
Vol.:(0123456789)

New Generation Computing (2019) 37:141–158
https://doi.org/10.1007/s00354-019-00058-y

123

From Fifth Generation Computing to Skill Science

A Biographical Essay of Koichi Furukawa

Tomonobu Ozaki1   · Randy Goebel2 · Katsumi Inoue3,4,5

Received: 7 February 2019 / Accepted: 10 April 2019 / Published online: 25 April 2019 
© The Author(s) 2019

Abstract
Professor Koichi Furukawa, an eminent computer scientist and former Editor-in-
Chief of the New Generation Computing journal, passed away on January 31, 2017. 
His passing was a surprise, and we were all shocked and saddened by the news. To 
remember the deceased, this article reviews the great career and contributions of 
Professor Koichi Furukawa, focusing on his research activities on the foundation and 
application of logic programming. Professor Furukawa had both a deep understand-
ing and broad impact on logic programming, and he was always gentle but persistent 
in articulating its value across a broad spectrum of computer science and artificial 
intelligence research. This article introduces his research along with its insightful 
and unique philosophical framework.

Keywords  Institute for New Generation Computer Technology · Logic 
programming · Inductive logic programming · Skill science

 *	 Tomonobu Ozaki 
	 tozaki@chs.nihon‑u.ac.jp

	 Randy Goebel 
	 rgoebel@ualberta.ca

	 Katsumi Inoue 
	 inoue@nii.ac.jp

1	 College of Humanities and Sciences, Nihon University, Tokyo, Japan
2	 Department of Computing Science, University of Alberta, Edmonton, Canada
3	 National Institute of Informatics, Tokyo, Japan
4	 Department of Informatics, SOKENDAI (The Graduate University for Advanced Studies), 

Tokyo, Japan
5	 Department of Computer Science, School of Computing, Tokyo Institute of Technology, Tokyo, 

Japan

http://orcid.org/0000-0001-7769-4504
http://crossmark.crossref.org/dialog/?doi=10.1007/s00354-019-00058-y&domain=pdf


142	 New Generation Computing (2019) 37:141–158

123

Biography Summary

Professor Koichi Furukawa (1942–2017) was born in Manchuria, the present north-
eastern part of China, and returned to Japan when he was 3 years old. He was recog-
nized as a talented young man from an early age, and was especially good at math-
ematics, science, and music. Even as a young man, he was also socially active, e.g., 
he participated in a choral group.

In 1961, he entered the University of Tokyo. In addition to studies in statistical 
mathematics, he also joined the university orchestra group, and was eagerly practic-
ing cello playing in his college years. It is not a surprise that both mathematics and 
music became a consistent thread throughout his entire research career.

After graduation, he worked on a time-sharing system at the public national Elec-
tro Technical Laboratory (ETL), which eventually became part of the National Insti-
tute of Advanced Industrial Science and Technology (AIST) in 2001. He received a 
Ph.D. in Engineering from the University of Tokyo in 1980, based on a dissertation 
on the topic of query answering in deductive databases, implemented in LISP.

Furukawa spent 1976 in California at the Stanford Research Institute (now SRI 
International) where he first encountered the idea of logic programming in the form 
of a Prolog interpreter, written by Alain Colmerauer. He was very excited about this 
implementation of computational logic, and returned to ETL the following year, 
and introduced the idea to his colleagues at ETL. The response was very positive at 
ETL, which then acquired David H.D. Warren’s DEC-10 implementation of Prolog. 
Furukawa wrote a Prolog program for database indexing, and quickly discovered 
that one could use logic programming to both specify and implement very efficient 
and high-level systems, including the first production system interpreter shown in 
Fig. 1. According to [6], Furukawa described this experience as follows.

I wrote a program to solve the Rubik cube problem in DEC-10 Prolog [12]. It 
ran efficiently and solved the problem in a relatively short time (around 20 sec-
onds). It is a kind of expert system in which the inference engine is a Produc-
tion System realized efficiently by a tail-recursive Prolog program. From this 
experience, I became convinced that Prolog was the language for knowledge 
information processing.

David H. D. Warren mentioned that one can easily take this message to mean that 
Furukawa had fallen in love with Prolog. He was one of the earliest researchers 
to exploit the clarity and power of Prolog for building meta-interpreters, where 

Fig. 1   Abstract specification of a production system in Prolog (meta-interpreter), extracted from [12]



143New Generation Computing (2019) 37:141–158	

123

sophisticated reasoning (e.g., abduction, analogy, higher-order predicate logic) 
could be pursued with both ease and clarity. Since that early work on Prolog, 
logic programming became a foundation of both his future theoretical and appli-
cation work, which carried on until the very end of his life.

The Japanese national project on Fifth Generation Computing Systems (FGCS) 
began in 1982, and Furukawa joined the project as a research director at the Insti-
tute for New Generation Computer Technology (ICOT). His friend and colleague 
from the University of Tokyo and ETL, Professor Kazuhiro Fuchi, was a “born 
leader” and helped convene both public and industrial funders to create the joint 
private–public 10  year project. The overall project had the goal of advancing 
research in the area of parallel inference machines, their applications and even 
operating systems, based on logic programming. Furukawa became the deputy 
director, recruited to lead the foundational research on logic programming. Fur-
ther details of his role in major achievements in advancing logic programming 
at ICOT are described in “Research at Institute for New Generation Computer 
Technology”.

In 1992, after the completion of the Fifth Generation Computing project, Furu-
kawa returned to academia, to the Graduate School of Media and Governance at 
Shonan Fujisawa Campus (SFC), Keio University. There he became a mentor for 
many graduate students, and led further work on Inductive Logic Programming 
(ILP) [36] and data mining. ILP is a subfield of machine learning which uses logic 
programming for inductive inference. He had already started to work on ILP when 
he was in ICOT, and continued to conduct both theoretical and practical projects 
with colleagues and students while at Keio.

At this time, his strong interest in human activities was revived, especially the 
skill in playing music instruments. With a focus on musical instrument performance, 
he began to intensively develop a scientific framework for verbalization of human 
tacit knowledge, especially to be able to make implicit musical performance skills 
sufficiently explicit to enable performance improvements in performers. This sub-
sequently led to the creation of a new research field called skill science. In this new 
research field, Furukawa sought the development of knowledge-based systems to 
acquire explicit and understandable knowledge, by exploiting abductive and analogi-
cal reasoning implemented in logic programming. In 2010, he moved to Kaetsu Uni-
versity, where he continued his intensive research on skill science.

He finally published a summary of his skill science work, including a handbook 
for cello players, co-authored with Toshiki Masuda, published in 2016 [34]. He 
intended to translate the book into English, but that project remained uncompleted 
at the time of his death. He also planned a more comprehensive monograph entitled 
“Abduction and Induction—A logic programming approach.” But in the middle of 
that dream, he passed away suddenly just on the day where he was to meet with a 
publishing company.

In the following sections, Furukawa’s research achievements are introduced in 
chronological order, that is, (1) the results in the FGCS project (“Research at Insti-
tute for New Generation Computer Technology”), (2) the basic research on ILP 
(“Research on Inductive Logic Programming”), and (3) introduction and advance-
ment of skill science (“Research on Skill Science”).



144	 New Generation Computing (2019) 37:141–158

123

A particular focus is put on the relationship with logic programming, and it is 
shown that all these achievements are tightly connected.

Research at Institute for New Generation Computer Technology

In 1982, the Fifth Generation Computer Systems (FGCS) Project began, motivated 
by a Japanese national policy of developing as a technologically advanced nation. 
The Institute for New Generation Computer Technology (ICOT) was established to 
run the project, and Furukawa joined as a research director. The main aim of the 
project was research and development of new computer technologies for knowledge 
information processing on parallel inference machines based on logic program-
ming. Until the project finished successfully in 1992, Furukawa engaged in work-
ing on various research challenges in logic programming, including concurrent logic 
programming, partial evaluation, and advanced reasoning such as abduction and 
induction. In addition, he was in charge of international services, where he not only 
worked hard to deliver results to conferences and institutes around the world, but 
also recruited young researchers to ICOT.

Parallel Inference and Logic Programming

At the beginning of the project, ICOT decided to make logic programming the foun-
dation principle of the project. However, at that time the programming language 
Prolog was the only implementation, and it could not explicitly express concurrent 
processes, which were required as a basic component of modern operating systems. 
So ICOT explored the possibility of concurrent logic programming by focusing on 
the concurrent programming within a framework of logic programming proposed 
by Keith Clark and Steve Gregory [1]. Both Parlog [2] and Concurrent Prolog [47, 
48] were examined as candidates; finally, ICOT consolidated all those ideas in the 
development of its own concurrent logic programming language named Guarded 
Horn Clauses (GHC) [51]. One noticeable feature in GHC is the ability to control 
parallel computation with a very simple mechanism called a guard. It is of note that 
Furukawa’s broad knowledge of computing found the relationship between Dijk-
stra’s “guarded commands” for programming based on predicate transformation, 
and his vision for their implementation in GHC. This development of ICOT’s own 
kernel language is significant, since it made possible to advance the development 
of hardware and software at the same time. As a consequence, the hardware design 
of a parallel inference machine (PIM) as well as a parallel operating system named 
PIMOS was developed, with one of the few projects that embraced simultaneously 
the development of hardware and software.

As a concrete application of parallel knowledge information processing, Furu-
kawa encouraged Ryuzo Hasegawa and his colleagues in the development of a 
theorem prover for full first-order predicate logic as a powerful extension of Pro-
log’s inference mechanism. They employed a Prolog technology theorem prover 
SATCHMO [33] written in only eight clauses in Prolog as a target, and created an 



145New Generation Computing (2019) 37:141–158	

123

implementation in GHC. The resulting interpreter of SATCHMO in GHC is shown 
in Fig. 2. This attempt led to a parallel theorem prover named MGTP (Model Gener-
ation Theorem Prover) [16, 17]. MTGP was one of the principal research outcomes 
of ICOT. It achieved very high performance in theorem proving by parallel speedup 
(it ran 220 times faster on a parallel inference machine with 256 processors), and 
solved a number of open problems in finite algebra. The MGTP achievement was a 
promising demonstration of the potential of parallel inference for the whole world.

Partial Evaluation in Logic Programming

Furukawa and his colleagues also worked on a variety of techniques known as par-
tial evaluation of logic programs [32]. The idea is that, since all computation with 
logic programs is inference, even partially executed logic programs can be inter-
preted and provide the basis for other kinds of reasoning. As noted below, this has 
been tried for both conventional systems and compilation, but also as an implemen-
tation technique for diagnostic, analogical, and higher-order reasoning.

Partial evaluation was first described as an optimization technique for fast com-
putation of meta-interpreters. A simple partial evaluator in Prolog is shown in 
Fig. 3. As a promising application of the partial evaluator for knowledge-based sys-
tems, Furukawa developed a self-applicable partial evaluator with an incremental 

Fig. 2   A part of SATCHMO interpreter in GHC

Fig. 3   Partial evaluator in Prolog



146	 New Generation Computing (2019) 37:141–158

123

compilation method in Prolog, which was used for compiler generation and com-
piler generator generation [3]. Using similar and extended techniques of partial eval-
uation, Furukawa, together with Randy Goebel and David Poole, proposed a theory 
formation system that provided a reformulation of rule-based diagnosis systems 
[15]. Furthermore, he developed partial evaluation techniques for GHC programs 
[4]. It should be noted that partial evaluators developed by Furukawa are based on 
meta-interpreters of Prolog or GHC programs.

Artificial Intelligence and Logic Programming

Furukawa’s work on theory formation with Goebel et  al. [15] is also considered 
as an early work on abductive logic programming [27], which performs abduc-
tion in logic programming. In fact, Furukawa conducted at ICOT several projects 
on advanced reasoning in logic programming. Furukawa had noticed that artificial 
intelligence (AI) or intelligent computing systems would need these advanced rea-
soning methods in addition to deductive technologies.

An integrated framework emerged in the work on knowledge assimilation, which 
maintains and updates knowledge bases whenever a new piece of knowledge or 
information is acquired. Integrity constraints play an important role in knowledge 
assimilation, and all modes of reasoning, i.e., deduction, induction and abduction, 
are involved in the update process. The first knowledge assimilation system was 
developed in Prolog at ICOT [35], and since then, hypothetical reasoning systems 
have been developed in ICOT including a version of Theorist [15]. These attempts 
were indeed too advanced in the middle of 1980s, and people could only notice the 
importance much later in 1990s [27].

As a natural extension of Furukawa’s depth of understanding of AI through logic 
programming, researchers at ICOT developed an interest in nonmonotonic reason-
ing, constraint (logic) programming, and inductive logic programming (ILP). These 
logic programming paradigms could be specified and implemented with some tech-
niques of meta-programming and partial evaluation, providing both clarity of their 
scopes and exposing practical challenges in their implementation.

It is remarkable that Furukawa was involved in early work on abductive and 
inductive reasoning as contributions to the foundations of AI. He encouraged David 
Poole, Randy Goebel, Stephen Muggleton and others in their pursuit of the creation 
of new AI systems such as Theorist [45] and Progol [39]. Furukawa also invited 
many other AI researchers to ICOT, including Mark Stickel for theorem proving and 
abductive reasoning and Nicolas Helft for ILP and nonmonotonic reasoning. Kat-
sumi Inoue enjoyed discussions and collaboration, which resulted in the success-
ful development of a consequence finding system for first-order full clausal theo-
ries called SOL resolution [19]. SOL resolution was later implemented in SOLAR 
[42], and Furukawa used SOLAR for meta-level abduction in his later work on skill 
science.

In the late 1980s, researchers of logic programming and AI in the world began 
collaborations to extend the class of definite logic programs by introducing negation 
and abducibles in the bodies of program rules, to allow the users to declaratively 



147New Generation Computing (2019) 37:141–158	

123

express defaults or hypotheses. Logic programs with negation became the basic 
form of nonmonotonic reasoning, and then lead to answer set programming in the 
21st century. On the other hand, logic programs with abducibles were soon called 
abductive logic programs, and were integrated in ILP [41]. Around the end period 
of the FGCS project, Hasegawa, Inoue and their colleagues implemented both non-
monotonic reasoning [24] and hypothetical reasoning [25] on top of MGTP, thereby 
showing the effect of parallelism of these reasoning systems on PIM machines. Bob 
Kowalski admitted, in his perspective of FGCS [31], that this last achievement was 
very important, by saying that “ICOT has been a significant participant in these 
developments.” Furukawa’s perspectively concluded [6] as follows:

However, most research output, including the knowledge assimilation system 
was not integrated into the concurrent logic programming framework. There-
fore, very little was produced for final fifth-generation computer systems based 
on PIM. An exception is a parallel bottom-up theorem prover called MGTP, 
and application systems running on it. An example of such applications is 
hypothetical reasoning. I expect this approach will attain my original goal of 
“high-speed knowledge information processing based on parallel computation 
mechanisms and specialized hardware” in the near future.

Managing International Affairs Services

In the 1980s, Furukawa took a leadership role at ICOT, to connect the world to 
the Japanese initiative in logic programming and artificial intelligence. He organ-
ized many bilateral (UK–Japan, French–Japan, and USA–Japan), trilateral 
(Italy–Japan–Sweden) and international workshops. During his many visits to 
research laboratories, he invited many top-level researchers to ICOT: J. A. Robinson, 
Robert A. Kowalski, Ehud Shapiro, Keith Clark, Randy Goebel, David Poole, Mark 
Stickel, Donald W. Loveland, Wolfgang Bibel, Gerd Brewka, Ray Reiter, Vladimir 
Lifschitz, and Stephen Muggleton, among many others. He was always noted to be 
a gracious intellectual host, always seeking to find ideas and methods that could 
strengthen and compliment the research goals of those visitors. In his final lecture 
at Keio University, he said that his “total number of business trip abroad reaches to 
about sixty in eleven years.” So in addition to providing tireless research leadership 
within ICOT, he was also a tireless missionary for logic programming all around the 
world.

Within the logic programming network he created around the world, he was a 
central figure in organizing the series of International Conference on Logic Pro-
gramming (ICLP). He was the official program chair of the Eighth International 
Conference on Logic Programming (ICLP 1991) in Paris [5].

Within the research community on logic programming, he was also famous as a 
cello player in “Logic Programming Trio,” (Fig. 4) formed with J. A. Robinson and 
Jacques Cohen. After their first concert at the Joint International Conference and 
Symposium on Logic Programming in 1992, they subsequently showed many more 
amazing musical performances at many international conferences.



148	 New Generation Computing (2019) 37:141–158

123

Research on Inductive Logic Programming

Inductive logic programming (ILP) [36, 40, 41] is an interdisciplinary research 
area that combines logic programming and machine learning methods for inductive 
inference. Furukawa already had a great interest in ILP while he was in ICOT, and 
invited Nicolas Helft as a researcher to ICOT and Stephen Muggleton as a guest 
researcher. Furukawa participated in the first international workshop on Inductive 
Logic Programming [37] held in Portugal, then organized the second workshop [38] 
with Fumio Mizoguchi in Tokyo in 1992.

As a theoretical research pursuit within the scope of ILP, Furukawa made an 
effort to make Inverse Entailment [39] complete. This idea is highly appealing, for it 
provides the basis to understand the formal relationship between facts stated about 
some domain, and those hypotheses which could minimally cover those facts, much 
like the formation of “best” or minimal hypotheses in the framework of scientific 
reasoning. Inverse Entailment [39] was formulated as an inductive inference rule, 
which effectively uses the most specific hypothesis to derive hypotheses for given 
positive examples and background knowledge. Right after the incompleteness of 
Inverse Entailment was articulated [53], Furukawa proposed a sufficient condition 
for existence of the most specific hypothesis [11] as well as procedures for con-
structing a complete most specific hypothesis for recursive programs [9, 13].

Furukawa was always a fearless intellectual, and in addition to the specification of 
sufficient conditions for the most specific hypothesis, he also worked on that founda-
tion as a use for higher-order concept formation, perhaps the most elaborate form of 
ILP to date, e.g., [44]. He also pointed out the relationship between inverse entail-
ment of inductive inference and the consequence finding, and in 1995 he encouraged 
Katsumi Inoue to use a consequence finding procedure like SOL resolution for com-
puting inverse entailment. In 2001, Inoue presented a complete algorithm called CF 
Induction [20] based on this suggestion.

Furukawa applied his general understanding of ILP to a variety of real-world prob-
lems including business applications. For example, he developed an expert system 

Fig. 4   Logic Programming Trio: Jacques Cohen, J. Alan Robinson, Koichi Furukawa, circa 1996 (http://
jc.cs.brand​eis.edu/?galle​ry=music​-2)

http://jc.cs.brandeis.edu/?gallery=music-2
http://jc.cs.brandeis.edu/?gallery=music-2


149New Generation Computing (2019) 37:141–158	

123

named AUTOMAIL, to support consumer product call center operators to promptly 
and accurately prepare near optimal responses to their customers’ questions [50]. In 
that system, Shimazu and Furukawa used ILP to construct rules, as shown in Fig. 5, to 
classify call center inquiries into 86 classes. This practical system greatly reduced the 
burden on the operator’s work in real environments.

Furukawa was also devoted to the dissemination of ILP in Japan. He prepared a lec-
ture course for ILP in the graduate school at Keio University, and published the first 
text book written in Japanese [14].

Research on Skill Science

After moving to Keio University, Furukawa’s creation of the field of “Skill Science” 
started out as research on the “verbalization of human tacit knowledge.” He believed, 
like with the use of logic programming for parallel systems building and for induc-
tion, that it could also provide the basis for articulating the tacit knowledge of physi-
cal skills like playing an instrument or performing as an athlete. In fact, this intellec-
tual motivation combined well with his passionate interest in music, especially playing 
the cello. He always believed that the performance skills of highly skilled musicians 
could be captured in some logical form, and then conveyed to musicians to improve 
their performance skills. In this case, his focus was on cello playing, and on improving 
his own performance skills as a competent amateur cellist. In this regard, the scien-
tific framework he developed included a variety of methods, including inductive logic 
programming, time series data mining, abduction, and analogical reasoning. He was 
an early advocate of research on “human-like computing,” and he and his colleagues 
developed a new research field called skill science. Skill science is a new multidiscipli-
nary research area with approaches including artificial intelligence, cognitive science, 
sports science, biomechanics and kinesiology, and ecological psychology [52]. The 
overall goal was to bring skills of tacit embodied expertise onto the podium of scientific 
exploration, to understand deeply the processes of skill acquisition, and to explore ways 
of designing good pedagogical environments. In this sense, Furukawa sought to focus 
all his research skills and background to help understand how to build the knowledge to 
help be a better skill science teacher.

Induction in Skill Science

In the early stages of his skill science study, Furukawa organized the “Keio 
International Workshop on Verbalization of Tacit Knowledge using Inductive 

Fig. 5   Rules in Prolog for classifying a given inquiry into prototypical question no. 85



150	 New Generation Computing (2019) 37:141–158

123

Inference” [7] (Fig. 6) by inviting experts with different backgrounds, including 
computer scientists, cognitive scientists, and professional musicians. As the title 
of the workshop suggested, he considered inductive inference, especially induc-
tive logic programming, as a central technology of the project. This underlying 
thought can be confirmed in the preface of the workshop proceedings, which is 
concluded by the following sentence:

In particular, we wish to discuss and explore the possibility of using induc-
tive logic programming as a common tool to uncover the structures of tacit 
knowledge across different aspects of human activities.

In the research pursuit of articulating human tacit knowledge, Furukawa 
employed ILP for the analysis of human respiration during musical performance 
[18]. While respiration control is one of the most important factors for effec-
tive musical performance, it is often difficult for even experts to explain how to 
clearly explain the role and control of respiration during performance. So in Furu-
kawa’s research approach, he sought to capture rules that showed repeatability 
and regularity in a performer’s respiration patterns. These rules were successfully 
extracted with ILP from sensor data together with musical/performance back-
ground knowledge, such as harmonic progression and bowing direction. It was 
also discovered that players tend to exhale at the beginning of new large musical 
structures, and inhale immediately before the change of keys.

Apart from the improvements of his own cello performance, Furukawa con-
centrated on language acquisition and concept formation as a central requirement 
to capture complex human tacit knowledge. For example, he proposed a computa-
tional model for children’s language acquisition process using ILP [30]. His sys-
tem named WISDOM (Fig. 7) succeeded in reproducing a part of a co-evolution 

Fig. 6   Proceedings of Keio International Workshop on Verbalization of Tacit Knowledge using Inductive 
Inference (left), and Poster of International Symposium on Skill Science 2007 (right)



151New Generation Computing (2019) 37:141–158	

123

mechanism of acquiring concept definitions for words and in the development of 
concept hierarchies by incorporating cognitive biases.

In 2007, Furukawa organized the International Symposium on Skill Science [8] 
(Fig. 6). The symposium had three invited lectures, one of which was a professional 
violinist Ikuko Mizuno, who gave a lecture with the title of “How to play the vio-
lin - Controlling the body and mind.” Also included was a panel discussion enti-
tled “Three important problems of skill science for next five years,” by Tsutomu 
Fujinami, Masaki Suwa, J. A. Robinson, Jacques Cohen, and Koichi Furukawa. 
This symposium demonstrated the true interdisciplinary nature of skill science and 
research presentations were made from a broad variety of areas. In addition, all the 
members of the musical group known as the Logic Programming Trio, participated 
in the panel, so we can see that logic programming was indeed considered as one 
of the fundamental techniques in skill science research. Although it is a digression, 
we enjoyed the concert by “Logic Programming Trio++”, i.e., Logic Programming 
Trio with Ikuko Mizuno (violin) and Maya Okamoto (viola) in the symposium. In 
fact, many of Furukawa’s interactions with his colleagues included some kind of 
musical performance.

Abduction in Skill Science

Furukawa investigated the application of abductive reasoning to skill science, 
because he believed that the framework of abductive reasoning for generating 
hypotheses was necessary to explain the basis for amazing observed performance 
facts; this exactly matched his idea of the mechanism of skill acquisition.

He first employed an abductive logic programming system ProLogICA [46] to 
find appropriate hypotheses to explain the behavior of both professional and amateur 
incorrect cello performances [29]. An example of Abductive Logic Programming 
for cello playing is shown in Fig. 8. The program in Fig. 8 is for finding a cello play-
ing technique for the rapid position shift accomplished by two possible methods: (1) 
move the elbow up and down by adduction and abduction of shoulder and elbow 
joints, or (2) move the hand position up and down by incycloduction and excyclo-
duction of the upper arm. In the course of his experiments, the abductive logic pro-
gram derived only the second method, because of the specified integrity constraints.

Fig. 7   Configuration of WISDOM (from Figure 1 in [30])



152	 New Generation Computing (2019) 37:141–158

123

In fact, during his study of skill science using abduction, Furukawa experienced 
some sudden skill improvement in his own cello playing, after his final lecture con-
cert at the Keio University (March 2008).1 This improvement arose by simply keep-
ing his right arm close, that is, to keep his elbow close to the body side. This method 
not only increased the sound volume, but helps keep bowing stable and supports 
maximum bow usage. As noted in the comments about making tacit knowledge 
explicit for teaching, Furukawa believed that the reproduction of good skill requires 
explanation, which helps makes the skill robust and tolerant of situation changes. In 
fact, his belief was that no explicit discovery of tacit knowledge is useful if it could 
not be explained. The process of explanation led further to another important find-
ing, which connected abduction and ILP to the general notion of scientific discov-
ery. With respect to skill science and, specifically musical instrument performance, 
Furukawa focused on what he called “knack discovery,” and worked hard to formu-
late knack discovery using a bold combination of ILP, abduction, and analogical 
reasoning, which he called “meta-level abduction.”

Meta-level abduction [21, 23] performs abduction on meta-level axioms, and 
abduces rules that infer hypotheses explaining empirical rules by means of hidden 
rules and containing unknown nodes as new predicates. The combination of rule 
abduction and fact abduction is possible using conditional query answering in a 
consequence finding system SOLAR [42, 43]. Meta-level abduction was applied to 
knack discovery [23] as well as biological network completion [22]. From the axi-
oms and domain-specific background knowledge shown in Fig. 9, a hypothesis

is successfully inferred for explaining the goal process caused(inc_sound, 
keep_arm_close): that goal process represents the alleged causality that keep-
ing one’s arm close (keep_arm_close) makes the sound increase (increase_
sound_volume). This use of meta-level abduction provided confirmation 

∃ �.(������(������_���_��������, �) ∧ ������(��������_�����, �)

∧ ������(�, ���
_���_�����))

Fig. 8   Abductive Logic Programming for explaining the proposition rapidPositionShift (a method of 
cello playing accompanied with high-speed position shift)

1  His final lecture concert, which is also a part of his research results on skill science, can be seen at 
https​://www.youtu​be.com/watch​?v=r1qoy​QIYt6​s. A full version is available at http://gc.sfc.keio.ac.jp/
cgi/video​_gc/view_video​_gc.cgi?2007_gc000​01+10+1 by using a flash player (start from about 38:00).

https://www.youtube.com/watch?v=r1qoyQIYt6s
http://gc.sfc.keio.ac.jp/cgi/video_gc/view_video_gc.cgi?2007_gc00001+10+1
http://gc.sfc.keio.ac.jp/cgi/video_gc/view_video_gc.cgi?2007_gc00001+10+1


153New Generation Computing (2019) 37:141–158	

123

that a knack represented by an ∃� statement can be automatically discovered and 
confirmed.

While the above form of meta-level abduction can abduce missing links, the 
abduced rules must be interpreted in some external way. That is, it is not easy to find 
language concept equivalents in which to convey the meta-level abduced structures. 
As a potential solution to this hypothesis interpretation problem, Furukawa devel-
oped an extension of meta-level abduction named analogical rule abduction [10, 
28] by adding axioms for analogical inference. Analogical rule abduction makes it 
possible to exploit a vocabulary of analogical relations to provide understandable 
interpretation to the introduced predicates and rules; analogical inferences across 
vocabularies can create appropriate cross-vocabulary language concepts. The axi-
oms for analogical rule abduction are shown in Fig. 10. In those axioms, causali-
ties in source and target worlds of analogy are represented in the predicate b_ - and 

Fig. 9   An example of knack discovery in meta-level abduction

Fig. 10   Axioms in analogical rule abduction



154	 New Generation Computing (2019) 37:141–158

123

t_caused/3, respectively. Three kinds of connections in target worlds represented in 
the predicate t_connected/2 are considered: (1) observed connections (connections 
without assumption), (2) connections by abduction, and (3) connections by analogy. 
The proposed framework was applied to the problem of explaining the difficult cello 
playing techniques of spiccato and rapid cross strings of the bow movement.

In fact in this near penultimate work, Furukawa had finally integrated all of 
his background on logic programming, inductive logic programming, abduction, 
analogical reasoning, and higher-order reasoning, into one grand demonstration 
of how the knacks of performance could be identified and articulated as outputs 
of his skill science framework.

By this final research achievement, Furukawa was invited to the 25th Inter-
national Conference on Inductive Logic Programming (ILP 2015), which was 
held in Kyoto, Japan, as a special invited speaker. It was his first return to an ILP 
conference since 2001. The editor of the special issue on ILP 2015 in Machine 
Learning journal [26] drew the following conclusion:

Dr. Furukawa contributed to establish the field of ILP and will be missed by 
the entire ILP community. In ILP 2015 he was very pleased that ILP confer-
ences were held for 25 years. We would like to dedicate this special issue to 
the memory of Dr. Furukawa.

Katsumi Inoue also gave a speech in memory of Koichi Furukawa at ILP 2017 held 
in Orléan, France, September 5th, 2017, which was organized together with memo-
rials of Alain Colmerauer and Alan Robinson given by Frédéric Benhamou and Ste-
phen Muggleton, respectively.

Conclusion

This article reviewed Professor Koichi Furukawa’s research activities from Fifth 
Generation Computing to Skill Science, focusing on the logic programming point 
of view. As his history shows, he contributed to research on logic programming for 
a long time. Even in his unpublished book, mentioned in “Biography Summary”, he 
was planning to include a small section for explaining a major advantage of logic 
programming, which is an ability for explicit understanding and explanation neces-
sary for handling human knowledge and skills. We believe that this attribute was one 
of big reasons that Furukawa was such a strong advocate for logic programming.

Logic programming played a significant role in his research activity. He also 
reviewed his research history by himself in his final lecture at Keio University and 
special lecture in the 28th Annual Conference of the Japan Society of Artificial 
Intelligence, and stated the following comments (translation from Japanese):

•	 There always existed logic programming as the background even when changing 
the research greatly from the fifth generation computer systems project to skill 
science.



155New Generation Computing (2019) 37:141–158	

123

•	 Divergent researches from fifth generation project and data mining to skill sci-
ence are converging within myself.

•	 Researches on meta-programming, inductive reasoning, and abductive reasoning 
in the fifth generation project era helped the research on skill science.

A significant personal attribute of Koichi Furukawa is that he was never afraid of 
tackling very difficult fundamental problems, and he always kept in mind how one 
should document any research progress, so that others could understand and exploit 
that progress. As a mentor, his style was to ask simple deep questions about how an 
idea was working (or not), and to encourage his students and colleagues alike, to 
always broaden their perspective when they reached an apparent research challenge.

We conclude this essay by noting that we expect his research legacy will continue 
to lead to further development of logic programming and skill science. May he rest 
in peace.

Open Access  This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, 
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

	 1.	 Clark, K.K., Gregory, S.: A relational language for parallel programming. In: Proceedings of the 
1981 Conference on Functional Programming Languages and Computer Architecture, pp. 171–178. 
ACM, Boston (1981). https​://doi.org/10.1145/80022​3.80677​6

	 2.	 Clark, K.L., Gregory, S.: PARLOG: a parallel logic programming language. Research Report DOC 
83/5, Department of Computing, Imperial College, London (1983)

	 3.	 Fujita, H., Furukawa, K.: A self-applicable partial evaluator and its use in incremental compilation. 
New Gener. Comput. 6(2–3), 91–118 (1988). https​://doi.org/10.1007/BF030​37133​

	 4.	 Fujita, H., Okumura, A., Furukawa, K.: Partial evaluation of GHC programs based on UR-set with 
constraint solving. ICOT Technical Report, TR-344 (1988)

	 5.	 Furukawa, K.: In: Proceedings of the Eighth International Conference on Logic Programming. MIT 
Press, Cambridge (1991)

	 6.	 Furukawa, K.: Contribution in [49], pp. 60–65 (1993)
	 7.	 Furukawa, K.: In: Proceedings of the Keio International Workshop on Verbalization of Tacit Knowl-

edge Using Inductive Inference. Keio University, Tokyo (1996)
	 8.	 Furukawa, K.: In: Proceedings of the International Symposium of Skill Sciences. Keio University, 

Tokyo (2007)
	 9.	 Furukawa, K.: On the completion of the most specific hypothesis computation in inverse entailment 

for mutual recursion. In: Proceedings of the First International Conference on Discovery Science. 
Lecture Notes in Computer Science, vol. 1532, pp. 315–325. Springer, Berlin (1998). https​://doi.
org/10.1007/3-540-49292​-5_28

	10.	 Furukawa, K., Kinjo, K., Ozaki, T., Haraguchi, M.: On skill acquisition support by analogical rule 
abduction. In: International Workshop on Information Search, Integration, and Personalization, 
Revised Selected Papers, Communications in Computer and Information Science, vol. 421, pp. 
71–83. Springer, Cham (2014). https​://doi.org/10.1007/978-3-319-08732​-0_6

	11.	 Furukawa, K., Murakami, T., Ueno, K., Ozaki, T., Shimazu, K.: On a sufficient condition for the 
existence of most specific hypothesis in Progol. In: Proceedings of the 7th International Workshop 
on Inductive Logic Programming. Lecture Notes in Computer Science, vol. 1297, pp. 157–164. 
Springer, Berlin (1997). https​://doi.org/10.1007/35406​35149​_44

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/800223.806776
https://doi.org/10.1007/BF03037133
https://doi.org/10.1007/3-540-49292-5_28
https://doi.org/10.1007/3-540-49292-5_28
https://doi.org/10.1007/978-3-319-08732-0_6
https://doi.org/10.1007/3540635149_44


156	 New Generation Computing (2019) 37:141–158

123

	12.	 Furukawa, K., Nakajima, R., Yonezawa, A., Goto, S., Aoyama, A.: Problem solving and inference 
mechanisms. In: Moto-oka, T. (ed.) Fifth Generation Computer Systems, pp. 131–138. Elsevier 
(1982). https​://doi.org/10.1016/B978-0-444-86440​-6.50008​-6

	13.	 Furukawa, K., Ozaki, T.: On the completion of inverse entailment for mutual recursion and its 
application to self recursion. In: Work-in-Progress Reports of the 10th International Conference on 
Inductive Logic Programming, CEUR Workshop Proceedings 35 (2000)

	14.	 Furukawa, K., Ozaki, T., Ueno, K.: Inductive Logic Programming. Kyoritsu Shuppan, Tokyo (2001) 
(in Japanese)

	15.	 Goebel, R., Furukawa, K., Poole, D.: Using definite clauses and integrity constraints as the basis 
for a theory formation approach to diagnostic reasoning. In: Proceedings of the Third International 
Conference on Logic Programming. Lecture Notes in Computer Science, vol. 225, pp. 211–222. 
Springer, Berlin (1986). https​://doi.org/10.1007/3-540-16492​-8_77

	16.	 Hasegawa, R., Fujita, H., Fujita, M.: A parallel theorem prover in KL1 and its application to pro-
gram synthesis. ICOT Technical Report, TR-588 (1990)

	17.	 Hasegawa, R., Koshimura. M., Fujita, H.: MGTP: a parallel theorem prover based on lazy model 
generation. In: Proceedings of the 11th International Conference on Automated Deduction. Lec-
ture Notes in Computer Science, vol. 607, pp. 776–780. Springer, Berlin (1992). https​://doi.
org/10.1007/3-540-55602​-8_223

	18.	 Igarashi, S., Ozaki, T., Furukawa, K.: Respiration reflecting musical expression: analysis of respira-
tion during musical performance by inductive logic programming. In: Proceedings of the Second 
International Conference on Music and Artificial Intelligence. Lecture Notes in Computer Science, 
vol. 2445, pp. 94–106. Springer, Berlin (2002). https​://doi.org/10.1007/3-540-45722​-4_10

	19.	 Inoue, K.: Linear resolution for consequence finding. Artif. Intell. 56(2–3), 301–353 (1992)
	20.	 Inoue, K.: Induction, abduction, and consequence-finding. In: Proceedings of the 11th International 

Conference on Inductive Logic Programming. Lecture Notes in Computer Science, vol. 2157, pp. 
65–79. Springer, Berlin (2001). https​://doi.org/10.1007/3-540-44797​-0_6

	21.	 Inoue, K.: Meta-level abduction. IfCoLog J. Log. Appl. 3(1), 7–36 (2016)
	22.	 Inoue, K., Doncescu, A., Nabeshima, H.: Completing causal networks by meta-level abduction. 

Mach. Learn. 91(2), 239–277 (2013). https​://doi.org/10.1007/s1099​4-013-5341-z
	23.	 Inoue, K., Furukawa, K., Kobayashi, I., Nabeshima, H.: Discovering rules by meta-level abduc-

tion. In: Proceedings of the 19th International Conference on Inductive Logic Programming (ILP 
’09). Lecture Notes in Computer Science, vol. 5989, pp. 49–64. Springer, Berlin (2009). https​://doi.
org/10.1007/978-3-642-13840​-9_6

	24.	 Inoue, K., Koshimura, M., Hasegawa, R.: Embedding negation as failure into a model generation 
theorem prover. In: Proceedings of the 11th International Conference on Automated Deduction 
(CADE-11). LNCS, vol. 607, pp. 400–415. Springer, Berlin (1992). https​://doi.org/10.1007/3-540-
55602​-8

	25.	 Inoue, K., Ohta, Y., Hasegawa, R., Nakashima, M.: Bottom-up abduction by model generation. In: 
Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI-93), pp. 
102–108 (1993). http://ijcai​.org/Proce​eding​s/93-1/Paper​s/015.pdf

	26.	 Inoue, K., Ohwada, H., Yamamoto, A.: Special issue on inductive logic programming. Mach. Learn. 
106(12), 1863–1865 (2017). https​://doi.org/10.1007/s1099​4-017-5679-8

	27.	 Kakas, A.C., Kowalski, R.A., Toni, F.: The role of abduction in logic programming. Handb. Log. 
Artif. Intell. Log. Program. 5, 235–324 (1998)

	28.	 Kinjo, K., Ozaki, T., Furukawa, K., Haraguchi, M.: On skill acquisition support by analogical rule 
abduction. Trans. Jpn. Soc. Artif. Intell. 29(1), 188–193 (2014). https​://doi.org/10.1527/tjsai​.29.188 
(in Japanese)

	29.	 Kobayashi, I., Furukawa, K.: Modeling physical skill discovery and diagnosis by abduction. Trans. 
Jpn. Soc. Artif. Intell. 23(3), 127–140 (2008). https​://doi.org/10.11185​/imt.3.385

	30.	 Kobayashi, I., Furukawa, K., Ozaki, T., Imai, M.: A computational model for children’s language 
acquisition using inductive logic programming. In: Progress in Discovery Science, Final Report of 
the Japanese Discovery Science Project. Lecture Notes in Computer Science, vol. 2281, pp. 140–
155. Springer, Berlin (2002). https​://doi.org/10.1007/3-540-45884​-0_7

	31.	 Kowalski, R.A.: Contribution in [49], pp. 54–60 (1993)
	32.	 Lloyd, J.W., Shepherdson, J.C.: Partial evaluation in logic programming. J. Log. Program. 11(3–4), 

217–242 (1991). https​://doi.org/10.1016/0743-1066(91)90027​-M

https://doi.org/10.1016/B978-0-444-86440-6.50008-6
https://doi.org/10.1007/3-540-16492-8_77
https://doi.org/10.1007/3-540-55602-8_223
https://doi.org/10.1007/3-540-55602-8_223
https://doi.org/10.1007/3-540-45722-4_10
https://doi.org/10.1007/3-540-44797-0_6
https://doi.org/10.1007/s10994-013-5341-z
https://doi.org/10.1007/978-3-642-13840-9_6
https://doi.org/10.1007/978-3-642-13840-9_6
https://doi.org/10.1007/3-540-55602-8
https://doi.org/10.1007/3-540-55602-8
http://ijcai.org/Proceedings/93-1/Papers/015.pdf
https://doi.org/10.1007/s10994-017-5679-8
https://doi.org/10.1527/tjsai.29.188
https://doi.org/10.11185/imt.3.385
https://doi.org/10.1007/3-540-45884-0_7
https://doi.org/10.1016/0743-1066(91)90027-M


157New Generation Computing (2019) 37:141–158	

123

	33.	 Manthey, R., Bry, F.: SATCHMO: a theorem prover implemented in Prolog. In: Proceedings of the 
9th International Conference on Automated Deduction. Lecture Notes in Computer Science, vol. 
310, pp. 415–434. Springer, Berlin (1998). https​://doi.org/10.1007/BFb00​12847​

	34.	 Masuda, T., Furukawa, K.: You Approach the Cello, and the Cello Approaches You—An Approach 
Based on Skill Science. Doremi Publishing, Tokyo (2016)

	35.	 Miyachi, T., Kunifuji, S., Kitakami, H., Furukawa, K., Takeuchi, A., Yokota, H.: A knowledge 
assimilation method for logic databases. New Gener. Comput. 2(4), 385–404 (1984). https​://doi.
org/10.1007/BF030​37329​

	36.	 Muggleton, S.: Inductive logic programming. New Gener. Comput. 8(4), 295–318 (2001). https​://
doi.org/10.1007/BF030​37089​

	37.	 Muggleton, S.H.: In: Proceedings of the First International Workshop on Inductive Logic Program-
ming (1991)

	38.	 Muggleton, S.H.: In: Proceedings of the Second International Workshop on Inductive Logic Pro-
gramming (1992)

	39.	 Muggleton, S.: Inverse entailment and Progol. New Gener. Comput. 13(3–4), 245–286 (1995). https​
://doi.org/10.1007/BF030​37227​

	40.	 Muggleton, S., De Raedt, L.: Inductive logic programming: theory and methods. J. Log. Program. 
19(20), 629–679 (1994). https​://doi.org/10.1016/0743-1066(94)90035​-3

	41.	 Muggleton, S., De Raedt, L., Poole, D., Bratko, I., Flach, P., Inoue, K., Srinivasan, A.: ILP turns 
20—biography and future challenges. Mach. Learn. 86(1), 3–23 (2012). https​://doi.org/10.1007/
s1099​4-011-5259-2

	42.	 Nabeshima, H., Iwanuma, H., Inoue, K.: SOLAR: a consequence finding system for advanced rea-
soning. In: Proceedings of International Conference on Automated Reasoning with Analytic Tab-
leaux and Related Methods. Lecture Notes in Computer Science, vol. 2796, pp. 257–263. Springer, 
Berlin (2003). https​://doi.org/10.1007/978-3-540-45206​-5_22

	43.	 Nabeshima, H., Iwanuma, K., Inoue, K., Ray, O.: SOLAR: an automated deduction system for con-
sequence finding. AI Commun. 23(2–3), 183–203 (2010). https​://doi.org/10.3233/AIC-2010-0465

	44.	 Padmanabhuni, S., Goebel, R., Furukawa, K.: Curried least general generalization: a framework 
for higher order concept learning. In: Learning and Reasoning with Complex Representations, 
PRICAI’96 Workshops on Reasoning with Incomplete and Changing Information and on Induc-
ing Complex Representations, Selected Papers. Lecture Notes in Computer Science, vol. 1359, pp. 
45–60. Springer, Berlin (1998). https​://doi.org/10.1007/3-540-64413​-X_27

	45.	 Poole, D., Goebel, R., Aleliunas, R.: Theorist: a logical reasoning system for defaults and diagno-
sis. In: Cercone, N., McCalla, G. (eds.) The Knowledge Frontier: Essays in the Representation of 
Knowledge, pp. 331–352. Springer, Berlin (1987) [Also Research Report CS-86-06, Department 
of Computer Science, University of Waterloo (1986)]

	46.	 Ray, O., Kakas, A.C.: ProLogICA: a practical system for abductive logic programming. In: Proceed-
ings of the 11th Workshop on Nonmonotonic Reasoning, pp. 304–314. Institut für Informatik, Tech-
nische Universität Clausthal, Clausthal-Zellerfeld (2006)

	47.	 Shapiro, E.Y.: A subset of concurrent Prolog and its interpreter. ICOT Technical Report, TR-003 
(1983)

	48.	 Shapiro, E., Takeuchi, A.: Object oriented programming in concurrent Prolog. New Gener. Comput. 
1, 25–48 (1983). https​://doi.org/10.1007/BF030​37020​

	49.	 Shapiro, E., Warren, D.H.D. (eds.): Launching the new era—personal perspectives of Fifth Genera-
tion Computer Systems project. Commun. ACM 36(3), 47–101 (1993)

	50.	 Shimazu, K., Furukawa. K.: DAISY, an RER model based interface for RDB to ILP. In: Proceedings 
of the 22nd International Conference on Conceptual Modeling. Lecture Notes in Computer Science, 
vol. 2813, pp. 390–404. Springer, Berlin (2003). https​://doi.org/10.1007/978-3-540-39648​-2_31

	51.	 Ueda, K.: Guarded horn clauses. ICOT Technical Report, TR-103 (1985)
	52.	 Ueno, K., Furukawa, K., Bain, M.: Motor skill as dynamic constraint satisfaction. Linköp. Electron. 

Artic. Comput. Inf. Sci. 5(2000), nr36 (2000). http://www.ep.liu.se/ea/cis/2000/036/. Accessed 10 
Apr 2019

	53.	 Yamamoto, A.: Which hypotheses can be found with inverse entailment? In: Proceedings of the 7th 
International Workshop on Inductive Logic Programming. Lecture Notes in Computer Science, vol. 
1297, pp. 296–308. Springer, Berlin (1997). https​://doi.org/10.1007/35406​35149​_58

https://doi.org/10.1007/BFb0012847
https://doi.org/10.1007/BF03037329
https://doi.org/10.1007/BF03037329
https://doi.org/10.1007/BF03037089
https://doi.org/10.1007/BF03037089
https://doi.org/10.1007/BF03037227
https://doi.org/10.1007/BF03037227
https://doi.org/10.1016/0743-1066(94)90035-3
https://doi.org/10.1007/s10994-011-5259-2
https://doi.org/10.1007/s10994-011-5259-2
https://doi.org/10.1007/978-3-540-45206-5_22
https://doi.org/10.3233/AIC-2010-0465
https://doi.org/10.1007/3-540-64413-X_27
https://doi.org/10.1007/BF03037020
https://doi.org/10.1007/978-3-540-39648-2_31
http://www.ep.liu.se/ea/cis/2000/036/
https://doi.org/10.1007/3540635149_58


158	 New Generation Computing (2019) 37:141–158

123

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

Tomonobu Ozaki  Ph.D. is a Professor in the College of Humanities and Sciences, Nihon University. His 
areas of interest include logic programming, skill science, data mining and artificial intelligence.

R.G. (Randy) Goebel  is currently a Professor of Computing Science in the Department of Computing 
Science at the University of Alberta, Associate Vice President (Research) and Associate Vice Presi-
dent (Academic), and Fellow and co-founder of the Alberta Machine Intelligence Institute (AMII). He 
received B.Sc. (Computer Science), M.Sc. (Computing Science), and Ph.D. (Computer Science) from the 
Universities of Regina, Alberta, and British Columbia, respectively. Professor Goebel’s theoretical work 
on abduction, hypothetical reasoning and belief revision is internationally well known, and his recent 
research is focused on the formalization of visualization and explainable artificial intelligence (XAI). He 
has worked on optimization, algorithm complexity, systems biology, and natural language processing, 
including applications in legal reasoning and medical informatics.

Katsumi Inoue  is a Professor of Principles of Informatics Research Division, National Institute of Infor-
matics, and is a Professor of Department of Informatics, School of Multidisciplinary Sciences, SOKEN-
DAI (The Graduate University for Advanced Studies). He has also been a Specially Appointed Professor 
of Department of Computer Science, School of Computing, Tokyo Institute of Technology, since 2015. 
He received the Doctor of Engineering degree from Kyoto University in 1993. His research interests 
include artificial intelligence, logic programming, and computer science in general.


	From Fifth Generation Computing to Skill Science
	Abstract
	Biography Summary
	Research at Institute for New Generation Computer Technology
	Parallel Inference and Logic Programming
	Partial Evaluation in Logic Programming
	Artificial Intelligence and Logic Programming
	Managing International Affairs Services

	Research on Inductive Logic Programming
	Research on Skill Science
	Induction in Skill Science
	Abduction in Skill Science

	Conclusion
	References




