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Abstract—It is critical to know what brain regions are affected
by an ischemic stroke, as this enables doctors to make more
effective decisions about stroke patient therapy. These regions are
often identified by segmenting computed tomography perfusion
(CTP) images. Previously, this task has been done manually
by an expert. However, manual segmentation is an extremely
tedious and time-consuming process, that is not suitable for
ischemic stroke lesion segmentation as it is highly time sensitive.
In addition, these approaches require an expert to do the
segmentation task, who may not be available and are prone to
errors. Several automatic medical image analysis methods have
been proposed for ischemic stroke lesion segmentation. These ap-
proaches, typically, use hand-crafted features that are predefined
to represent the input data. However, because of the irregular and
physiologically shapes, ischemic stroke lesions cannot be properly
predicted, in an automatic way, using simple predefined features.
In this work, we propose an automatic prediction algorithm that
learns an effective model for segmenting the ischemic stroke
lesion. This learned model first uses four 2D U-Nets to, separately,
extract valuable information about the location of the stroke
lesion from four CTP maps (CBV, CBF, MTT, Tmax). The model
then combines the probability maps extracted by the U-Nets, to
decide whether the pixels are either lesion or healthy tissues.
This approach uses information about each pixel, as well as its
neighborhood, to learn the stroke lesion, despite their varying
shapes. The segmentation performance is evaluated using dice
similarity coefficient (DSC), volume similarity (VS), and Recall.
We have used this new algorithm on ISLES 2018 challenge
dataset and found that our approach achieved results that are
better than state-of-the-art approaches.

Index Terms—Ischemic stroke, prediction, CT perfusion, Par-
allel U-Nets, Pixel-level classifier

I. INTRODUCTION

One in six people worldwide will have a stroke in their

lifetime. A total of 15 million people worldwide suffer a

stroke each year and 5.8 million people die from it [1]. There

are two main types of stroke: ischemic (clot and permanent

occlusion of a blood vessel), and hemorrhagic (rupture or

break of a blood vessel). Overall 80-85% of all strokes

are ischemic stroke. Ischemic stroke occurs when there is

a reduction in cerebral blood flow due to arterial occlusion

[2]–[4]. Decreased cerebral blood flow, if it persists long

enough, will result in irreversible infarction of brain tissue

[5]–[7]. To halt infarct growth, the most effective therapy is
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the rapid recanalization of the occluded artery and reperfusion

of ischemic brain tissue [8]. However, reperfusion must occur

at a time point when there is still brain to salvage. This has led

to the development of brain imaging methods, most notably

CT perfusion (CTP), to identify the relative amounts of brain

tissue that is irreversibly (ischemic core) and salvageable tissue

at risk (penumbra). Recent clinical trials have shown that

stroke patients that benefit most from reperfusion therapies are

those with a large mismatch between the size of salvageable

penumbra and core on CT perfusion [9]–[11].

CT perfusion is by far the most widely adopted method to

identify ischemic stroke patients with salvageable penumbra.

CT perfusion is a kinetic tracer technique which involves

continuous imaging of a slab of brain tissue during the

administration of a bolus of iodinated contrast agent. The

first-pass arrival of contrast agent in the tissue results in

a change in signal intensity that is used to calculate time-

density curves for each voxel [12]. These time density curves

are then processed with a temporal deconvolution algorithm

and a known arterial input function to generate images of

Cerebral Blood Volume (CBV), Cerebral Blood Flow (CBF),

Mean Transit Time (MTT), and Time to peak (Tmax) [13]. In

addition, CTP has some advantages compared to other medical

imaging modalities, such as MRI, because of its lower cost,

increased availability, and effectiveness [12], [14].

There are crucial challenges in the ischemic stroke lesion

prediction, such as the lack of consistent location and ap-

pearance of the lesion and the varying size and shape of the

lesion over time [15]. To address these challenges, several

methods have been proposed in the past to detect ischemic

stroke lesion. These methods can be classified into two types,

manual, and automated [16]–[19]. Since manual approaches

are an extremely tedious and time-consuming process, they

are not suitable for ischemic stroke lesion segmentation where

the treatment is highly time sensitive. In the previous re-

search, several automatic medical image analysis methods and

mathematical models have been proposed for ischemic stroke

lesion segmentation [20]. These approaches typically used

hand-crafted features that are predefined to represent the data.

Because of the irregular and physiologically shapes of stroke

lesion, they cannot be properly used to perform automatic

segmentation.
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Neural networks, especially convolutional neural networks

(CNN), have become a promising and popular technique to

tackle image processing and computer vision tasks [21], [22].

Specifically, it has been used extensively in medical imaging

applications–segmentation and classification [23]–[25]. One of

the most popular network is U-Net which is a special case of

a standard CNN [26], and have been used successfully for

medical image segmentation tasks [15], [27].

In this paper, we propose a novel deep learning algorithm

capable of processing pretreatment CT perfusion images in

order to improve the identification of ischemic stroke lesion.

The proposed algorithm consists of multiple parallel U-Nets

followed by a pixel-level classifier. The main idea behind

this algorithm is to combine valuable information extracted

by the parallel U-Nets from CTP maps to achieve a higher

probability of stroke lesion prediction. The proposed algorithm

is evaluated against the ISLES 2018 challenge dataset [28] and

compares favorably to the winners of the challenge [29], [30].

The remainder of the paper is organized as follows: First, a

brief review of image analysis for ischemic stroke lesion pre-

diction is presented. Then the proposed stroke lesion prediction

model is explained. In the third section, the experiments and

results are presented. Finally, we conclude by presenting the

pros and cons of our approach.

II. IMAGE ANALYSIS FOR ISCHEMIC STROKE

IDENTIFICATION

Today, determining which parts of the brain have already

been damaged is done by simple thresholding the CTP images

[31]. To assist clinicians in making rapid treatment decisions

in acute stroke, a commercial software has been developed to

process the CT perfusion source data to generate the CBF,

CBV and delay time images and quickly estimate core and

penumbral sizes [32]. This software uses a simple thresh-

old approach to identify patients with a treatable penumbral

pattern. Significantly hypo-perfused tissue volume is defined

when Tmax >6 seconds or Delay Time >3 seconds. Infarct

core is defined by using a double threshold of Tmax >6

seconds (or Delay Time >3 seconds) with a relative (to

the contralateral hemisphere) CBF of <30%) [33]. These

definitions of core and penumbra have been validated in stroke

trials to identify patients that benefit from therapy. However,

there remains significant variation in the predicted core on

baseline CT perfusion and final infarct size estimated using

DW-MRI imaging [34].

Such approaches have the drawback of only modeling a

single univariate threshold (hard decision border) between

affected and non-affected tissue. Since ischemic stroke lesions

are varying widely over time, these simple algorithms are not

suitable for accurately predicting the regions at risk. Some

previous works have attempted to overcome these limitations

by considering flexible thresholds [35], [36]. However, this

problem cannot accurately be solved because they cannot make

a precise prediction of the stroke lesion that is varying quickly

after stroke onset.

Until the introduction of deep learning networks, almost all

medical imaging tasks, e.g., classification, regression, and seg-

mentation have been performed using hand-crafted features.

In addition, some previous studies have used transformation

techniques, such as nonlinear kernel methods to transform

the input data representation to another representation or

feature space that is hopefully more linearly separable. These

algorithms simplify high-level tasks such as classification and

regression. Due to the large variety of shapes and boundary of

stroke lesions, such approaches cannot effectively cope with

the ischemic stroke segmentation problems.

As opposed to hand crafted-features, one can exploit deep

neural networks to learn high-level features and do the high-

level task (classification or regression) both at once. Such

deep neural networks are capable to learn sufficiently complex

models without having to tune the right parameterization by

hand.

The most popular deep neural network for medical imaging

task is a convolutional neural network (CNN). Of many deep

neural network architectures proposed in the literature, the U-

Net architecture has successfully been used to segment and

classify medical images [26].

A. Deep Neural Networks for Stroke Lesion Prediction

Recently deep neural networks have (DNN) become one

of the most popular methods in the fields of computer vision

and image processing, specifically medical image processing

[37]. The recent availability of graphics processing unit (GPU),

which allows fast training processes, as well as large anno-

tated training sets have enabled the development of computer

vision applications based on deep learning algorithms that are

considerably more precise than traditional machine learning

methods.

For ischemic stroke lesions prediction problem, there are

some critical challenges that must be addressed. These main

challenges here are:

1) The large variety of shapes of the outer boundaries of

the stroke lesions;

2) Widely varying size and shape over time, which make

it difficult to predict the appearance of the lesion;

3) The limited amount of data to properly train a prediction

model.

DNN is a promising technique as it possesses several

advantages over traditional machine learning methods that

ischemic stroke lesion segmentation challenges require. These

advantages are [38]:

1) By using high-level classification objective functions,

features of different abstraction levels are automatically

learned;

2) One can design methodologies end-to-end, where the

system can learn how to extract image features, detect

them, and then segment visual objects that can be

classified using a unified classification model;

3) DNN largely saves researchers’ time by automating this

process. Also, it is capable to use the complex feature

patterns to perform prediction;
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4) DNN can learn the feature hierarchy in a layer-by-

layer manner, by first learning the low-level features

and then recursively building more comprehensive high-

level features based on the previously learned low-level

features.

Since DNNs require to estimate an extremely high number

of parameters during the training process, the most challenging

problem is to find a large set of annotated training images. This

challenge particularly occurs in the medical image analysis

(MIA) applications because of the limited availability of

large annotated training set. To address this issue, U-Net was

specifically designed to be trained using a small number of

training data.

B. U-Net Architecture

U-Net architecture has been proposed by Ronneberger et al.
[26] and became very popular in medical image processing

community because of its versatility and its ease of training

[15], [27]. It is capable of producing semantic segmentation

via a fully-convolutional CNN that additionally incorporates

skip connections between the context encoding and the refin-

ing decoding path for each scale level [39].

One can see in Figure 1 a diagram of the U-Net architecture.

The network is composed of two main sections: an encoding

section (left side) and a decoding section (right side). The

encoding section acts like a typical CNN architecture. It con-

sists of a repeated application of 3×3 convolutions (unpadded

convolutions) filters followed by a ReLU function unit and

a 2×2 max pooling operation which performs a factor 2 for

down sampling. Feature channels are doubled at each down

sampling step. In the decoding section, every step consists

of up sampling the feature map which is followed by a

2×2 convolution (up-convolution) which halves the number

of feature channels, a concatenation with the correspondingly

cropped feature map from the contracting section, and two

3×3 convolutions, each followed by a ReLU. Due to the loss

of pixel border at every convolution, cropping is necessary.

At the last layer, a 1×1 convolution is used to map each 64-

component feature vector to the desired number of classes. In

total the network has 23 convolutional layers in our imple-

mentation [26].

III. PROPOSED ALGORITHM

In this implementation, a prediction section, which is com-

posed of two sub-sections, is proposed to segment the ischemic

stroke lesion. As shown in Figure 2, the first part of the model

consists of four U-Nets, processing data in a parallel manner,

and the second one is a pixel-level classifier.

For the first part, we have tried both a 3D U-Net and

multiple 2D U-Nets and found that the performance of the 2D

U-Nets was better. In 3D U-Net model, we have trained the

model by 3D inputs that are constructed by four CTP maps.

For the 2D U-Nets, they are separately trained using different

CTP maps (CBV, CBF, Tmax, and MTT). In both networks,

brain tissue density extracted from CT scans is used as an

additional feature to train the model. The input size of the

Fig. 1. U-Net architecture [26].

3D model is (5×256×256) which include four CTP map and

brain tissue density. In the 2D model, each U-Net input is

a two-channel 2D image that is produced by stacking brain

tissue density of that slice with its corresponding CTP map.

It is true that all the CTP maps contain information as

for the ischemic stroke lesion volume and appearance, but

the value of their information is not equal. Hence, we have

trained a prediction model that separately uses CTP maps to

extract information from each pixel using a U-Nets. Then a

classifier combines the extracted information from the CTP

maps, according to their contributions, to determine the pixels

labels (Lesion or Healthy). The contributions of the CTP maps

have been determined by the value of the information they

carry on the appearance of the stroke lesion. We have trained

various types of classifiers for the classification task: voting,

simple weighted averaging, and logistic regression.

The whole segmentation algorithm is divided into three

main steps are: preprocessing and image augmentation, paral-

lel U-Nets, and pixel-level classifier.

Fig. 2. Stroke lesion prediction model pipeline.

A. Preprocessing and Data Augmentation

Before training the model, images are preprocessed by

removing some outliers and normalizing the remaining images
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to make them comparable. Since the number of patients in the

dataset is limited to train the model in an appropriate way

and to avoid overfitting, we have augmented the dataset using

some well-known techniques.

When a model tries to learn frequent features (patterns that

occur frequently) which may not be useful, over-fitting usually

happens. To tackle this problem, one can add zero-mean

Gaussian noise to images. By adding Gaussian noise, one

can effectively distort high-frequency features and improve the

learning capability of the neural net. Image translation consists

of moving the image along both X and Y directions or just one

of them. By doing so, the model is forced to look everywhere.

In order to increase the dataset, we have created new images

by randomly rotating them by [-20∠, 20∠], translating them

by [-15%, 15%] of the size, scaling them by [0.8, 1.2], and

adding Gaussian noise with zero mean.

B. Parallel U-Nets Model

Figure 2 shows how we are using U-Nets in a parallel way.

Instead of using 3D U-Net that has been used in most of the

previous segmentation works, we have used four 2D U-Nets.

Each U-Net input is a two-channel image comprising a CTP

map over the same size image which is the brain tissue density

corresponding with that slice. The size of the input images is

(2××256×256).

The softDice loss function has been used for training the

U-Nets score and is defined by:

SoftDice(A,B) =
2×∑

i(Ai, Bi) + 1∑
i(AiAi +BiBi) + 1

(1)

where for all voxel positions i in a segmentation A with ground

truth B and a smoothing constant which is 1.

C. Pixel-level Classification

The main goal of this step is to investigate the influence of

combining the information generated from the U-Nets from

different CTP maps. In addition, the idea behind this step is

that by considering the different values of the information

that is carried out by different CTP maps and combining

them based on their contributions, one can achieve better

results in stroke lesion prediction. We have investigated var-

ious approaches to tackle the classification task. The tested

approaches were in a wide range in terms of complexity, from

simple voting to high-level classifiers.

The outputs of the U-Nets are four probability maps in

which the value of each pixel indicates the probability of

being a stroke lesion. Hence, to classify each pixel according

to the two lesion and non-lesion classes, we use these maps as

the attributes. The following paragraphs detail the pixel-level

classification problem.

• First, the probability maps extracted by U-Nets, have

converted to the binary masks by using thresholding (the

threshold have been determined by experiment and error

and it was 0.65). Then a simple voting method has been

used to classify each pixel. In this classification method,

we classify a pixel as a lesion if two or more masks say

that the pixel is a lesion;

• In the second, the segmentation accuracy of each U-Net

has been used as a criterion to determine the contribution

of the output of that U-Net in the pixel-level classification

task. In other words, first, all U-Nets have been trained

by the same training set and then tested by a same test

set. For each U-Net, the accuracy of the segmentation

task has been computed using the Dice score. We have

computed the value of each U-Net output contribution

by:

Wi =
Ai∑
i Ai

(2)

where Ai is the accuracy of ith U-Net, and Wi is the

contribution weight of the output of ith U-Net in the pixel-

level classification.

Finally, a weighted average of four probabilities, cor-

responding to four U-Nets, is calculated in which the

weights are determined based on equation (2). Using the

following equation:

P =

4∑

i=1

Wi × pi (3)

one can compute the weighted average, where i is the

index of the U-Nets, wi is the contribution weight of the

output of the ith U-Net, and pi is the probability of being

a lesion based on the output of the ith U-Net. In the end,

the average value P is converted to a binary value by

comparing its value to a 0.55 threshold. This threshold

was chosen experimentally.

• We believe that there is valuable information about the

link between the central pixel label and each pixel in

its neighborhood. Therefore, in this model, to predict

the label of each pixel, four corresponding N by N

neighborhoods, centered by that pixel in four outputs of

four U-Nets, are considered as features. As shown in

Figure 3, one can concatenate these neighborhoods to

create a vector with length (4×N×N). Then this feature

vector is used as the input of a logistic regression model

that is used as a pixel-level classifier. The idea behind this

method is that by using the valuable information that is

hidden in the neighborhood of each pixel, one can achieve

a smoother and homogeneous predicted lesion, thereby

increasing the final segmentation performance. We have

tried different neighborhood size (N=3, 5, 7, 9, 11, 13)

but the best results have been achieved with N=9.

D. Implementation Details

To implement the U-Nets, we have used Keras deep learning

library, on a PC which had GeForce GTX 780 GPU and 16

GB RAM. To improve the training process, the dice score has

been monitored on the validation set, after every training epoch

(see Figure 4 shows the variation of the dice score of MTT

U-Net for every epoch). If we had not seen any improvement

after 15 epochs, the learning rate was reduced to achieve better

960



Fig. 3. Input/output of logistic regression model.

validation accuracy. The batch size of the U-Nets is 32, and

the kernel size is 3 by 3. In addition, Adam has been utilized

as an optimizer in this work (which is introduced by Diederik

Kingman and Jimmy Ba [40]).

Fig. 4. Variation of the Dice score for every epoch (MTT U-Net).

IV. EXPERIMENTS AND RESULTS

A. Dataset

To evaluate the proposed model, the ISLES challenge 2018

dataset has been used. The dataset consists of CT images,

CTP maps, and DWI scans, from acute stroke patients, which

are collected from two imaging centers. All the patients have

been admitted and scanned (CT and CTP) within 8 hours of

stroke onset and underwent an DW-MRI within 3 hours after

CTP scan. CTP maps are derived from the raw CT data for

clinical interpretation. Infarcted brain tissue can be identified

as hyperintense regions of the DWI trace images (DWI maps).

The ground-truth segmentation maps are manually drawn on

those scans by medical experts.

The scans had varying depth in the axial dimension, ranging

from 2 to 22 slices. Because CTP scans were acquired as slabs

covering sparse areas (5mm axial spacing) with stroke lesion

in the brain. The size of each slice is (256×256) pixels. The

training set consists of 63 patients and 94 scans, and the test

set is composed of 40 patients with 62 scans. Some of the

patients have two slabs to cover the whole stroke lesion.

B. Evaluation and Metrics

In order to validate the proposed model by using 10-fold

cross-validation, we made sure that there was no overlap

between patients folds. In addition, the scans of the patients

who have multiple slobs existed only in the same fold.

Overfitting of the model has been prevented by training until

the validation loss converges and choosing the model with the

lowest validation loss. We have used the SoftDice loss function

in our experiments (Equation (1)).

The model tested by using patients which have not been

used for the training and validation. Therefore, evaluation

results could not be tuned on the validation loss optimum,

making the results more reliable.

In order to accurately evaluate the proposed model, we used

a common similarity metrics that test different capabilities of

the model. These metrics are:

• Dice similarity coefficient (DSC)

DSC =
2TP

2TP + FP + FN
(4)

• Volume similarity (VS)

V S = 1− |FN − FP |
2TP + FP + FN

(5)

• Sensitivity (Recall)

P =
TP

TP + FN
(6)

Since, in some applications, it is crucial that we predict the

volume of the stroke lesion in an accurate way, we have

evaluated the proposed model performance using VS.

C. Prediction Results

Table I shows the ability of the U-Nets to segment ischemic

stroke lesion. The results show the amount of information can

be extracted from different CTP maps. As one can see, the

accuracy (DSC) of the network which has been trained by

using Tmax maps is better than other networks. Therefore, the

Tmax map has the greatest contribution to the classification

problem. However, if we consider VS as the main criterion

for evaluation, Tmax is not the best. In that case, CBV map is

the most valuable information about the volume of the stroke

lesion.

TABLE I
ISCHEMIC STROKE LESION PREDICTION PERFORMANCE OF THE U-NETS

U-Net Metric
Input DSC VS Recall
CBF 0.30 0.33 0.35
CBV 0.32 0.47 0.38
MTT 0.35 0.46 0.4
Tmax 0.40 0.41 0.41

Table II shows the accuracy of the final prediction of

ischemic stroke lesion by using different classifiers. One can

see that the accuracy of the logistic regression model is by far

the best among the three classifiers. DSC and Recall of the

LR model that reported in Table II are related to the (9×9)

neighborhood size and VS is related to (11×11) neighborhood

size.

Figure 5 shows the effect of changing the size of the neigh-

borhood of each pixel on the final prediction performance. The
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TABLE II
THE ACCURACY OF FINAL PREDICTION BASED ON DIFFERENT

CLASSIFIERS

Classification Metric
Model DSC VS Recall
Voting 0.41 0.50 0.44

Weighted Average 0.57 0.66 0.56
Logistic Regression 0.71 0.82 0.73

results show that the best DSC and Recall is related to kernel

size (9×9). In addition, the best VS has been obtained using

an (11×11) neighborhood.

Fig. 5. a) DSC b) VS, and c) Recall of the LR model based on different size
of neighborhood.

One can see in Figure 6 the ischemic stroke lesion segmen-

tation, for one patient. In this figure, the first column shows

CTP maps by using different color maps (just for clarity).

The middle column is the segmentation results of each U-

Net, separately. The third column shows the final segmentation

results based on three pixel-level classifiers. In these images,

the red lines are prediction area and white area is the ground

truth. As one can see in this Figure 5, the best prediction is

obtained by the LR model (with neighborhood size 9×9).

D. Compassion with Other Algorithms

Table III shows the results of our proposed algorithm in

compared to the best results that have been achieved during

the ISLES challenge 2018 competition [29], [30], [41]. As one

can see in most cases our results are significantly better.

V. CONCLUSION

In this paper, we proposed a prediction model for ischemic

stroke lesion identification using CTP scans. The whole predic-

tion algorithm consists of three main steps: preprocessing and

image augmentation, parallel U-Nets, and pixel-level classifier.

For preprocessing, outliers were removed, and the remain-

ing scans were normalized. Then, the preprocessed dataset

Fig. 6. The first column is color maps of CTP parameters. The second
column is the segmentation result of each U-Net. The third column is the
final segmentation results based on three classifiers. Red lines are predicted
region boundary and white area is the ground truth.

TABLE III
COMPARISON OF THE RESULTS

Segmentation Metric
Model DSC VS Recall

The Best Previous Model 0.56 - 0.58
Voting Based Model 0.41 0.50 0.44

Weighted Average Based Model 0.57 0.66 0.56
Logistic Regression Based Model 0.71 0.82 0.73

was augmented by translating, rotating, scaling and adding

Gaussian noise. The second part of the algorithm is multiple

parallel U-Nets learned by different CTP maps. This section

was designed for extracting information as for the appearance

of stroke lesion from four CTP maps separately. To do so, we

used four 2D U-Nets in a parallel manner that learned by using

different CTP maps. The output of each U-Net is a probability

map that shows the probability of being a lesion for each pixel.

The third section is a pixel-level classifier that combined the

outputs of the U-Nets to label each pixel as lesion or healthy.

Experiment results of our proposed approach on the publicly

available ISLES challenge 2018 dataset demonstrate better

prediction performance in comparison to the previous ischemic

stroke lesion segmentation works. The effectiveness of the

proposed algorithm is evident by the remarkable improvement

in the value of DSC, recall, and VS compared to the best

previous studies on this problem. Our algorithm achieved

DSC 71.3%, Recall 73.6%, and VS 82.1% by using logistic

regression as a pixel-level classifier.
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