
A Measure optimized cost-sensitive learning 
framework for imbalanced data classification 

Peng Cao 
Key Laboratory of Medical Image Computing of Ministry of Education, Northeastern University, 

China 
University of Alberta, Canada 

 
Osmar Zaiane 

University of Alberta, Canada 
 

Dazhe Zhao 
Key Laboratory of Medical Image Computing of Ministry of Education, Northeastern University, 

China 
 
 
ABSTRACT 
Class imbalance is one of the challenging problems for machine learning in many real-world applications. 
Many methods have been proposed to address and attempt to solve the problem, including sampling and 
cost-sensitive learning. The latter has attracted significant attention in recent years to solve the problem, 
but it is difficult to determine the precise misclassification costs in practice. There are also other factors 
that influence the performance of the classification including the input feature subset and the intrinsic 
parameters of the classifier. This paper presents an effective wrapper framework incorporating the 
evaluation measure (AUC and G-mean) into the objective function of cost sensitive learning directly for 
improve the performance of classification, by simultaneously optimizing the best pair of feature subset, 
intrinsic parameters and misclassification cost parameter. The optimization is based on Particle Swarm 
Optimization (PSO).We use two different common methods, support vector machine and feed forward 
neural networks to evaluate our proposed framework. Experimental  results  on  various standard  
benchmark datasets with different ratios of imbalance  and  a  real-world  problem show  that  the  
proposed  method  is  effective  in  comparison with commonly used sampling techniques. 
 
INTRODUCTION 
Recently, the class imbalance problem has been recognized as a crucial problem in machine learning and 
data mining (Chawla, Japkowicz &Kolcz, 2004; Kotsiantis, Kanellopoulos& Pintelas, 2006; He &Garcia, 
2009; He & Ma, 2013). This issue of imbalanced data occurs when the training data is not evenly 
distributed among classes. This problem is also especially critical in many real applications, such as credit 
card fraud detection when fraudulent cases are rare or medical diagnoses where normal cases are the 
majority, and it is growing in importance and has been identified as one of the 10 main challenges of Data 
Mining (Yang, 2006). In these cases, standard classifiers generally perform poorly. Classifiers usually 
tend to be overwhelmed by the majority class and ignore the minority class examples. Most classifiers 
assume an even distribution of examples among classes and assume an equal misclassification cost. 
Moreover, classifiers are typically designed to maximize accuracy, which is not a good metric to evaluate 
effectiveness in the case of imbalanced training data. Therefore, we need to improve traditional 
algorithms so as to handle imbalanced data and choose other metrics to measure performance instead of 
accuracy. We focus our study on imbalanced datasets with binary classes. 

 Much work has been done in addressing the class imbalance problem. These methods can be 
grouped in two categories: the data perspective and the algorithm perspective (He &Garcia 2009).  The 
methods with the data perspective re-balance the class distribution by re-sampling the data space either 
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randomly or deterministically (Chawla, Bowyer, Hall & Kegelmeyer, 2002; Chawla, Lazarevic, Hall & 
Bowyer, 2003; Chawla, Cieslak, Hall & Joshi, 2008; Barua, Monirul Islam, Yao & Murase, 2013; Galar, 
Fernández, Barrenechea & Herrera, 2013). The main disadvantage of re-sampling techniques are that they 
may cause loss of important information or the model overfitting, since that they change the original data 
distribution.   In addition, the performance of sampling can vary significantly depending upon the data 
available.   

Cost-sensitive learning is one of the most important topics in machine learning and data mining, and 
attracted high attention in recent years (Akbani, Kwek & Japkowicz, 2004; Ling & Sheng, 2008; Zhou & 
Liu, 2006). Cost-sensitive learning methods consider the costs associated with misclassifying examples, 
and try to learn more characteristics of samples with the minority class by setting a high cost to the 
misclassification of a minority class sample. It has been shown that the problem of learning from 
imbalanced datasets and the problem of learning when costs are unequal and unknown can be handled in 
the same manner even though these problems are not exactly the same (Maloof, 2003). Cost-sensitive 
learning does not modify the data distribution, and is generally more consistent in terms of performance 
than the sampling techniques (Chris, Taghi, Jason & Amri, 2008; Weiss, McCarthy & Zabar, 2007). 

There are two challenges with respect to the training of cost sensitive classifier. The misclassification 
costs play a crucial role in the construction of a cost sensitive learning model for achieving expected 
classification results. However, in many contexts of imbalanced dataset, the misclassification costs cannot 
be determined. Beside the cost, the feature set and intrinsic parameters of some sophisticated classifiers 
also influence the classification performance. The imbalanced data distribution is often accompanied by 
high dimensionality in real-world data sets such as text classification and bioinformatics (Lusa, 2013; Van 
Hulse, Khoshgoftaar, Napolitano & Wald, 2009; Zheng, Wu & Srihari, 2004). Therefore, high-
dimensionality poses additional challenges when dealing with class-imbalanced prediction. Optimal 
feature selection can concurrently achieve good accuracy and dimensionality reduction. The proper 
intrinsic parameter setting of classifiers, such as regularization cost parameter and the kernel function 
parameter for SVM, and the structure parameters (i.e. number of hidden layers and their nodes) for neural 
network, can improve the classification performance. Moreover, these factors including the feature subset 
choice influence each other, obtaining the optimal factors of imbalanced data learning methods must 
occur simultaneously. This is the first challenge.  

The other is the gap between the measure of evaluation and the objective of training on the imbalanced 
data (Li, Tsang, Zhou, 2012; Yuan & Liu, 2011). Indeed, for evaluating the performance of a cost-
sensitive classifier on a skewed data set, the overall accuracy is irrelevant. It is common to employ other 
evaluation measures to monitor the balanced classification ability, such as G-mean and AUC. However, 
these cost-sensitive classifiers measured by imbalanced evaluation are not trained and updated with the 
objective of the imbalanced evaluation. To achieve good prediction performance, learning algorithms 
should train classifiers by optimizing the concerned performance measures.   

In order to solve the challenges above, we design a novel framework for training a cost-sensitive 
neural network driven by the imbalanced evaluation criteria. The training scheme can bridge the gap 
between the training and the evaluation of cost-sensitive learning, and it can learn the optimal factors 
associated with the cost-sensitive classifier automatically under the guidance of the performance metrics. 
The search space is expanded exponentially as the class number increases. Moreover the factors to be 
searched are mixture including continuous and discrete variables. The significance of the scheme has two 
questions to fix: how to optimize these factors simultaneously; and using what evaluation criteria for 
guiding their optimization. These two issues are our key steps for improving the cost sensitive learning in 
the context of the class imbalance problem without cost information.  Our main contributions in this paper 
are centered around the questions above. 

The contributions of this work can be listed as follows: 
1)       Optimizing the factors (ratio misclassification cost, feature set and intrinsic parameters of 

classifier) simultaneously for improving the performance of cost-sensitive learning. 
2)       Imbalanced data classification is commonly evaluated by measures such as G-mean and AUC 

instead of accuracy. However, for many classifiers, the learning process is still largely driven 
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by error based objective functions. We use the measure directly to train the classifier and 
discover the optimal parameter, ratio cost and feature subset based on different evaluation 
functions like the G-mean or AUC. Different metrics can reflect different aspect performance 
of classifiers. 

3)       Showing versatility of our proposed framework, we present two different cost-sensitive 
learning schemes: one based on SVM as a direct method and one based on neural networks as 
meta learning method. 

This chapter will be organized as follows. The basic concepts that are necessary to understand the 
issues addressed in this paper are described in Section 1, including imbalanced data learning, cost 
sensitive learning methods and particle swarm optimization. Then our proposed measure optimized 
framework is presented in Section 2. Section 3 details the experimental results comparing our approaches 
to other methods proposed in the literature for imbalanced data. Section 4 concludes with general remarks. 
 
BACKGROUND  
Imbalanced data 
A common problem faced in data mining is dealing with class imbalance. A dataset is said to be 
imbalanced if one class (called the majority, or negative class) vastly out-numbers the other (called the 
minority, or positive class). The class imbalance problem is only said to exist when the positive class is 
the class of interest. This is due to the fact that if the positive, minority, class is not of interest (i.e., it has 
no effect on the choice made), then it can be safely ignored. In most practical applications (e.g., loan 
recommendation, fraud prevention, spam detection, intrusion detection, species modeling, long term 
epidemiological studies, climate data analysis, etc.), however, the minority classis the class of interest, 
and therefore the class imbalance problem must be addressed. 
Cost sensitive learning 
The significant shortcomings with the re-sampling approach are the optimal class distribution is always 
unknown and the criterion in selecting instances is uncertain; furthermore under-sampling may reduce 
information loss and over-sampling may lead to overfitting or overgeneralization for model constructed. 
The cost-sensitive learning technique takes misclassification costs into account during the model 
construction, and does not modify the imbalanced data distribution directly. Assigning distinct costs to 
the training examples seems to be the most effective approach of class imbalanced data problem. 

The problem of imbalanced data is often associated with asymmetric costs of misclassifying instances 
of different classes. Medical diagnosis is a prominent example: misclassifying a cancer patient (false 
negative) may lead to death, while misclassifying a healthy patient (false positive) would lead to expenses 
associated with unnecessary biopsy and psychological problems. Datasets with different class 
distributions lead to the effect that conventional machine learning methods are typically biased towards 
the larger class in the training data.  

The cost matrix contains the misclassification information: C(+,+) and C(-,-) are zeros, while C(-,+) 
and C(+,-) are important cost information to be determined. Moreover, C(-,+) (i.e. when a minority 
instance is put in a majority class) should be bigger than C(+,-), see Table 1. Table 1 illustrates the 
confusion matrix and cost matrix. The confusion matrix contains information about actual and predicted 
classifications done by a classification system.  
Table 1. The data sets used for experimentation Confusion and Cost Matrix 

  
 Actual class 

 Positive class Negative class 

Positive 
class 

True positive (TP) 

C(+,+) 

False positive (FP) 

C(+,-) 

 

 

Predicted 

class Negative 
class 

False negative (FN) 

C(-,+) 

True negative (TN) 

C(-,-) 
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This study focuses on binary classification, we denote the positive class (+) as the minority and the 

negative class (-) as the majority. Let C(i, j) be the cost of predicting an instance belonging to class i when 
in fact it belongs to class j.  

Cost-sensitive learning can be classified into two categories: direct methods and wrappers (Ling & 
Sheng, 2008). Direct methods are cost-sensitive classifiers in themselves, such as cost sensitive SVM; 
while wrappers convert any existing cost-insensitive (or cost-blind or cost-agnostic) classifiers into cost-
sensitive ones. Wrappers are also called cost-sensitive meta-learning methods. 

To show versatility of our method, we present two different cost-sensitive learning schemes: one 
based on SVM as a direct method and one based on neural networks as meta learning method. 
 
CS-SVM 
Support Vector Machines (SVM), which has strong mathematical foundations based on statistical 
learning theory, has been successfully adopted in various classification applications. SVM maximizes a 
margin in a hyperplane separating classes, and can be formulated as the following quadratic program: 
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where C ≥ 0 is a regularization parameter that controls the trade-off between minimizing the errors 

and maximizing the margin. However, it is overwhelmed by the majority class instances in the case of 
imbalanced datasets because the objective of regular SVM is to maximize the accuracy, and not purposely 
to minimize the misclassification cost. The above formulation in Equation 3 implicitly penalizes errors in 
both classes equally. There may be different costs associated with the two different kinds of errors, 
making errors on positive examples costlier than errors on negative examples.  

SVM have been extensively studied and have shown remarkable success in many applications. 
However, the success of standard SVM is very limited when applied to the problem of learning from 
imbalanced datasets. The cost-sensitive version of SVM (CS-SVM or 2C-SVM) (Veropoulos, Campbell 
& Cristianini, 1999) by assigning different misclassification costs is a good solution to address the above 
problem. Various proposals of cost-sensitive SVM were made using different error costs for the positive 
(C+) and negative (C-) classes. CS-SVM is formulated as follows: 
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where the C+, or the C(-,+), is the higher misclassification cost of the positive class, which is the primary 
interest, while C-, or the C(+,-), is the lower misclassification cost of the negative class. Using the 
different error cost for the positive and negative classes, the hyperplane could be pushed away from the 
positive instances. In this article, we fix C- = C and C+ = C×Crf, where Crf  is the ratio misclassification 
cost factor. 

In general, the Radial Basis Function (RBF kernel) is a reasonable first choice for the classification of 
the nonlinear datasets, as it has fewer parameters (γ). For the cost information, Veropoulos el at 
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(Veropoulos, Campbell & Cristianini, 1999) have not suggested any guidelines for deciding what the 
relative ratios of the positive to negative cost factors should be.  
 
 
CS-NN 
The standard neural network is cost insensitive. In standard neural network classifiers, the class returned 
is C* by comparing the probability of each class directly for each instance x according to Eq.(3).  

1 1
{1,..., }

* ( ( | ),..., ( | ))M M
C M

C argmax p C x p C x


                                (3)     

where Pi denotes the probability value of each class from the neural network, 
1
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i
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P
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the number of the class. 
Many approaches have been developed in the past few years in making the traditional cost-insensitive 

neural network classification algorithm into cost-sensitive (Kukar & Kononenko, 1998; Zhou & Liu, 
2006). The probabilities generated by a standard neural network are biased in the imbalanced data 
distribution, adjusting the decision threshold moves the output threshold toward inexpensive class such 
that instances with high costs become harder to be misclassified (Ling & Sheng, 2008). The idea is based 
on the classifier producing probability predictions rather than classification labels.  Results suggest that 
threshold-moving, replacing the probability a sample belongs to a certain class with the altered 
probability, which takes into account the costs of misclassification, is found to be a relatively good choice 
in training CS-NN (Zhou & Liu, 2006). This method uses the training set to train a neural network, and 
the cost sensitivity strategy is introduced in the test phase. Given a certain cost matrix, the CS-NN with 
threshold-moving return the class C*, which is computed by injecting the cost according to Eq.(4).  
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where Cost(Ci) denotes the cost of misclassifying instance of class i. Pi
*  denotes the class probabilities 

from the neural network combined with misclassification cost. 
When M is 2 (binary class), the classifier will classify an instance x into minority class if and only if: 

( | ) ( , ) ( | ) ( , )p x C p x C                                      (5)              

which is equivalent to 

( | ) ( , )
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p x C
C

p x C

  
 
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                               (6)              

It predicts the class by setting a probability threshold dependent on the ratio misclassification cost. 
Therefore, the final decisions are decide by the misclassification cost specified and probability estimate 
learned. In the normal classification without considering the cost, the Crf  is 1, the decision threshold is 
0.5, that means both of the two classes have the same weight. In the cost sensitive context, we need to 
improve the recognition ability of minority class. Unlike the SVM the ratio cost Crf  is used in the training 
phrase; it is introduced in the validation phase after obtaining a common neural network in the training 
phrase. When validating, we observe a probability estimate p belonging to positive class on a testing 
instance, the instance is labeled as the positive class or negative class according to Crf through (6). 
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Particle swarm optimization 
Swarm Intelligence (SI), an artificial intelligence technique for machine learning, is a research branch that 
models the population of interacting agents or swarms that are able to self-organize. SI has recently 
emerged as a practical research topic and has successfully been applied to a number of real world 
problems (Martens, Baesens & Fawcett, 2011). The popularity of swarm intelligence has also instigated 
the development of numerous data mining algorithms.  

Particle swarm optimization (PSO) is a population-based global stochastic search method attributed to 
Kennedy and Eberhart to simulate social behavior (Kennedy & Eberhart, 1995). Compared to Genetic 
Algorithms (GA), the advantages of PSO are that it is easy to implement and has fewer control parameters 
to adjust. Many studies have shown than PSO has the same effectiveness but is more efficient. PSO 
optimizes an objective function by a population-based search. The population consists of potential 
solutions, named particles. These particles are randomly initialized and move across the multi-
dimensional search space to find the best position according to an optimization function. During 
optimization, each particle adjusts its trajectory through the problem space based on the information about 
its previous best performance (personal best, pbest) and the best previous performance of its neighbors 
(global best, gbest). Eventually, all particles will gather around the point with the highest objective value.  

The position of individual particles is updated as follows: 
1 1t t t

i i ix x v                                                                             (7) 

With v, the velocity calculated as follows:    
1

1 1 2 2( ) ( )t t t t t t
id id id id idv w v c r pbest x c r gbest x                   (8) 

Where vi
t indicates velocity of particle i at iteration t, w  indicates the inertia factor, C1 and C2 indicate 

the cognition and social learning rates, which determine the relative influence of the social and cognition 
components. r1 and r2 are uniformly distributed random numbers between 0 and 1, xi

t is current position 
of particle i at iteration t, pbesti

t indicates best of particle i at iteration t, gbestt indicates the best of the 
group.  The algorithm is depicted in Algorithm 1. 

 
Algorithm 1 PSO 

 
Input: termination condition; particle update parameters; fitness function f 
Initialize particles with random position & velocity   
 repeat 
      foreach particle i  
           if   f(pbesti) <= f(xi)  
            pbesti = xi  
        end if  
     end foreach 
     set gbest as best pbest 
     foreach particle i  
           update velocityi and positioni   
     end foreach 
   until termination condition 
   output  gbest 

 
 
The output of the algorithm is the best global position (solution) found during all iterations. Even 

though PSO convergence to a global optimum has not been proven for the general case, the algorithm has 
been shown efficient for many optimization problem. Moreover, PSO has already been applied in 
classification problem to obtain optimal relevant parameters of traditional classification model, so as to 
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improve the performance of standard classifier methods. Most of it concerns rule-based classifiers, for 
instance, PSO is used to extract induction rules to classify data (Sousa, T., Silva, A., & Neves, A.,  2004). 
The standard particle swarm optimizer (PSO) and adaptive Michigan PSO (AMPSO) are applied to the 
prototype selection problem, and the experimental results show they imrpove the results of the Nearest 
Neighbor classifiers (Cervantes, A., Galván,. O.M., & Isasi, P., 2009). PSO can also be employed to 
compute the weights for combining multiple neural network classifiers (Nabavi-Kerizi, S.H., Abadi, M., 
& Kabir, E., 2010).  Additionally, some study demonstrates the feasibility of applying an existing Particle 
Swarm Optimization  approach to feature selection for filtering the irrelevant attributes of the dataset, 
resulting in a fine Bayesian network built with the K2 algorithm (Chávez, M.C., Casas, G., Falcón, R., 
Moreira, J.E., & Grau, R., 2007). 

 
MEASURE OPTIMIED COST SENSITIVE LEARNING 
Measure optimized cost sensitive learning framework 
In this section, we present a new measure optimized framework for optimizing the cost sensitive learning 
(MOCSL), which uses a Particle Swarm Intelligence to carry out the meta-learning, then we introduce the 
algorithm procedure of MOCS-SVM and MOCS-NN. 

Since the evaluation measures describe the overall performance of classifier, it is more appropriate to 
evaluate and train the classifier as a whole. As we know, SVM and neural network are both driven by 
error based objective functions. SVM tries to minimize the regularized hinge loss; neural network tries to 
minimize the square error. We have known the overall accuracy is not appropriate evaluation measure for 
imbalanced data classification. As  a  result,  there  is  an inevitable  gap  between  the evaluation measure  
by  which  the  classifier  is  to  be evaluated  and  the objective function according to  the classifier is 
trained. The classifier for imbalanced data learning is needed to be driven by the more appropriate 
measures. We inject the appropriate measures into the objective function of the classifier in the training 
with PSO. The common evaluation for imbalanced data classification is G-mean and ROC (Receiver 
Operating Characteristic) curves. However,  for  many  classifiers,  the  learning  process  is  still  driven  
by error  based  objective  functions.  This paper explicitly treat the measure  itself  as  the  objective  
function  when  training the cost sensitive learning for improve  the  performance  of classifiers and 
discovering the best parameter and feature subset.  We designed a measure optimized training framework 
for dealing with imbalanced data classification issue. Chalwa (Chawla, Cieslak, Hall & Joshi, 2008) 
proposed a wrapper paradigm that discovers the amount of re-sampling for a data set based on optimizing 
evaluation functions like the F-measure, AUC. To date, there is no research about training the cost 
sensitive classifier with measure based objective functions. This is one important issue of hindering the 
performance of cost-sensitive learning. 

Another important issue of applying the cost-sensitive learning algorithm to the imbalanced data is that 
the cost matrix is often unavailable for a problem domain. The misclassification cost plays a crucial role 
in the construction of cost sensitive approach, and the knowledge of misclassification costs is urgently 
required for achieving expected classification result.  For binary class classification, the cost parameter 
(ratio misclassification cost) is only one parameter which means the relative cost information, and the cost 
information to be optimized is only for regulating the accuracy of two classes. However, the values of 
costs are commonly given by domain experts, it often keep unknown in many domain where it is in fact 
difficult to specify the precise cost ratio information. It is not exact to set the cost ratio to the inverse of 
the imbalance ratio (the number of majority instances divided by the number of minority instances); 
especially it is not accurate for some classifier such as SVM.  

Apart from the ratio misclassification cost information, feature subset selection and the intrinsic 
parameters of the classifier have a significant bearing on the performance. The both of two factors are not 
only important for imbalanced data classification, but also for any classification. Feature selection is the 
technique of selecting a subset of discriminative features for building robust learning models by removing 
most irrelevant and redundant features from the data. Optimal feature selection can concurrently achieve 
good accuracy and dimensionality reduction. Unfortunately, the imbalanced data distribution are often 
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accompanied by the high dimensional in real-world data sets such as text classification and bioinformatics. 
It is important to select features that can capture the high skew in the class distribution (Lusa, 2013; Van 
Hulse, Khoshgoftaar, Napolitano & Wald, 2009; Zheng, Wu & Srihari, 2004). Moreover, proper intrinsic 
parameter setting of classifiers, such as regularization cost parameter and the kernel function parameter 
for SVM, as well as the structure parameters (i.e. number of hidden layers and their nodes) for neural 
network, can improve the classification performance.  For example, for SVM, it is common to use the 
grid search to optimize the regulation parameter and the kernel parameter. Moreover, these three factors 
influence each other. Therefore, obtaining the optimal ratio misclassification cost, feature subset and 
intrinsic parameters must occur simultaneously. 

Based on the reason above, our specific goal is to devise a strategy to automatically determine the 
optimal factors during training of the cost sensitive classifier oriented by the imbalanced evaluation 
criteria (G-mean and AUC). It is a wrapper framework for empirically discovering the potential 
misclassification cost ratio, feature subset, and intrinsic parameters for cost sensitive learning (CSL).  

In this paper, for the multivariable optimization, especially the hybrid multivariable, the best methods 
are swarm intelligence technique. We choose the particle swarm optimization (PSO) as our optimization 
method due to its fast and effective solution space exploration.  In addition, many experiments claim that 
PSO has equal effectiveness but superior efficiency over the GA (Hassan, Cohanim & De Weck, 2005).  

Because feature is discrete and parameters are continuous, and the variable needed to be optimized are 
enormous and mixed. The PSO is a good solution for hybrid multi-variables to be utilized. 
The PSO was originally developed for continuous valued spaces; however, many problems have in 
addition features defined for discrete valued spaces where the domain of the variables is finite. We need 
to combine the discrete and continuous values in the solution representation since the costs and 
parameters we intend to optimize are continuous while the feature selection is discrete. Each feature is 
represented by a 1 or 0 for whether it is selected or not. The major difference between the discrete PSO 
(Khanesar, Teshnehlab & Shoorehdeli, 2007) and the original version is that the velocities of the particles 
are rather defined in terms of probabilities that a bit will change to one. Using this definition a velocity 
must be restricted within the range [0, 1], to which all continuous values of velocity are mapped by a 
sigmoid function: 

1
' ( )

1
t
i

t t
i i v

v sig v
e

 


                                               (9) 

Equation 9 is used to update the velocity vector of the particle while the new position of the particle is 
obtained using Equation 10. 

1 1 '

0

t
t i i
i

if r v
x
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  
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

                                         (10) 

Where ri is a uniform random number in the range [0,1]. 
Many methods are proposed to deal with the issue of the imbalanced data classification by means of 

swarm intelligence. Chawla et al implement a genetic algorithm based framework to weight the 
contribution of each classifier by an appropriate fitness function, such that the classifiers that complement 
each other on the unbalanced dataset are preferred, resulting in significantly improved performances 
(Chawla & Sylvester, 2007).  Yuan et al proposed  to train the  standard AdaBoost  on  training  sets  
oversampled  by  SMOTE  and,  in  an  offline  mode,  retrain  the weights of base classifiers assigned by 
the standard AdaBoost using  Genetic  Algorithms  (GAs)  with  G-mean  as  the fitness  function  to  
boost  the  performance  of  AdaBoost  on imbalanced datasets (Yuan & Ma, 2013). Both of the above 
methods also belong to wrapper methods of optimizing some parameters. In addition,  Yu et al proposed 
ACOSampling that is a novel undersampling method based on the idea of ant colony optimization (ACO) 
to address this problem (Yu, Ni & Zhao, 2013). Gao et al a powerful technique for two-class imbalanced 
classification problems by combining the synthetic minority over-sampling technique (SMOTE) and the 
particle swarm optimisation (PSO) aided radial basis function (RBF) classifier (Gao, Hong, Chen & 
Harris, 2011). 
 



 9 

Evaluation metrics 
Evaluation measures play a crucial role in both assessing the classification performance and guiding the 
classifier modeling. The purpose of cost-sensitive learning is usually to build a model with total minimum 
misclassification costs. However, it should be based on the known cost matrix condition. In this article, 
the purpose of our cost sensitive learning is to get a best AUC or G-mean evaluation metric. And we train 
the cost sensitive learning using performance measures as the objective functions directly. Through 
training the cost sensitive classifier with measure based objective functions, we can discover the best 
factors in terms of the different evaluation. For imbalanced datasets, the evaluation metric should take 
into account the imbalance. The average accuracy is not an appropriate evaluation metric.  We used the 
G-mean and AUC to evaluate the cost sensitive classifiers. The evaluation metrics value is taken as the 
fitness function to adjust the position of a particle. These two different evaluations reflect different aspect 
of the classifier. The AUC concerns the ranking ability more and the G-mean concerns the two accuracies 
of both classes at the same time. 

The G-mean is the geometric mean of specificity and sensitivity, which is commonly utilized when 
performance of both classes is concerned and expected to be high simultaneously (Kubat & Matwin, 
1997). It is a good indicator on overall performance, and has been used by several researchers for 
evaluating classifiers on imbalanced datasets (Akbani, Kwek & Japkowicz, 2004; Barua, Monirul Islam, 
Yao & Murase, 2013). According to the confusion matrix mentioned in the section 1, we define the 
sensitivity, specificity and G-mean as follows: 

TP
Sensitivity

TP FN



 TN
Specificity

TN FP



      (11) 

*G mean Sensitivity Specificity                    (12) 
ROC analysis (abbr. of Receiver Operating Characteristic) has been recently introduced to evaluate 

machine learning algorithm. ROC curves measure the separating ability of a classier between two classes. 
It depicts all possible trade-off between TP rate and FP rate. Closely related to ROC, AUC represents a 
ROC curve as a single scalar value by estimating the area under the curve, varying between 0 and 1. The 
AUC measures the performance of ranking a randomly chosen positive example higher than a randomly 
chosen negative example. In this case, it represents the performance of ranking an instance from the 
minority class higher than instances in the majority class. The value 1of AUC represents all positives 
being ranked higher than all negatives. The authors in (Ling, Huang, & Zhang, 2003) have empirically 
and formally prove that AUC is a statistically consistent and more discriminating measure than accuracy. 
It is also as the measure criteria for evaluating performance of classification on the imbalanced dataset 
(Chawla, Cieslak, Hall & Joshi, 2008; Klement, Wilk, Michaowski & Matwin, 2009). Since AUC is 
believed to be a better performance measure than accuracy for imbalanced classification problems, and 
independent of class prevalence. Many existing learning algorithms been modified to deal with the new 
objective (Tang, Wang & Chen, 2011). 
 
MOCS-SVM 
The solution (i.e. particle) of MOCS-SVM includes three parts: the ratio misclassification cost Crf, the 
intrinsic parameters (C and γ) of classifier, and the feature subsets. Figure 1 illustrates the mixed solution 
representation in the PSO. If n features are required to decide which features are chosen, then n+3 
decision variables must be adopted. The value of n variables of feature ranges between 0 and 1. If the 
value of a variable is less than or equal to 0.5, then its corresponding feature is not chosen. Conversely, if 
the value of a variable is greater than 0.5, then its corresponding feature is chosen. In addition to feature 
selection, three decision variables, C, Cf and γ, are required. 

 
 

Figure 1. Solution representation of MOCS-SVM 
 

Ratio cost Intrinsic parameters Feature subset 
Crf C γ f1 f2 … fn-1 fn 
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Figure 2 shows the flowchart for MOCS-SVM. First, the population of particles is initialized, each 
particle having a random position within the D-dimensional space and a random velocity for each 
dimension. Second, each particle’s fitness for the CS-SVM is evaluated. G-mean or AUC is a criteria 
used to design a fitness function. Thus, for the particle with high G-mean or AUC produce a high fitness 
value. The fitness has been taken as the G-mean or AUC. If the fitness is better than the particle’s best 
fitness, then the position vector is saved for the particle. If the particle’s fitness is better than the global 
best fitness, then the position vector is saved for the global best. Finally the particle’s velocity and 
position are updated until the termination condition is satisfied. Associated with the characteristics of 
exploitation and exploration search, PSO can deal with large search spaces efficiently, and hence has less 
chance to get local optimal solution than other algorithms. 

The detailed algorithm MOCS-SVM to optimize cost sensitive SVM by imbalanced data measure is 
shown in Algorithm 2. It is a wrapper framework for empirically discovering the potential 
misclassification cost ratio, feature subset, and intrinsic parameters (C and γ) for CS-SVM oriented by the 
imbalanced evaluation criteria (G-mean and AUC).  

The choice of the fitness function is important because it is on this basis that the PSO evaluates the 
goodness of each candidate solution for designing our classification system. We employ a 5-fold cross -
validation to represent an unbiased estimation of the generalization performance of classifier for each 
candidate solution. We first split the training data set into five partitions. Each partition is used once as a 
testing fold, with the remaining 80% as the training fold. 

 
 
Algorithm 2 MOCS-SVM 
 
Input: Training set D; termination condition T; population size SN; metric E; NumFolds =5 
Randomly initialize particle population positions and velocities (including cost matrix,  
intrinsic parameters, and feature subset) 
repeat 
 foreach particle i 

       Construct the Di with the feature selected by the particle i  
       Separate Di randomly into NumFolds folds  
       for k=1 to NumFolds 

    Train CS-SVM with cost matrix and intrinsic parameters optimized by the particle i  
       on the k-th training fold Trtk

i 
     Evaluate the cost sensitive classifier on the Trvk

i, and obtain the value M
k
i based on E 

 end for 
 Mi=average(Mk

i);Assign the fitness of particle i  with Mi  
       if   fitness (pbesti) <= fitness (xi)   

then pbesti = xi  
 end if 

end foreach 
set gbest as best pbest 

  foreach particle i 
         update velocityi and positioni  with Eq. 2 and 3. 

end foreach 
until termination condition  
output optimal parameters, cost ratio and feature subset of gbest  
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Figure 2. The flowchart of the proposed MOCS-SVM  
 
MOCS-NN 

In the training of the feed-forward neural network, it is often trained by adjusting connection weights 
with gradient descent. Another alternative is to use swarm intelligence to find the optimal set of weights 
(Yuan & Liu, 2011). Since the gradient descent is a local search method vulnerable to be trapped in local 
minima, we opted to substitute the gradient descent with PSO in our use of PSOCS-NN in order to 
alleviate the curse of local optima. We use a hybrid PSO algorithm similar to the PSO-PSO method 
presented in (Carvalho & Ludermir, 2007). In the PSO-PSO Methodology, a PSO algorithm is used to 
search for architectures and a PSO with weight decay (PSO: WD) is used to search for weights. We also 
used two nested PSOs, where the outer PSO is used to search for architectures (including the feature 
subset which determines the input node amount as well as the number of the hidden nodes) and 
miscalssification costs; the inner PSO is used to search for weights of the neural network defined by the 
outer PSO. The procedure of inner PSO is the same as the method proposed in (Mazurowski, M.A.,  
Habas, P.A.,  Zurada, J.M., Lo, J.Y., Baker, J.A. & Tourassi, G.D. 2008), and the  major  motivation  of  
using  evolutionary  techniques  over  gradient  based  learning algorithms for training neural networks is 
to alleviate the curse of local optima. We assume there is only one hidden layer. The solution of the outer 
PSO includes three parts: the cost, the number of the hidden nodes and the feature subset, and the 
solution of the inner PSO contains the vector of the connection weights. The amount of the variables to 
be optimized in the inner PSO is determined by the number of the hidden nodes in the outer PSO. Figure 
3 illustrates the mixed solution representation of the two PSOs.  Figure 4 shows the flowchart for 
MOCS-NN. The detailed algorithm for MOCS-NN is shown in Algorithm 3. 

Figure 3. Solution representation of MOCS-NN 
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Figure 4. The flowchart of the proposed MOCS-NN 
 

Algorithm 3  MOCS-NN 
 
Input: Training set D; Termination condition of two PSO Touter and Tinner;  
             Population size of two PSOs SNouter and SNinner 

Randomly initialize outer-PSO population (including costs, number of the hidden nodes, and feature subset) 
repeat    % outer PSO 

foreach particlei 
Construct Di with the feature selected by the particlei 
Separate Di randomly into Trti

  (80%) for training and Trvi 
  (20%) for validation  

Randomly initialize inner-PSO population (connection weights) in each particlei 
                repeat     % inner PSO 

 foreach particleij 
Obtain the number of the hidden nodes from the particlei 
Construct a neural network with the weights optimized by the particleij  
Validate the neural network on the Trti

  and assign the fitness of particleij with the G-mean 
              end foreach 

  Inner-PSO particle population updates 
    until Tinner 

    Obtain the optimal connection weight vector in the gbesti
inner of the inner PSO 

    Evaluate the neural network classifier with cost optimized by the particlei as well as  
       the connection weights optimized on the Trvi, and obtain the value M

i
 based on G-mean 
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    Assign the fitness of particlei with Mi  
end foreach 
 Outer-PSO particle population updates  

until Touter 
Output: the number of the hidden nodes, costs, feature subset and the connection weights of the gbestinner 

 
 

EXPERIMENTAL STUDY 

 

Dataset description 

To evaluate the classification performance of our proposed methods in different classification tasks, and 
to compare with other methods specifically devised for imbalanced data, we tried several datasets from 
the UCI database. There is no standard dataset for imbalanced classification, and most of these selected 
UCI datasets have multi-class labels. We used all available datasets from the combined sets used in 
(Akbani, Kwek & Japkowicz, 2004). This also ensures that we did not choose only the datasets on which 
our method performs better. We also keep the same minority class as the paper (Akbani, Kwek & 
Japkowicz, 2004) using one class as the positive class (minority), while the union of all others as the 
negative class. The minority class label (+) is indicated in Table 2. The datasets chosen have diversity in 
the number of attributes and imbalance ratio. Moreover, the datasets used have both continuous and 
categorical attributes.  

We first split the data set into ten partitions. Each partition is used once as a testing fold, with the 
remaining 90% as the training fold. This results in ten pairs of training and testing folds (10-fold cross-
validation), and to prevent overtraining, the training set is separated into training subset (80%) for 
constructing the classification model and test subset (20%) for evaluating and calculating the fitness value 
in each fold. The training and validation sets were characterized by the same ratio of both class. I made 
vertical comparison and horizontal comparison. The vertical comparison means the comparison between 
our method proposed and the intermediate method or basic method, such as basic classifier, cost sensitive 
learning and grid search optimization for CS-SVM. The horizontal comparison is the comparison between 
our method MOCSL and the state-of the-art methods for class imbalance learning. 
 
Table 2. The data sets used for experimentation  
The dataset name is appended with the label of the minority class (+) 

Dataset  (+) Instances Features Class balance 

Hepatitis (1) 155 19 1:4 
Glass (7) 214 9 1:6 
Segment (1) 2310 19 1:6 
Anneal (5) 898 38 1:12 
Soybean (12) 683 35 1:15 
Sick (2) 3772 29 1:15 
Car (3) 1728 6 1:24 
Letter (26) 20000 16 1:26 
Hypothyroid(3) 3772 29 1:39 
Abalone (19) 4177 8 1:130 

 
Experiment 1 (vertical comparison): how the MOCSL improves 
In the vertical comparison, we made the comparison between basic classifier with and without the feature 
selection, cost sensitive learning (CSL), our method proposed using measure oriented training for CSL by 
PSO (MOCSL) with and without the feature selection. For SVM, we also apply the common grid search 
optimization method for comparison. For the basic classifier with feature selection, it is a common 
wrapper feature selection method with evaluating by classification performance. As for the CSL, the 
misclassification cost ratio is search iteratively for maximize the measure score within a range of cost 
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value. As for the optimizing the CS-SVM using grid search, we also need to treat this misclassification 
cost ratio as a hyperparameter, and locally optimize this parameter. However, it is not feasible to use a 
triple circulation for optimizing the best parameters, so we optimize the best parameter pair(C and γ), then 
locally optimize the cost ratio parameter based on the best parameter pair(C and γ) before. All SVMs 
model in this experiment use the same kernel, RBF, and for basic SVM and CS-SVM, the intrinsic 
parameters are chosen with default values (C=1 and γ =1). In the basic neural network and CS-NN, the 
number of neurons in the hidden layer was the average number between the input and output neurons. 

For the PSO setting of our method, MOCSL, the initial parameter values of it in our proposed method 
were set according to the conclusion drawn in (Carlisle, 2001). The parameters were used: C1=2.8, 
C2=1.3, w=0.5. For empirically providing good performance while at the same time keeping the time 
complexity feasible, particle number was set dynamically according to the amount of the variables 
optimized (=1.5×|variables need to be optimized|), and the termination condition could be a certain 
number of iterations (500 cycles) or other convergence condition (no changes any more within 2× 
|variables need to be optimized| cycles).  

Along with these parameters in PSO, the other parameters are the upper and lower of limit parameter of 
model to be optimized.  For SVM, the ranges for C and γ are based on a grid search for SVM parameters 
as recommended in (Hsu, Chang & Lin, 2003). The range of C is (2-5, 215), and the range of C is (2-15, 23). 
For the neural network, the upper and lower limits of the connection weights were set to 100 and -100 
respectively in the inner PSO; the upper and lower limits of the hidden node amount were empirically set 
to 5 and 20 respectively in the outer PSO.  The range of ratio misclassification cost factor Cr was 
empirically chosen between 1 and 100×ImbaRatio (the ratio between the instance amounts of two classes). 

 
Table 3. Experimental results (AUC) of the MOCSL method with and without feature selection, as well as 

basic method and grid search for SVM 
  

 SVM Neural network 
Basic CSL Grid-CSL MOCSL Basic CSL MOCSL Dataset 

without 
FS 

FS without 
FS 

without FS without 
FS 

FS without 
FS 

FS without 
FS 

without 
FS 

FS 

Hepatitis  0.632 0.714 0.707 0.801 0.861 0.855 0.851 0.847 0.855 0.859 0.877 
Glass  0.952 0.957 0.953 0.955 0.994 1 0.932 0.945 0.956 0.987 0.994 
Segment  1 1 1 1 1 1 0.999 1 1 1 1 
Anneal  0.876 0.925 0.957 1 1 1 0.886 0.898 0.888 0.909 0.932 
Soybean  1 1 1 1 1 1 1 1 1 1 1 
Sick  0.728 0.761 0.788 0.848 0.908 0.975 0.817 0.823 0.862 0.924 0.941 
Car 0.990 0.987 0.990 0.999 1 1 0.996 0.996 0.998 1 1 
Letter  0.898 0.895 0.909 0.983 0.980 0.999 0.955 0.962 0.972 0.979 1 
Hypothyrid 0.830 0.855 0.887 0.945 0.973 0.988 0.951 0.963 0.963 0.968 0.972 
Abalone 0.638 0.712 0.722 0.839 0.867 0.893 0.851 0.853 0.884 0.891 0.875 

 
In this experiment, we assess the overall quality of classifiers with only the AUC evaluation metric. 

The average AUC scores are shown in the Table 3. From the result in Table 3, we found that 
simultaneously optimizing the feature subset, parameter and cost ratio generally help the base classifiers 
learned on the different data sets, regardless of feature selecting or not.  

For the classifier with the default model intrinsic parameters, the neural network is better than SVM, 
it is because that SVM is much more sensitive to the choice of model intrinsic parameter than neural 
network. The default model parameters of SVM cannot get the best performance. 

Meanwhile, for SVM, under the condition where the feature selection is not carried out, we found the 
optimization for all the factors simultaneously using PSO outperform the optimization using extent grid 
search, which optimize the intrinsic parameter firstly, then search the optimal misclassification cost 
parameter based on the best intrinsic parameters. It lacks sufficient search in the parameter space, many 
potential parameters pairs not to be abtained in the parameter space. Hence, it shows that the parameters 
need to be search at the same time. We believe that a wrapper method can allow one to empirically 
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discover the relevant parameters, as it is certainly intrinsically tied in with the data properties. Many 
results are particularly suggestive because they show that the degree of imbalance is not the only factor 
that hinders learning. Consider the Anneal data set, which is certainly not the most unbalanced data set. 
Both SVM and neural network have a very poor performanc. However, there is a significant improvement 
offered by the wrapper methods. 

We also found the feature selection step for these classifiers when working on the imbalanced data 
classification for both the basic classifier and the MOCSL. In the MOCSL, the use of feature selection 
was found to improve the AUC on the most datasets. 

We have demonstrated the ability to optimize the parameters and input of classifier model for an 
evaluation function, resulting in effective generalization performance.Therefore, we can draw the 
conclusion that the simultaneously optimizing the intrinsic, misclassification cost parameter and feature 
selection with the imbalanced evaluation measure guiding improve the classification performance of the 
cost sensitive learning on the different datasets. Moreover, the average AUC score of MOCS-SVM is 
better than MOCS-NN, which demonstrate that our wrapper approach improve the SVM much more than 
neural network. 
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Figure 5. The comparison between GA and PSO in terms of AUC and number of iterations  
 

Genetic algorithms also have the potential to generate both the optimal feature subset and parameters 
at the same time. Figure 5 shows a graphical evolution in terms of the average of AUC of execution of 
PSO based wrapper and GA based wrapper on four datasets. Both the methods performs feature selection 
and parameters setting in an evolutionary way. Compared with GA method,  PSO based approach 
generally achieve higher AUC. Moreover, we can also see that for a given AUC value, PSO based 
wrapper methods tends to take fewer iterations to converge.  

Compared  with  GAs,  PSO  does  not  need  complex  operators  such  as  crossover  and  mutation,  
it  requires  only  primitive and  simple  mathematical  operators,  hence it  is  computationally 
inexpensive  in  terms  of  both  memory  and  runtime   

 
Experiment 2 (horizontal comparison): MOCSL vs. the state-of the-art methods 
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The horizontal comparison means the comparison that our method and the other state-of-the-art 
imbalanced data classifiers, such as the random under-sampling (RUS), SMOTE over-sampling (Chawla, 
Bowyer, Hall & Kegelmeyer, 2002), SMOTEBoost (Chawla, Lazarevic, Hall & Bowyer, 2003) and 
SMOTE combined with asymmetric cost classifier (Akbani, Kwek & Japkowicz, 2004). For the under-
sampling algorithm, the SMOTE and SMOTEboost, the re-sampling rate is unknown. The common 
method for RUS is that majority class of the training data is randomly under-sampled until the sizes of 
both classes are the same. The common method for SMOTE is that the minority class was oversampled at 
the different rates from 100% to 500% and choose the average of these different results of different ratio 
oversampling as the final result. In our experiments, in order to compare equally, no matter under-
sampling or over-sampling method, we also use the evaluation measure as the optimization objective of 
the re-sampling method to search the optimal re-sampling level. The increment step and the decrement 
step are both set as the 10%. This is a greedy search, which process repeats, greedily, until no 
performance gains are observed. The optimal re-sampling rate is decided in a greedy iterative fashion 
according to the evaluation metrics. Thus, in each fold, the training set is separated into training subset 
and validating subset for searching the appropriate rate parameters. The evaluation metrics are also used 
with the G-mean and AUC.  For the SMOTE with asymmetric cost classifier, for each re-sampling rate 
searched, the optimal misclassification cost ratio is determined by grid search under the evaluation 
measure guiding under the current over-sampling level of SMOTE. Any algorithm that tries to improve 
on it inevitably sacrifices some specificity in order to improve the sensitivity. G-mean metric is the best 
of the three measures because it combines both the sensitivity and the specificity and takes their 
geometric mean. 

The experiment results are shown in the Table 4 and Table 5. As shown in bold in Table 4 and 5, our 
MOCSL outperforms all the other approaches on the great majority of datasets. Irrespective of the 
wrapper evaluation function, the wrapper approaches always result in an improved G-mean and AUC 
over the base classifier. For MOCSL based on the SVM (MOCS-SVM), it did not get the best result only 
on the Glass dataset; For MOCSL based on the neural network (MOCS-NN), there are only two dataset 
(Soybean and Hypothyroid) not to be winner. From the results, we can see that the random under-
sampling is with worst performance. This is because that it is possible to remove certain significant 
examples. Especially for SVM, undersampling the majority class causes  larger angles between the ideal 
and learned hyperplane. 

Both the SMOTE and SMOTEBoost generally help the base classifiers learned on the different data 
sets. Using the SMOTE based technique of oversampling the minority instances, we can make the 
distribution of positive instances denser. SMOTE or SMB synthetically generates new instances between 
two existing positive instances which helps in making their distribution more well-defined. However, 
SMOTE itself makes some assumptions about the training set. For instance, it assumes that the space 
between two positive instances is assumed to be positive and the neighborhood of a positive instance is 
also assumed to be positive, which may not always be true. Since our algorithm uses SMOTE, it also 
makes a similar assumption. In some complex datasets where this assumption may not hold, such as 

Hepatitis and Sick，our algorithm will perform slightly worse than the other algorithms. 

The over-sampling algorithm that tries to improve on it inevitably sacrifices some specificity in order 
to improve the sensitivity; but the degree of sensitivity improved is larger than the one of specificity 
improved. However, they have a potential disadvantage of distorting the class distribution. SMOTE 
combined with different cost classifier is better than single only SMOTE over-sampling, and it is the 
method that share most of the second best results. For some dataset, such as Segment, Soybean and Car, 
the AUC can be achieved 1, which indicates perfect ranking performance,and the two classes can be 
differenated easily.  

There is not a distinct positive correlation between the objective functions in the wrapper-mode and 
corresponding improvements in the final evaluation. In majority the cases, the G-mean value from the G-
mean wrapper is higher than the one of the AUC wrapper, but in some cases, the G-mean value from the 
AUC wrapper is higher, such as Hepatitis and Abalone datasets for MOCS-SVM and Glass and letter 
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datasets for MOCS-NN. Even for MOCS-SVM, the average G-mean from AUC optimization is better 
than the one from G-mean optimization. From this, we believe these results in more generalized 
performances when using AUC as the wrapper evaluation function, which is the similar conclusion as the 
paper (Chawla, Cieslak, Hall & Joshi, 2008), where the F-measure on some data sets when using AUC as 
the wrapper evaluation metric rather than the F-measure. We believe that employing the AUC evaluation 
measure as optimization objective could lead to more generalized performances. Similarly, the two 
evaluation metrics wrapper optimization for the same classifier result in different misclassification cost, 
feature subset and intrinsic parameters, since that they optimize different properties of the classifier. 
 
Table 4. Experimental comparison between MOCSL method and other imbalanced data classification 
methods based on the SVM 

  

RUS SMOTE SMB SMOTE-CSL MOCSL 

AUC GM AUC GM AUC GM AUC GM AUC GM 

Dataset  

Metric 

Optimization 

metric 

Optimization 

metric 

Optimization 

metric 

Optimization 

metric 

Optimization 

metric 
AUC 0.663 0.528 0.754 0.721 0.788 0.759 0.813 0.783 0.855 0.823 
GM 0.598 0.487 0.672 0.667 0.558 0.592 0.628 0.729 0.805 0.801 

Hepatitis  

Fea 19 7 8 
AUC 0.955 0.948 0.988 0.986 0.981 0.978 0.992 0.975 1 0.995 
GM 0.817 0.803 0.844 0.858 0.874 0.862 0.965 0.988 0.986 0.971 

Glass 

Fea 9 5 4 
AUC 1 1 1 1 1 1 1 1 1 1 
GM 0.993 1 1 1 1 1 1 1 0.998 1 

Segment  

Fea 19 10 11 
AUC 0.882 0.866 0.912 0.876 0.891 0.889 0.957 0.934 1 1 
GM 0.616 0.535 0.758 0.821 0.761 0.784 0.819 0.835 0.999 1 

Anneal  

Fea 38 14 12 
AUC 1 0.992 1 1 1 1 1 1 1 1 
GM 0.876 0.953 0.947 0.965 0.992 0.997 1 0.997 1 1 

Soybean  

Feature 35 12 12 
AUC 0.784 0.742 0.822 0.799 0.841 0.824 0.931 0.874 0.975 0.954 
GM 0.206 0.141 0.452 0.528 0.508 0.512 0.811 0.825 0.893 0.915 

Sick  

Feature 29 9 7 
AUC 1 1 1 1 1 1 1 1 1 1 
GM 0.964 0.964 0.962 0.958 0.979 0.981 0.995 0.998 0.996 0.998 

Car  

Feature 6 4 4 
AUC 0.907 0.896 0.966 0.956 0.987 0.965 0.988 0.980 0.999 0.995 
GM 0.925 0.933 0.947 0.954 0.934 0.922 0.965 0.961 0.983 0.985 

Letter  

Fea 16 12 10 
AUC 0.876 0.843 0.971 0.915 0.967 0.955 0.973 0.971 0.988 0.989 
GM 0.482 0.612 0.853 0.894 0.876 0.903 0.876 0.901 0.964 0.968 

Hypothyroid 

Fea 29 9 14 
AUC 0.781 0.613 0.822 0.754 0.799 0.780 0.846 0.812 0.893 0.855 
GM 0.618 0.687 0.712 0.814 0.645 0.744 0.698 0.817 0.853 0.785 

Abalone  

Fea 8 4 5 
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Table 5. Experimental comparison between MOCSL method and other imbalanced data classification 
methods based on the neural network 

 

RUS SMOTE SMB SMOTE-CSL MOCSL 

AUC GM AUC GM AUC GM AUC GM AUC GM 

Dataset  

Metric 

Optimization 

metric 

Optimization 

metric 

Optimization 

metric 

Optimization 

metric 

Optimization 

metric 
AUC 0.751 0.611 0.795 0.74 0.823 0.815 0.841 0.827 0.893 0.877 
GM 0.756 0.793 0.829 0.835 0.812 0.807 0.822 0.851 0.832 0.848 

Hepatitis  

Fea 19 10 9 
AUC 0.932 0.919 0.985 0.964 0.987 0.988 0.975 0.953 0.987 0.994 
GM 0.845 0.847 0.841 0.851 0.843 0.885 0.931 0.965 0.963 0.970 

Glass 

Fea 9 5 5 
AUC 1 0.999 1 1 1 1 1 1 1 1 
GM 0.996 0.993 0.998 0.999 0.995 0.998 0.999 1 0.998 1 

Segment 

Fea 19 14 14 
AUC 0.919 0.902 0.884 0.856 0.878 0.839 0.911 0.847 0.932 0.932 
GM 0.676 0.702 0.766 0.799 0.797 0.848 0.861 0.914 0.907 0.934 

Anneal  

Fea 38 18 16 
AUC 1 1 1 1 1 1 1 1 1 1 
GM 0.862 0.948 0.988 1 1 1 0.997 1 0.999 1 

Soybean  

Fea 35 14 15 
AUC 0.768 0.721 0.843 0.817 0.853 0.856 0.965 0.885 0.962 0.941 
GM 0.325 0.354 0.682 0.699 0.726 0.748 0.822 0.816 0.899 0.907 

Sick  

Fea 29 13 11 
AUC 0.812 0.806 0.999 0.986 0.998 0.990 1 1 1 1 
GM 0.725 0.786 0.923 0.944 0.945 0.939 0.951 0.988 0.975 0.969 

Car  

Fea 6 4 5 
AUC 0.916 0.925 0.958 0.929 1 0.943 1 0.998 1 1 
GM 0.943 0.957 0.953 0.959 0.938 0.966 0.972 0.963 0.978 0.971 

Letter  

Fea 16 11 10 
AUC 0.889 0.861 0.944 0.923 0.979 0.952 0.944 0.935 0.977 0.972 
GM 0.651 0.673 0.823 0.841 0.842 0.853 0.897 0.917 0.955 0.958 

Hypothyroid 

Fea 29 12 13 
AUC 0.797 0.751 0.811 0.793 0.804 0.771 0.837 0.828 0.888 0.875 
GM 0.644 0.726 0.733 0.748 0.741 0.756 0.828 0.857 0.823 0.856 

Abalone  

Fea 8 5 6 

 
The feature selection is as important as the re-sampling in the imbalanced data classification, 

especially on the high dimensional datasets. However, the feature selection is always ignored. Our 
method conduct the feature selection in the wrapper paradigm, hence improve the classification 
performance on the data sets which have higher dimensionality, such as Anneal, Sick and Hypothyroid. 
As expected using different classifiers also results in different feature subset. Because different algorithms 
have different biases and a feature that may help one algorithm may hurt another, so the feature subsets 
are different according to different wrapper classifiers. The feature number and feature are both different. 
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Although all methods are optimized under the evaluation measure optimized, we can see clearly that 
MOCSL is almost always equal to, or better than other methods. What is most important is that our 
method does not change the data distribution. The re-sampling based on the SMOTE may make the model 
overfitting, resulting in the generalization is not as good as the training.  

Many papers conclude that there is no consistent clear winner between the sampling approaches and 
the cost-sensitive technique. However, the conclusions were based on the default condition without the 
sufficient search in the parameters space. In this paper, we have empirically show that the under the 
evaluation measure guiding, the performances of cost sensitive learning with cost, feature subset and 
intrinsic parameter optimized are better than the re-sampling methods with sampling level optimized. 

Due to the nature of PSO, searching of cost setups might be time-consuming with some applications. 
This approach is still respectable considering that this searching is usually an off-line procedure such that 
the learning speed is not a crucial issue. 

 

Experiment 3: Lung computer-aided detection 
 
Many lung nodule computer-aided detection (CAD) methods have been proposed to help expert 
radiologists in their decision making. A CAD scheme for nodule detection in CT can be broadly divided 
into two major steps, an initial nodule identification step and a false-positive reduction step (Li, 2007). 
The purpose of false-positive reduction is to remove these false positives (FPs) as much as possible while 
retaining a relatively high sensitivity. It is a typical class imbalance issue since that the two classes are 
skewed and have unequal misclassification costs. The imbalanced data issue usually occurs in computer-
aided detection systems since that the healthy class is far better represented than the diseased class in the 
collected data (Rao, Fung & Krishnapuram, et al, 2009; Yang, Zheng, Siddique, & Beddoe, 2008), 
including other CAD, such as breast, colony. 

Constructing an accurate classification method requires a training data set that represents different 
aspects of nodule features. As we know, feature extraction plays an important role in computer aided 
detection. However, there is not a single outstanding feature that can discriminate the nodule from non-
nodule completely. This is due to the fact that the nodules vary enormously in volume, shape, and 
appearance, and the sources of false positives are different. The majority of false positives are mainly 
caused by blood vessels and other normal anatomic structures. Some of the false positives can be easily 
distinguished from true nodule, however, a large portion of them are difficult to distinguish. Therefore, 
for getting a high classification accuracy in candidate nodule classification, we should extract more 
features from many aspects, such as intensity, shape and gradient. Our feature extraction process 
generated 43 image features. Using these features, we construct the input space for our classifiers. This 
section gives a brief introduction to the features we have collected for analysis and selection. Table 6 
describes the features extracted from the candidate nodule Volume-Of-Interest (VOI) for classification. 

Our database consists of 98 thin section CT scans with 106 solid nodules, obtained from Guangzhou 
hospital in China. These databases included nodules of different sizes (3-30mm). We obtained the 
appropriate candidate nodule samples objectively using a candidate nodule detection algorithm, which 
identifies 85 true nodules as positive class and 462 non-nodules as negative class from the total CT 
scans; the class imbalance ratio is 5.4. The imbalance level is not extremely high, but the 
misclassification costs of each class are extremely different. The imbalance level is dependent on 
reliability and accuracy of the initial detection processing. The Generation of the nodule candidates is 
displayed in Figure 6.  

 



 20 

  
  

Figure 6. Initial detection result of candidate nodules. TPs indicated by arrow, other spots are FPs 
 
Table 6. Feature set for candidate nodule classification 
 

# Feature 
Type 

Feature Description 

1-7 Intensity statistical feature The gray value within the objects was 
characterized by use of seven statistics (mean, 
variance, max, min, skew, kurt, entropy). 

8-12 

 
 
Intensity 

sub-volume distribution 
feature 

The average intensity within each sub-volume 
along the radial directions 

13-19 SI statistical feature The volumetric shape index (SI) representing the 
local shape feature at each voxel was characterized 
by use of seven statistics. 

20-26 CV statistical feature The volumetric curvedness (CV), which quantifies 
how highly curved a surface is, was characterized 
by use of seven statistics. 

27-29 

 
 
 
Shape 
 

volume, surface area and 
compactness 

 

30-36 Concentration statistical 
feature 

The concentration characterizing the degree of 
convergence of the gradient vectors at each voxel, 
was characterized by use of seven statistics 

37-43 

 
Gradient 
 

Gradient strength statistical 
feature 

The gradient strength of the gradient vectors at 
each voxel, was characterized by use of seven 
statistics 

 
Experiments show that the framework proposed improves the evaluation metric, AUC in Table 7. For 
high dimensional candidate nodule dataset, our methods outperform the other common approach. It 
means that our method can be applied on the nodule or other lesion detection medical images. The 
measure optimization is only used the AUC metric. 
 
Table 7. Experiment result of candidate nodule classification 
 

Method metric Base CSL RUS SMOTE SMOTEBoost SMOTE-CSL MOCSL 

AUC 0.681 0.785 0.603 0.948 0.948 0.956 0.969 
SVM 

GM 0.208 0.662 0.590 0.826 0.818 0.867 0.937 

AUC 0.872 0.899 0.873 0.926 0.925 0.938 0.946 
NN 

GM 0.513 0.650 0.439 0.858 0.864 0.909 0.921 

 
 
CONCLUSION 
Learning with class imbalance is a challenging task. Cost sensitive learning is an important approach 
without changing the distribution because it takes into account different misclassification costs for false 
negatives and false positives. Since the cost matrix, the intrinsic algorithm parameters and the feature 
subset are important factors for the cost sensitive learning, and they influence each other, it is best to 
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attempt to simultaneously optimize them using an object optimized wrapper approach. We propose a 
wrapper paradigm optimized by the evaluation measure of imbalanced dataset as objective function with 
respect to misclassification cost, feature subset and intrinsic parameter of classifier. The optimization 
processing is through an effective swarm intelligence technique, the Particle Swarm Optimization (PSO). 
Our measure optimized framework could wrap around an existing cost-sensitive classifier. We 
demonstrated its applicability with SVM and neural networks, two completely different classifiers. The 
proposed method has been validated on some benchmark dataset as well as a real world dataset (Lung 
medical image), which is typically an imbalanced data set with different misclassification cost. The 
experimental results presented in this study have demonstrated that the proposed framework provided a 
very competitive solution to other existing state-of-the-arts methods, in optimization of G-mean and AUC 
for combating imbalanced classification problems. These results confirm the advantages of our approach, 
showing the promising perspective and new understanding of cost sensitive learning.  
 
FUTURE RESEARCH 
Several interesting problems related to this research are still open for future investigation. The following 
is a list of some possible directions. 
(1) More investigations on other base classifier 

In this study, we only demonstrated its applicability with SVM as well as neural network which are 
commonly used in the imbalanced data learning. Other standard classification systems, such as bayesian 
network classifier, decision tree, and K-NN, are all reported to be affected by the class imbalance 
problem. Our measure optimized framework can be applied on other classifiers. In future research, we 
will extend and investigate how the cost sensitive learning wrapper algorithms effect different base 
classification systems. 
(2) More investigations for multiple classes classification 

Most existing imbalance learning techniques are only designed for and tested in two-class scenarios. 
They have been shown to be less effective or even cause a negative effect in dealing with multi-class 
tasks. In the future research, we will extend the framework to the multiclass imbalanced data 
classification. 
(3) More investigations for other objective function  

The setup of optimized parameters is specific not only to the given data, but also to the learning 
objective and the base classifier. The kind of objective function can be chosen based on the training 
objective of the given problem; the alternative performance measures such as F-measure can also be 
incorporated. 
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