being categorical. The winner’s result is reported for the test dataset with 311,029 tu-
ples which has 36 classes. Competitors had access to a large amount of training data
though the training data has a different probability distribution from the test data. As
FASTOUT/FASTOUT-R does not train, we used only the test data (for which labels are
available) and randomly selected 1/3 of this data as available labels, excluding the point
to be classified, for the voting scheme after all points were ranked (Prior to this voting,
the labels were not seen by the algorithm). From these, only the votes of the 2 nearest
labelled items are actually being used. A baseline was computed by applying the scoring
scheme on the randomised data vector prior to outlier scoring by FASTOUT/FASTOUT-
R. This quantifies how well one could do by ‘guessing’ on the basis of the relative label
frequencies in the ‘training’ data.

The choice of 1/3 is conservative but using even lower ratios only resulted in slightly
lower effectiveness. The results for various ratios for the best score reported in Table
22 were {100% : 0.1128, 50% : 0.1195, 33.33% : 0.1232, 25% : 0.1259, 20% :
0.1255}.

The classes were combined as indicated by (ACM, 1999) to yield 5 classes (one
normal and the others are different types of attack). Cost per item was then computed
according to the cost matrix provided by (ACM, 1999), which is shown in Table 21.
ACM used this cost to determine the winner. This allows comparison with the quoted
Cup results (ACM, 1999) with the provision just mentioned regarding the source of
labels for the two methods. It was not expected that the FASTOUT-R approach, which
simply exploits differences in variance between the distributions of different classes,
would give similar effectiveness to supervised classification. However, the results are
strongly suggestive of its practical utility for such applications (Table 20 and 22).

The results for both the binary (FASTOUT) and the real-valued measure approach
(FASTOUT-R) are given in Table 22. The Cup winner data is taken from (ACM, 1999).
The binary scheme achieved a cost between the high accuracy of the real-valued score
(FASTOUT-R) and the base line. This was a consequence of the very large number of
coequal points due to the small ensemble size relative to |D|. Increasing the sample
size for FASTOUT (Binary) by 10× lowered the per item cost by 9%. FASTOUT-R
typically runs at smaller sample sizes than the binary-valued measure. Using a sample
size of 50 (25% of the lower binary sample) already produces a cost 66.5% of the Cup
winner’s cost. Increasing the sample size by 4× improved this to 52.9%. These results
were obtained without any training. FASTOUT also did better than subsequent attempts
at this problem (e.g. (Li and Ye, 2005), cost 0.2445).
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Table 20. Confusion matrices for FASTOUT and the KDD Cup 99 winner.

FASTOUT ( ϕR)

Actual Predicted

Class normal 1 2 3 4 % correct

normal 57673 589 1782 25 524 95.2%

1 1402 2294 409 2 59 55.1%

2 5535 778 223123 3 414 97.1%

3 156 12 19 35 6 15.4%

4 2087 268 5736 11 8087 50.0%

% correct 86.3% 58.2% 96.6% 46.1% 89.0%

KDD Cup 99 Winner

Actual Predicted

Class normal 1 2 3 4 % correct

normal 60262 243 78 4 6 99.5%

1 511 3471 184 0 0 83.3%

2 5299 1328 223226 0 0 97.1%

3 168 20 0 30 10 13.2%

4 14527 294 0 8 1360 8.4%

% correct 74.6% 64.8% 99.9% 71.4% 98.8%

Table 21. Cost matrix provided by KDD Cup 1999 organisers.

Actual Predicted

Class normal 1 2 3 4

normal 0 1 2 2 2

1 1 0 2 2 2

2 2 1 0 2 2

3 3 2 2 0 2

4 4 2 2 2 0

7. Conclusion

This paper introduces a new algorithm FASTOUT to efficiently detect outliers in high
dimensional spaces with a subspace ensemble approach. It can handle an arbitrary size
of subspace.

This paper also develops and investigates the novel concept of separating classes
based on variance rather than spatial location based on outlier scores. This distinguishes

Table 22. Total cost per transaction for the KDD Cup 99 dataset. Cost is per tuple.

Baseline FASTOUT FASTOUT FASTOUT-R FASTOUT-R Winner

Ensemble size n/a 200 2000 50 200 n/a

Cost/item 0.8854 0.5858 0.5349 0.1551 0.1232 0.2331
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it from statistical and other approaches, which use variance to validate separation gener-
ated by exploiting spatial differences. For the first time, we have shown that this can be
done successfully even in multiple-class problems (beyond binary) regardless of differ-
ences in class size showing that outlier detection has application beyond the traditional
problem of finding small numbers of extreme data or rare classes. The novel algorithm
FASTOUT sets its parameters automatically and is highly efficient. At the same time,
it outperforms the state-of-the-art in outlier detection. Not only does it accurately rank
data points for outlierness, but in many cases the ranking graph can be automatically
split into sections containing predominantly single classes, hence the class separation –
something not previously investigated.

We have also demonstrated how FASTOUT can be modified to handle large and
challenging problems, even outperforming supervised classifiers without the benefit of
training data. This suggests a wide range of applications in traditional areas of out-
lier detection like computer intrusion and fraud detection as well as other classification
problems. It appears that the algorithm can be adapted for real-time use in data streams
and this is an interesting area for future work.

References

ACM, “ACM KDD Cup ’99 Results,” http://www.sigkdd.org/kddcup/ 1999.
Aggarwal, C.C. and P.S. Yu, “Outlier detection for high dimensional data,” in “Proc. ACM SIGMOD Intl.

Conf. on Management of Data” 2001, pp. 37–46.
and , “An efficient and effective algorithm for high-dimensional outlier detection,” VLDB Journal,

2005, 14 (2), 211–221.
Ali, Mohammed Liakat, Luis Rueda, and Myriam Herrera, “On the Performance of Chernoff-Distance-Based

Linear Dimensionality Reduction Techniques,” Advances in Artificial Intelligence, 2006, 4013, 467–478.
Bay, S.D. and M. Schwabacher, “Mining Distance-Based Outliers in Near Linear Time Randomization and

a Simple Pruning Rule,” in “Proc. SIGKDD” 2003.
Bellman, Richard, Adaptive Control Processes: A Guided Tour, Princeton University Press, 1961.
Beyer, K., J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is “Nearest Neighbor” Meaningful,” in “Int.

Conf. on Database Theory” 1999, pp. 217–235.
Blake, C.L. and C.J. Merz, “UCI Repository of machine learning databases,” http://archive.ics.uci.edu/ml/

1998.
Breunig, M.M., H.-P. Kriegel, R.T. Ng, and J. Sander, “LOF: Identifying Density-Based Local Outliers,” in

“Proc. SIGMOD Conf.” 2000, pp. 93–104.
Chandola, V., A. Banerjee, and V. Kumar, “Anomaly Detection: A Survey,” ACM Computing Surveys, 2009,

41 (3).
Donoho, David, “High-dimensional data analysis: The curses and blessings of dimensionality,” in “Proc. of

the American Mathematical Society Conference on Mathematical Challenges of the 21st Century” 2000.
Dubhashi, D. P. and A. Panconesi, Concentration of Measure for the Analysis of Randomised Algorithms,

Cambridge University Press, 2009.
Eggermont, Jeroen, Joost N. Kok, and Walter A. Kosters, “Genetic Programming for Data Classification:

Partitioning the Search Space,” in “Proc. of the 2004 Symposium on applied computing (ACM SAC04”
ACM 2004, pp. 1001–1005.

Fan, Hongqin, Osmar R. Zaiane, Andrew Foss, and Junfeng Wu, “Resolution-based outlier factor: detecting
the top-n most outlying data points in engineering data,” Knowledge and Information Systems, 2009,
19 (1), 31–51.

Foss, Andrew and Osmar R. Zaı̈ane, “A Parameterless Method for Efficiently Discovering Clusters of
Arbitrary Shape in Large Datasets,” in “Proc. of the IEEE International Conference on Data Mining
(ICDM’02)” 2002, pp. 179–186.
, , and Sandra Zilles, “Unsupervised Class Separation of Multivariate Data through Cumulative

Variance-based Ranking,” in “Proc. of the IEEE International Conference on Data Mining (ICDM’09)”
2009, pp. 139–148.

Harmeling, S., G. Dornhege, D. Tax, F Meinecke, and K-R Müller, “From outliers to prototypes: Ordering
data,” Neurocomputing, 2006, 69, 1608–1618.

He, Zengyou, Xiaofei Xu, and Shengchun Deng, “A Unified Subspace Outlier Ensemble Framework for



32 A. Foss et al

Outlier Detection in High Dimensional Spaces,” in “Proc. of the 6th International Conference, WAIM
2005” 2005, pp. 632–637.

Hido, Shohei, Yuta Tsuboi, Hisashi Kashima, Masashi Sugiyama, and Takafumi Kanamori, “Statistical outlier
detection using direct density ratio estimation,” Knowledge and Information Systems, 2009, Online
First.

Jiang, Xuxian and Xingquan Zhu, “vEye: behavioral footprinting for self-propagating worm detection and
profiling,” Knowledge and Information Systems, 2009, 18 (2), 231–262.

Jiang, Y. and Z.-H. Zhou, “Editing training data for kNN classifiers with neural network ensemble,” Lecture
Notes in Computer Science 3173, 2004.

Kim, Hyunsoo and Se Hyun Park, “Data Reduction in Support Vector Machines by a Kernelized Ionic
Interaction Model,” in “Proc. of SDM. 2004” 2004.

Knorr, E.M. and R.T. Ng, “Finding Intensional Knowledge of Distance-Based Outliers,” in “Proc. VLDB
Conf.” 1999, pp. 211–222.

Kurgan, Lukasz A., Krzysztof J. Cios, Ryszard Tadeusiewicz, Marek R. Ogiela, and Lucy S. Gooden-
day, “Knowledge discovery approach to automated cardiac SPECT diagnosis,” Artificial Intelligence in
Medicine, 2001, 23, 149.

Lazarevic, A. and V. Kumar, “Feature bagging for outlier detection,” in “Proc. ACM SIGKDD” 2005,
pp. 157–166.

Ledoux, Michael, The Concentration of Measure Phenomenon, Vol. 89 of Mathematical Surveys and Mono-
graphs, AMS, 2001.

Li, Xiangyang and Nong Ye, “A supervised clustering algorithm for computer intrusion detection,” Knowl-
edge and Information Systems, 2005, 8 (4), 498–509.

Milman, Vitaly, “The Heritage of P. Levy in Geometrical Functional-Analysis,” Asterisque, 1988, 157, 273–
301.

Petrovskiy, M.I., “Outlier Detection Algorithms in Data Mining Systems,” Program. Comput. Softw., 2003,
29 (4), 228–237.

Petrushin, Valerii Aleksandrovich and Latifur Khan (Eds), Multimedia data mining and knowledge discovery,
Springer, 2007.

Rousseeuw, P.J. and K. Van Driessen, “A fast algorithm for the minimum covariance determinant estimator,”
Technometrics, 1999, 41 (3), 212–223.

Wang, Hui, “Nearest neighbors by neighborhood counting,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 2006, 28 (6), 942 – 953.

Zadrozny, Bianca and Charles Elkan, “Transforming Classifier Scores into Accurate Multiclass Probability
Estimates,” in “Proc. of KDD ’02” 2002.

Zafra, Amelia and Sebastián Ventura, “Multi-objective Genetic Programming for Multiple Instance Learn-
ing,” in “Lecture Notes in Computer Science, Machine Learning: ECML ’07” 2007.

Zhang, J. and H Wang, “Detecting outlying subspaces for high-dimensional data: the new task, algorithms,
and performance,” Knowl. Inf. Syst., 2006, 10 (3), 333–355.

Zhou, Zhi-Hua and Ming Li, “Semi-supervised learning by disagreement,” Knowledge and Information
Systems, 2009, Online First.




