
Web Service Matching for RESTful Web Services

Reihaneh Rabbany Khorasgani, Eleni Stroulia, Osmar R. Zaı̈ane
Computing Science Department

University of Alberta
Edmonton, Canada

rabbanyk,stroulia,zaiane@ualberta.ca

Abstract—There is a growing number of web services avail-
able on the Internet, providing a wide range of functionalities.
This diversity introduces a variety of new challenges in the
field of software engineering - service discovery, integration,
and composition, all of which require, to some extent, “service
matching”. Web-service matching (or alignment) is the task of
mapping the functionalities of two web services, assuming that
these functionalities overlap somewhat.

In this paper we propose a novel graph-theoretic approach,
called Semantic Flow Matching (SFM), for matching REST
web services, specified in WADL (Web Application Description
Language). The method builds a heterogeneous network of
WADL elements and semantically related terms, and uses
this network to match similar functionalities of different web
services. The method is implemented in a prototype tool that
consists of two modules: a converter and a mapper; where
the converter wraps the REST web services in WADL format
and the mapper module matches web services based on their
semantics extracted from the WADL interface build by the
converter. We demonstrate the potential of the approach with
a small case study.

Keywords-Web Service Matching, REST, WADL

I. INTRODUCTION

There are a multitude of web services and APIs available
on the web. These APIs provide a wide range of different
services and there usually is a substantial semantic overlap
between them, with many web services providing essen-
tially the same functions. Such overlapping functionalities
enables redundancy in the web-service ecosystem, and gives
developers the opportunity to migrate from one API to
anther when the API originally used becomes unavailable
or insufficient for their needs. To support the discovery
of similar APIs, several new methods are being developed
for web-service discovery, including query-based methods
relying on keywords and identifiers [1], [2], clustering [3]
and more detailed structure matching [4], [5].

There are a variety of activities that require web-service
matching. Let us consider, for example, service migration:
clients that are using different web services for the same
task, should easily be able to share their data, migrate
from one service to the other in the case of service dep-
recation and also have a single point of access to their
data distributed over different web services. As an example,
consider the Del.icio.us social bookmarking web service,
which is currently for sale by its owner Yahoo! and there

are many users worried about their data. As a result several
other bookmarking sites provide means to import Del.icio.us
data. Here if one could automatically build a matching
between Del.icio.us and any other similar service, we could
simplify the migration. This would also enable users to use
Del.icio.us with Diigo, Zootool and Hbookmark (other social
bookmarking service), etc at the same time and with a single
point interface.

In principle, service-matching techniques rely on interface
matching, behaviour matching or a combination of both
(which is more likely to produce better result) [5], [4].
Interface matching methods usually rely on the assumption
that services are described in a common interface-description
language, such as WSDL (Web Service Description Lan-
guage) for example [1], where behaviour-matching ap-
proaches also consider the usage context around the services,
as specified in client applications or BPEL (Business Process
Execution Language) descriptions [5].

Motivated by the increasing trend of Web 2.0 appli-
cations from SOAP-based web services to RESTful, here
we consider web services described in WADL instead of
WSDL. WADL (Web Application Description Language) is
a description for RESTful web services and an alternative
for WSDL descriptions of SOAP services. Focusing on
interface matching, we propose a novel method to match
functionalities of two given RESTful web services based
on their WADL description/interface by building a semantic
network to capture their semantic relation. Our proposed
method incorporates linguistic knowledge and domain-
specific heuristics to automatically match given WADLs. It
creates a heterogeneous network of WADL elements and
related semantically synonym terms, then searches for the
most similar methods (of different web services) by looking
for the ones with maximum semantic flow between them.

In the rest, we first overview RESTful architecture and
WADL description followed by an overview of currently
available methods for Web Service Matching (Section 2).
Then we elaborate on our proposed method for matching
RESTful web services based on their WADL description
(Section 3). This is followed by our results for matching
different real world social bookmarking web services (Sec-
tion 4). Finally we conclude our work, enumerate the main
challenges and possible future directions (Section 5).

978-1-4577-0700-1/11/$26.00 ©2011 IEEE 978-1-4577-0700-1/11/$26.00 ©2011 IEEE 115

II. BACKGROUND AND RELATED WORK

Although the problem of web-service matching is related
to the problem of similarity-based search of web services
(as both are relevant to the task of service discovery),
methods developed for the latter task usually only measure
the similarity between different web services but do not
necessarily provide a complete matching of their operations.

Generally, the problem of API matching in web services
is similar to several matching problems in other fields:
schema matching in Databases, text document matching in
Information Retrieval and software component matching in
Programming Languages. However, there are some differ-
ences that make techniques developed in these other domains
not quite suitable [2].

In Database schema matching, schemas are matched based
on their predicted semantics and is useful in information
integration. The schema matching methods mostly contain
some linguistic and structural analysis. They also use the
domain knowledge and previous mapping experiences to
boost their results [6]. There are two main issues with these
approaches that make them unfavourable in the context of
web service matching. The first problem is that schema
matching and web service matching have different granu-
larities. In web services we are trying to map functionalities
of two schemas while in schema matching we are trying
to find related components of two schemas which compares
to the granularity of matching parameters of web services
rather than their methods. The other reason is that in schema
matching, schemas are highly matching which is usually not
the case in web services. Web services usually have small
overlaps and often rather than substitute they complement
each other.

Document matching is a long-studied problem in Infor-
mation Retrieval where term/doc frequencies are used for
matching [7]. This reliance on term frequencies, make these
approaches unsuitable in web service matching because web
service descriptions do not contain adequate text and also
there is rarely text description of web services. On the other
hand, web services contain other structural information that
would be ignored by these techniques.

Another closely related problem is software component
matching, an important topic in software reuse [8]. This
problem is concerned with signature matching of different
procedures considering their data types, parameter names,
parameter types, parameter order etc. Some specification
mapping variants also consider program behaviour and post
conditions. Despite apparent similarity of signature match-
ing and web service matching, better scrutinization shows
different level of expressiveness and data structures, makes
naı̈ve application of methods in one domain inefficient in the
other, however there has been successful adaptations in the
similar problems [9], [10]. In [9], Stroulia et al. computed
structural and semantic similarity of web services for the

web service discovery, leveraging from mainly signature
matching methods.

Web-service discovery is a problem closely related to
web-service matching. Web service discovery is about
searching the web services repository (UDDI – Universal
Description Discovery and Integration) for a desired web
service. The common web service search systems are based
on keyword search which results in some shortcomings. For
example these basic keyword search methods can not return
a web service that contains ‘zip’ or ‘postal code’ when the
user searches for ‘zipcode’ [2]. Some recent research in this
area has focused on using semantics to get better results.
This is achieved by

• adding semantic metadata to the web service descrip-
tions [3] and providing new semantic languages to
describe web services e.g. OWL-S, WSMO [11], [12];
and

• inferring semantics by clustering similar web services
[13], [2], [14] or using information retrieval techniques
[14].

One of the most related works in service discovery is
Woogle by Dong et al. [2]. Woogle is a web service search
system that looks for similar web service operations for a
given operation. Woogle clusters parameter names in web
services into semantically meaningful concepts and com-
pares inputs and outputs of operations with these semantic
concepts to measure similarity of operations. Clustering is
based on the co-occurrence of names together with the
assumption that “parameters tend to express the same con-
cept if they occur together often” [2]. However we found
this assumption too strong and not surprisingly invalid in
practice.

Motivated by the automated web-service discovery and
use, a recent line of research in web service matching has
emerged. Wang et al. [1] proposed a flexible interface-
matching suite of methods, based on the structure of their
data types and operations and the semantics of their natural
language descriptions and identifiers, as described in their
WSDL specifications. Given only a textual description of the
desired service, a semantic information-retrieval method can
be used to identify and order the most relevant WSDL spec-
ifications based on the similarity of the element descriptions
of the available specifications with the query. If a (potentially
partial) specification of the desired service behaviour is
also available, this set of likely candidates can be further
refined by a semantic structure-matching step, assessing the
structural similarity of the desired vs the retrieved services
and the semantic similarity of their identifiers. In this paper,
we describe and experimentally evaluate our suite of service-
similarity assessment methods. Motahari-Nejad et al. [4]
introduced a semi-automatic interface matching approach
which incorporates the ordering constraints imposed by
business protocol definitions on service operations. Both

 116

Mikhaiel et al. [5] and Motahari-Nejad et al. [4] argue
in favour of using both Interface Matching (e.g. WSDL)
and Protocol Matching (e.g. BPEL) to have a more precise
and effective web-service matching. Motahari-Nejad et al.’s
method, has in its core, XML schema matching for interface
matching. They also incorporate protocol level information
into this, both by considering the depth of the operation in
the protocol description and by an iterative reference-based
similarity propagation through protocol and already matched
operations.

The majority of methods proposed so far for web-service
matching, assume that services are described in WSDL.
However there is a trendy migration of the Web 2.0 (partic-
ipatory Web) applications from SOAP based web services,
defined by WSDL, towards RESTful services which do not
necessarily use WADL. This makes matching RESTful web
services an interesting problem [15], [16], [17].

REpresentational State Transfer [18] is a software archi-
tecture style that incorporates clients sending specially struc-
tured HTTP requests to servers that include the specification
of how to access information resources, and servers that
process the request and return the response. A client is either
at “rest” which means it is able to interact with its user, or it
is in transition. This happens when the client sends a request
and awaits the response. These requests and responses are
the transfer of representations of resources as they includes
the current and intended state of resources.

In the REST style, every resource has a global identifier
(e.g., a URI in HTTP) and the client just needs to know
this identifier and the required action. It also needs to
understand the format of representation, which is typically
an HTML, XML or JSON (JavaScript Object Notation)
meta-data. RESTful web services, a.k.a. REST APIs, specify
a collection of resources which consist of three components:
URI of the web service, type of the data supported: JSON,
XML, YAML, etc. and operations supported using HTTP
methods (e.g., POST, GET, PUT or DELETE). A REST API
may be described using WSDL and use SOAP over HTTP,
or it could be an abstraction purely on top of SOAP (e.g.,
WS-Transfer) or without using SOAP at all [19]. The W3C
standard for describing a REST web service is WADL which
is a REST alternative to WSDL [20].

WADL, the Web Application Description Language, is a
machine processable XML description for REST. In WADL,
a service is described by a set of resource elements, where
each resource consists of a set of hierarchically structured
elements (sometimes specified in a XML Schema Definition;
the parameters that describe the input to the methods through
which the resource is accessed and the methods’ responses
are defined in terms of these elements. A request specifies
how to represent the input, what types are required and
any specific HTTP headers that are required. A response
describes the representation of the service’s response [21].

Figure 1. Overall Flow of the REST API Alignment Method. The
converter module (on the top) wraps the REST API docs into WADL
format. The mapper module (on the bottom) matches web services using
their WADL interfaces. It consists of two submodules – a network builder
and a maximum flow algorithm.

III. THE SEMANTIC FLOW MATCHING METHOD

Figure 1 illustrates the overall process of our Semantic
Flow Matching (SFM) method, which consists of two main
modules – a converter and a mapper. The converter wraps the
REST web services in WADL format and the mapper module
matches web services based on their semantics extracted
form WADL interface and using the SFM approach. The
converter module (described in III-A) actually prepares our
dataset of WADLs for the SFM approach (described in
III-B). This converter module is necessary since WADL is
not a commonly used description and not always present
where the WADL specifications are required for the mapper
module.

A. The WADL-Converter Module

The converter module transforms the HTML documen-
tations of REST APIs into WADL specifications. We have
used a semi-automatic method for this transformation, using
the Google REST Describe toolbox [22] 1. The Google
“REST Describe” tool creates WADL descriptions of web
applications by analyzing sample request URIs, where one
could manually add or modify metadata to improve the
automatically generated WADL description.

More specifically, we used the client interface of Google’s
REST-Describe to create the WADL specification of a given
REST API. To do so, we first manually extracted a list of the
HTTP requests that the API supports. Then we automatically
converted this list of URIs to its corresponding WADL,

1A demo can be found here: http://tomayac.de/rest-describe/latest/
RestDescribe.html# and the code can be downloaded from here: http:
//code.google.com/p/rest-api-code-gen/

 117

Figure 2. An example for the generated WADL files. This WADL is
obtained from Zootool’s API. All the elements are closed for more clarity,
and only the ‘add’ method is expanded. This figure is generated using the
Author XML editor toolbox.

using the URI batch-processing option in the REST-Describe
client interface. We further manually edited the resulting
WADLs to add the responses (response and representations
elements that explain the response media type), documents
(doc elements that describe methods in free text) and some
information about parameters (i.e. those that could not be
inferred from the URIs such as their default value, type and
if they are required or not).

Figure 2 presents one of the generated WADL files using
the converter module, which corresponds to the Zootool API.
This WADL specification contains several resources that
one could modify through the Zootool’s API. For example
the resource with the path value ‘add’ (which is expanded in
the figure) has a ‘GET’ method which calls the API with the
following sample URI: http://zootool.com/api/add/?url=http:
//www.google.com&title=Google&tags=search,
google&description=searchEngine&public=y. This method
adds a new item to the user’s bookmarks, which also has
some parameters to set information about this bookmark
(such as ‘tags’ and ‘description’).

B. The WADL-Mapper Module

The Mapper module is responsible for the core interface-
matching method, namely to recognize similar functionali-
ties of two given REST web services based on their WADL
descriptions. Before providing a detailed description of the
method, let us argue for its rationale. The goal of our method
is to find a partial matching between groups of structured
data, where the underlying data structure is a shallow tree of
three levels – resources, methods and parameters. The actual
objective is to match the elements at the second layers of the
trees, i.e. the methods. One should notice that although the
usual WADL files have more levels of structure for defining

global and nested elements, this structure does not actually
convey any information about the functionalities of the
underlying web service and only is an ease for flexible API
documentation and mostly preventing repeated descriptions.
Furthermore, the size of each web-service tree is small, as
every web service provided a small set of functionalities.
The matching is uncertain, as two methods may not have
the exact same number of parameters and parameter names
do not match. In some cases they are not even synonyms
e.g. tag and bookmark.

A first approach we considered was to use some off-the-
shelf Machine Learning (ML) solution. To make a problem
accessible to ML methods one has to develop, out of the
primary data, feature vectors or similarity measures (to be
used in conjunction with a Kernel method); if there exists
a sufficient quantity of labeled data, one may thus learn a
good representation. However in our case, because of lack
of labeled data (i.e. already matched web-services), most
informative features should be extracted manually. Here
beside structural information, linguistic relations (similar
names of two parameters) should be considered in such
feature design. While automated design of such feature set
using statistical learning techniques is an standard approach
in NLP, manual design is deemed very difficult.

Due to lack of labeled data, one may consider unsuper-
vised techniques, i.e clustering for the task at hand. Here the
goal would be to have each cluster contain similar methods
from different services. However usual clustering methods
are not suitable here because of two reasons. In many cases,
a correct solution would imply that many clusters should
only have a single member (for methods in one service with
no corresponding methods in the other service), which is
, in principle, undesirable in clustering. Furthermore, since
methods in a single service tend to share many similarities,
such as common naming schemes for their identifiers and
common parameters for example, usual clustering methods
would tend to place them within the same cluster, which
violates the problem specification that requires methods from
different services to be matched against each other.

Recognizing that the most straightforward techniques
were inadequate for our problem, we propose a heuristic
method called Semantic Flow Matching (SFM). This is a
graph-theoretic matching approach that incorporates linguis-
tic knowledge to find the best matching. Our method works
without labeled data (unsupervised) and leverages available
toolsets in optimization (i.e. max-flow calculation).

The basic idea of SFM approach is illustrated in Figure 3.
To match two web services w1 and w2, the mapper process
first builds a heterogeneous network of their WADL ele-
ments and semantically related terms. In this network every
method element is connected to its corresponding elements
(currently parameters and resources), each of which is, in
turn, connected to their corresponding terms in the semantic
network of synonym terms. To find the proper match for

 118

Figure 3. Semantic Flow Matching Network: an abstraction overall view.
Nodes corresponding to the WADL elements of web services w1 and w2 are
illustrated in the dotted boxes. The middle cloud stands for the synonymity
network extracted from WordNet, in which the generic English terms are
connected to each other if they are synonym.

method s in w1, the mapping process sets that method as a
sink, directs all the edges from elements of w1 outward and
all edges to w2 inward, and then searches for the method
in w2 that receives the maximum semantic flow form s.
The corresponding method is a possible match for s. In the
rest of this section we elaborate the process of building this
heterogeneous network and finding the matchings.

1) Semantic Flow Matching Network: The SFM network
has two types of nodes, WADL element nodes and term
nodes. WADL element nodes consist of method, parameter
and resource elements. It could be easily extended to include
other elements as well; most interesting elements to add
to the SFM network are the optional doc elements that
document the functionality of methods in narrative text, as
well as the responses elements that include the media-type
of the output of these methods.

Each of the WADL element nodes are connected to
one or more term nodes which are the English terms in
the synonymity cloud, where term nodes are connected to
each other if they are synonyms. More specifically, every
parameter element is connected to the terms related to its
‘name’ attribute and every resource element is connected to
the terms extracted from its ‘path’ attribute. For example
the WADL resource element with path attribute value ‘add’
(expanded in Figure 2) is connected to the ‘add’ term node
and the parameter element node with name attribute value
‘tags’ is connected to ‘tag’ term node in the synonymity
cloud where it is connected to its synonym terms such as
‘label’, ‘mark’.

We have incorporated two kinds of knowledge in building
the SFM network – common natural-language processing
knowledge, for node and edge discovery, and domain knowl-
edge, for edge weighting. To connect the element nodes to
term nodes we have used Porter stemmer [23] in order to ex-
tract the related terms to each WADL element. We also used

WordNet [24] for adding edges between synonym terms.
The SFM network edges are weighted using the following
general heuristic rules, based on the domain knowledge 2:

• Edges from element nodes are weighted more than
edges between term nodes.

• Edges from method elements to resource elements are
weighted more than edges to parameter elements.

• Edges to required parameters are weighted more than
edges to regular parameters.

• Edges to resources of a method are weighted based on
their path depth
(e.g. /api/tags/add → w(add) > w(tags)).

2) Flow-Based Matching: The SFM algorithm is shown
in 1. We excluded edge weighting details to limit the
complexity of the presentation. The algorithm first builds
the SFM network as described in Section III-B1, then uses
it to find the possible matches between the methods of the
compared services. It calculates the semantic flow from each
method node, m1, in the first given WADL file to every
method elements, m2, in the second WADL file and consider
them as a match if this flow is greater than a predefined
threshold (δ). These matches are inserted in M – a set of
possible matches, sorted based on the maximum flow. More
specifically, we set m1 as a sink and compute the maximum
flow from m1 to m2 in the SFM network where all the
edges from elements of the first WADL is outward and
all the edges to elements of the second WADL are inward
(illustrated in Figure 3). Then we store this matching in the
sorted set of possible matchings, M , if its maximum flow
is greater that δ.

The maximum flow problem is a long-standing problem
in optimization theory. It calculates the maximum flow from
a source to a sink through the given flow network where
edges have weight/capacity. There exists several methods
for solving the maximum flow problem. Here we have
used the Edmonds-Karp implementation of the maximum
flow algorithm [25] implemented in JUNG, Java Universal
Network/Graph framework [26]. The Edmonds-Karp algo-
rithm is based on the Ford-Fulkerson method [27], which
computes the maximum flow in order of O(|V | · |E|2). The
basic idea of the Ford-Fulkerson method is as follows: while
there exists a path from the source to the sink with available
capacity on all the edges of the path, add this flow to the
maximum flow, update the edge capacities and then proceed
to the next path [25].

IV. EXPERIMENTS AND EVALUATION

To evaluate our method, we have generated WADL spec-
ifications for several different available social bookmarking
APIs – Del.icio.us [28], Diigo [29], Hbookmark [30]

2Implementation details including the exact weighting of edges based on
these rules could be accessed in http://webdocs.cs.ualberta.ca/∼rabbanyk/
research/WS/src/logic/aligner/

 119

Algorithm 1 SFM matcher
Require: wadl1 and wadl2

{Building the SFM network}
for all method element m in wadl1 ∪ wadl2 do

add node m to SFMnet
for all WADL element w related to m do

add node w to SFMnet
if m ∈ wadl1 then

add edge < m,w > to SFMnet
else

add edge < w,m > to SFMnet
end if
{connecting w to the synonymity cloud}
if w is a resource then

terms ← extractTerms(wpath)
else if w is a parameter then

terms ← extractTerms(wname)
end if
for all term t in terms do

add node t to SFMnet
if m ∈ wadl1 then

add edge < w, t > to SFMnet
else

add edge < t,w > to SFMnet
end if
{expanding the synonymity cloud}
for all term ts synonym to t do

add node ts to SFMnet
add edge < t, ts > and < ts, t > to SFMnet

end for
end for

end for
end for

{Matching the method elements}
for all method element m1 in wadl1 do

for all method element m2 in wadl2 do
mf ← MAX-FLOW form m1 to m2

if mf > δ then
ind ← 0
while M(ind)mf > mf do

ind ← ind+ 1
end while
insert << m1,m2 > , mf> in M(ind)

end if
end for

end for

and Zootool [31] 3. Figure 4 visualizes the SFM net-
work constructed for the mapping between Zootool and
Del.icio.us. Figure 5 presents a closer look of the SFM
network which illustrates connection between ‘add tags’
method in Del.icio.us and ‘add’ method in Zootool.

The SFM approach generates a set of possible matches of
pairs of methods, each associated with a confidence value –
the actual value of flow between that pair of methods. next, it
chooses the non-overlapping matches from this set greedily
– starting with the match with the highest confidence value,
and proceeding down the confidence values, keeping those
that do not overlap (common methods) with any of the
previous matches. Here we report the obtained results for
all the 6 combination of a pair of these APIs.

Table I shows the example URIs and our matching result
for Diigo and Zootool, where SFM correctly maps the only
two methods in the Diigo to their corresponding methods
in Zootool. We could see that the SFM method correctly
matched the ‘POST bookmark’ method from Diigo with the
‘GET add’ method from Zootool with a high confidence.
It also correctly matched the other Diigo method, ‘GET
bookmarks’ with its similar method in the Zootool.

In the other five combinations of APIs, our SFM approach
found only a methods in common between these APIs
since these APIs are very loosely coupled, where more
than substitutions, they are complements for each other.
For example the Zootool’s API is more focused on the
users and followers aspect of social bookmarking while the
Del.icio.us API is has more methods for managing tags.
Consequently the result of matching these two APIs would
give us just one possible match with high confidence, 170
and the next possible match has a confidence of only 17,
which should not even be considered as a possible match.
Generally there is a big gap between the flow/confidence
of highly matched methods and poorly matched methods
and this δ parameter could be set automatically as the
mean of all flows/confidences. Table II shows the matches
for all the remaining combinations. We could see that the
SFM approach finds only one match between Del.icio.us
and Zootool, Del.icio.us and Hbookmark, and Diigo and
Hbookmark. While it finds two matches between Del.icio.us
and Diigo and three between Zootool and Hbookmark.

Table III demonstrates our evaluation result for the SFM
method. Precision shows the number of pairs of correctly
matched methods divided by the total number of matched
methods, while the recall shows the the number of pairs of
correctly matched methods divided by the total number of
pairs that should be matched, the correct matches, which
are counted manually. We could see that based on our case
study data set that consists of six social bookmarking APIs,
the SFM method achieves the total precision of 88 percent

3These generated WADLs could be accessed in main directory of the
project code.

 120

Figure 4. SFM network generated from Zootool and Del.icio.us WADL descriptions. Red rectangles represent the methods elements, blue rounded
rectangles represent resource elements, green circles stands for param elements and orange circles show the term nodes.

with 25 percent standard deviation and the total recall of 80
percent with 28 percent standard deviation.

V. SUMMARY AND CONCLUSIONS

In this paper we proposed SFM, a novel graph-theoretic
approach for matching similar methods of two given REST-
ful APIs based on their WADL descriptions. Our approach
proposes a solution to a more general problem, web-service
matching; which has many prospects in service discovery,
composition and integration as well as many foreseeable
applications for clients – sharing, migration, adaptation, etc.
Reviewing earlier solutions to similar matching problems,
schema/document/signature matching, we found that they
could not naively be applied in our context. The SFM
approach is designed specifically for REST API alignment,
however the base semantic flow idea could be easily adopted
to other semantic element matching problems. Yet there are
several important aspects related to the proposed matching
that require further discussion.

For the sake of simplicity, the current implementation of
SFM approach does not include several sources of infor-

mation – mainly the optional doc elements and response
media-types. These should be included in the SFM network
to obtain a more precise matching. However, even including
all those related information is unlikely to produce a perfect
result, as the textual descriptions of web services do not
completely convey their underlying semantics [2]. For an
effective and perfect matching we should also incorporate
the behavioural knowledge (i.e. Business Process) in the
protocol descriptions of the web services.

Another issue is that the term nodes are currently con-
nected to each other based on their synonymy relations in
WordNet. However the naming scheme of the service param-
eters depends on the developers [2] and is not necessarily
consistent across, and possibly not even within, web ser-
vices. It includes many different naming rules, hypernyms,
abbreviations, etc. and general purpose lexical references
such as WordNet are not suitable for our problem. For
example consider our social-bookmarking example, in that
context ‘bookmark’ and ‘tag’ are synonym, however they are
not synonymous in the general English sense, and are not
listed as such in WordNet. One remedy to this problem could

 121

Figure 5. SFM network generated from Zootool and Del.icio.us WADL descriptions - closer look. We could see that how the upper ‘GET’ methods –
which applies on ‘posts’ and ‘add’ resources and has ‘url’, ‘description’, ‘shared’, etc. named parameters – is semantically connected to the ‘GET’ method
in the right – which corresponds to an ‘add’ resource and has similar parameters named ‘description’, ‘url’, ‘title’, ‘tags’, etc.. This semantic connection
is mainly through the ‘add’, ‘url’ and ‘description’ term nodes which also includes other flows through synonym relations.

be to consider connections between term nodes that are close
in other senses – composite elements or edit distance (‘tag’
→ ‘mark’ → bookmark). Generally, for a precise matching
we should have domain-specific semantic knowledge where
terms are connected based on their meaning in the context
of the problem.

The last point is that we need a more extensive evaluation
for the SFM approach. The current data set is small, due
to the difficulty of generating WADL files, required time
for finding similar APIs and also the required manual
modifications. Apart from the small scale of our data set,
the selected APIs are very loosely coupled which makes the
experiments on exact matching impossible. In other words,
because there is a small overlap between functionalities of
the selected APIs, we could not experiment with different

types of matching algorithms, while there is at most one
or two methods matched. Therefore we only considered the
most highly matched methods as our results.

REFERENCES

[1] Y. Wang and E. Stroulia, “Flexible interface matching for
web-service discovery,” in Proceedings of the Fourth Interna-
tional Conference on Web Information Systems Engineering,
ser. WISE ’03. Washington, DC, USA: IEEE Computer
Society, 2003, pp. 147–.

[2] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang,
“Similarity search for web services,” in Proceedings of the
Thirtieth international conference on Very large data bases -
Volume 30, ser. VLDB ’04. VLDB Endowment, 2004, pp.
372–383.

 122

Table I
RESULT OF MATCHING ZOOTOOL AND DIIGO. THE UPPER PART SHOWS

THE INPUT URIS TO THE SYSTEM AND THE BOTTOM PART IS THE SFM
MATCHING RESULTS. THE SFM METHOD CORRECTLY MATCHED THE

‘POST BOOKMARK’ METHOD FROM DIIGO WITH THE ‘GET ADD’
METHOD FROM ZOOTOOL WITH HIGH CONFIDENCE OF 174. IT ALSO

CORRECTLY MATCHED ‘GET BOOKMARKS’ FROM DIIGO WITH ITS

ANALOG METHOD IN THE ZOOTOOL, ‘GET ITEMS’.

https://secure.diigo.com/api/v2/bookmarks?user=joel&count=
10&start=0&sort=1&tags=Spot,Film&filter=public&list=goodee
https://secure.diigo.com/api/v2/bookmarks?url=www.diigo.
com&title=Diigo+-+Web+Highlighter+and+Sticky+Notes&tags=
diigo,bookmark,highlight&shared=yes&desc=sample&readLater=no
http://zootool.com/api/users/items/?username=bastian&apikey=
123&login=true&tag=po&offset=2&limit=3
http://zootool.com/api/users/info/?username=bastian&apikey=123
http://zootool.com/api/users/validate/?username=bastian&apikey=123
http://zootool.com/api/users/friends/?username=bastian&apikey=
123&offset=2&limit=3&search=true
http://zootool.com/api/users/followers/?username=bastian&apikey=
123&offset=2&limit=3&search=true
http://zootool.com/api/users/profiles/?username=bastian&apikey=123
http://zootool.com/api/items/info/?uid=iw6og3&apikey=123
http://zootool.com/api/items/popular/?type=week&apikey=123
http://zootool.com/api/add/?url=http://www.google.com&title=
Google&apikey=123&tags=search,google&description=
searchEngine&referer=http://www.bing.com&public=y

possible match with MAX-FLOW of: 174
POST bookmarks: [title, shared, bookmarks, desc, v2, readLater, url,
tags, api]
&
GET add:[public, apikey, description, title, api, referer, add, url, tags]
possible match with MAX-FLOW of: 76
GET bookmarks: [user, sort, bookmarks, v2, count, list, filter, tags,
api, start]
&
GET items:[apikey, tag, username, limit, api, offset, users, items,
login]

[3] R. Nayak and B. Lee, “Web service discovery with ad-
ditional semantics and clustering,” in Proceedings of the
IEEE/WIC/ACM International Conference on Web Intelli-
gence, ser. WI ’07. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 555–558.

[4] H. R. Motahari Nezhad, G. Y. Xu, and B. Benatallah,
“Protocol-aware matching of web service interfaces for
adapter development,” in Proceedings of the 19th interna-
tional conference on World wide web, ser. WWW ’10. New
York, NY, USA: ACM, 2010, pp. 731–740.

[5] R. Mikhaiel and E. Stroulia, “Examining usage protocols
for service discovery,” in Service-Oriented Computing - IC-
SOC, ser. Lecture Notes in Computer Science, A. Dan and
W. Lamersdorf, Eds. Springer Berlin / Heidelberg, 2006,
vol. 4294, pp. 496–502.

[6] P. Shvaiko and J. Euzenat, “A survey of schema-based
matching approaches,” in Journal on Data Semantics IV, ser.
Lecture Notes in Computer Science, 2005, ch. 5, pp. 146–171.

[7] G. SALTON and C. BUCKLEY, “Global text matching for
information retrieval,” Science, vol. 253, no. 5023, pp. 1012–
1015, 1991.

Table II
MATCHING RESULTS OF THE SFM METHOD FOR ALL THE POSSIBLE

COMBINATION OF COMPARING APIS. FOR EXAMPLE WE COULD SEE

THAT THE SFM METHOD CORRECTLY MATCHED THE ‘GET ADD’
METHOD FROM DEL.ICIO.US WITH THE ‘POST BOOKMARK’ FORM

DIIGO. SIMILARLY IT CORRECTLY MATCHED THE TWO ANALOG ‘GET
BOOKMARKS’ METHODS IN DIIGO AND HBOOKMARK.

2) Del.icio.us and Zootool
possible match with MAX-FLOW of: 170.0
GET add: [shared, url, extended, replace, posts, v1, description, dt,
tags, add]
&
GET add:[public, apikey, description, title, add, referer, url, tags, api]

3) Del.icio.us and Hbookmark
possible match with MAX-FLOW of: 100.0
GET set: [bundles, tags, bundle, v1, tags, set]
&
GET tags:[page, user, rpp, tags, api, cb]

4) Del.icio.us and Diigo
possible match with MAX-FLOW of: 70.0
GET add: [shared, v1, url, extended, replace, posts, description, dt,
tags, add]
&
POST bookmarks:[bookmarks, title, shared, desc, readLater, v2, api,
url, tags]

possible match with MAX-FLOW of: 28.0
GET recent: [v1, count, posts, recent, tag]
&
GET bookmarks:[user, bookmarks, sort, count, v2, list, api, filter, tags,
start]

5) Diigo and Hbookmark
possible match with MAX-FLOW of: 214.0
GET bookmarks: [user, v2, sort, bookmarks, api, count, list, filter, tags,
start]
&
GET bookmarks:[page, user, rpp, bookmarks, cb, api]

6) Zootool and Hbookmark
possible match with MAX-FLOW of: 90.0
GET add: [public, apikey, description, title, referer, api, url, tags, add]
&
GET tagged:[tag, page, user, rpp, tagged, api, cb]

possible match with MAX-FLOW of: 74.0
GET followers: [apikey, search, limit, followers, username, offset, api,
users]
&
GET search:[q, page, user, rpp, search, api, cb]

possible match with MAX-FLOW of: 74.0
GET items: [apikey, tag, username, limit, offset, items, api, users,
login]
&
GET tags:[page, user, tags, rpp, api, cb]

Table III
EVALUATION OF THE SFM METHOD. THE PRECISION AND RECALL OF

THE SFM METHOD IS REPORTED FOR EVERY PAIRS OF APIS

CONCLUDING WITH AN AVERAGE/TOTAL PRECISION AND RECALL AT

THE LAST ROW.

APIs precision recall
Diigo and Zootool 1 1
Del.icio.us and Zootool 1 .33
Del.icio.us and Hbookmark 1 .5
Del.icio.us and Diigo 1 1
Diigo and Hbookmark 1 1
Zootool and Hbookmark .33 1
TOTAL .88±.25 .80±.28

 123

[8] C. Pahl, “An ontology for software component matching,” Int.
J. Softw. Tools Technol. Transf., vol. 9, pp. 169–178, March
2007. [Online]. Available: http://portal.acm.org/citation.cfm?
id=1230649.1230650

[9] E. Stroulia and Y. Wang, “Structural and semantic matching
for assessing web-service similarity,” International Journal of
Cooperative Information Systems, vol. 14, pp. 407–437, 2005.

[10] M. Fokaefs, R. Mikhaiel, N. Tsantalis, and E. Stroulia, “An
empirical study on web service evolution,” in Proceedings
of the IEEE International Conference on Web Services 2011
(ICWS 2011), Washington, DC, USA, October 2011.

[11] D. Kehagias, A. G. Castro, D. Tzovaras, and D. Giakoumis,
“A semantic web service alignment tool.” in International
Semantic Web Conference, 2008.

[12] A. He and N. Kushmerick, “Learning to attach semantic
metadata to web services,” in The Semantic Web - ISWC 2003,
ser. Lecture Notes in Computer Science, D. Fensel, K. Sycara,
and J. Mylopoulos, Eds. Springer Berlin / Heidelberg, 2003,
vol. 2870, pp. 258–273.

[13] W. Abramowicz, K. Haniewicz, M. Kaczmarek, and
D. Zyskowski, “Architecture for web services filtering and
clustering,” in Internet and Web Applications and Services
(ICIW), May 2007, p. 18.

[14] Y. Hao and Y. Zhang, “Web services discovery based on
schema matching,” in Proceedings of the thirtieth Aus-
tralasian conference on Computer science - Volume 62, ser.
ACSC ’07. Darlinghurst, Australia, Australia: Australian
Computer Society, Inc., 2007, pp. 107–113.

[15] J. Kopecký, K. Gomadam, and T. Vitvar, “hrests: An html
microformat for describing restful web services,” in Web
Intelligence. IEEE, 2008, pp. 619–625.

[16] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful web
services vs. ”big”’ web services: making the right architec-
tural decision,” in WWW, J. Huai, R. Chen, H.-W. Hon, Y. Liu,
W.-Y. Ma, A. Tomkins, and X. Zhang, Eds. ACM, 2008,
pp. 805–814.

[17] J. Lathem, K. Gomadam, and A. P. Sheth, “Sa-rest and
(s)mashups : Adding semantics to restful services,” in ICSC.
IEEE Computer Society, 2007, pp. 469–476.

[18] Wikipedia, “Representational state transfer — Wikipedia,
the free encyclopedia,” 2010. [Online]. Available: \url{http:
//en.wikipedia.org/wiki/Representational State Transfer}

[19] ——, “Web service — Wikipedia, the free encyclopedia,”
2010. [Online]. Available: \url{http://en.wikipedia.org/wiki/
Web service}

[20] ——, “Web application description language —
Wikipedia, the free encyclopedia,” 2010. [On-
line]. Available: \url{http://en.wikipedia.org/wiki/Web
Application Description Language}

[21] M. Hadley, “Introducing wadl,” http://weblogs.java.net/blog/
mhadley/archive/2005/05/introducing wad.html, May 2005.

[22] T. Steiner, “Automatic multi language program library gener-
ation for rest apis,” Master’s thesis, University of Karlsruhe /
cole Nationale Suprieure d’Informatique et de Mathmatiques
Appliques de Grenoble, July 2007.

[23] M. F. Porter, “An Algorithm for Suffix Stripping,” Program,
vol. 14, no. 3, pp. 130–137, 1980.

[24] C. Fellbaum, Ed., WordNet: An Electronic Lexical Database
(Language, Speech, and Communication), illustrated edi-
tion ed. The MIT Press, May 1998.

[25] J. Edmonds and R. M. Karp, “Theoretical improvements in
algorithmic efficiency for network flow problems,” J. ACM,
vol. 19, pp. 248–264, April 1972.

[26] J. O’Madadhain, D. Fisher, S. White, and Y. Boey, “Automatic
multi language program library generation for rest apis,”
UCI-ICS, Tech. Rep., Oct. 2003. [Online]. Available:
http://www.datalab.uci.edu/papers/JUNG\ tech\ report.html

[27] Wikipedia, “Fordfulkerson algorithm — Wikipedia, the
free encyclopedia,” 2010. [Online]. Available: \url{http:
//en.wikipedia.org/wiki/FordFulkerson algorithm}

[28] “Del.icio.us api,” http://www.delicious.com/help/api.

[29] “Diigo api,” http://www.diigo.com/tools/api.

[30] “Hbookmark api,” http://groups.google.com/group/
hbookmark/.

[31] “Zootool api,” http://zootool.com/api/docs/general.

 124

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

