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Abstract

There has been much recent research on identifying global
community structure in networks. However, most existing
approaches require complete information of the graph in
question, which is impractical for some networks, e.g. the
World Wide Web (WWW). Algorithms for local community
detection have been proposed but their results usually con-
tain many outliers. In this paper, we propose a new measure
of local community structure, coupled with a two-phase
algorithm that extracts all possible candidates first, and
then optimizes the community hierarchy. We compare our
results with previous methods on real world networks such as
the co-purchase network from Amazon. Experimental results
verify the feasibility and effectiveness of our approach.

1. Introduction

Many datasets can be represented as networks composed
of vertices and edges, including the World Wide Web
(WWW), organization structures [1], academic collaboration
records [2], [3] and even political elections [4]. A commu-
nity in the network can be seen as a subgraph such that
the density of edges within the subgraph is greater than the
density of edges between its nodes and nodes outside it [5].
The ability to identify communities could be of significant
practical importance. For example, groups of web pages that
link to more web pages in the community than to pages
outside might correspond to sets of web pages on related
topics; this can enable search engines and portals to increase
the precision and recall of search results by focusing on
narrow but topically-related subsets of the web [6].

The problem of finding communities in social networks
has been studied for decades. Recently, several quality
metrics for community structure have been proposed [7], [8],
[9]. However, most of those approaches require knowledge
of the entire graph structure. This constraint is problematic
for networks which are either too large or too dynamic
to know completely, e.g., the WWW. In spite of these
limitations, finding local community structure would stillbe
useful, albeit constrained by the small volume of accessible
information about the network in question. For example,
we might like to quantify the local communities of either

a particular webpage given its link structure in the WWW,
or a person given his social network in Facebook.

Several techniques [10], [11], [12], [13] have been pro-
posed to identify local community structure given limited
information about network. However, parameters that are
hard to obtain are usually required. Moreover, communities
discovered by these algorithms include many outliers and
thus suffer from low accuracy. In this paper, we propose
a new metric, which we callL, to evaluate the local
community structure for networks in which we lack global
information. We then define a two-phase algorithm based on
L to find the local community of given starting nodes, and
compare our algorithm’s performance with previous methods
on several real world networks. In contrast to existing
approaches, our metricL is robust against outliers. The
proposed algorithm not only discovers local communities
without an arbitrary threshold, but also determines whether
a local community exists or not for certain nodes.

The rest of the paper is organized as follows. Section
2 defines the problem and reviews existing solutions. We
describe our approach in Section 3 and report experimental
results in Section 4, followed by conclusions in Section 5.

2. Preliminaries

Here we first define the problem of finding local com-
munities in a network, then focus our efforts on reviewing
existing algorithms.

2.1. Problem Definition

As mentioned in the introduction, local communities
are densely-connected node sets that are discovered and
evaluated based only on local information. Suppose that in
an undirected networkG (directed networks are typically
first transformed to undirected ones), we start with perfect
knowledge of the connectivity of some set of nodes, i.e.,
the known local portion of the graph, which we denote
as D. This necessarily implies that we also have limited
information for another shell node setS, which contains
nodes that are adjacent to nodes inD but do not belong
to D (note “limited” means that the complete connectivity
information of any node inS is unknown). In such circum-
stances, the only way to gain additional information about
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Figure 1. Local Community Definition

the networkG is to visit some neighbour nodessi of D

(where si ∈ S) and obtain a list of adjacencies ofsi. As
a result,si is removed fromS and becomes a member of
D while additional nodes may be added toS as neighbours
of si. This typical one-node-at-one-step discovery process
for local community detection is analogous to the method
that is used by web crawling systems to explore the WWW.
Furthermore, we define two subsets ofD: the core node set
C, where any nodeci ∈ C have no outward links, i.e., all
neighbours ofci belong toD; and the boundary node set
B, where any nodebi ∈ B has at least one neighbour in
S. Figure 1 shows node setsD, S, C andB in a network.
Similar problem settings can be found in [10], [11], [12],
[13], however, the metrics used to discover and evaluate
the local community are different, as explained in the next
section.

2.2. Previous Approaches

Clauset has proposed the local modularity measureR [12]
for the local community detection problem.R focuses on the
boundary node setB to evaluate the quality of the discovered
local communityD.

R =
Bin edge

Bout edge + Bin edge

(1)

whereBin edge is the number of edges that connect bound-
ary nodes and other nodes inD, while Bout edge is the
number of edges that connect boundary nodes and nodes
in S. In other words,R measures the fraction of those
“inside-community” edges in all edges with one or more
endpoints inB. Therefore, the communityD is measured
by the ”sharpness” of the boundary given byB.

Similarly, Luo et al. later proposed the measure called
modularityM [13] for local community evaluation. Instead
of measuring the internal edge fraction of boundary nodes,
they directly compare the ratio of internal and external
edges.

M =
number of internal edges

number of external edges
(2)

where “internal” means two endpoints are both inD and
“external” means only one of them belongs toD. An arbi-

trary threshold is set forM so that only node sets that have
M ≥ 1 are considered to be qualified local communities.
M is strongly related toR. Consider a candidate node set
D where every node inD has external neighbours, thus
we have|C| = 0 and B = D, which meansBin edge =
internal edges and Bout edge = external edges. The
thresholdM ≥ 1 is equivalent toR ≥ 0.5. It is straight-
forward to identify local communities with theR or M

metric. Given a starting setD, in every step we merge the
node intoD from S which most increases the metric score,
and then updateD, B andS. This process is repeated until
all nodes inS give negative value if merged inD, i.e.,
∆R < 0 or ∆M < 0.
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Figure 2. Problem of Previous Approaches

Indeed algorithms using these metrics are able to detect
interesting communities in complex networks, however, their
results usually include many outliers, i.e., the discovered
communities have high recall but low accuracy, which
reduces the overall community quality. Figure 2 illustrates
the problem forR and M . In the figure, we have a local
communityD, its boundaryB and nodesO1, ..., O11, which
are outliers since they are barely related to nodes inD.
Without loss of generality, let us assume that all nodes in
S, exceptO1 and O9, will decrease the metric score if
included in D. Now if we try to greedily maximize the
metric R or M , all outliers (O1 to O8 and O9 to O11)
will be merged intoD, one by one. The reason is that
every merge of nodeOi does not affect the external edge
number but will increase the internal edge number by one.
Similarly, the algorithm would merge any node intoD as
long as it connects to the same number of nodes inside and
outside the local community node set. Therefore, in addition
to actual members, the resulting community would contain
many weak-linked outliers, whose number can be huge for
some networks, e.g., the WWW.

Bagrow et al. proposed an alternative method to detect
local communities [11], which spreads al-shell outward
from the starting noden, where l is the distance from
n to all shell nodes. The performance of their approach
highly depends on the parameterl and the starting node



because the result communities could be very different if
the algorithm starts from border nodes instead of cores.
The authors later proposed the “outwardness” metricΩ [10]
to measure local structure, however, their method lacks an
appropriate stopping criteria and thus still relies on arbitrary
thresholds.

3. Our Approach

Existing approaches discussed in Section 2 are relatively
simple: an effective local community detection method
should be simple, not only because the accessible informa-
tion of the network is restricted to merely a small portion
of the whole graph, but also because the only means to
incorporate more information about the structure is by
expanding the community, by one node at one step. With
these limitations in mind, we present ourL metric and the
local community discovery algorithm.

3.1. The Local Community Metric L

Intuitively, there are two factors one may consider to
determine whether a node set in the network is a community
or not: 1) high value node relations within the set, and 2)
low value relations between inside nodes and the rest of
the graph. Therefore, almost all existing metrics directly
use the internal and external degrees to represent these two
significant factors, and identify local communities by max-
imizing the former while minimizing the latter. However,
their community results might include many outliers and
the overall community quality is questionable (See Section
2.2 and Section 4.1 for examples). The important missing
aspect in these metrics is theconnection density, because
is not the absolute number of connections that matters in
community structure evaluation. For instance, even if there
are one million edges within one node setN and no outward
links at all, it is not sensible to identifyN as a strong
community if every node inN connects only one or two
neighbours. We therefore propose to measure the community
internal relationLin by the average internal degree of nodes
in D:

Lin =

∑
i∈D IKi

|D|
(3)

whereIKi is the number of edges between nodei and nodes
in D. Similarly, we measure the community external relation
Lex by the average external degree of nodes inB:

Lex =

∑
j∈B EKj

|B|
(4)

where EKj is the number of connections between node
j and nodes inS. Note thatLex only considers boundary
nodes instead of the whole communityD, i.e., the core nodes
are not included since they do not contribute any outward

connections. Now we want to maximizeLin and minimize
Lex at the same time. Fortunately, this can be achieved by
maximizing the following ratio:

L =
Lin

Lex

(5)

Note that it is possible to quantify the densityLex by other
means, e.g., by using the average number of connections
from the shell nodes to community nodes to measureLex.
However, this method fails for the local community identi-
fication problem because the shell set is usually incomplete.
For example, while the friend list of userA is available in
Facebook, the list of the users that chooseA as a friend is
hard to obtain.

3.2. Local Community Structure Discovery

Using L to evaluate the community structure, one can
identify a local community by greedily maximizingL and
stopping when there are no remaining nodes inS that
increasesL if merged inD. However, this straight-forward
method is not robust enough against outliers. Take Figure 2
as an example. AlthoughLin for O1 would decrease because
O1 only connects to one node inD, the overallL might
increase because the denominatorLex decreases as well (O1

only connects to one node outsideD). Therefore, it is still
possible to include outlierO1 in the community. To deal
with this problem, we look further into the metric instead of
simply maximizing the score in a greedy manner. We note
there are three situations in which we have an increasingL

score. Assumei is the node in question andL′
in, L′

ex and
L′ are corresponding scores if we mergei into D, the three
cases that will probably result inL′ > L are:

1) L′
in > Lin andL′

ex < Lex

2) L′
in < Lin andL′

ex < Lex

3) L′
in > Lin andL′

ex > Lex

Obviously nodes in the first case belong to the community
since they strengthen the internal relation and weaken the
external relation. Nodes in the second case, e.g.,O1 in
Figure 2, are outliers. They are weakly connected to the
community as well as the rest of the graph. Finally, the
role of nodes in the third case cannot be decided yet, since
they are strongly connected to both the community and the
network outside the community. More specifically, when we
meet a nodei, which falls into this case during the local
community discovery process, there are two possibilities.
First, nodei can be the first node of an enclosing community
group that is going to be merged one by one; Second,i

connects to many nodes, inside or outside the community,
and can be referred to as a “hub.” We do not want hubs in the
local community. However, it is too early to judge whether
the incoming node is a hub or not. Therefore, we temporarily
merge nodes in the first and third cases into the community.
After all qualified nodes are included, we re-examine each



node by removing it fromD and check the metric value
change of its merge again. Now we only keep nodes in the
first case. If nodei is a member of an enclosing group,
L′

ex should decrease because all its neighbours are now in
the community as well, while hub nodes would still belong
to the third case. Finally, the starting node should still be
found in D, otherwise, we believe a local community does
not exist. (See Algorithm 1.)

Algorithm 1 Local Community Identification Algorithm
Input: A social networkG and a start noden0.
Output: A local community with its quality scoreL.
1. Discovery Phase:

Add n0 to D andB, add alln0’s neighbours toS.
do

for eachni ∈ S do
computeL′

i

end for
Find ni with the maximumL′

i, breaking ties randomly
Add ni to D if it belongs to the first or third case
Otherwise removeni from S.
UpdateB, S, C, L.

While (L′ > L)
2. Examination Phase:

for eachni ∈ D do
ComputeL′

i, keepni only when it is the first case
end for

3. If n0 ∈ D, return D, otherwise there is no local
community forn0.

The computation of eachL′
i can be done quickly using

the following expression.

L′
i =

Ind+2∗Indi

|D|+1

Outd−Indi+Outdi

|B′|

(6)

whereInd andOutd are the number of within and outward
edges ofD before mergingi, and should be updated after
each merge;Indi andOutdi are the number of edges from
nodei to the community and the rest of network;B′ is the
new boundary set after examining alli’s neighbour inD.
In the discovery phase,L′

i need to be recomputed for every
node in S to determine the one with the maximum∆L,
thus the complexity of the algorithm isO(kd|S|), wherek

is the number of nodes in theD, andd is the mean degree of
the graph. However, in networks for which local community
algorithms are applied, e.g., the WWW, and where adding
a new node toD requires the algorithm to obtain the link
structure, the running time will be dominated by this time-
consuming network information retrieval. Therefore, for real
world problems the running time of our algorithm is linear
in the size of the local community, i.e., O(k). Note that in
Algorithm 1 we begin with only one noden0, but the same

process could apply for multiple nodes to allow a larger
startingD, C, B andS.

4. Experiment Results

Since the ground truth of local communities in a large
and dynamic network is hard to define, previous research
usually apply their algorithms on real networks and analyze
the results based on common sense, e.g., visualizing the
community structure or manually evaluating the relation-
ship between disclosed entities [11], [12], [13]. Here we
adapt a different method to evaluate the discovered local
communities. We provide a social network with absolute
community ground truth to the algorithm, but limit its access
to network information to local nodes only. The only way
for the algorithm to obtain more network knowledge is
to expand the community, one node at a time. Therefore,
we can evaluate the result by its accuracy, while satisfying
limitations for local community identification. Based on our
observations, the greedy algorithm based on metricR [12]
(we refer to it as algorithmR) outperforms all other methods
for local community detection. Furthermore, similar to our
approach,R does not require any initial parameters while
other methods [10], [11], [13] rely on parameter selection.
Therefore, in this section we compare the results of our
algorithm and algorithmR on different real world networks
to show that our metricL is an improvement for local
community detection.

4.1. The NCAA Football Network

The first dataset we examine is the schedule for 787
games of the 2006 National Collegiate Athletic Association
(NCAA) Football Bowl Subdivision (also known as Division
1-A) [9]. In the NCAA network, there are 115 universities
divided into 11 conferences1. In addition, there are four
independent schools, namely Navy, Army, Notre Dame and
Temple, as well as 61 schools from lower divisions. Each
school in a conference plays more often with schools in the
same conference than schools outside. Independent schools
do not belong to any conference and play with teams in
all conferences, while lower division teams play only few
games. In our network vocabulary, this network contains
180 vertices (115 nodes as 11 communities, 4 hubs and 61
outliers), connected by 787 edges.

We provide this network as input to our algorithm and
algorithmR. Every node in a community, which represents
one of the 115 schools in an official conference, has been
taken as the start node for both algorithms. Based on the
ground truth posted online, theprecision, recall and f-
measurescore, which is defined as the harmonic mean of

1. The ground truth of communities (conferences) can be found at
http://sports.espn.go.com/ncf/standings?stat=index&year=2006



2006 NCAA League
Algorithm Results

Greedy AlgorithmR using metric R Our Algorithm using metric L
Conference Size Precision Recall F-measure No Community Precision Recall F-measure

Mountain West 9 0.505 0.728 0.588 0 node 0.944 1 0.963
Mid-American 12 0.392 0.570 0.463 1 nodes 0.923 1 0.96
Southeastern 12 0.331 0.541 0.410 3 nodes 1 1 1

Sun Belt 8 0.544 0.891 0.675 3 nodes 1 1 1
Western Athletic 9 0.421 0.716 0.510 4 nodes 0.6 1 0.733

Pacific-10 10 0.714 1 0.833 0 nodes 1 1 1
Big Ten 11 0.55 1 0.710 9 nodes 0.729 1 0.814
Big East 8 0.414 0.781 0.534 5 nodes 1 1 1

Atlantic Coast 12 0.524 0.924 0.668 3 nodes 1 1 1
Conference USA 12 0.661 1 0.796 1 nodes 1 1 1

Big 12 12 0.317 0.465 0.355 5 nodes 1 1 1
Total 115 0.488 0.783 0.595 34 nodes (29.6%) 0.927 1 0.952

Table 1. Algorithm Accuracy Comparison for the NCAA Network (Precision, Recall and F-measure score are all
average values for all nodes in the community).

precision and recall, of all the discovered local communities
are calculated. We average the score for all schools in one
conference to evaluate the accuracy of the algorithm to
detect that particular community. Finally, an overall average
score of the precision, recall and f-measure score of all
communities is calculated for comparison.

The experiment results are shown in Table 1. We first note
the disadvantage of metricR we reviewed theoretically in
Section 2.2, which is vulnerability against outliers, has been
confirmed by the results: for all communities, Algorithm
R gets a higher recall but a much lower precision, which
eventually leads to an unsatisfactory f-measure score. On
the other hand, the accuracy of our algorithm is almost
perfect, with a 0.952 f-measure score on average. Second,
we see that our algorithm does not return local communities
if starting with certain nodes in the network, namely 34
of the 115 schools representing 29.6%. (Note that in these
cases the local community is considered not existent and
is not included in the average accuracy calculation even
though the starting nodes are not outliers.) However, this
result actually shows merit of our approach instead of weak
points. Generally speaking, in one local community, nodes
can be classified into cores and peripheries. It would be
easier for an algorithm to identify the local community if
it began from cores rather than peripheries. For example, if
the algorithm starts from a periphery nodei in community
c, the expansion step might fall into a different neighbour
community d, which has some members connecting toi,
due to lack of local information. It would be more and
more difficult to return toc as the algorithm proceeds,
because members ofd are usually taken in one after another
and finally, the discovered local community would bed

plus nodei, instead ofc. Fortunately, our algorithm detects

such phenomena in the examination phase sincei will be
found as an outlier tod. Therefore we do not return the
result as a local community fori since we realize that it is
misdirected in the beginning. As a possible solution for this
problem, we can always start with multiple nodes, by which
we provide more local information to avoid the possible
misdirection. Note that while our algorithm handles such
situations, algorithmR returns communities for every node
without considering this problem, which is one reason for
its low accuracy. Also note that another approach [13] has a
similar “deletion step”, however, that approach depends on
arbitrarily selected thresholds.

4.2. The Amazon Co-purchase Network

While mid-size networks with ground truth provide a
well-controlled testbed for evaluation, it is also desirable
to test the performance of our algorithm on large real
world networks. However, since ground truth of such large
networks is elusive, we have to justify the results by common
sense. We applied our algorithm and algorithmR to the rec-
ommendation network of Amazon.com, collected in January
2006 [13]. The nodes in the network are items such as books,
CDs and DVDs sold on the website. Edges connect items
that are frequently purchased together, as indicated by the
“customers who bought this book also bought these items”
feature on Amazon. There are 585,283 nodes and 3,448,754
undirected edges in this network with a mean degree of 5.89.
Similar datasets have been used for testing in previous works
[14], [13].

Due to lack of space, here we only present discovered
local communities for one popular book (The Lord of the
Rings (LOR)by J.R.R. Tolkien), which is used as the starting



Alg. Items (Books) in the Local Community

Both

Smith of Wootton Major∗

LoR: A Reader’s Companion#

LoR: 50th Anniversary, One Vol. Edition∗

(The starting node) LoR [BOX SET]∗

L

On Tolkien: Interviews, ... and Other Essays#

Tolkien Studies: ... Scholarly Review, Vol. 2#

Tolkien Studies: ... Scholarly Review, Vol. 1#

... Grammar of an Elvish Language from LoR#

J.R.R. Tolkien Companion and Guide#

The Rise of Tolkienian Fantasy#

... Celtic And Norse in Tolkien’s Middle-Earth#

R

Farmer Giles of Ham & Other Stories∗

... Farmer Giles of Ham∗

Roverandom∗

Letters from Father Christmas, Revised Edition∗

Bilbo’s Last Song∗

... Wonderful Adventures of Farmer Giles∗

Poems from The Hobbit∗

Father Christmas Letters Mini-Book∗

Tolkien: The Hobbit Calendar 2006∗

Table 2. Algorithm Comparison for the Amazon
Network. ∗ indicates the author is J.R.R. Tolkien while

# is not.

node. The results are shown in Table 2. While both algo-
rithms find interesting communities, our algorithm detects
books by authors other than Tolkien but are strongly related
to the topic. On the other hand, more than 90% of the books
in R’s community are written by Tolkien. Moreover, after
reading the reviews and descriptions on Amazon, we found
that many of the books are for children, e.g,Letters from
Father Christmas. These books are not related to dragons
and magic, but are included in the community because they
weakly connect to the starting node since they share the
same author, as we discussed in Section 2.2.

5. Conclusions

We have reviewed problems of existing methods for
constructing local communities, and propose a new metric
L to evaluate local community structure when the global
information of the network is unavailable. Based on the
metric, we develop a two-phase algorithm to identify the
local community of a set of given starting nodes. Our
method does not require arbitrary initial parameters, and
it can detect whether a local community exists or not for
a particular node. We have tested our algorithm on real
world networks and compared its performance with previous
approaches. Experimental results confirm the accuracy and
the effectiveness of our metric and algorithm.

6. Acknowledgments

Our work is supported by the Canadian Natural Sciences
and Engineering Research Council (NSERC), by the Al-
berta Ingenuity Centre for Machine Learning (AICML), and
by the Alberta Informatics Circle of Research Excellence
(iCORE). We wish to thank Eric Promislow for providing
the Amazon data and Xiaowei Xu for the NCAA data.

References

[1] J. R. Tyler, D. M. Wilkinson, and B. A. Huberman, “Email
as spectroscopy: automated discovery of community structure
within organizations,”Communities and technologies, pp. 81–
96, 2003.

[2] M. A. Nascimento, Jörg Sander, and J. Pound, “Analysis of
sigmod’s co-authorship graph,”SIGMOD Record, vol. 32,
no. 2, pp. 57–58, 2003.

[3] A. F. Smeaton, G. Keogh, C. Gurrin, K. McDonald, and
T. Sodring, “Analysis of papers from twenty-five years of sigir
conferences: What have we been doing for the last quarter of
a century,”SIGIR Forum, vol. 36, no. 2, pp. 39–43, 2002.

[4] L. A. Adamic and N. Glance, “The political blogosphere and
the 2004 u.s. election: divided they blog,” inLinkKDD ’05,
2005, pp. 36–43.

[5] S. Gregory, “An algorithm to find overlapping community
structure in networks,” inPKDD, 2007, pp. 91–102.

[6] G. W. Flake, S. Lawrence, and C. L. Giles, “Efficient identi-
fication of web communities,” inKDD, 2000, pp. 150–160.

[7] M. E. J. Newman, “Fast algorithm for detecting community
structure in networks,”Physical Review E, vol. 69, 2004.

[8] M. E. J. Newman and M. Girvan, “Finding and evaluating
community structure in networks,”Physical Review E, vol. 69,
2004.

[9] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger, “Scan: a
structural clustering algorithm for networks,” inKDD, 2007,
pp. 824–833.

[10] J. P. Bagrow, “Evaluating local community methods in net-
works,” J.STAT.MECH., p. P05001, 2008.

[11] J. P. Bagrow and E. M. Bollt, “Local method for detecting
communities,”Physical Review E, vol. 72, no. 4, 2005.

[12] A. Clauset, “Finding local community structure in networks,”
Physical Review E, vol. 72, p. 026132, 2005.

[13] F. Luo, J. Z. Wang, and E. Promislow, “Exploring local com-
munity structures in large networks,” inWI ’06: Proceedings
of the 2006 IEEE/WIC/ACM International Conference on Web
Intelligence, 2006, pp. 233–239.

[14] A. Clauset, M. E. J. Newman, and C. Moore, “Finding
community structure in very lage networks,”Phys. Rev. E,
vol. 70, p. 066111, 2004.


