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ABSTRACT

Alzheimer’s Disease (AD) is a prevalent neurodegenerative disease currently affecting more than 47 million people in the world.
There are now many complex classifiers that can accurately distinguish AD patients from healthy controls, based on the subject’s
structural magnetic resonance imaging (MRI) brain scan. Most such automated diagnostic systems are blackboxes: While their
predictions are accurate, it is difficult for clinicians to interpret those predictions, due to the large number of features used by
the classifier, and/or by the complexity of that classifier. This work demonstrates that an automated learning algorithm can
produce a simple classifier that can correctly distinguish AD patients from healthy controls (HC) similar to its more-complex
counterparts. Here we build this classifier from the data in the Alzheimer’s Disease Neuroimaging Initiative database, using a
fairly small set of features, including grey matter volumes of 33 regions of interest derived from structural MRI, as well as the
APOE genotype. We first considered three simple base-learners that each produce a classifier that is simple and interpretable.
Running our overall learner, involving standard feature selection processes and these simple base-learners, on these features,
produced a 7-feature elastic net model, EN7, that achieved accuracy of 89.28% on the test set. Next, we ran the same overall
learner using two more-complex base-learners over the same initial dataset. The accuracy of the best model here was 90.47%,
which was not statistically different from the performance of our much simpler EN7 model.
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1. INTRODUCTION

Alzheimer’s Disease (AD) is a highly prevalent neurode-
generative disease affecting an estimated 5.5 million Ameri-
cans.[1] Patients with AD experience progressive cognitive
impairment associated with patterns of structural brain atro-
phy more severe than the volumetric loss typical of healthy

aging populations, but some of these structural changes,
which are detected with MRI in a clinical settings, may not
be visible to a clinician’s eye until the late stages of the
disease. The high prevalence of AD combined with down-
stream progressive impairment has motivated investigations
into advanced diagnosis strategies capable of early detection
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of the disease. Moreover, recent investigations that apply
machine learning techniques to structural brain imaging have
shown promise in accurately discriminating AD patients
from controls. Multiple studies have used voxel-based mor-
phometry (VBM) to distinguish AD patients from controls.
In four consecutive studies, VBM features combined with
different feature selection methods showed high prediction
accuracies of 89% to 96%.[2–5] VBM combined with texture
analysis features has also been successful in classifying AD
patients achieving 92.86% accuracy.[6] Another study, using
multimodal features – including voxel-wise structural MR
and FDG-PET imaging features, CSF biomarkers, cognitive
scores and APOE genotype data – to predict conversion of
Mild Cognitive Impairment (MCI) patients to Alzheimer’s
disease, achieved an accuracy of 92.4%.[7] Additionally,
applying a 3D convolutional neural network (CNN) on 3D
T1-weighted structural MR images from ADNI has shown
99.2% accuracy, 99.5% specificity, and 98.5% sensitivity[8]

in classifying AD patients vs controls (this is the current best
accuracy result with this dataset on classifying AD patients
vs controls to our knowledge). Despite achieving impressive
accuracies of 92% to 99% in classifying AD patients, all
of these methods use a large number of features (ranging
from 100 to 2000) and complicated diagnostic models that
are difficult for a human to interpret;[9] see Section 5.1.

Regional brain features, based on cortical/subcortical seg-
mentation, involve many fewer variables than voxel-based
features; this is more appropriate for simple classification
models. One study – which combined segmentation-based
features of cortical thickness, cortical area, cortical curvature,
grey matter density, subcortical volumes and hippocampal
shape – achieved 0.98 AUC (Area Under the Curve of the
Receiver Operating Curve [ROC]).[10] A multimodal study
achieved 93% accuracy by combining region-based features
from structural MRI, FDG-PET and CSF proteins (189 fea-
tures total).[11] Such models, which use the features for all
brain regions (one feature for each region, at least), involve
a total of hundreds of brain features; this means they are
necessarily very complex.

A priori selection of the brain regions typically impacted by
AD has been a successful strategy for reducing the complex-
ity of classification models. Using 6 features – namely the
left and right hippocampus volume, amygdala volume and
entorhinal cortical thicknesses – a support vector machine
(SVM) classifier with the radial basis function (RBF) kernel,
scored 0.89 AUC,[12] suggesting that only few brain features
are needed to discriminate AD from healthy controls. Ad-
ditionally, grey matter volumes and diffusion-based MRI
parameters over predetermined brain regions have shown
utility in classifying MCI patients from healthy controls,

achieving 89.7% accuracy.[13] Taken together, these stud-
ies suggest that simple classification models, on a limited
number of brain features, are sufficient to discriminate AD
patients from controls. However, more work is needed to
assess whether simple predictive models involving a limited
number of features can achieve classification results compa-
rable to those of more complex diagnostic models.

This study explores the challenge of learning a simple clas-
sifier that can accurately distinguish patients with AD from
healthy controls. We also considered learning a model that
involved MCI patients – e.g., distinguished MCI from AD,
and MCI from Control. However, we realized that this was
problematic as there is tremendous variability among human
clinicians, who supply the labels. We therefore decided to
focus on AD vs control, as these labels are much more con-
sistent. Section 2 describes the dataset we used, that includes
a small set of 33 brain volumes along with the APOE geno-
type status. Section 3 describes how we use that database to
produce an effective classifier. This involves pre-processing
and feature extraction step, baselearners, feature selection
methods (all performed “in-fold”), evaluation method, and
overall learners. Section 4 presents our training, test, and
feature selection results. Using these 34 features, we first
compare the value of applying our overall learner, involving
standard feature selection processes, with 3 base-learners
selected for their simplicity – decision tree, elastic net and
linear SVM – versus 2 relatively complicated base-learners –
SVM with RBF kernel and extreme gradient boosting learner.
Section 5 then compares the result of our simple classifier,
produced by our overall learner with the simple base-learners,
to other studies that also classify Alzheimer’s patients versus
healthy controls.

2. PARTICIPANTS / IMAGING DATA
This analysis used data from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (adni.loni.usc.edu).
The ADNI was launched in 2003 as a public-private partner-
ship, with the primary goal of testing whether serial mag-
netic resonance imaging (MRI), positron emission tomogra-
phy (PET), other biological markers, and clinical and neu-
ropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD).[14, 15] For up-to-date information,
see www.adni-info.org.

Out of initially 793 subjects who had baseline scans, 35
subjects were excluded due to segmentation problems and
6 due to missing APOE genotype data. Our analysis con-
siders (n = 752) individuals from various ADNI projects,
described using their baseline MR imaging and genetic se-
quencing (including the APOE genotype status, indicating
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the number of the APOE4 alleles at the APOE gene locus)
– including 337 with a diagnosis of AD (age 75.26 ± 7.81,
44.8% male) and 415 controls (age 74.79 ± 5.72, 49.6%
male). Mini-mental state examination (MMSE)[16] scores as
well as clinical dementia rating sum of boxes (CDRSB)[17]

scores were collected for all subjects. MMSE scores ranged
from 18-28 for AD patients and from 24-30 for controls, and
CDRSB scores ranged from 1-10 for AD patients and from
0-1 for controls.

The ADNI data was acquired from 60 different sites across
US and Canada. To demonstrate our methodology, we
merged data from 48 sites to become the training set,
ADNI_TRAIN (with n = 584 subjects) and merged the re-
maining 12 sites into the held-out test set, ADNI_HO (with
n = 168 subjects). Note these two sets are disjoint. Table 1
provides demographic information, showing the sex, age, di-
agnostic distributions and other information, for the training
and test sets.

Table 1. Demographic information for the participants
included in the training and test datasets (divided based on
the data acquisition sites). Numbers for age, MMSE,
CDRSB, and the number of APOE4 alleles are each shown
as mean ± STD

3. MATERIALS AND METHODS

3.1 Image acquisition and segmentation
As part of the ADNI data collection, standardized structural
MR imaging data was acquired for all participants using
a sagittal magnetization-prepared rapid gradient echo se-
quence, with 1 × 1 mm2 in-plane resolution, 1.2 mm slice
thickness, and a field of view of 192 × 192 mm2.[18] The
scanner field strength varied from 1.5 to 3.0 T, depending on
the site.[18] Here, we focused on the participants’ baseline
imaging data. We used the Freesurfer (version 5.3) segmen-
tation pipeline to extract regional cortical and subcortical
volumetric measurements from each subject’s MRI scan.[19]

This process generated 68 regional cortical volumes (34 in
each hemisphere), as well as 43 subcortical volumes for each
subject. To compensate for the possible existing variance
in the brain sizes of individuals, we used the normalized
percent volumes of each region, which is 100 times the ratio
of the volume of that region, divided by the total intracranial
volume.

From the segmentation output, we selected the 33 normalized

regional brain volumes that have shown robust group-level
differences in previous imaging studies of AD: 10 subcorti-
cal regions (left and right thalamus,[20] putamen,[20] amyg-
dala,[21] hippocampus[22] and lateral ventricles[22]), 10 medial
temporal regions[21] (right and left parahippocampal gyrus,
entorhinal cortex, inferior temporal gyrus, middle temporal
gyrus and superior temporal gyrus regions), 8 parietal re-
gions[23] (left and right posterior cingulate gyrus, isthmus
of cingulate gyrus, inferior parietal lobule and precuneus),
3 callosal regions[24] (posterior, central and anterior corpus
callosum), and bilateral cerebellar cortex.[25] In addition to
these brain imaging results, Corder et al.[26] showed that
the number of the APOE4 alleles at the APOE gene locus is
widely associated with late onset Alzheimer’s disease. Our
dataset therefore described each patient using this one geno-
type, as well as the normalized grey matter volumes of these
33 regions.

We considered several base-learners. We z-scored each fea-
ture to have a mean value of 0 and a standard deviation of 1.
Our training dataset describes each subject

x = [x1, · · · , x34]

based on normalized brain volumes from 33 brain regions
(xi for i ≤ 33), and the APOE genotype status x34.

3.2 Based learning algorithms

We input this data to various base learning algorithms, all im-
plemented in the Python software packages scikit-learn (See
the scikit website, http://scikit-learn.org/) and XGBoost (See
the XGBoost website, https://xgboost.readthedocs.io). Bi-
nary decision trees (DT) are one of the most visually simple
classifiers; they are also similar to clinical algorithms used
for sequential diagnosis in medicine. We limited the depth of
our decision tree to 10 and the number of leaf nodes to 20 for
further simplicity and also to reduce the chance of overfitting.
We also consider two linear models, each learning a weight
vector W = [w0, w1, ..., w34] ∈ R34, used in the function

yW (x) =
34∑

i=1
wi × xi + w0 (1)

Here, the model predicts the subject x has AD if yW (x) is
larger than 0. One linear model, logistic regression with
elastic net penalty (EN), was our second simple classifier,
combining L1 (Lasso) and L2 (Ridge) regularizers with a
ratio (L1 ratio) that weighs the two penalties and an α pa-
rameter that weights the penalty term.[27] Support Vector
Machines (SVM) is one of the most commonly used classi-
fiers in Alzheimer’s prediction studies.[2–5, 11] In this study,
we consider SVM classifiers with two different kernels: the
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linear and radial basis function (RBF) kernel.[28] The linear
SVM (lSVM) is an example of a simple classifier while SVM
with RBF kernel (rSVM) is used as an example of a more
complex non-linear method. Extreme Gradient Boosting
(XGB)[29] is a gradient boosted decision method, which is
also used as as an example of a more complex non-linear
base-learner in this study.

3.3 Evaluation
Our “overall learner” OL is the system that invokes the pre-
processing and feature selection steps, before running the
base-learners. It also does the grid-searches to find the best
learning algorithm and feature selection parameter settings,
and also selects the best of these learners, based on the per-
formance over the training data. We ran OL twice, over
different sets of base-learners: once for the simple base-
learners – lSVM, EN, DT – and once for the more-complex
base-learners – rSVM and XGB; for further clarity, we name
the first one S.OL and the second one C.OL. Each of these
runs produced a classifier: one simple and one complex (see
Figure 1).

Recall we used a training set ADNI_TRAIN, of 584 subjects,
and a disjoint test set ADNI_HO, of 168 subjects. In both
cases, OL partitioned ADNI_TRAIN into 5 folds and and
used the same folds for all 5 base-learners. Each base-learner
had to determine the best values for a set of hyper-parameters
(described below), and use these when learning its classifier.
The learning algorithm identified the best settings for these
hyperparameters based on average 5-fold cross-validation
(CV) accuracies using grid search.

OL then used the 5-fold cross-validation accuracies of these
base-learners (accompanied by various feature selection
methods, described in Section 3.4) with these selected hyper-
parameters, to identify the best-learners. It then ran that best
base-learner on the entire training set to produce classifiers;
we then tested the learned classifiers (simple and complex)
on the test set, ADNI_HO. We evaluated our final models
using specificity, sensitivity, balanced accuracy (average
of specificity and sensitivity), and the Receiver Operating
Curve (ROC), as well as accuracy. For all three measures,
for each model (simple and complex), we reported the per-
formance of that model on the test set, as well as the mean
and standard deviation, over the 5 folds of the training set.
For SVM methods, the C hyper-parameter was chosen from
1E-5, 1E-4, ..., 1E3, 1E4, and γ was chosen from 1E-6, 1E-5,
..., 1E1, 1E2. For elastic net, the α hyper-parameter was
chosen from 1E-4, 1E-3, 1E-2, 1E-1, 2E-1, ..., 9E-1 values
and L1 ratio from 5E- 2, 1E-1, ..., 9E-1, 9.5E-1 values. Note
that setting the L1_ratio to 1 means the learner only applies
L1 regularization (aka Lasso classification) and setting it to 0

only applies L2 regularization (aka Ridge classification). For
the decision tree base-learner, we set the maximum depth of
the tree to 10 for further simplicity of our tree model and then
used internal cross-validation to find the best values of three
hyper-parameters: minimum samples split is the minimum
percentage of training set instances required to split an inter-
nal node, chosen from a range of values between 0.005 to
0.480 (of total number of samples); minimum samples leaf is
the minimum percentage of instances required to be at a leaf
node, chosen from a range of values between 0.005 to 0.480
(of total number of samples); and maximum number of leaf
nodes controls the width of the tree at its leaf level, chosen
from range of 2 to 20. For the extreme gradient boosting
learner, the number of tree estimators was chosen from 50,
100, 150, 200, the maximum depth of the trees from 2, 4, 6,
8; the learning rate from 0.0001, 0.001, 0.01; the minimum
child weight (which is the minimum sum of instance weight
that is needed in a child) from 1, 3, 5; the subsample ratio
(which is the subsample ratio of the training instance) from
{0.6, 0.7, 0.8, 0.9}; and column sample by tree is the sub-
sample ratio of the columns when constructing each of the
trees, chosen from {0.6, 0.7, 0.8, 0.9} (See Elastic Net’s API,
https://scikit-learn.org/stable/modules/gene
rated/sklearn.linearmodel.ElasticNet.html).

To statistically compare the accuracy of our classifiers (on
ADNI_HO) against each other and see if their classification
rates are significantly different, we used the mid-p-value:
McNemar test[30] and reported the null hypothesis test re-
sult at β = 0.05 significance level, as well as the p-values.
Any p-value smaller than β suggests rejection of the null
hypothesis.

3.4 Feature selection
First, note that the decision tree learner (similarly, extreme
gradient boosting learner, which is a tree-based learner) has
its own inherent way of choosing the best subset of features.
At each internal node, this learner splits the available training
instances based on the feature that best separates the class
labels in terms of reducing the Gini impurity criterion.[31]

This process stops when the current node is sufficiently pure;
this means the resulting decision tree will typically only use
a small subset of the features.

The OL system also considered several approaches to learn
yet simpler models, which involved fewer features. Here, it
explored two filtering feature selection methods, each as a
pre-processing step to reduce the number of features that are
given to the base-learner (and hence the learned classifier): a
simple univariate feature selector (UFS), and minimum re-
dundancy maximum relevance (mRMR).[32] Univariate fea-
ture selection method selects the top k features based on
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ANOVA (Analysis of Variance) F-values.[33] This method
first computes the F-value for each individual feature, and
then selects those with top k values. Such univariate feature
selection methods, however, do not consider the correlation
between the features.[33] The mRMR method addresses this
by sequentially seeking a set of features that maximizes the
mutual information between each feature and the target clas-
sification variable while minimizing the mutual information
between the currently selected features.

For the linear models (SVM-linear and elastic net), S.OL
also considered the “recursive feature elimination (RFE)”
algorithm:[34] a wrapper feature selection method that se-
quentially removes the least important features, based on the
value of learned linear weights – i.e., initially the feature in-
dexed by i∗ = argmini∈1,..,34|wi|. (There are fewer feature
weights to consider in successive iterations.)

All of our feature selection methods – i.e., UFS, mRMR and
RFE – take as input, both the initial dataset and a number
k∗, which is the number of features to use. To determine
k∗, OL first computes the average cross-validation accu-
racy acc(k) for each number of features k ∈ 1, 2, ..., 34;
then sets a∗ = maxk{acc(k)} to be the most accurate, and
k∗ = argmaxk{acc(k)} to be the associated value. To find
this k∗, OL of course ran the feature selection methods “in-
fold” – i.e., determining the best size-k subset of features for
each fold during training. Note that setting k = 34 in each of
the of feature selection methods is equivalent to applying no
feature selection.

Figure 1 summarizes our method, showing the combinations
of base-learners and feature selection methods, within each
version of OL.

Figure 1. Our overall framework: Left-to-right is the training component, to produce both a simple classifier (here EN7, on
top, using S.OL) and a complicated classifier (here rSVM23, on bottom, using C.OL). Each of these OLs considered a set of
feature selection methods, from { RFE, UFS, mRMR }, and a given set of possible base-learners – S.OL considered EN,
lSVM and DT, while C.OL: rSVM and XGB. (Note that DT did not use RFE). The RED arrow, in each, is the combination
of feature selection method and base-learner with the best 5-fold cross-validation accuracy. We then evaluated each of these
classifiers, by running each on the (data from) ADNI_HO (vertical, on right)

4. RESULTS
This section first describes our cross-validation results on the
training set ADNI_TRAIN (composed of subjects’ data from
48 acquisition sites), i.e., the cross-validation accuracies of
the best classifiers – one from S.OL and one from C.OL (Sec-
tion 4.1). This analysis identified the best learners; we then
ran just these two resulting classifiers on the independent
held-out test set, ADNI_HO; those results appear in Section
4.2. Section 4.3 describes the features selected by the simple

classifier, EN7.

4.1 Cross-validation accuracy on the training set,
ADNI_TRAIN

Table 2 and Figure 2 show the mean and standard deviation
of the cross-validation performance of our best simple and
complex learners, EN7 and rSVM23. Note that the mean
cross-validation accuracy, specificity, and sensitivity of the
two models are close to each other – i.e., within the bound-
aries of each other’s error bars.Published by Sciedu Press 19
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Figure 2. Mean and standard deviation (STD) of the 5-fold cross-validation (CV) performance of EN7 and rSVM23 models,
on ADNI_TRAIN. The red dots show the hold-out performance of these models, on ADNI_HO.

Table 2. Mean and standard deviation (STD) of the 5-fold
cross-validation (CV) performance of EN7 and rSVM23
models

4.2 Results on the Held-Out Test Set, ADNI_HO

As described in Section 3.3, we twice ran our overall learner
OL over the training set ADNI_TRAIN (composed of 48
sites, with a total of n = 584 patients) to produce two classi-
fiers – here, the elastic net model with 7-features, EN7, and
the RBF SVM model with 23-features, rSVM23. Then, to
evaluate and compare the effectiveness of these classifiers,
we ran those classifiers on the held-out test set, ADNI_HO
(composed of 12 sites, with a total of n = 168 patients). Table
3 shows the test accuracies of these two produced classifiers,
along with the result of their statistical comparison, based on
the McNemar test. Since the p-value of the McNemar test
was above .05 (0.4531), no statistical difference was found
between the accuracy of the simple and complex models
on the held-out dataset (ADNI_HO). Additionally, Figure 3
shows the ROC curves of the two produced classifiers.

Table 3. Test (hold-out) results using EN7 and rSVM23
models and the p-value of the statistical comparison of their
accuracy based on McNemar test

Figure 3. The receiver operation curve (ROC) for our EN7
and rSVM23 models

4.3 Feature importance, based on EN7
EN7 selected APOE and 6 brain regions; Figure 4 shows the
locations of the 6 regions, and Table 4 shows their associated
weights, which corresponds to their “importance”. Appendix
A shows the hold-out (on ADNI_HO) classification results of
each of the base-learners, but using different feature sets: (1)
left and right (bilateral) hippocampus regions, (2) only APOE
genotype, (3) the 6 regions, without the APOE genotype, as
well as (4) the results based on all 7 features.

Figure 4. Locations of the features used by the EN7
models. Color is based on the absolute value of EN7’s
weight of the feature
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Table 4. EN7’s weights for the features. (2nd column refers
to the location in Figure 4.)

5. DISCUSSION AND ANALYSIS
5.1 Performance of simple Alzheimer’s disease classifi-

cation (EN7)
In this study, we applied various machine learning algorithms
to APOE genotype status, and regional grey matter volumes
from 33 brain regions (that previous clinical studies have
shown to be influenced by progression of AD) to learn a
model that can predict Alzheimer’s disease. We considered
five base learners (including three simple models within
S.OL). We also considered the effect of feature selection.

As noted in Section 1, there are many previous studies on pre-
diction of AD using structural MRI. Most of these previous
studies concentrated on either achieving high prediction ac-
curacy or mere simplicity (by using the grey matter volumes
for a very small number of recognized brain regions), but this
study is an attempt to create a balance between prediction ac-
curacy and simplicity of the prediction framework. An earlier
study demonstrated that a 3D convolutional neural network
could achieve high accuracy (99%) using a large number
of voxel-based features.[8] There were other region-based
studies using structural MRI data, either combining a variety
of measures with regional grey matter volumes, including
cortical thickness, surface area and cortical curvature,[10]

or combining regional data from different imaging modali-
ties,[11] that can achieve high classification performances of
0.98% AUC and 93% accuracy, respectively. The problem
with these approaches is that a system that involves too many
features might not be used in a clinical environment. This
means that even though they have high accuracies, clinicians
may be uncomfortable using them because clinicians might
find it difficult to understand processes that involve a large
number of features. In another study, Jongkreangkrai et al.[12]

learned an RBF-kernel SVM over bilateral hippocampus and
amygdala grey matter volumes and entorhinal cortical thick-
ness features. This achieved an AUC of 0.89, which is es-
pecially impressive as it used only 6 features. However, the
resulting “SVM with RBF kernel“ classifier involves a com-
plex combination of the features, which prevents users from
reasoning about the influence of each feature. By contrast, it
is easy to reason about linear classifiers (Equation 1) as the

sign of the coefficient wi tells whether that feature’s value xi

increases the risk of AD, or decreases it; see Table 4.

5.2 Explaining EN7’s feature selection results
Table 4 shows the weights for the 7 features that appeared in
EN7. Jongkreangkrai et al.[12]’s 6-feature RBF SVM model,
mentioned in Section 5.1, also used the cortical thickness
for 4 of these brain regions: left and right hippocampus and
entorhinal cortex. However, there is no easy way to read
off the influence of a variable, nor even the directionality,
in non-linear models, like RBF SVM or decision trees, in
general. This is possible in linear models, such as EN: here
finding a feature whose associated weight is positive, means
the chance of AD increases as that variable’s value increases,
mutatis mutandis.

Previous studies on dynamics of grey matter loss in
Alzheimer’s disease suggest that bilateral hippocampus re-
gions are areas of the brain that are most strongly affected
by AD, which makes them appear as the most discriminat-
ing features in the classification task.[35] We also saw that
the feature ranks of bilateral regions are not similar to each
other. This is consistent with the findings of clinical studies
that claim grey matter loss in AD is asymmetric.[36] Studies
claim that entorhinal cortex, which is the gateway to hip-
pocampus, is one of the first areas that AD begins to affect,
which suggests that grey matter volume for this area may
help identify patients at early stages of AD.[37] All of these
6 marked areas were located in the temporal lobe, which is
consistent with the previous literature on diagnosis of AD.[38]

Genetic studies show that the number of the APOE4 alleles
at the APOE gene locus is strongly associated with late on-
set Alzheimer’s disease,[26] explaining why APOE genotype
appears among discriminating features in our AD diagnosis
prediction framework.

6. CONCLUSION
In this study, we attempted to build a classification framework
for learning a simple model that can accurately distinguish
patients with Alzheimer’s disease from healthy controls. The
performance results, on the 168 subjects in our test set, show
that a learned simple linear classifier using only a small set
of features – grey matter volume for 6 brain regions and a sin-
gle genotype datum – can accurately distinguish Alzheimer’s
patients from controls. We found that the APOE genotype
status had one of the highest feature importance in our linear
classifiers; its inclusion in the set of imaging features (grey
matter volumes) improved the performance of our models.

Although we started from 34 features that were already iden-
tified as relevant to AD, we provide a learned linear classifier
using just 7 of these features that is statistically as accurate
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as its more complex counterparts. The best accuracy on this
task and dataset in the literature (99%)[8] was achieved using
a much more complicated, non-interpretable model (convolu-
tional deep neural network). Our simple method, achieving
89% accuracy, approaches clinical relevance, which justifies
future research into simple systems whose decision process
would be accessible to clinicians and could help improve
clinical diagnosis. As a line of future work, it would be also
valuable to explore the idea of decision fusion[39] to find if
combining the decisions made by our simple base-learners
would further improve the performance of our framework.
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