Finding All Frequent Patterns Starting from the
Closure*

Mohammad El-Hajj and Osmar R. Zaiane

Department of Computing Science,
University of Alberta, Edmonton AB, Canada
{mohammad, zaiane}@cs.ualberta.ca

Abstract. Efficient discovery of frequent patterns from large databases
is an active research area in data mining with broad applications in in-
dustry and deep implications in many areas of data mining. Although
many efficient frequent-pattern mining techniques have been developed
in the last decade, most of them assume relatively small databases, leav-
ing extremely large but realistic datasets out of reach. A practical and
appealing direction is to mine for closed itemsets. These are subsets of
all frequent patterns but good representatives since they eliminate what
is known as redundant patterns. In this paper we introduce an algo-
rithm to discover closed frequent patterns efficiently in extremely large
datasets. Our implementation shows that our approach outperforms sim-
ilar state-of-the-art algorithms when mining extremely large datasets by
at least one order of magnitude in terms of both execution time and
memory usage.

1 Introduction

Discovering frequent patterns is a fundamental problem in data mining. Many
efficient algorithms have been published on this problem in the last 10 years.
Most of the existing methods operate on databases made of comparatively small
database sizes. Given different small datasets with different characteristics, it is
difficult to say which approach would be a winner. Moreover, on the same dataset
with different support thresholds different winners could be proclaimed. Differ-
ence in performance becomes clear only when dealing with very large datasets.
Novel algorithms, otherwise victorious with small and medium datasets, can per-
form poorly with extremely large datasets. The question that we ask in this work
is whether it is possible to mine efficiently for frequent itemsets in extremely large
transactional databases, databases in the order of millions of transactions and
thousands of items such as those for big stores and companies similar to Wal-
Mart, UPS, etc. With the billions of radio-frequency identification chips (RFID)
expected to be used to track and access every single product sold in the mar-
ket, the sizes of transactional databases will be overwhelming even to current

* This research is partially supported by a research grant from the National Sciences
and Engineering Research Council of Canada.

X. Li, S. Wang, and Z.Y. Dong (Eds.): ADMA 2004, LNAI 3584, pp. 67-74, 2005.
© Springer-Verlag Berlin Heidelberg 2005

68 M. El-Hajj and O.R. Zalane

state-of-the-art algorithms. There is obviously a chasm between what we can
mine today and what needs to be mined. It is true that new attempts toward
solving such problems are made by finding the set of frequent closed itemsets
(FCI) [6,7,8]. A frequent itemset X is closed if and only if there is no X’ such
that X C X’ and the support of X equals to the support of X’.

Finding only the closed item patterns reduces dramatically the size of the
results set without loosing relevant information. Closed itemsets reduce indeed
the redundancy already in the set of frequent itemsets. From the closed itemsets
one can derive all frequent itemsets and their counts. Directly discovering or
enumerating closed itemsets can lead to huge time saving during the mining
process.

While there are myriad algorithms to discover the closed patterns, their per-
formances are indistinguishable for small and medium size databases. Experi-
mental results are typically reported with few hundred thousand transactions. A
recent study [9] showns that with real datasets, Apriori, the oldest algorithm for
mining frequent itemsets, outperforms the newer approaches. Moreover, when
results are discovered in few seconds, performance becomes almost irrelevant.
The problem of performance becomes a real issue when the size of the database
increases significantly (in the order of millions of transactions) or when the di-
mensionality of the problem increases (i.e. the number of distinct items in the
database).

We present in this paper a new algorithm for discovering closed frequent
itemsets, and report on a study illustrating the importance of such algorithm
when mining very large databases.

The remainder of this paper is organized as follows: To put our algorithm in
the context, we explain our new traversal approach in Section 2. Since we adopt
some data-structures from the literature, FP-tree and COFI-trees, we briefly de-
scribe them in Section 3 where the new COFI-closed algorithm is also explained
with illustrative examples. Section 4 depicts the performance evaluation of this
new algorithm comparing it with existing state-of-the-art algorithms in particu-
lar for its speed, scalability, and memory usage on dense and sparse data. Section
5 concludes and highlights our observations.

2 Leap-Traversal Approach

In this paper we introduce a new leap-traversal approach that looks ahead at
the nature of the transactional database, and suggests a set of patterns from
different sizes to test where the frequent patterns (all, closed, or maximals) are
subset of this suggested set. To illustrate the traversal, we take the case of closed
itemsets. Step one of this approach is to look at the nature of the distribution of
frequent items in the transactional database. Figure 1.A presents a transactional
database where we can see that there are only 4 distributions of frequent items.
Indeed, {A, B, C, D, E, F, G, H, I} occurs 3 times, we call this as branch-
support of 3; {A, B, C, D, E, J, K, L} occurs also 3 times; {A, F, G, H, I}
occurs twice; and {A, J, K, L} also occurs twice. We call each one of these

Finding All Frequent Patterns Starting from the Closure 69

AIBICIDIEIFIGIHIM| | @ .
A|B[C|D|E|F|G|[H|M 5 L 2| & | Candidate | §
ABICIDIE[FIGIH[M] |g| """ 3|8 | patems |7
A[B|C|D[E|J |K]|L 2|7

A|B[CID|E|J |K|L 1 [A[B[C[D[E[F[G[H]I] 3 [1n2[A[B[C[D[E[6 ¥
AlBI|CIDIE[J KL 2 [a[B[c[o[e[J[k[L] | 3]1n3]a 10V
AlJ KL 3 [AalJ]K[L 2 [1na[A[F[a[H] 1[5V
AlJ [KIL 4 |a[F[e[H]1] 2 [23[al k][] |5+
AlF[G[H]I] 10
AlF[GH]] Sret 10

(A) (B)

Fig. 1. (A): transactional database. (B): Steps needed to generate closed patterns using
the leap-traversal approach (4/ indicates a discovered closed pattern. Barred entries are
the eliminated candidates)

patterns a frequent-path-base. Step 2 of this process intersects each one of these
patterns with all other frequent-path-bases to get a set of potential candidates.
Step 3 counts the support of each one of the generated patterns. The support of
each one of them is the summation of supports of all its supersets of frequent-
path-base patterns. Step 4 scans these patterns to remove non-frequent ones or
frequent ones that already have a frequent superset with the same support. The
remaining patterns can be declared as closed patterns. Figure 1.B illustrates the
steps needed to generate the closed patterns of our example from Figure 1.A.
The major goals of this approach are the followings: 1. Avoid the redundancy of
testing patterns either from size 1 until patterns of size k, where k is the size of
the longest frequent pattern or from patterns of size n until patterns of size k,
where n is the size of the longest candidate pattern. 2. We only check the longest
potential patterns that already exist in the transactional database, even if they
are of different lengths. From Figure 1.A we can find that there is no need to
test patterns such as ABJ or AFC since they never occur in the transactional
database. We also do not need to test patterns such as AB since they never occur
alone without any other frequent items in the transactional databases.

The main question in this approach is whether we could efficiently find the
frequent-path-bases. The answer is yes, by using the FP-tree [4] structure to
compress the database and to avoid multiple scans of the databases and COFI-
trees [2] to partition the sub-transactions as we wish to do, to generate the
frequent-path-bases as illustrate in the next section.

3 FP-Tree and COFI-Trees

The well-known FP-tree [4] data-structure is a prefix tree. The data structure
presents the complete set of frequent itemsets in a compressed fashion. The
construction of FP-Tree requires two full I/O scans. The first scan generates
the frequent 1-itemsets. In the second scan, non-frequent items are stripped off
the transactions and the sub-transactions with frequent ones are ordered based
on their support, forming the paths of the tree. Sub-transactions that share the
same prefix share the same portion of the path starting from the root. The FP-

70 M. El-Hajj and O.R. Zalane

tree has also a header table containing frequent items and holds the head link
for each item in the FP-tree, connecting nodes of the same item to facilitate the
item traversal during the mining process [4].

A COFI-tree [2] is a projection of each frequent item in the FP-tree. Each
COFT-tree, for a given frequent item, presents the co-occurrence of this item with
other frequent items that have more support than it. In other words, if we have
4 frequent items A, B, C, D where A has the smallest support, and D has the
highest, then the COFI-tree for A presents co-occurrence of item A with respect
to B, C and D, the COFI-tree for B presents item B with C and D. COFI-tree
for C presents item C with D. Finally, the COFI-tree for D is a root node tree.
Each node in the COFI-tree has two main variables, support and participation.
Participation indicates the number of patterns the node has participated in at
a given time during the mining step. Based on the difference between these
two variables, participation and support, frequent-path-bases are generated. The
COFT-tree has also a header table that contains all locally frequent items with
respect to the root item of the COFI-tree. Each entry in this table holds the
local support, and a link to connect its item with its first occurrences in the
COFT-tree. A link list is also maintained between nodes that hold the same item
to facilitate the mining procedure.

3.1 COFI-Closed Algorithm

The COFI-Closed algorithm is explained by a running example. The transac-
tional database in Figure 2. A needs to be mined using a support greater or
equal to 3. The first step is to build the FP-tree data-structure in Figure 2.B.
This FP-tree data structure reveals that we have 8 frequent 1-itemsets. These
are (A:10, B:8, C:7, D:7, E:7, F:6, G:5, H:3). COFI-trees are built after that, one
at a time starting from the COFI-tree of the frequent item with lowest support,
which is H. Since, in the order imposed, no other COFI-tree has item H then
any closed pattern generated from this tree is considered globally closed. This
COF1I-tree generates the first closed pattern HA: 3. After that, H-COFI-tree is

o[~ [®[T

ERERERREL
REELEEE

ot

>[>[>[=[=[=][=][=][=][>=][o

RE

@[T

Fig. 2. (A) A Transactional database. (B) FP-Tree built from (A). (C) G-COFI-tree
pointers from header tables are not presented

Finding All Frequent Patterns Starting from the Closure 71

discarded and G-COFI-tree, in Figure 2.C, is built and it generates (GABCD:3,
GABC:4, GAE:3, GAD:4, and GA:5), a detailed explanation of the steps in gen-
erating these frequent patterns are described later in this section. F-COFI-tree
is created next and it generates all its closed patterns using the same method
explained later.

Mining a COFT tree starts by finding the frequent-path-bases. As an example,
we will mine the G-COFI-tree in Figure 2.C for closed patterns. We start from
the most globally frequent item, which is A, and then traverse all the A nodes.
If the support is greater than participation, the third counter on the node, then
the complete path from this node to the COFI-root is built with branch-support
equals to the difference between the support and participation of that node.
All values of participation for all nodes in these paths are updated with the
participation of the original node A. Frequent-path-bases (A, B, C, D: 2), (A,
B, C, E: 1), (A, D, E: 1), and (A, B, C, D, E: 1) are generated from this tree.
From these bases we create a special data structure called Ordered-Partitioning-
Bases (OPB). The goal of this data structure is to partition the patterns by
their length. Patterns with the same length are grouped together. This, on one
hand allows dealing with patterns of arbitrary length, and on the other hand
allows traversing the pattern space from the longest ones to the shortest ones
and directly prunes the short ones if a frequent superset with same support is
discovered as a candidate closed pattern.

This OPB structure is an array of pointers that has a size equal to the length
of the largest frequent-path-base. Each entry in this array connects all frequent-
path-bases of the same size. The first entry links all frequent-path-bases of size 1,
the second one refers to all frequent-path-bases of size 2, the nt® one points to
all frequent-path-bases of size n. Each node of the connected link list is made of
4 variables which are: the pattern, a pointer to the next node, and two number
variables that represent the support and branch-support of this pattern. The
support reports the number of times this pattern occurs in the database. The
branch-support records the number of times this pattern occurs alone without
other frequent items, i.e. not part of any other superset of frequent patterns.
This branch-support is used to identify the frequent-path-bases from non-frequent-
path-bases as non-frequent-path-bases have branch-support equal to 0, while a
frequent-path-base has branch-support equal to the number of times this pattern
occurs independently. The branch-support is also used to count the support of
any pattern in the OPB. The support of any pattern is the summation of the
branch-supports of all its supersets of frequent-path-bases. For example, to find
the support for pattern X that has a length of k, all what we need to do is to
scan the OPB from k + 1 to n where n is the size of OPB, and sum the branch-
supports of all supersets of X that do not have a branch-support equal to 0, i.e.
the frequent-path-bases. The superset of X, as explained before are easily found
using the prime codes.

In our example above, the first step is to build the OPB structure. The first
pointer of this OPB structure points to 5 nodes which are (A, 5, 0), (B, 4, 0), (C,
4, 0), (D, 4, 0), and (E, 3, 0) which can be taken from the local frequent array

72 M. El-Hajj and O.R. Zalane

of the G-COFI-tree (Figure 2.C). The first number after the pattern presents
the support while the second number presents the branch-support. The Second
entry in this array points to all frequent-path-bases of size two. A null pointer
is being linked to this node since no frequent-path-bases of size two are created.
The third pointer points to one node which is (ADE, 1,1), the fourth points to
(ABCD: 2: 2) and (ABCE: 1, 1), the fifth and last points to (ABCDE: 1:1). The
leap-traversal approach is applied in the second step on the 4 frequent-path-bases,
which are (ABCDE: 1: 1, ABCD:2 :2, ABCE: 2: 1, and ADE: 2: 1). Intersecting
ABCDE with ABCD gives ABCD, which already exists, so nothing needs to be
done. Same occurs when interesting ABCDE with ABCE. Intersecting ABCDE
with ADE gives back ADE, which also already exists. Intersecting ABCD with
ABCE gives ABC. ABC is a new node of size three. It is added to the OPB data
structure and linked from the third pointer as it has a pattern size of 3. The
support and the branch-support of this node equal 0. Branch-support equals 0
indicates that this pattern is a result of intersecting between frequent-path-bases
and a non-frequent-path-base. Intersecting ABCD with ADE gives AD. AD is a
new node of size two. It is added to the OPB data structure and linked from
the second pointer. The support and the branch-support of this node equal 0.
Intersecting, ABCE with ADE gives AE. AE is also a new node of size two and
is also added to the OPB structure, at this stage we can detect that there is no
need to do further intersections. The third step in the mining process is to find
the global support for all patterns. Applying a top-down traversal between these
nodes does this. If node X is a subset of a frequent-path-base Y then its support
is incremented by the branch-support of node Y. By doing this we can find that
ABCD is a subset of ABCDE, which has a branch-support equals to 1. The ABCD
support becomes 3 (241). ABCE support becomes 2, as it is a subset of ABCDE.
At level 3 we find that ADE is a subset of only ABCDE so its support becomes
2. ABC support equals to 4. AD support equals to 4, and AE support equals to
3. At this stage all non-frequent patterns and frequent patterns that have a local
frequent superset with same support are removed from OPB. The remaining
nodes (ABCD:3, ABC:4, AE:3, AD:4, and A:5) are potentially global closed. We
test to see if they are a subset of already discovered closed patterns with the same
support from previous COFI-trees. If not then we declare them as closed patterns
and add them to the pool of closed patterns. The G-COFI-tree and its OBP data
structure are cleared from memory as there is no need for them any more. The
same process repeats with the remaining COFI-trees for F and E, where any
newly discovered closed pattern is added to the global pool of closed patterns.

4 Performance Evaluations

We present here a performance study to evaluate our new approach COFI-
Closed against most of the state-of-art algorithms that mine closed patterns
which are FP-Closed [3] and MAFIA-closed [1], CHARM [8]. Their respective
authors provided us with the source code for these programs. All our experi-
ments were conducted on an IBM P4 2.6GHz with 1GB memory running Linux

Finding All Frequent Patterns Starting from the Closure 73

2.4.20-20.9 Red Hat Linux release 9. Timing for all algorithms includes the pre-
processing cost such as horizontal to vertical conversions. The time reported also
includes the program output time. We have tested these algorithms using syn-
thetic datasets [5] on very large datasets. All experiments were forced to stop if
their execution time reached our wall time of 5000 seconds. We made sure that
all algorithms reported the same exact set of frequent itemsets on each dataset.

4.1 Experiments on Large Datasets

Mining extremely large databases is the main objective of this research work. We
used five synthetic datasets made of 5M, 25M, 50M, 75M, 100M transactions,
with a dimension of 100K items, and an average transaction length of 24 items.
To the best our knowledge, these data sizes have never been reported in the
literature before. CHARM could not mine these datasets. MAFIA could not
mine the smallest dataset 5M in the allowable time frame. Only FP-Closed and
COFI-Closed algorithms participated in this set of experiments. All results are
depicted in Figure 3.A. From these experiments we can see that the difference
between FP-Closed implementations and the COFI-Closed algorithm become
clearer once we mine extremely large datasets. COFI-Closed saves at least one
third of the execution time and in some cases goes up to half of the execution
time compared to FP-Growth approach. The last recorded time for FP-Closed
was mining 50 millions transactions while COFI-Closed was able to mine up to
100 millions transactions in less than 3500 seconds.

4.2 Memory Usage

We also tested the memory usage by FP-Closed, MAFIA and our approach.
In many cases we noticed that our approach consumes one order of magnitude
less memory than FP-Closed and two orders of magnitude less memory than
MAFIA. Figure 3.B illustrates these results. We conducted experiments with
the database size, the dimension and the average transaction length 1 million
transactions, 100K items and 12 items respectively. The support was varied from
0.1% to 0.01%.

—6— OOFI-Closed —B— FP-Closed —o—COFl-Closed —g—FP-Closed —A—MAFIA
350

/E] — 1o /A/A/ﬂ//A
o :” -
/

o e
E‘“’ i

Time in seconds

EZ _ssaiygee

W/ 50 M
154
0 T T T T
5M 25\ 50M 75M 100M 01 008 005 003 0.01
(Number of transactions (B) Support %

Fig. 3. (A) Scalability testing, (B) Disparity in memory usage T = 1000K, D = 100K

74 M. El-Hajj and O.R. Zalane

5 Conclusion

Mining for frequent itemsets is a canonical task, fundamental for many data min-
ing applications. Many frequent itemset mining algorithms have been reported
in the literature, some original and others extensions of existing techniques.
They either model transactions horizontally or vertically and traverse the pat-
tern space either bottom-up or top-down. However, most of the solutions assume
to work on relatively small datasets in comparison to what we are expected to
deal with in real applications such as affinity analysis in very large web sites,
basket analysis for large department stores, or analysis of tracking data from
radio-frequency identification chips on merchandize.

In this work we presented COFI-Closed, an algorithm for mining frequent
closed patterns. This novel algorithm is based on existing data structures FP-tree
and COFI-tree. Our contribution is a new way to mine those existing structures
using a novel traversal approach. Using this algorithm, we mine extremely large
datasets, our performance studies showed that the COFI-Closed was able to
mine efficiently 100 million transactions in less than 3500 seconds on a small
desktop while other known approaches failed.

References

1. D. Burdick, M. Calimlim, and J. Gehrke. Mafia: A maximal frequent itemset algo-
rithm for transactional databases. In ICDFE, pages 443-452, 2001.

2. M. El-Hajj and O. R. Zaiane. Non recursive generation of frequent k-itemsets from
frequent pattern tree representations. In In Proc. of 5th International Conference
on Data Warehousing and Knowledge Discovery (DaWak’2003), September 2003.

3. G. Grahne and J. Zhu. Efficiently using prefix-trees in mining frequent itemsets. In
FIMI’03, Workshop on Frequent Itemset Mining Implementations, November 2003.

4. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In 2000 ACM SIGMOD Intl. Conference on Management of Data, pages 1-12, 2000.

5. IBM_Almaden. Quest synthetic data generation code.
http://www.almaden.ibm.com/cs/quest/syndata.html.

6. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. In International Conference on Database Theory
(ICDT), pages pp 398-416, January 1999.

7. J. Wang, J. Han, and J. Pei. Closet+: Searching for the best strategies for mining
frequent closed itemsets. In Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’03), Washington, DC,
USA, 2003.

8. M. Zaki and C.-J. Hsiao. ChARM: An efficient algorithm for closed itemset mining.
In 2nd SIAM International Conference on Data Mining, April 2002.

9. Z. Zheng, R. Kohavi, and L. Mason. Real world performance of association rule
algorithms. In 7th ACM SIGKDD International Conf. on Knowledge Discovery and
Data Mining, pages 401-406, 2001.

	Introduction
	Leap-Traversal Approach
	FP-Tree and COFI-Trees
	COFI-Closed Algorithm

	Performance Evaluations
	Experiments on Large Datasets
	Memory Usage

	Conclusion

