Automatic Generation of Relational Attributes: An Application to Product Returns

Michele Samorani
Leavey School of Business
Santa Clara University, USA
Email: msamorani@scu.edu

Abstract—Although statistical and machine learning meth-
ods require the input data to be in a tabular format, in
real-world applications data are often stored across several
tables in a relational database. How to build a single mining
table from a relational database is a critical pre-processing
step of any classification method, because including the right
attributes may dramatically boost the accuracy of the classifier.
We propose a methodology and implement a software program,
Dataconda, to automatically mine a relational database. The
user selects a class attribute contained in a table of the database
and the procedure builds and selects predictors by exploring
the whole database and aggregating information, without any
user intervention. For example, our procedure may find that
the best predictor for “product return” is the proportion of
products returned by the same customer in the past, even
if the user has not built any such attribute. Our procedure
produces more expressive attributes than existing methods. Our
experiments on the ISMS Durable Goods Datasets, a publicly
available data set of product returns in retailing, suggest that
our method allows new knowledge to emerge.

Keywords-Feature construction; Knowledge discovery; Soft-
ware tools

I. INTRODUCTION
A. Motivation

The machine learning community traditionally assumes
the input of classification or supervised attribute selection
to be a flat mining table, in which each row represents an
object and each column an attribute; one more attribute is
the class, which indicates which group the object belongs
to. By contrast, in a real-world environment, the flat mining
table is never given, but it rather needs to be constructed
manually from a variety of data sources, typically the tables
of a relational database.

Consider, for example, the Product Returns database in
Figure 1, which contains the information on the products
purchased by the clients of a store. Each purchase is made by
exactly one client and involves exactly one product; however,
each client and each product may appear in any number
of purchases. Suppose that the class is the binary attribute
Purchase.Return, which indicates whether the purchased
product was later returned to the store. For simplicity, let
us assume that the value of Purchase.Return is known right
after the purchase is made.

When searching for a product, customers may purchase
a product that does not meet their requirements or expecta-

Farrukh Ahmed
Department of Computing Science
University of Alberta, Canada
Email: farrukhl @ualberta.ca

Osmar R. Zaiane
Department of Computing Science
University of Alberta, Canada
Email: zaiane @ualberta.ca

Purchase

9Pk Purchase_ID
client | ==

FK Client_ID Product

¥PK Client_ID

9Pk Product_ID

FK Product_ID

Date Price

Online

Return

Figure 1. The Product Returns database.

tions. When that happens, if the retailer’s policy allows it,
customers may decide to return the product for cash back
or for store credit. The proportion of returned purchases,
called “return rate”, may be as high as 25% [1]. Overall,
the monetary value of product returns in the US, inclusive
of costs for lost sales and reverse logistics, is approximately
$100 billion [2]. For this reason, retailers are interested in
understanding the causes of product returns.

To find the drivers of product returns, one could use
any classification or attribute selection procedure. However,
before doing so, it is necessary to build a flat mining
table with one row per purchase and one attribute for each
possible cause of Return. In other words, the table Purchase
needs to be “enlarged” by adding handcrafted attributes that
summarize information from other tables. Typically, what
attributes to build is driven by the intuition of analysts,
who use their domain knowledge to formulate hypotheses
about the phenomenon analyzed. In this simple example,
the analysts may decide to add the following attributes to
the table Purchase:

1) Online — perhaps, online purchases are more likely to
be returned?

2) Gender of the client — perhaps, a gender is more likely
to return products than the other?

3) Age of the client — perhaps, younger clients are more
inclined to return products?

4) Price of the product — perhaps, more expensive prod-
ucts are more likely to be returned?

5) Proportion of returned purchases made by the same
client prior to the current purchase — perhaps, clients
who have returned products in the past are more

inclined to return products in the future?

6) Number of times that the the same product was
returned prior to the current purchase — perhaps,
products that are returned often will be more likely
returned in the future?

7) Total amount of money spent in the past by the client
— perhaps, very active clients behave differently from
less active clients?

The process of manually building these attributes has two
disadvantages. Firstly, as illustrated by the example above,
analysts tend to build only those attributes that they suspect
being good predictors of the class. Thus, a manual analysis
is unlikely to find unexpected knowledge. Secondly, this
manual process is very time consuming and error prone,
because it consists of writing a large amount of SQL code.

B. Goals of this paper

The first goal of this paper is to propose a new methodol-
ogy and implement a software framework, Dataconda, freely
available at www.dataconda.net, to find the predictors for a
class of interest without the need for the user to hypothesize
them. The user selects a class attribute contained in a
table of the database, and our procedure builds and selects
predictors by exploring the whole database and aggregating
information, without any user intervention. While some of
the predictors are generated by simply joining the target table
with the other tables (e.g., attributes 1-4), many predictors
are generated by joining in a non-trivial way many tables
or the same table more than once (e.g., attributes 5-7).
The main difference between Dataconda and other data
mining software is that the user does not need to make any
hypothesis on the predictors. The user can extend Dataconda
by introducing custom aggregating functions and custom
attribute selection procedures.

The second goal of the paper is to employ our frame-
work to identify the drivers of product returns in simulated
and real data. Our results on the data of a large retailer
show that our methodology discovers good predictors of
product returns that were unknown, thereby enriching our
understanding of the consumer behavior.

II. RELATED WORK

The problem of classifying objects in a relational database
has been extensively studied within the multi-relational data
mining community. The two main approaches are Inductive
Logic Programming (ILP) and Propositionalization.

ILP, proposed by [3], starts from the basic facts present
in the tables (e.g., Client(Joe, M, 33), Client(Claire, F
28)) and uses induction engines, such as Prolog [4], to
derive rules behind returning a purchase. These approaches
suffer from several problems. First, aggregation is gener-
ally implemented only through a binary existence qualifier,
which indicates whether the current record is associated to
at least one record in another table that satisfies a certain

condition. For example, if the target table is Client, a new
binary attribute would be only of the form “there exists
a purchase with online = 1”. Second, they do not allow
nested aggregations, such as MAX(COUNT(...)). Third,
the attribute generation and the classification happen at the
same time: generated attributes are successively evaluated
and used to recursively split the data set, with an approach
similar to the greedy construction of a decision tree. For this
reason, most of the existing statistical and machine learning
algorithms, which work on a single table, cannot be applied
under an ILP framework.

By contrast, Propositionalization approaches decouple the
attribute generation phase from the classification phase.
In practice, these approaches simply add attributes to the
target table (Purchase) by collecting information from the
other tables. Previous Propositionalization approaches are
proposed by [5], [6], [7]. The approach [5] uses filters only
in the presence of the aggregation operator COUNT, in the
same way as a COUNTIF function. For example, while
it would generate the attribute “number of items returned
(Count(*) where return = 1)”, it would not generate the
attribute “average price of the items returned (Avg(price)
where return= 1)”. The Propositionalization engine ACORA
[6] does not have these limitations, but it forbids paths that
use the same id twice in a row. For example, it cannot
generate any attribute concerning the previous purchases of
a client, as the key client_id would be used twice in a row
on the path Purchase — Client — Purchase. We call paths
containing sub-paths A — B — A “rolled” paths. The
reason for not allowing rolled paths is that

“Tables resulting from a path that reuses the same

key only result in a replication of information that

is available on a shorter path that skips that table”

(6], page 100)
However, this claim is true only if the database is navigated
through joins made using foreign keys. For example, the
claim above is valid for the following join:

Select x From Purchase pl
Inner join Client h

On pl.Client_id = h.Client_id
Inner join Purchase p2

On h.Client_id = p2.Client_id

because the output would be composed of all pairs (pur-
chase, client) repeated n times, where n is the number of
purchases made by a particular client. Thus, it may appear
useless to use the same key twice in a row, as it may just
result in replicating the same information multiple times.
However, navigating through the same table more than
once allows to find past information. Unlike ACORA, our
database navigation perform joins successively for each pairs
of tables (A, B), every time making sure that the number
of rows obtained is the same as in table A. For example,
for the path Purchase — Client — Purchase, our method

www.dataconda.net

first considers the arc Client — Purchase and adds a new
attribute to Client (for example, the average return of the past
purchases), and then considers the arc Purchase — Client
and attaches the new attribute to Purchase. The result is the
addition of one attribute to Purchase.

The method proposed by [7] allows rolled paths, but, since
it does not consider date attributes, it generates attributes
that may potentially “spoil” (or “leak” see [8]) the class
information. We say that an attribute is a class spoiler if
it contains information that is known only after the class is
revealed; clearly, Propositionalization approaches should not
generate class spoilers because they would reveal the value
of the class attribute before the learning phase, which would
lead to learning incorrect rules.

In the product returns database, the only class spoiler is
the target attribute Purchase.Return because the class should
never be used to predict itself. Sometimes, however, class
spoilers are attributes that are functionally dependent on the
class. For example, if the table Purchase had an attribute
reasonForReturn, which indicates the reason for a return
(defective product, didn’t like the product, didn’t return the
product, etc), this attribute would be a class spoiler because
it would be built once the value of the class attribute is
known. Including such attribute in the target table would be
incorrect. Although class spoilers should be excluded from
the target table, they can be used to aggregate information
from past data. For example, while we want to exclude the
attribute Return from the target table, we can include the
average value of Return among the client’s past purchases.

The navigation process without date attributes surely gen-
erates class spoilers because it explores rolled paths without
removing future information. For example, along the path
Purchase — Client — Purchase, it generates the number of
purchased items returned by the client throughout her or his
entire lifetime, that is, possibly after the current purchase.
Clearly, this attribute is a class spoiler and it should not be
generated. Hence, our procedure explores rolled paths while
at the same time prevents the generation of class spoilers. A
short description of Dataconda was provided in the demos
[9], [10] and this paper describes the complete system with
algorithms and experimental results.

III. METHODOLOGY

The input of our procedure is composed of 1) the database
and 2) its metadata, that is, the information about the tables,
their attributes, and the associations between tables. One
table is the rarget table, i.e., the table to which we want
to attach new attributes. One attribute of the target table is
the class. In our example, the target table is Purchase. We
next describe the metadata in greater detail.

A. Metadata

Each table is characterized by a name and by a set of
attributes. Each attribute is characterized by:

« name: the name of the attribute. It must be unique
within the table.

o type € {ID,date, numerical, categorical}: the type
determines which aggregation (AVG, MODE, etc) and
refinement operators (i.e., “where” clauses) can be
executed on the attribute. IDs are primary keys or
foreign keys, they are only used to identify records in
tables, and have no informational content. The other
attributes are used to generate aggregated information.

o dimension: the unit of measurement of the attribute.
This information is used to determined which attributes
can be compared in a refinement. This characteristic is
present in some works on attribute generation [7].

« class spoiler € {0,1}: this binary feature indicates
whether the attribute was built after knowing the class
of the instance.

In our procedure, associations can be of two types:

e 1:1: A — B isa I:] association if each record in A is
associated with exactly one record in B. For example,
Purchase — Client is 1:1 because for each purchase
there is exactly one client;

e O:n A — B is a 0:n association if each record in A
is associated to a set of records in B. For example,
Client — Purchase is 0:n because each client may
have done an arbitrary number of purchases.

The type of association determines which operators can be
used to aggregate information.

B. Generation of new attributes

The attribute generation procedure implemented in Dat-
aconda is summarized in Algorithm 1. The generation of
new attributes is performed similarly to other works on
Propositionalization [5], [7]: first, paths are generated from
the target table; then, for each path, information is “rolled-
up” from the end of the path back to the target table in many
different ways, obtaining different attributes.

The first phase (step 2) consists of generating paths that
start from the target table and end in any table. Note that
the same table may be traversed more than once; however,
for reasons that will be clear later, the method forbids the
generation of subpaths A -+ B — A where A — B is a O:n
association. Despite this restriction, it may still be possible
to generate an infinite number of paths. For example, in
the Product Returns database (Figure 1), we can do so by
traversing the database back and forth an infinite number
of times: Purchase — Client — Purchase — Product —
Purchase— Client...

The second step, also called Roll-up [5] (steps 3-22),
starts from the last table of the path found in step 1, and
iteratively adds a virtual attribute to the previous table, until
the target table is finally reached. Let the path found in step
lbe P=1Ty > T, =15 — ... > T;_1, where T} is the
target table and [is the depth of the path. Since the tables

Algorithm 1 Attribute Generation Procedure in Dataconda

procedure ATTRIBUTE GENERATION(Target table 7, max path depth L)

Let II be the set of paths starting from T of depth up to L
for each path P = (Tp,...,7;—1) € Il with [< L do

for : =1 — 2 down to 0 do

Let v;4+1 be the virtual attribute of 754,
if Tz — Ti+1 is 1:1 then

> Path Generation
> Roll-up

Choose any non-id attribute a; and attach it (i.e., set v; = a;); or, if present, attach v; 1 (i.e., v; = v;11)

1:
2
3
4
5: Let a1, as,...,a be the attributes of T;;
6
7
8
9

: else
10: Choose any attribute pair (a;, ax)
11: Choose an aggregating operator Agg compatible with a;
12: Optionally, choose a refinement operator Ref and a comparison quantity ¢ compatible with ay,
13: If v;4q is present in T}, make sure a; = v;41 OF G = V41
14: If both Ty and T}, have a date attribute d, we will add the refinement 7;.d < Tj.d
15: for each record z in 7; do > Compute v; for all records in T;
16: Let R be the records in T;4; associated to x
17: Set v;(z) = select Agg(R.a;) from R where R.aj Ref c [and R.d < Tj.d)]
18: end for
19: end if
20: end for
21: Ty.vg is a new generated attribute. Depending on the choices in steps 7—13, different attributes may be obtained
22: end for

23: end procedure

in the path will be modified throughout the procedure, let us
assume that Ty, T3, ..., Tj_, are copies of the original tables!.
For ¢ = [—2 down to 0, the Roll-up algorithm considers the
association T; — T;11 and virtually adds to 7; an attribute
v; built using the information currently contained in 75 .
How to construct v; depends on the association type and
will be explained in greater detail in the next subsection.
If T; — T4+, is a I:1 association, v; is built by copying
any non-ID attribute from T;; to T;. For example, given
the 1:1 association Purchase — Client, we can attach to
Purchase the attribute Client.age, that is, the age of the
client who makes the purchase. Note that if 7}, ; contains a
virtual attribute v;4 1, then v;; is the only attribute that must
be attached to T; (step 8). Otherwise, we would generate an
attribute that is already generated along a shorter path. If
T, — T;y+1 is a O:n association, the value of v; of each
record x € T; is computed by applying an aggregation
function (and, optionally, a refinement) to the records of
T’ 41 associated to z.

1) Aggregations and Refinements: Let us analyze the case
when the Roll-up procedure encounters a 0:n association
T; — Tiyq (steps 9-19). Let a1, aq, ..., ap be the attributes
of table 7;,, and P the path up to 7;, ie., P = Ty —
T, — ... = T;. To generate a virtual attribute v;, the
Roll-up procedure applies 1) an aggregation operator Agg

11f the same table is traversed more than once, the path will contain more
copies of the same table.

to any non-ID attribute a; and 2) a refinement operator
Ref for the comparison of any attribute aj to a quantity c.
Aggregation operators summarize the information contained
in T}, while the refinement operator is a filter on the rows
used for the aggregation. The following SQL query, executed
in steps 15-18, clarifies the roles of Agg and Ref

Select Tl.pk, Agg(T2.aj) From T1
Inner join T2 On Tl.pk = T2.fk
Where T2.ak Ref c¢

Group by T1l.pk

For example, if T; is Client, T;1 is Purchase, a; =
Purchase.Return, a, = Purchase.Online, Agg = AVG,
Ref = EQUALS, c =1, the query builds a virtual attribute
v; equal to the proportion of returned online purchases
(v; = AVG(Purchase.Return) WHERE Purchase.Online =
1) made by the same client. Note that this attribute is a
class spoiler, because it uses information on future returns.
To avoid this problem, the average needs to be computed on
prior purchases. Since n:n associations are not allowed, each
record y in table 75,1 is used to build the virtual attribute of
exactly one record in each preceding table. Thus, before the
Roll-up procedure starts, it is possible to add to each table
in the path a virtual attribute curDate, which is the threshold
to use (in our case, it is the value of Ty.Date). Thus, the
query above becomes:

Select Tl.Client_id, AVG(T2.Return)

From Client T1

Inner join Purchase T2

On Tl.Client_id = T2.Client_id
Where T2.0nline = 1

And T2.Date < Tl.curDate

Group by Tl.client_id

Whether an aggregation operator Agg can be applied to an
attribute a; depends on the type of a; (step 11), as follows
2.

e aj is an ID: The only aggregate operator that can be
used is “count distinct”, which counts the occurrences
of distinct values of a; corresponding to each record
in T;. For example, if a; = Purchase.Product_id,
then we virtually add to the table Client an attribute
that counts the number of distinct products purchased
by the same client in the past.

e a; is categorical: The only aggregate operators that
can be used are “count distinct”, “most frequent”, and,
in case of just two possible values, the proportion of a
value. For example, if a; = Purchase.Return, then
we can virtually add to the table Client an attribute
that is equal to the proportion of purchases returned by
the same client in the past.

e a; is numeric: The aggregate operators that can be
used are “average”, “max”’, “min”. For example, if
we define Return to be a numerical attribute and
aj = Purchase.Return, then we can virtually add
to the table Client an attribute that is equal to the
maximum value of the attribute Return among his or
her past purchases. This attribute indicates whether the
client has ever returned a purchase.

e aj is a date: The aggregate operators that can be
used are “max” and “min”. For example, if a; =
Purchase.Date, then we can virtually add to the table
Client an attribute that is equal to the most recent date
when the client purchased something. However, if the
goal of the classification problem is to find general rules
that are not specific to particular periods in time, then
aggregating date attributes should not be allowed.

The optional refinement has the form ap Ref c, where
aj, is an attribute of 7T;,;, Ref a suitable refinement op-
erator, and ¢ a quantity compatible with aj (step 12). If
the attributes involved are numerical or dates, the suitable
operators are >, <, =, #; if they are categorical or ids,
the suitable operators are = and #. As in [7], we con-
sider two types of refinements: toValue refinements and
comparison refinements. In a toValue refinement, ¢ is a
constant value; in a comparison refinement, ¢ is a non-
virtual attribute of the same dimension as (i.e., compatible
with) aj; and contained in a table of P preceding T;,;.
Consider, for example, the path Purchase(1) — Client —

2The examples in the list below are for T; = Client and Tiy1 =
Purchase

Purchase(2), where the numbers / and 2 are used to
distinguish multiple occurrences of the same table. Let also
assume ap = Purchase(2).Return. A possible toValue
refinement is

where Purchase(2).Return =1
and a possible comparison refinement is
where Purchase(2).Return # Purchase(1).Return

Either refinement can be used, together with an aggregation
operator, to aggregate information from Purchase(2) to
Client. For example, if the aggregation operator is “count
distinct”, then virtual attributes to add to Client may be:

v; = count distinct Purchase(2).Return

where Purchase(2).Return =1

or

v; = count distinct Purchase(2).Return
where Purchase(2).Return # Purchase(1).Return

In the first case, v; is 1 if the client has a return, and
0 otherwise; in the second case, v; is 1 if the client has a
purchase with a return outcome different from the current
one. Recall that the goal is to add a new attribute to the
table Purchase. As explained above, either refinement is
added to the date refinement that prevents class spoilers. In
this case, the date refinement is: where Purchase(2).Date |
Purchase(1).Date.

Analogously to /:1 associations, if T, contains a vir-
tual attribute v; 1, then v;y; must be used either in the
aggregation or in the refinement of the current operation
(step 13). Consequently, it is useless to generate subpaths
A — B — A where A — B is a 0:n association, because no
interesting information can be aggregated on such path. For
example, consider the path Client — Purchase — Client:
at the first step of the roll-up procedure we copy the
attributes of Client to Purchase; at the second step, when
we need to aggregate the purchases of each client, we have
to use the virtual attributes in the table Purchase, which
are the client demographics. If this were allowed, the result
would be to compute for each client the average, maximum,
minimum, and sum of her or his age, which is clearly useless
information. At the end of the Roll-up procedure (step 21),
the target table 7j has a new attribute vy.

IV. THE DATACONDA SOFTWARE

The process of knowledge discovery with Dataconda is

performed in three phases:

1) Choose the attribute generation settings (optional);

2) Attribute generation (described in the previous sec-
tion). This step ends with the construction of the flat
mining table;

3) Attribute selection, which results in finding the best
predictors.

A. Attribute Generation Settings

When loading the tables of the database, Dataconda auto-
matically determines the settings to use during the attribute
generation procedure. First, it detects the type of attributes
(numeric, categorical, date, ID). Then, it automatically de-
termines the aggregate functions and refinements to apply
on each attribute based on its type. Aggregate functions
for categorical attributes include Count, Count Distinct,
and Most Recent Value, whereas aggregate functions for
numeric attributes also include Max, Min, Sum, and Avg.
Refinements for categorical attributes include = and #,
whereas refinements for numeric attributes also include <
and >.

If the user is satisfied with the default settings, then she
can proceed with the attribute generation step; otherwise,
she can use the graphical interface to override the default
settings. A more comprehensive illustration of this step is
provided by an online video.

The output of the attribute generation procedure is com-
posed of the flat table that includes the generated attributes
(both in csv and arff format) and a dictionary with an
English-like description of the generated attributes.

B. Attribute Selection

After generating the attributes, Dataconda will execute an
attribute selection procedure and report the result (selected
predictors) to the user, as shown in Figure 2. The attribute
selection procedure is specified in the R language, which
can be easily replaced or modified by the user.

The default attribute selection executes a series of Lasso
logistic regressions ([11]) by iteratively changing the value
of the shrinkage coefficient A until it finds the value that
results in 20 selected attributes. Then, it executes a simple
logistic regression using only these 20 attributes, and only
those whose pval is less than 0.05 are finally returned.

The reason for using Lasso to select attributes lies in the
fact that many attributes are highly correlated to each other
— for example, the client’s past return rate among products
that cost more than $1,000 and the client’s past return rate
among products that cost more than $1,200. In this situation,
the Lasso technique will tend to select only the most
relevant attribute among each group of highly correlated
attributes. The reason for retrieving at most 20 attributes lies
in the focus on knowledge discovery rather than predictive
performance: a user interested in understanding what drives
product returns does not want to be swamped by a large
number of predictors to consider.

Despite its simplicity, we show in the next sections that
the default attribute selection procedure is very effective in
selecting the true predictors among all those generated by
Dataconda.

3https://www.youtube.com/watch?v=V8dhnddgXEo

V. SIMULATION EXPERIMENTS

The goal of the simulation experiments is to assess
whether our procedure can (1) generate and (2) retrieve the
true predictors in an artificial database.

We build 10 artificial databases with the schema of Prod-
uct Returns (Figure 1) as follows. We first generate the Prod-
uct table by randomly creating 10 products whose prices are
uniformly distributed between $10 and $500; then, the Client
table is randomly populated with 30 clients whose gender is
male with probability 0.6 and female with probability 0.4,
and whose age is uniformly distributed between 18 and 80
years; finally, the table Purchase is populated by simulating
purchases through time as follows. Each client makes the
first purchase on a random day between Jan 1 2012 and Jan
1 2014, and then makes a number of subsequent purchases
uniformly distributed between 9 and 24 throughout their
lifetime. Each client’s purchases are made according to a
Poisson process with a rate of 1—15 purchases per day. A
purchase is made online with a probability of 0.5. Finally,
the probability of a return is set as a function of the three
true predictors p1, po2, and ps (Table I).

P(Return=1) = logit (=3 + 0.02p; + 2ps — 0.1p3)

The probability of return is positively correlated to pq,
the product price, as suggested by empirical studies in the
marketing literature [12]. It is also positively correlated
to po, the proportion of the client’s purchases that were
returned, as those who have returned purchases in the past
are more likely to return purchases in the future. It is finally
negatively correlated to ps, the age of that client who most
recently purchased the current product online. While the
correlation between ps and Purchase.Return may not exist
in reality, it allows us to test whether we can detect complex
(but also interpretable) true attributes.

In the settings, we enable the aggregate functions and
refinements that are “logically compatible” for each attribute.
For example, for the attribute Client.Age, we enable Max,
Min, and Avg, but disable Sum, as the sum of the ages of
a group of client does not make sense.

A. Classification Performance

To test whether the generated attributes increase the classi-
fication performance, we conduct the following experiment.
For each of the 10 databases, we generate 4 flat tables
Purchase obtained by constructing attributes up to depth 2,
3, 4, and 5. For each flat table, we record the number of
attributes generated and the average area under the curve
(AUC) obtained by the Weka’s [13] implementation of the
Random Forest classifier in a 10-fold cross validation. Table
II reports the results.

From Table II, it is clear that the AUC increases with
the depth only up to depth 4, and then it decreases. This is
unsurprising, since the three true variables (Table I) are at
depth 2, 3, and 4; adding attributes at depth 5 only increases

https://www.youtube.com/watch?v=V8dhnddgXEo

Table T
TRUE PREDICTORS

Attr. | Coeff. | Path Depth | Description SQL code to manually compute attribute
0.02 5 Product pri SELECT pr.Price FROM Purchases pu
P) roduct price INNER JOIN Products pr ON pu.Product_ID = pr.Product_ID
SELECT AVG(pu2.Return) FROM Purchases pul
P2 2 3 Client’s past return rate LEFT OUTER JOIN Purchases pu2 ON pul.Client_ID = pu2.Client_ID
AND pul.Date ; pu2.Date GROUP BY pul.Purchase_ID
SELECT a.Age FROM
(
SELECT c.Age, RANK() OVER (PARTITION BY pul.Purchase_ID
. o ORDER BY pu2.Date desc) ranking FROM Purchase pul
ps | 01 4 The age of the fast client LEFT OUTER JOIN Purchase pu2 ON pul.Product_ID = pu2.Product_ID
w (C)l tou%. ¢ same AND pul.Date ; pu2.Date AND pu2.Online = 1
product ontine INNER JOIN Client ¢ ON pu2.Client_ID = c.Client_ID
) a WHERE a.ranking = 1
Table 1T Table 11T

AVERAGE CROSS-VALIDATION AUC VALUES

ATTRIBUTE SELECTION PERFORMANCE

Max Depth 2 (i.e., ACORA [6]) 3 4 5
Attributes 4 94 221 3,791
DB #1 15 .82 .87 .82
DB #2 .86 .90 92 .89
DB #3 .80 .85 .88 .85
DB #4 .82 .89 91 .89
DB #5 .70 77 .85 17
DB #6 .80 .86 .90 .86
DB #7 75 81 .86 .82
DB #8 .84 .88 91 .89
DB #9 .84 .89 91 .88
DB #10 74 .80 .86 .81
[Average [790 [.847 [.887 [.8438]

the chances of overfitting. So, even if the true variables were
in fact unknown, Table II would correctly suggest that the
attribute generation should be stopped at depth 4.

Note that ACORA ([6]) generates only 4 attributes, as it
cannot traverse the Purchase table twice, and it therefore
results in a much lower classification performance than our
procedure.

B. Attribute Selection Performance

In real-world settings, analysts are not only interested
in prediction, but they are also (if not more) interested
in knowledge discovery. So, let us now turn our attention
to the selection of the best predictors. Since the previous
experiment suggested to generate attributes up to depth 4, we
executed Dataconda’s default attribute selection procedure
on the flat table generated at depth 4 (with 221 attributes)
for each of the 10 databases. Table III reports how many
attributes were selected and, among them, how many true
predictors (Table I) were selected.

Table III shows that Dataconda’s default attribute selection
procedure selects 5—10 attributes out of the 221 generated.
All three true predictors (p1, p2, and ps) were selected in 7
out of 10 cases, while only two (p; and p3) were selected in
the remaining 3 cases. Although the method did not retrieve
p2 in those 3 cases, it retrieved proxies for it, such as the

Attributes True predictors Proxies for true predic-
DB# | selected out | selected (out of tors
of 221 3))
1 8 3
2 7 3
3 8 3
4 5 2 Client’s min return
5 10 3
6 6 3
7 7 3
3 6 9 Client’s most recent re-
turn
9 5 2 Client’s min return
10 6 3

client’s minimum return rate (i.e., 1 if the client returned all
his or her past purchases, 0 otherwise).

Our results suggest that despite its simplicity, the Data-
conda’s default attribute selection procedure is capable of
retrieving the true predictors most of the times.

VI. REAL-WORLD EXPERIMENTS

We validated our attribute generation procedure on the
data of Circuit City, which was a large electronic US retailer.
The data, described in detail by [14], was purchased from
the INFORMS Marketing Science website*. It contains two
different tables: one with purchases and one with promo-
tions. In this paper, we only use the table with purchases,
which contains all the purchases (115,317) made by a subset
of clients (19,784).

The data set, which has one row per transaction, contains
information on the transaction (subcategory, price, location,
whether it is a return or a purchase), information on the
client who made the transaction (client_id and demograph-
ics characteristics), information on the product (the brand,
called “transaction_type_description”, the subcategory, the
category). The class attribute “return_ind” indicates whether
the purchased product is later returned to the store.

“https://www.informs.org/Community/ISMS

https://www.informs.org/Community/ISMS

Table IV
DISCRIMINANT PREDICTORS AND THEIR VALUES IN THE TEST SET

Attribute Description Attr. Value Return Probability
1. Did the client return his/her last purchase of < $1,500? i.e., most recent value of return(0 0 7.0% £ 0.2%
or 1) among client’s past purchases of < $1,500 1 37.5% £ 0.8%
2. Has the client ever returned a purchase of less than $1,500? i.e., max value of refurn(0 or 1) | 0 43.8% +0.3%
among client’s past purchases of < $1,500 1 73.5% 4+ 0.8%
3. Max income among clients with income > 7.4 who purchased the same brand in the past 8 13.5% £ 2.1%
: ' 9 10.6% =+ 0.2%
0-99 11.0% £ 0.2%
100-199 10.3% + 0.3%
4. Number of purchases made in the past by clients older than 34 in the same location 200-199 9.9% £ 0.5%
300-199 9.8% +1.2%
400 or more | 3.4% + 2.9%

To use our procedure, it is necessary to normalize the data
into a set of tables. So, we organized the available data into
the following schema:

o Purchase: for each purchase, the date, price, quantity,
whether the purchase was made online and whether it
was returned (class). Each purchase has also foreign
keys to all other tables.

o Client: for each client, their age, income (as a score
from 1 to 9), gender, and whether they have children.

e Brand: for each brand, its id.

e Location: for each location, its id.

o Subcategory: for each subcategory, its id.

The tables are organized in a star schema with the table
Purchase at the center.

The tables Brand, Location, and Subcategory have only
one attribute, their primary key. The only reason for ded-
icating a table to these entities is to enable Dataconda to
explore paths through them, such as Purchase — Brand —
Purchase, which would consequently enable the generation
of attributes on the past purchases of the current brand.

Also, note that the database schema above is just one
of the possible ways to represent these data in a database,
and each different way would result in different attributes
generated by Dataconda. For example, an alternative schema
would include a table Product so as to capture the entire
hierarchy Purchase — Product — Subcategory. However,
since the original data set was built by sampling clients and
not products, there are a large number of products which
are bought by just one client. So, paths that traverse the
table Product (e.g., the proportion of times that the current
product was returned) will result in poor-quality attributes.

To assess the robustness of the findings detected by
our procedure, we split the database into a small training
database and a large test database. We will use the training
database to automatically find new knowledge without the
need to make hypotheses; then, we will use the test database
to verify the validity of this new knowledge.

The training database was built using all data (purchases,
brands, locations, and subcategories) relative to the transac-
tions made by 1,000 randomly selected clients (out of 19,784

available clients), whereas the test database was built using
all data relative to the transactions made by the remaining
18,784 clients. This resulted in a training database with
6,305 purchases and a test database with 109,012 purchases.

We used Dataconda to generate all attributes up to depth
4 on the training database. The procedure resulted in the
generation of 2,496 attributes. Although the computational
time may at first appear long, Section 6.1 shows that our
procedure finds drivers of product returns that have not been
detected through years of empirical research on the same
data set. Thus, our automatic analysis does not only lead
to more findings than a manual analysis, but it does so
in a much shorter time. The performance of our attribute
generation procedure has been improved by generating SQL
queries and submitting them to a DBMS. Section 7 shows
that this implementation is scalable.

A. Finding New Knowledge

One important advantage of generating attributes automat-
ically rather than manually lies in the ability to find unex-
pected discriminant predictors. Among the 2,496 attributes
generated by Dataconda on the training set, the default
attribute selection procedure selected 10. We computed the
value of these 10 attributes for all purchases in the test set;
then, we computed how their value impacts the class. Due
to space limitations, we discuss only four of them, which
are reported in Table IV together with the return probability
(with the 95% confidence interval) computed in the test set
for each attribute value.

The first discriminant attribute is the most recent value
of return (0 or 1) among the client’s past purchases of less
than $1,500. This attribute is 1 if the current client returned
the last purchase and O otherwise. We computed the value
of this attribute for the 109,012 purchases of the test set,
and found that when this attribute is O (i.e., the client did
not return the last purchase), the return probability for the
current purchase is 7.0%+0.2%, whereas when this attribute
is 1 (i.e., the client did return the last purchase), the return
probability for the current purchase is 37.5% =+ 0.8%. The
second discriminant attribute, which is conceptually very
similar to the first one, is an indicator of whether the client

16.0%
14.0%
" 12.0% }

10.0% ° { \
8.0%

&~ o
o> o

Retrun Probability

o o
> o

Less than 500 [500,1000) [1000.1500) More than 1500

Unit Price ($)

Figure 2. Return probability by price on test set.

has ever returned a product that costs less than $1,500. Also
this attribute seems to be highly discriminant, as the return
probability is 43.8% for those purchases where its value is
0, and 73.5% for those where its value is 1.

While it is known that clients who returned products in
the past tend to return products in the future [12], it is
unclear why the refinement “where Price ; $1,500” appears
in both attributes. This specific value ($1,500) was generated
by Dataconda’s default binning procedure, which splits each
numeric attributes in equally wide bins. To understand the
significance of this threshold, we divided the purchases of
the test set into four partitions based on the price ($0—
$500, $500-$1,000, $1,000-$1500, and more than $1,500),
and computed the proportion of returned purchases with
95% confidence intervals. Figure 3 reports our results and
suggests the first new finding.

FINDING 1: the $1,500 price threshold

As well known ([12]), the price is positively correlated
with the probability of return; however, the correlation
becomes negative after $1,500. This could be explained
by the fact that the best products on the market (which
are likely the most expensive) are purchased by customers
who are willing to spend a large amount of money; by
contrast, good (but not the best) products are purchased by
customers who are more mindful about how they spend
their money. The second set of customers will be less
likely to accept a poor fit between their needs and the
product characteristics than the first set, and thus will be
more likely to return the product.

Notably, these attributes cannot be generated by other fea-
ture construction methods such as ACORA, since they are
constructed along the path Purchase — Client — Purchase,
which traverses the table Purchase twice.

Another discriminant attribute is attribute 3, the maximum
income computed among all clients with income greater than
7.4 who purchased the same brand in the past. Since income
is an ordinal attribute with values {1,2,...,9}, the value of this
attribute can be only 8 or 9. This attribute seems to suggest
that if the richest client who has purchased the same brand
has an income of 9, then the return probability is 10.6%,

whereas if she or he has an income of 8, then the return
probability is 13.5% — note that the richest client has almost
always an income of at least 8.

A possible explanation is that this attribute is a proxy of a
simpler attribute: the number of clients who have purchased
the same brand in the past. However, it can be easily shown
that the simpler attribute is not a good predictor of returns.
Thus, we formulate the following explanation.

FINDING 2: biased perception of brand

Some brands are mostly used by wealthier clients, either
because their products cost more than those of other brands
or because the marketing effort of that brand is directed to
the more affluent part of society. When a client perceives
that a certain brand is used by the wealthy, his or her
perception of the brand also improves. Hence, those clients
who decide to purchase a product of that brand will be less
likely to return it even if the product does not fully meet
their expectations, as their perception of the product will
be positively biased.

Also attribute 3 cannot be built by ACORA, because it is
on a path (Purchase — Brand — Purchase — Client) that
traverses the Purchase table twice.

Another discriminant predictor is attribute 4, the number
of purchases made in the same location by those older
than 34. While we lack a convincing explanation for its
high predictive power, its presence shows the ability of our
methodology to find non-trivial causes for the phenomenon
under study.

VII. SCALABILITY

To assess the scalability of our technique, we executed the
attribute generation procedure by varying the sample size
of the Circuit City database. Here, we use a DBMS-based
implementation that submits SQL queries to a DB, instead
of computing the attributes in memory.

We generated five different samples of the Circuit City
database, which contain about 5% (the same sample as in
Section 6), 25%, 50%, 75%, and 100% of the available data.
We generated attributes up to depth 3 and up to depth 4.
Figure 4 reports the time taken to generate these attributes
and the size (in MB) of the resulting flat mining table. All the
experiments were conducted on a machine with Intel Core
17-3770 processor (8M Cache, 3.4GHz) and 16GB RAM.

The results presented in Figure 4 show that increasing
the size of the database increases the execution time in a
nearly-linear fashion if we generate attributes up to depth 3
and in a nearly-quadratic fashion if we generate attributes
up to depth 4. This difference is explained by considering
that the task of joining four tables is more sensitive to the
database size than the task of joining only three tables. The
fact that computational times grow faster when generating
deeper attributes is largely inconsequential, because exces-
sively deep attributes are generally too hard to interpret and,

1,263 MB
9

989 MB 1,011 MB

Hours

——Depth 3
Depth 4

1 330MB
53 MB-66 MB
0 » 264 MB
6K 30K 60K 90K 115K
(5%, used in (25%) (50%) (75%) (100%)
Sec 6)
Sample size (# and % of purchases) of the Circuit City database

Figure 3. Execution time of the DBMS-based implementation and size of
the resulting flat table.

therefore, should not even be generated. In our case study,
for instance, most of the attributes at depth 5 are practically
uninterpretable.

Although we showed in Section 6 that a small sample
(made of 6K purchases) is sufficient to detect interesting
findings, the analyst may be interested in running our
procedure on the whole data set (made of 115K purchases).
Whereas this task will take few hours of computational
time on a commodity computer, this time will be certainly
smaller than the time needed to formulate hypotheses and
to manually build hundreds of handcrafted attributes. Addi-
tionally, this computational time will be further reduced in
an industrial environment with powerful machines.

VIII. CONCLUSIONS

In this paper, we implemented a new methodology which
automatically generates the attributes of a mining table from
a relational database. Compared to existing approaches, our
methodology can explore the same table more than once
without generating “class spoilers” and by ensuring that
future data, in the case of timestamped transactions, is not
used. We applied our methodology to explain the causes of
product returns. Our experiments on simulated data confirm
that our method can effectively retrieve the true predictors
without the need to hypothesize them; our experiments on
Circuit City dataset suggest that our method can not only
confirm the presence of patterns whose existence is known,
but also find new patterns that have never been detected.

We envision a new paradigm for data analysis and em-
pirical research, in which the data analysts use tools like
Dataconda on their database in order to find patterns without
the need to hypothesize them beforehand.

Our methodology has room for improvement. First, it does
not generate some aggregated attributes: for example, at-
tributes summarizing identifiers (as in [6]). Second, although
it is scalable, its performance can be further improved. For
example, instead of selecting attributes only after generating

the entire flat mining table, it is possible to select them while
they are being generated, so that they can be deemed to
be good or bad predictors after computing their values for
only a subset of instances. Finally, our attribute generation
procedure could be implemented on platforms like Hadoop
or Spark.

REFERENCES

[1] J. D. Hess and G. E. Mayhew, “Modeling merchandise returns
in direct marketing,” Journal of Direct Marketing, vol. 11,
no. 2, pp. 20-35, 1997.

[2] D. Blanchard, “Supply chains also work in reverse,” Industry
Week, vol. 1, pp. 48-49, 2007.

[3] N. Lavrac and S. Dzeroski, “Inductive logic programming.”
in WLP. Springer, 1994, pp. 146-160.

[4] W. F. Clocksin, C. S. Mellish, and W. Clocksin, Programming
in PROLOG. Springer, 1987, vol. 4.

[5] A. J. Knobbe, M. De Haas, and A. Siebes, “Propositional-
isation and aggregates,” in Principles of Data Mining and
Knowledge Discovery. Springer, 2001, pp. 277-288.

[6] C. Perlich and F. Provost, “Distribution-based aggregation
for relational learning with identifier attributes,” Machine
Learning, vol. 62, no. 1-2, pp. 65-105, 2006.

[7] M. Samorani, M. Laguna, R. K. DeLisle, and D. C. Weaver,
“A randomized exhaustive propositionalization approach for
molecule classification,” INFORMS Journal on Computing,
vol. 23, no. 3, pp. 331-345, 2011.

[8] S. Rosset, C. Perlich, G. §wirszcz, P. Melville, and Y. Liu,
“Medical data mining: insights from winning two competi-
tions,” Data Mining and Knowledge Discovery, vol. 20, no. 3,
pp. 439-468, 2010.

[9] M. Samorani, “Automatically generate a flat mining table with
dataconda,” in 2015 IEEE International Conference on Data
Mining Workshop (ICDMW), Nov 2015, pp. 1644-1647.

[10] ——, “Dataconda: A software framework for mining rela-
tional databases,” in DBKDA 2015, The Seventh International
Conference on Advances in Databases, Knowledge, and Data
Applications, 2015, pp. 132-133.

[11] R. Tibshirani, “Regression shrinkage and selection via the
lasso,” Journal of the Royal Statistical Society. Series B
(Methodological), pp. 267-288, 1996.

[12] J. A. Petersen and V. Kumar, “Are product returns a necessary
evil? antecedents and consequences,” Journal of Marketing,
vol. 73, no. 3, pp. 35-51, 2009.

[13] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten, “The weka data mining software: an update,”
ACM SIGKDD explorations newsletter, vol. 11, no. 1, pp. 10—
18, 2009.

[14] J. Ni, S. A. Neslin, and B. Sun, “Database submission-the
isms durable goods data sets,” Marketing Science, vol. 31,
no. 6, pp. 1008-1013, 2012.

