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We study open-shop scheduling for unit jobs under precedence constraints, where if one 
job precedes another job then it has to be finished before the other job can start to be 
processed. For the three-machine open-shop to minimize the makespan, we first present 
a simple 5/3-approximation algorithm based on a partition of the job set into agreeable 
layers using the natural layered representation of the precedence graph, which is directed 
acyclic. We then show a greedy algorithm to reduce the number of singleton-job layers, 
resulting in an improved partition, which leads to a 4/3-approximation algorithm. Both 
approximation algorithms apply to the general m-machine open-shops too.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Machine scheduling with precedence constraints on the jobs has received much attention in the past few decades, and 
several algorithmic techniques such as the critical path method and the project evaluation and review technique [9] have been 
developed from the line of research. Job precedence constraints are common in construction and manufacturing indus-
tries, for example, the bicycle assembly problem is an earliest precedence constrained scheduling application introduced by 
Graham [7].

Precedence constraints describe the job processing order in a way that one or more jobs have to be finished before 
another job is allowed to start its processing. Such relationships together are usually represented as a directed acyclic graph
(DAG) G = (V , E), called the precedence graph, where V is the set of jobs and a directed edge (vi , v j) ∈ E states that the job 
vi precedes the job v j , that is, vi needs to be finished before v j can start to be processed.

In this paper, we discuss the open-shop scheduling environment and use Om to denote the m-machine open-shop for 
some constant m, and O to denote the open-shop in which the number of machines is part of the input. In either Om
or O , every job needs to be processed non-preemptively by each machine, in any machine order, and it is finished (or said 
completed) when it has been processed by all the machines. Note that the usual scheduling rules apply to a feasible schedule, 
that is, at any time point, a job can be processed by at most one machine and each machine can be processing at most 
one job. The makespan of the schedule is the maximum job completion time. The open-shop scheduling to minimize the 
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makespan is denoted as Om || Cmax or O  || Cmax, which has received much study [6,15,11,12,9]. In particular, O 2 || Cmax is 
solvable in O (n)-time, where n denotes the number of jobs [6,9]; Om || Cmax becomes weakly NP-hard when m ≥ 3 [6] but 
admits a polynomial-time approximation scheme (PTAS) [11,12]; O  || Cmax is strongly NP-hard and cannot be approximated 
within 1.25 [15].

Open-shop scheduling with precedence constraints, denoted as Om | prec | Cmax or O  | prec | Cmax, is more general (and 
thus more difficult) than its classical counterparts, which can be considered as scheduling without precedence constraints. 
Several special classes of precedence graphs have been investigated in the literature. For instance, if every job has at most 
one predecessor and at most one successor, the precedence graph is referred to as chains. If every job has at most one 
successor (one predecessor, respectively), the precedence graph is referred to as an intree (an outtree, respectively). The fact 
that the precedence graph belongs to a particular class may change the computational complexity of the scheduling problem. 
In general, one can expect that the precedence constraints increase the problem complexity. For example, O 2 | chains | Cmax
becomes NP-hard [13], as opposed to the polynomial-time solvable O 2 || Cmax. For more complexity results on precedence 
constrained scheduling, the interested readers can refer to the surveys by Lenstra and Rinnooy Kan [8] and by Prot and 
Bellenguez-Morinea [10].

Unlike most past results which are on computational complexity, in this paper we aim to develop algorithmic positive 
results for open-shop scheduling with precedence constraints, from the approximation algorithm perspective. We focus on 
the problems restricted to unit jobs, that is, the jobs have the same processing times on all the machines (i.e., the processing 
time of the job J i on the machine M j is pij = 1, for every couple i and j); most of these problems remain NP-hard, or their 
complexity are still open. To name a few, for an arbitrary precedence graph, the problem O  | pij = 1, prec | Cmax was shown 
to be strongly NP-hard by Timkovsky [14]; when the precedence graph is an out-tree, then the problem O  | pij = 1,outtree |
Cmax becomes polynomially solvable [1]; for a more general objective of minimizing the maximum lateness, Timkovsky 
proved that O  | pij = 1, outtree | Lmax is weakly NP-hard [14], while the problem O  | pij = 1, intree | Lmax is polynomial 
solvable [3,2]. We note that, however, there are polynomial time algorithms for O 2 | pij = 1, prec | Lmax, even if the jobs 
have different release times [3,2].

The problem we study in this paper is the m-machine open-shop for unit jobs under arbitrary precedence constraints, 
Om | pij = 1, prec | Cmax, where m ≥ 3. To our surprise, for this fundamental problem in scheduling theory, there is no 
known computational complexity result in the literature. In fact, even when m = 3, whether or not O 3 | pij = 1, prec | Cmax
is NP-hard is an open question explicitly listed in the websites maintained by Brucker and Knust [4] and Dürr [5], and in 
the survey paper by Prot and Bellenguez-Morinea [10].

We first introduce a natural layered representation for the precedence graph in Section 2, based on which we can 
construct a partition of the job set into agreeable subsets. We then construct a schedule using the partition and show 
that it is a 5/3-approximation algorithm for the problem O 3 | pij = 1, prec | Cmax. In Section 3, we propose a greedy 
algorithm to reduce the number of singleton-job subsets in the earlier partition, resulting in an improved partition, which 
leads to a 4/3-approximation algorithm. We also show that both approximation algorithms apply to the general m-machine 
open-shops.

2. Preliminaries

We study the problem O 3 | pij = 1, prec | Cmax, in which the unit jobs should be processed under the given precedence 
constraints. These precedence constraints are described as a directed acyclic graph (DAG), the precedence graph, in which a 
vertex corresponds to a job and a directed edge represents a precedence relationship between a pair of jobs. In the rest of 
the paper, we use a job and a vertex interchangeably. Due to all jobs having unit processing times, we assume without loss 
of generality that in any feasible schedule the starting processing time of every job is an integer.

Let V = {v1, v2, . . . , vn} be the given set of unit jobs. If vi precedes v j , that is, we can start processing the job v j only 
if the job vi is finished by the three-machine openshop O 3, then there is a directed path beginning from vi and ending at 
v j . Such a directed path is a directed edge (vi, v j) in the simplest case, in the DAG precedence graph G = (V , E).

A subset X ⊆ V of jobs is agreeable if none of the jobs in X precedes another job in X . In particular, two jobs are 
agreeable if none of them precedes the other, and thus they can be processed concurrently on different machines in a 
feasible schedule.

Lemma 2.1. An agreeable subset X ⊆ V of jobs can be processed by the three-machine openshop O 3 in |X | units of time if |X | ≥ 3, or 
in 3 units of time if |X | = 1, 2.

Proof. Let the jobs of X be v1, v2, . . . , vk . When k = 1, at any time point T , v1 can be processed on the first machine M1
(the second machine M2, the third machine M3, respectively) starting at T (T + 1, T + 2, respectively), and thus finished 
within 3 units of time.

When k = 2, at any time point T , v1 can be processed on the first machine M1 (the second machine M2, the third 
machine M3, respectively) starting at T (T + 1, T + 2, respectively); v2 can be processed on the third machine M3 (the first 
machine M1, the second machine M2, respectively) starting at T (T + 1, T + 2, respectively). Thus both of them are finished 
within 3 units of time.
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Fig. 1. A sub-schedule to process an agreeable subset X ⊆ V of jobs in |X | units of time when k = |X | ≥ 3.

When k ≥ 3, at any time point T , for j = 1, 2, . . . , k − 2, v j can be processed on the first machine M1 (the second 
machine M2, the third machine M3, respectively) starting at T + j − 1 (T + j, T + j + 1, respectively); vk−1 can be processed 
on the third machine M3 (the first machine M1, the second machine M2, respectively) starting at T (T + k − 2, T + k − 1, 
respectively); vk can be processed on the second machine M2 (the third machine M3, the first machine M1, respectively) 
starting at T (T + 1, T + k − 1, respectively). See Fig. 1 for an illustration. Thus all of them are finished within k units of 
time. �

Given two disjoint agreeable subsets X1 and X2, if a job in X1 precedes a job in X2, then we say X1 precedes X2. A 
collection of mutual disjoint agreeable subsets is acyclic if the precedence relations among the subsets do not contain any 
cycle. A subset of k jobs is called a k-subset, for k = 1, 2, . . .. For simplicity, a 1-subset is also called a singleton.

Corollary 2.2. Let C be an acyclic partition of V into agreeable subsets, in which there are b 2-subsets and c singletons. Then a schedule 
π can be constructed to achieve the makespan Cπ

max = n + b + 2c, where n = |V |.

Proof. Using Lemma 2.1, all the n − 2b − c jobs outside of those 2-subsets and singletons can be finished in n − 2b − c units 
of time, and each 2-subset and each singleton can be finished in 3 units of time, respectively. Putting them together, we 
have a schedule π of makespan Cπ

max = (n − 2b − c) + 3b + 3c = n + b + 2c. �
By Corollary 2.2, we wish to solve the problem O 3 | pij = 1, prec | Cmax by partitioning the jobs into acyclic agreeable 

subsets such that the quantity b + 2c is minimized. Our main contribution is an algorithm that produces an acyclic partition 
achieving a number of singletons no more than the number of isolated jobs (to be defined) in the optimal schedule. That 
is, we manage to “sort of” minimize c.

In the rest of the section, we introduce a representation for the DAGs which is used in our algorithm design and analysis.

2.1. A DAG representation

Let G = (V , E) be the precedence graph describing all the given precedence constraints, where a directed path from vi to 
v j suggests that the job vi precedes the job v j (that is, v j cannot be processed unless vi is finished by the three-machine 
openshop). Through out the paper, we let n = |V | and m = |E|.

If (vi, v j) ∈ E and there exists a path from vi to v j not involving the edge (vi, v j), then we call (vi, v j) a redundant
edge, in the sense that the precedence constraint between every pair of jobs is still there after we remove the edge (vi , v j)

from the graph. We may thus simplify the graph G by removing all redundant edges, which can be executed in O (m) time 
by a breadth-first-search (BFS). Afterwards, for each edge (vi, v j) ∈ E , we call vi a parent of v j and v j a child of vi . Note 
that a job can have multiple parents, and multiple children as well; see for example Fig. 2.

In the following layered representation of the graph G = (V , E), each job will be associated with a level (a positive 
integer). The first layer consists of all the jobs with in-degree 0, and these jobs are the level-1 jobs. Iteratively, after the 
level-� jobs are determined, they and the edges (these are out-edges) incident at them are removed from the graph; then 
the (� + 1)-st layer consists of all the jobs with in-degree 0 in the remainder graph, and these jobs are the level-(� + 1)

jobs. The process terminates when all the jobs of the original graph G have been partitioned into their respective layers. 
We assume that there are �max layers in total. The entire layer partitioning process is executed in O (m) time. In the sequel, 
without loss of generality, a DAG G = (V , E) is always represented in this way, in which every job is associated with a level 
and Li denotes the subset of all the level-i jobs, for i = 1, 2, . . . , �max. See Fig. 2 for an illustration.

Lemma 2.3. Given a DAG G = (V , E), Li is agreeable for every i, and a level-i job has at least one level-(i − 1) parent for every i ≥ 2.

Proof. The lemma holds by how the layers are constructed. �
Lemma 2.4. Given a DAG G = (V , E), the partition C = {L1, L2, . . . , L�max} is an acyclic collection of agreeable subsets.

Proof. The lemma holds by how the layers are constructed, and by Lemma 2.3, Li precedes L j if and only if i < j. �
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Fig. 2. A layered representation of the precedence graph G = (V , E), in which there are �max layers (each as a dashed rectangle) in total, denoted as 
L1, L2, . . . , L�max . U denotes the subset of all the vertices on the longest paths in G , Ui = Li ∩ U , for i = 1, 2, . . . , �max (each as a dashed oval), S = (U , F )

denotes the induced subgraph G[U ] by U , R = V − U and H denotes the induced subgraph G[R] by R .

Lemma 2.5. Given a DAG G = (V , E), the minimum makespan C∗
max ≥ max{n, 3�max}.

Proof. Since we are dealing with unit jobs, C∗
max ≥ n.

Select one job vi from Li , for every i, such that vi is a child of the job vi−1. (That is, v1-v2-. . .-v�max is a longest 
path in G .) One clearly sees that in any feasible schedule, the job vi starts processing after the job vi−1 is finished by the 
three-machine openshop; the makespan of the schedule is thus at least 3�max. This proves the lemma. �
Theorem 2.6. A schedule π can be constructed from the partition C = {L1, L2, . . . , L�max} to achieve the makespan Cπ

max ≤ 5
3 C∗

max .

Proof. Let b and c denote the number of 2-subsets and the number of singletons among L1, L2, . . ., L�max , respectively. By 
Corollary 2.2 a schedule π can be constructed from C to achieve the makespan Cπ

max = n + b + 2c.
Using the trivial bound �max ≥ b + c in Lemma 2.5, we have C∗

max ≥ max{n, 3(b + c)}. It follows that

Cπ
max = n + b + 2c ≤ C∗

max + 2

3
C∗

max = 5

3
C∗

max.

This proves the theorem. �
3. A 4/3-approximation algorithm for O 3 | prec, pi j = 1 | Cmax

Clearly, from the layered representation of the graph G = (V , E), we see that every longest path in G begins with a 
level-1 job and ends at a level-�max job, and it passes through every intermediate layer. That is, every longest path contains 
exactly �max jobs (and �max − 1 edges). Let U denote the subset of all the jobs on the longest paths and F denote the subset 
of edges inherited by U (i.e., F = E[U ]). We call S = (U , F ) the spine of the graph G = (V , E). Let R = V − U denote the 
remaining subset of jobs and H = G[R] denote the subgraph of G induced by R . See Fig. 2 for an illustration.

We define a connected component in a DAG in the usual way by ignoring the direction of the edges. If the spine 
S = (U , F ) has more than one connected component, then we can safely conclude that every layer of the graph G = (V , E)

contains at least two jobs (at least one job from each component), that is, |Li | ≥ 2 for i = 1, 2, . . . , �max. Recall that our goal 
is to partition all the jobs into acyclic agreeable subsets to minimize the number of singletons. We call such partitions with 
the minimum number of singletons the good partitions or good collections of acyclic agreeable subsets. We assume in the 
rest of the paper that the spine S = (U , F ) of the input graph G = (V , E) is connected (i.e., S contains only one connected 
component) and there are singleton layers in S = (U , F ), as otherwise we trivially achieve a good partition without any 
singletons. Let Ui denote the subset of level-i jobs of U , that is, Ui = Li ∩ U , for i = 1, 2, . . . , �max. If |Ui | = 1, then the job 
in Ui , denoted as si , is called a singleton job in U .

Lemma 3.1. Given a DAG G = (V , E) and its spine S = (U , F ), any acyclic partition of agreeable subsets contains at least �max subsets.

Proof. Select one job ui from Ui , for every i, such that ui is a child of the job ui−1. (Again, u1-u2-. . .-u�max is a longest path 
in G .) One clearly sees that in an acyclic partition of agreeable subsets, the jobs ui and u j do not belong to any common 
subset when i �= j. This suggests that there are at least �max subsets in the partition, and thus proves the lemma. �
Lemma 3.2. Given a DAG G = (V , E) and its spine S = (U , F ), a singleton job in U cannot be processed concurrently with any other 
job in U in any feasible schedule.

Proof. The lemma holds because the singleton job is not agreeable with any other job in U . �
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The j-th iteration of the algorithm Approx ( j = 2, 3, . . . , k):

1. for i = ik+2− j − 1, ik+2− j − 2, . . . , ik+1− j + 1,
1.1. set Di = Li ;
1.2. remove the jobs in Li − Ui from R;

2. for i = ik+1− j , if |Lik+1− j | ≥ 2,
2.1. set Dik+1− j = Lik+1− j ;
2.2. remove the jobs in Lik+1− j − sik+1− j from R;
2.3. end the iteration;

3. if exists vi ∈ Li − Ui , with maximum i using Lemma 3.3, agreeable with sik+1− j ,
3.1. set Dik+1− j = {sik+1− j , vi};
3.3. remove the job vi from R;
3.3. end the iteration;

4. 4.1. set Dik+1− j = {sik+1− j };
4.2. end the iteration.

Fig. 3. A high-level description of a typical j-th iteration of the algorithm Approx.

Assume there are in total k singleton jobs in U , which are si1 , si2 , . . . , sik , that is, Ui j = {si j }, where 1 ≤ i1 < i2 < . . . <

ik ≤ �max.

Lemma 3.3. Given a DAG G = (V , E) and its spine S = (U , F ), for a singleton job si j ∈ U , if there is a job in V − U agreeable with si j , 
then there is a level-i job in Li − Ui with i ≤ i j which is agreeable with si j .

Proof. Let vi ∈ Li − Ui be a level-i job agreeable with si j . If i ≤ i j , then we are done, and thus we assume below that i > i j .
Since vi is agreeable with si j , none of the jobs in Ui−1 can be a parent of vi by precedence transitivity; it follows from 

Lemma 2.3 that vi has a parent vi−1 ∈ Li−1 − Ui−1. If i − 1 > i j , vi−1 must also be agreeable with si j again by precedence 
transitivity, and we may repeat the above argument to conclude that there is a job vi j ∈ Li j − si j which is a predecessor of 
vi . Since both si j and vi j are in Li j , they are agreeable by Lemma 2.3. We thus have proved the lemma. �
3.1. The algorithm

We have shown in Theorem 2.6 that we can construct a schedule π from the partition C = {L1, L2, . . . , L�max} to achieve 
the makespan Cπ

max ≤ 5
3 C∗

max, suggesting that the O 3 | prec, pij = 1 | Cmax problem admits a linear time 5/3-approximation 
algorithm. In this section, we present an improved 4/3-approximation algorithm.

For each singleton job si j of U , our algorithm searches for a job in V − U which is agreeable with si j such that they can 
be processed concurrently, and the search is mostly based on the above Lemma 3.3. The algorithm is greedy and iterative, 
and is denoted as Approx.

Recall that there are in total k singleton jobs in U , which are si1 , si2 , . . . , sik (that is, Ui j = {si j }), with 1 ≤ i1 < i2 <

. . . < ik ≤ �max. There are k + 1 iterations in the algorithm Approx, which together construct an acyclic partition D =
{D�max , D�max−1, . . . , D2, D1}. Recall also that we initialize R = V − U .

In the first iteration, sequentially for i = �max, �max − 1, . . . , ik + 1, we simply let Di = Li and remove the jobs in Li − Ui

from R . For i = ik , if |Lik | ≥ 2, then we let Dik = Lik and remove the jobs in Lik − sik from R . Otherwise (that is, Lik =
Uik = {sik }), among all the jobs in R , we pick one job that is agreeable with sik (i.e., not a predecessor of sik ) and has the 
maximum level, using Lemma 3.3. Assume this job is vi ∈ Li − Ui such that i < ik . We let Dik = {sik , vi} and remove the 
job vi from R . If no job in R is agreeable with sik , then we let Dik = {sik } and say that sik remains as a singleton job in the 
partition D. This ends the first iteration.

In general, in the j-th iteration ( j = 2, 3, . . . , k), sequentially for i = ik+2− j − 1, ik+2− j − 2, . . . , ik+1− j + 1, we simply let 
Di = Li and remove the jobs in Li − Ui from R . We remark that here the set Li might not be the original Li , since some 
of its jobs might be picked in earlier iterations and thus have been removed. Nevertheless, since |Ui | ≥ 2, we conclude 
that |Di | ≥ 2 too. For i = ik+1− j , if |Lik+1− j | ≥ 2, then we let Dik+1− j = Lik+1− j and remove the jobs in Lik+1− j − sik+1− j from 
R . Otherwise (that is, Lik+1− j = Uik+1− j = {sik+1− j }), among all the jobs in R , we pick one job that is agreeable with sik+1− j

(i.e., not a predecessor of sik+1− j ) and has the maximum level, using Lemma 3.3. Assume this job is vi ∈ Li − Ui such that 
i < ik+1− j . We let Dik+1− j = {sik+1− j , vi} and remove the job vi from R . If no job in R is agreeable with sik+1− j , then we let 
Dik+1− j = {sik+1− j } and say that sik+1− j remains as a singleton job in the partition D. This ends the j-th iteration.

A high-level description of such a typical j-th iteration of the algorithm Approx is depicted in Fig. 3, in which the 
detailed steps of operations are listed.

In the last (that is, the (k + 1)-st) iteration, sequentially for i = i1 − 1, i1 − 2, . . . , 2, 1, we simply let Di = Li and remove 
the jobs in Li − Ui from R . Again, we know that here the set Li might not be the original Li , since some of its jobs might 
be picked in earlier iterations. Nevertheless, since |Ui | ≥ 2, we conclude that |Di | ≥ 2 too. This ends the last iteration and 
the construction of D is complete. See Fig. 4 for an illustration on D achieved on the graph G = (V , E) shown in Fig. 2.
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Fig. 4. An illustration on the acyclic partition D = {D�max , D�max−1, . . . , D2, D1} achieved on the precedence graph G = (V , E) shown in Fig. 2. The �max

layers L1, L2, . . . , L�max are shown as dashed rectangles and each subset Di is shown as a dashed oval.

Fig. 5. In the optimal schedule π∗ , at most two possible jobs, shown as vi and v j , of V − U can be associated with a singleton job si j of U .

3.2. The performance analysis

We will show that the schedule π constructed from the above partition D = {D1, D2, . . . , D�max } has a makespan Cπ
max ≤

4
3 C∗

max.

Lemma 3.4. Given a DAG G = (V , E), its layered representation {L1, L2, . . . , Lmax}, and its spine S = (U , F ), the partition D =
{D1, D2 , . . . , D�max } achieved by the algorithm Approx is acyclic.

Proof. We prove the acyclicity by contradiction.
Since Ui ⊆ Di for all i = 1, 2, . . . , �max, Di precedes Di+1 for all i = 1, 2, . . . , �max − 1. Suppose to the contrary that D

is cyclic, then there are levels i and i′ such that i > i′ and Di precedes Di′ . Note that Di (Di′ , respectively) consists of a 
subset of jobs in Li (Li′ , respectively), and possibly a job vr with a smaller level r ≤ i − 1 if i = i j for some j (possibly a 
job vr′ with a smaller level r′ ≤ min{r, i′ − 1} if i′ = i j′ for some j′ , respectively). It follows from Lemma 2.3 that Di has to 
contain a job vr with a smaller level r ≤ i − 1, i = i j for some j, and Di j = {si j , vr}. Moreover, the job vr precedes a job 
in Di′ , denoted as vt of level t . This leads to r < t ≤ i′ . If vt is agreeable with si j , then by the algorithm description the 
job vt , instead of vr , should be picked into Di j , a contradiction. Hence vt precedes si j , which by transitivity implies that vr

precedes si j too, and thus vr shouldn’t be picked into Di j , again a contradiction. These contradictions together prove that 
for any levels i > i′ , Di doesn’t precede Di′ . �
Theorem 3.5. The schedule π constructed from the partition D = {D1, D2 , . . . , D�max } has a makespan Cπ

max ≤ 4
3 C∗

max .

Proof. Lemma 3.4 states that the partition D is acyclic. We use Corollary 2.2 to construct a schedule π with its makespan 
Cπ

max = n + b + 2c, where b and c denote the numbers of 2-subsets and singletons in D.
We next estimate this makespan. The key in the estimation is to show the following Eq. (1), that the number of single-

tons, c, in the acyclic partition D is no greater than a corresponding value, c∗ , in the optimal schedule.
Consider an optimal schedule π∗ that achieves the minimum makespan C∗

max, and assume without loss of generality 
that the makespan is achieved at the first machine M1. For a singleton job si j of U , Lemma 3.2 states that it cannot be 
processed concurrently with any other job of U in π∗ . Therefore, there are at most two distinct jobs in V − U , such that for 
each of them, when the machine M1 is processing it, one of the other two machines M2 and M3 is processing si j . See for an 
illustration in Fig. 5, where vi and v j are these two possible jobs. We say that these two jobs in V − U are associated with 
the singleton job si j . It is important to note that a job in V − U associated with a singleton job cannot be associated with 
another singleton job, for otherwise the two singleton jobs were processed concurrently in π∗ (contradicting Lemma 3.2). 
Also, for j < j′ , since si j precedes si j′ , no associated job of si j′ can precede any associated job of si j .

When there is one or two jobs in V − U associated with the singleton job si j , we pick one randomly. If the picked job 
has a level less than or equal to i j , then we use ti to denote it. If the picked job has a level greater than i j , then we apply 
j



150 Y. Chen et al. / Theoretical Computer Science 803 (2020) 144–151
Fig. 6. Finding the unique target isolated job si j∗ in the optimal schedule π∗ for every source isolated job si j in the schedule π . In the figure, ti j (ti j′ , 
ti j′′ , respectively) is the picked job associated with si j (si j′ , si j′′ , respectively) in π∗ , shown by dashed arrows, and is picked by the algorithm Approx to 
accompany si j′ (si j′′ , si j∗ , respectively) in π , shown by solid arrows.

Lemma 3.3 to locate one of its predecessor jobs with level exactly i j and use ti j to denote this predecessor. Either way, the 
level of the associated job ti j is no greater than i j . We claim that all these ti j ’s, if exist, are distinct. The claim can be proven 
by induction on x that “the first x ti j ’s are distinct”, which holds trivially when x = 1. Without loss of generality assume 
that ti1 , ti2 , . . . , tix are distinct. Recall that ti j is a predecessor of the picked job, or itself, associated with the singleton si j , 
for all j = 1, 2, . . . , x, and the picked job associated with the singleton six+1 does not precede any associated job of si j , for 
all j = 1, 2, . . . , x. Hence, if tix+1 is the picked associated job itself and it collides into ti j , for some 1 ≤ j ≤ x, then tix+1

precedes the picked job associated with si j , a contradiction. If tix+1 is a predecessor of the picked associated job, then its 
level is exactly ix+1, which is strictly less than the level of ti j , for all 1 ≤ j ≤ x; that is, tix+1 is distinct from ti j ’s, for all 
j = 1, 2, . . . , x. This proves the claim.

If there is no job in V − U associated with the singleton job si j , we say si j is isolated in π∗ .
Recall that in the partition D, when i /∈ {i1, i2, . . . , ik}, |Di | ≥ 2. If |Di j | = 1, that is, Di j = {si j }, then we say si j is isolated

in the schedule π constructed from D. We prove in the following the most important property that the number of isolated 
jobs in π is not greater than the number of isolated jobs in π∗ (though the two meanings of “isolated” are different), by 
constructing an injective function.

Assume si j is isolated in π , called a source. We find a path from si j to a target isolated job in π∗ as follows: If si j

is isolated in π∗ , then si j is the target and the path has length 0. If si j is not isolated in π∗ , that is, we have a job ti j

associated with si j , then ti j should have been picked by the algorithm Approx in an earlier iteration, since otherwise in the 
(k + 1 − j)-th iteration the singleton job si j wouldn’t be left alone in the set Di j . Therefore, we identify another singleton 
job si j′ , where j′ > j, which is not isolated in π because in the (k + 1 − j′)-th iteration the algorithm Approx picked up ti j

to accompany the singleton job si j′ . Our path extends from si j to si j′ . If si j′ happens to be isolated in π∗ , then we find the 
target si j′ and our path ends; otherwise, we continue to use its associated job ti j′ to locate a third singleton job si j′′ , where 
j′′ > j too, which is not isolated in π , and our path extends to si j′′ . Due to the finitely many singleton jobs, our path ends 
at a singleton job si j∗ , which is the isolated target in π∗ . See Fig. 6 for an illustration.

One sees that we have used the associated jobs ti j ’s, which are distinct from each other, to locate a target isolated job 
in π∗ for each source isolated job in π . Therefore, an isolated job in π∗ wouldn’t be discovered by multiple source isolated 
jobs in π ; that is, the constructed mapping is an injection. In other words, the number of isolated jobs in π is not greater 
than the number of isolated jobs in π∗ , the latter of which is denoted as c∗ . There are b 2-subsets and c singletons in the 
partition D; then there are c isolated jobs in π . We have

c ≤ c∗. (1)

Recall the definition of an isolated job si j in the optimal schedule π∗ , that the machine M1 processes nothing while any 
one of the machines M2 and M3 is processing si j . That is, the machine M1 idles for at least 2c∗ units of time before the 
makespan. Since the load of M1 is n, we have

C∗
max ≥ n + 2c∗. (2)

On the other hand, we still have �max ≥ b + c and C∗
max ≥ 3�max; therefore,

C∗
max ≥ max{n + 2c∗,3(b + c)}, (3)

which is a better lower bound than the one in Lemma 2.5. It follows that

Cπ
max = n + b + 2c = (n + 2c) + b ≤ C∗

max + 1

3
C∗

max = 4

3
C∗

max.

This proves that the performance ratio for the algorithm Approx is 4/3.
For the running time, the algorithm Approx maintains the precedence relationships and updates the subsets Li ’s for 

constructing the partition D. The most time is spent for locating an agreeable job for accompanying a singleton job in U , 
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which might take O (n) time. Therefore, it is safe to conclude that the total running time of the algorithm Approx is O (n2). 
This finishes the proof of the theorem. �
Corollary 3.6. For any m ≥ 3, the problem Om | pij = 1, prec | Cmax admits an O (n2)-time (2 − 2

m )-approximation algorithm, where 
n denotes the number of jobs.

Proof. Basically we can construct from the acyclic partition D a schedule with makespan Cmax ≤ n + ∑m
i=1(m − i)bi , where 

bi denotes the number of i-subsets in the partition D, for 1 ≤ i ≤ m −1. (In the above case where m = 3, c = b1 and b = b2.) 
While the lower bounds in Eq. (3) are updated accordingly as C∗

max ≥ max{n + (m − 1)b∗
1, m 

(∑m
i=1 bi

)}. Since we still have 
b1 ≤ b∗

1, these two inequalities imply that Cmax ≤ C∗
max + m−2

m C∗
max = (2 − 2

m )C∗
max. �

4. Concluding remarks

We studied the open-shop scheduling problem for unit jobs under precedence constraints. The problem has been shown 
to be strongly NP-hard when the number of machines is part of the input [14], but left as an open problem when the 
number m of machines is a fixed constant greater than 2, since 1978 [8]. We approached this problem by proposing a 
(2 − 2

m )-approximation algorithm, for m ≥ 3. Addressing the complexity and designing better approximation algorithms are 
both challenging and exciting.
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