
Journal of the Operations Research Society of China (2019) 7:429–448
https://doi.org/10.1007/s40305-019-00260-1

Approximation Algorithms for Vertex Happiness

Yao Xu1 · Yong Chen2 · Peng Zhang3 · Randy Goebel1

Received: 3 September 2018 / Revised: 10 April 2019 / Accepted: 1 July 2019 / Published online: 20 July 2019
© Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and
Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
We investigate the maximum happy vertices (MHV) problem and its complement, the
minimumunhappy vertices (MUHV) problem. In order to design better approximation
algorithms, we introduce the supermodular and submodular multi-labeling (Sup- ML

and Sub- ML) problems and show thatMHV andMUHV are special cases of Sup- ML

and Sub- ML, respectively, by rewriting the objective functions as set functions. The
convex relaxation on the Lovász extension, originally presented for the submodular
multi-partitioningproblem, canbe extended for theSub- MLproblem, therebyproving
that Sub- ML (Sup- ML, respectively) can be approximated within a factor of 2−2/k
(2/k, respectively), where k is the number of labels. These general results imply
that MHV and MUHV can also be approximated within factors of 2/k and 2 − 2/k,
respectively, using the same approximation algorithms. For the MUHV problem, we
also show that it is approximation-equivalent to the hypergraphmultiway cut problem;
thus, MUHV is Unique Games-hard to achieve a (2 − 2/k − ε)-approximation, for
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any ε > 0. For theMHV problem, the 2/k-approximation improves the previous best
approximation ratio max{1/k, 1/(Δ + 1/g(Δ)

)}, where Δ is the maximum vertex
degree of the input graph and g(Δ) = (

√
Δ+√

Δ + 1)2Δ > 4Δ2. We also show that
an existing LP relaxation forMHV is the same as the concave relaxation on the Lovász
extension for Sup- ML; we then prove an upper bound of 2/k on the integrality gap of
thisLP relaxation,which suggests that the 2/k-approximation is the best possible based
on this LP relaxation. Lastly, we prove that it is Unique Games-hard to approximate
theMHV problem within a factor of Ω(log2 k/k).

Keywords Vertex happiness · Multi-labeling · Submodular/supermodular set
function · Approximation algorithm · Polynomial-time reduction · Integrality gap

Mathematics Subject Classification 68W25 · 90C05 · 90C27

1 Introduction

Inspired by the study on the homophyly governing the structures of large-scale
networks such as social networks and citation networks, Zhang and Li [1] introduced
a vertex coloring problem that can be defined as follows. One is given an undirected
graph G = (V , E) with a nonnegative weight w(v) for each vertex v ∈ V , a color
set C = {1, 2, · · · , k}, and a partial vertex coloring function c : V �→ C . The goal
is to color all the uncolored vertices such that the total weight of happy vertices is
maximized. A vertex is happy if it shares the same color with all its neighbors in the
coloring scheme. The problem is referred to as the maximum happy vertices (MHV)
problem [1], and its complement the minimum unhappy vertices (MUHV) problem
can be defined analogously to minimize the total weight of unhappy vertices, where a
vertex is unhappy if its color is different from at least one of its neighbors.

In both the MHV and MUHV problems, there could be multiple vertices in the
given graph pre-colored the same color. When only one vertex is pre-colored by the
partial vertex coloring function c for each i ∈ C , we denote these two problems as the
restricted-MHV and the restricted-MUHV problems, respectively. ForMUHV, there
is a polynomial-time reduction from the general MUHV problem to the restricted-
MUHV problem, by creating a vertex for each i ∈ C with a weight large enough,
pre-coloring it with the color i , connecting it to all the vertices pre-colored i , and
making them uncolored (see a detailed proof in Sect. 3). This reduction implies that
the restricted-MUHV problem and the general MUHV problem are approximation-
equivalent.

We remark that these two vertex coloring problems are in fact labeling problems,
and we use “color” and “label” interchangeably; they are different from the classic
graph coloring (Coloring) problem [2], in which a feasible vertex coloring scheme
must assign different colors to any adjacent vertices. We also note that if no vertex
is pre-colored i , for any i , then this color i can be removed without affecting the
optimum; we therefore assume without loss of generality that every color is used in
the given partial vertex coloring function c.

123



Approximation Algorithms for Vertex Happiness 431

Given a graph G = (V , E) with the vertex set V and the edge set E , for any subset
X ⊆ V , define the boundary of X , denoted as ∂(X), to be the subset of vertices of X ,
and each has at least one neighbor outside of X . Let ι(X) = X −∂(X), which is called
the interior of X . In a coloring scheme, let Si denote the subset of all the vertices
colored i ; then, every vertex of ∂(Si ) is unhappy since it has at least one neighbor not
colored i , while all vertices of ι(Si ) are happy. We extend the vertex weight function
to subsets of vertices, that is, w(X) := ∑

v∈X w(v) for any X ⊆ V , and we define the
set function f (·) as

f (X) := w(∂(X)), ∀X ⊆ V . (1.1)

A vertex coloring scheme one-to-one corresponds to a partition S = {S1, S2, · · · , Sk}
of the vertex set V , where each part Si contains all the vertices colored i . This way, the
MUHV problem can be cast as finding a partition S such that f (S) := ∑k

i=1 f (Si )
is minimized.

It is not hard to validate (see a detailed proof in Sect. 3) that the boundary ∂(·) of a
vertex subset in the given graph G = (V , E) has the following properties for any two
subsets X ,Y ⊆ V :

(i) ∂(∅) = ∅;
(ii) ∂(X ∩ Y ) ⊆ ∂(X) ∪ ∂(Y );
(iii) ∂(X ∪ Y ) ⊆ ∂(X) ∪ ∂(Y );
(iv) ∂(X ∩ Y ) ∩ ∂(X ∪ Y ) ⊆ ∂(X) ∩ ∂(Y ).

Therefore, the set function f : 2V → Rdefined inEq. (1.1) satisfies f (X)+ f (Y ) �
f (X ∩Y )+ f (X ∪Y ), for any two subsets X ,Y ⊆ V (see a detailed proof in Sect. 3).
That is, f (·) is a submodular [3] function on the set V . This way, theMUHV problem
can be cast as a special case of the following submodular multi-labeling (Sub- ML)
problem:

Given a ground set V , a nonnegative submodular set function f : 2V → R+, with
f (∅) = 0, a set of labels L = {1, 2, · · · , k}, and a partial labeling function � : V �→ L
which pre-assigns each label i to all the elements of a non-empty subset Ti ⊂ V , the
goal of the Sub- ML problem is to find a partition S = {S1, S2, · · · , Sk} of the ground
set V to minimize f (S) = ∑k

i=1 f (Si ), where the part Si is the subset of elements
assigned with the label i .

Conversely, given the graph G = (V , E), we define another set function g(·) as

g(X) := w(ι(X)), ∀X ⊆ V . (1.2)

Then, g(X) = w(X) − f (X) for any subset X ⊆ V , and consequently, g(·) is a
supermodular [3] function on the set V . Thus, theMHV problem can be cast as finding
a partition S = {S1, S2, · · · , Sk} of the vertex set V such that g(S) = ∑k

i=1 g(Si ) is
maximized, where each part Si contains all the vertices colored i ; it can also be cast
as a special case of the supermodular multi-labeling (Sup- ML) problem that can be
analogously defined.
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1.1 RelatedWorks

Classification problems have been formulated as cuts or partition or labeling or
coloring, and have been widely studied for a very long time.

For the MHV problem, Zhang and Li [1] proved that it is polynomial-time solv-
able for k = 2 and it becomes NP-hard for k � 3; for k � 3, they presented
two approximation algorithms: a greedy algorithm with an approximation ratio of
1/k and an Ω(1/Δ3)-approximation based on a subset-growth technique, where
Δ is the maximum vertex degree of the input graph. Later, Zhang et al. [4] pre-
sented an improved algorithm with an approximation ratio of 1/(Δ + 1) based on a
combination of randomized LP rounding techniques, which was further improved to
1/(Δ+1/g(Δ))with deeper analysis [5], where g(Δ) = (

√
Δ+√

Δ + 1)2Δ > 4Δ2.
Together, these imply that the current best approximation ratio for theMHV problem
is max{1/k, 1/(Δ + 1/g(Δ)

)}. For the complementary MUHV problem, to the best
of our knowledge, it hasn’t been particularly studied in the literature.

Recall that theMHV and theMUHV problems are a special case of theSup- ML and
the Sub- ML problems, respectively. We again remind the readers that in an instance
of these multi-labeling problems, each label is pre-assigned to at least one element and
to multiple elements in general. A restricted version of the Sub- ML problem, when
each label is pre-assigned to exactly one element, is the submodularmultiway partition
(Sub- MP) problem [6], which has been studied a great deal. The restricted-MUHV

problem is a special case of the Sub- MP problem.
The Sub- MP problem was first studied by Zhao et al. [6], who presented

a (k − 1)-approximation algorithm. Years later, Chekuri and Ene [7] proposed
a convex relaxation for Sub- MP by using the Lovász extension, and they pre-
sented a 2-approximation based on this relaxation. This was further improved to a
(2 − 2/k)-approximation shortly after by Ene et al. [8], which immediately gives a
(2− 2/k)-approximation for the restricted-MUHV and the generalMUHV problems.
On the inapproximability, Ene et al. [8] proved that any (2− 2/k − ε)-approximation
for Sub- MP requires exponentially many value queries for any ε > 0; otherwise, it
implies NP = RP.

It is important to note that although the restricted-MUHV problem and the general
MUHV problem are approximation-equivalent, we cannot simply conclude that the
Sub- MP problem and the Sub- ML problem are also approximation-equivalent based
on similar reduction proofs. The difference between Sub- MP and Sub- ML depends
heavily on how the set function f (·) is defined; a change to the ground set V could
alter the optimal solution value and a feasible solution value differently.

The Sub- MP problem includes many well-studied cut problems including the clas-
sic (edge-weighted) multiway cut (MC) problem [9], the node-weighted multiway cut
(Node- MC) problem [10], and the hypergraph multiway cut (Hyp- MC) problem
[11] as special cases. The classic MC problem is NP-hard for k � 3 even if all edges
have unit weight [9], and there have been many approximation algorithms designed
and analyzed for it [9,12–16]. Most of these approximation results are based on the
linear program (LP) relaxation presented by Călinescu et al. [12], and the current best
approximation ratio is 1.296 5 [16]. The Hyp- MC and the Node- MC problems are
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actually approximation-equivalent, and both of them admit a (2−2/k)-approximation
[10,11]; on the negative side, they are proved more difficult to approximate that it is
Unique Games-hard to achieve a (2 − 2/k − ε)-approximation, for any ε > 0 [8].

One can similarly define the complement of the Sub- MP problem, called the super-
modular multiway partition (Sup- MP) problem. The restricted-MHV problem is then
a special case of Sup- MP, which also includes the multiway uncut problem [17] as a
special case, where the k terminals in the input graph can be considered as k elements
each being pre-assigned with a distinct label. The multiway uncut problem seems
only studied by Langberg et al. [17], who presented a 0.853 5-approximation based
on an LP relaxation. When generalizing the multiway uncut problem to pre-assign
multiple terminals in a part of the vertex partition, it becomes the maximum happy
edges (MHE) problem, which is a special case of the Sup- ML problem. Zhang and
Li [1] presented a 1/2-approximation for the MHE problem on the basis of a simple
division strategy; extending the LP relaxation for the multiway uncut, Zhang et al. [4]

later improved the approximation ratio to 1/2 +
√
2
4 h(k) � 0.853 5, where h(k) � 1

is a function in k.
More broadly, the multi-labeling problems can seem to be special cases of the

cost allocation [18] (CA) problem, in which k different nonnegative set functions
are given for evaluating the k parts of the partition separately; they are also closely
related to the optimal allocation (OA) problem [19–23] in combinatorial auctions,
where no elements are necessarily pre-assigned a label, but the set function (called
utility function) is assumed to be monotone in general.

1.2 Our Contributions

Our target problems are theMHV and theMUHV problems, and we aim to design
improved approximation algorithms for them and to prove the hardness results in
approximability.

We first show that the convex relaxation on the Lovász extension for the Sub- MP

problem [7] can be extended for theSub- ML problem; therefore, the same approxima-
tion algorithmworks for Sub- MLwith a performance ratio of (2−2/k). Analogously,
we present the concave relaxation on the Lovász extension for the Sup- ML problem,
thus showing that Sup- ML can be approximated within a factor of 2/k. Therefore,
the MUHV problem can be approximated within a factor of (2 − 2/k) and the MHV

problem can be approximated within a factor of 2/k; the 2/k-approximation forMHV

improves the previous best ratio of max{1/k, 1/(Δ + 1/g(Δ)
)}, where Δ is the max-

imum vertex degree of the input graph and g(Δ) = (
√

Δ + √
Δ + 1)2Δ > 4Δ2.

For the MUHV problem, the (2 − 2/k)-approximation can also be obtained due
to its approximation-equivalent to the restricted-MUHV problem, which is a special
case of Sub- MP. We also prove that theMUHV problem is approximation-equivalent
to the Hyp- MC problem [11]; thus, MUHV is Unique Games-hard to approximate
within a factor of (2 − 2/k − ε), for any ε > 0. This hardness result gives another
evidence that it is Unique Games-hard to achieve a (2 − 2/k − ε)-approximation for
the general Sub- ML problem, for any ε > 0.
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For the MHV problem, we show that the LP relaxation for the MHV problem
presented in [4], called LP-MHV, is equivalent to the concave relaxation for the Sup-
ML problem based on the Lovász extension to the set function g(·) defined in Eq. (1.2).
We then prove an upper bound of 2/k on the integrality gap of LP-MHV and conclude
that the 2/k-approximation is the best possible based on LP-MHV; thus, the 2/k-
approximation is also the best possible for the Sup- ML problem based on the concave
relaxation on the Lovász extension. On the inapproximability ofMHV, we prove that
it is Unique Games-hard to approximate within a factor of Ω(log2 k/k), by showing
an approximation preserving reduction from the maximum independent set (MIS)
problem [24]. This hardness result also gives another evidence that it is UniqueGames-
hard to achieve an Ω(log2 k/k)-approximation for the general Sup- ML problem.

1.3 Organization

The remainder of the paper is organized as follows: In Sect. 2, we introduce some
basic notions such as the Lovász extension to a set function; we then present the
relaxation based on the Lovász extension for the Sub- ML problem and a similar
relaxation for the Sup- ML problem. We also present the approximation algorithm
using the same randomized rounding technique for the Sub- MP problem in [8] and
conclude that it is also a (2 − 2/k)-approximation for the Sub- ML problem and
that it is a 2/k-approximation for the Sup- ML problem. In Sect. 3, we study the
MUHV problem which admits a (2− 2/k)-approximation, and further show that it is
approximation-equivalent to the Hyp- MC problem; thus, MUHV is Unique Games-
hard to approximate within a factor of (2 − 2/k − ε), for any ε > 0. In Sect. 4, we
study the MHV problem by first introducing the LP relaxation formulated in [4] and
then showing its equivalence to the relaxation on the basis of the Lovász extension to
the set function f (·) defined in Eq. (1.1), and proving an upper bound of 2/k on the
integrality gap; lastly, we prove a hardness result for MHV that it is Unique Games-
hard to achieve an Ω(log2 k/k)-approximation. We conclude the paper in Sect. 5.

2 Preliminaries

Given a ground set V = {v1, v2, · · · , vn}, y j := y(v j ) is a real variable that
maps the element v j to the closed unit interval [0, 1]. For any nonnegative set func-
tion f : 2V → R+, its Lovász extension [3,25] is a function f̂ : [0, 1]V → R+
such that

f̂ (�y) =
n−1∑

j=1

(yπ j − yπ j+1) f ({vπ1, vπ2 , · · · , vπ j }), (2.1)

where �y = (y1, y2, · · · , yn) ∈ [0, 1]V and π is a permutation on {1, 2, · · · , n} such
that 1 = yπ1 � yπ2 � · · · � yπn = 0. It has been proved by Lovász [3] that a set
function is submodular (supermodular, respectively) if and only if its Lovász extension
is convex (concave, respectively).
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Approximation Algorithms for Vertex Happiness 435

In the context of the Sub- ML problemwith f (·) being the nonnegative submodular
set function and Ti ⊂ V being the non-empty subset of elements pre-labeled i , i ∈
L = {1, 2, · · · , k}, we define a binary variable yij := yi (v j ) for each pair of an

element v j and a label i , such that yij = 1 if and only if the element v j is labeled i .

Next, yij is relaxed to be a real variable in the closed unit interval [0, 1]. For each i ,

let �yi = (yi1, y
i
2, · · · , yin) ∈ [0, 1]V ; let f̂ : [0, 1]V → R+ be the Lovász extension

of f (·) as defined in Eq. (2.1). A relaxation that is based on the Lovász extension for
Sub- ML can be written as follows:

minimize
k∑

i=1

f̂ (�yi ) (CP-Sub-ML)

s.t.
k∑

i=1

yij = 1, ∀v j ∈ V , (2.2)

yij = 1, ∀v j ∈ Ti , i ∈ L, (2.3)

yij � 0, ∀v j ∈ V , i ∈ L. (2.4)

The submodularity of the function f (·) implies that (CP-Sub-ML) is a convex
program (CP) and that it can be solved exactly in polynomial time [7].

In fact, such a relaxation that is based on the Lovász extension was proposed by
Chekuri and Ene [7] for the Sub- MP problem, which is a special case of the Sub- ML

problem in which |Ti | = 1 for every label i . We extend this relaxation for the Sub-
ML problem with only one change that in the set of constraints (2.2) yij = 1 holds
for multiple elements v j . We remark that one cannot reduce the Sub- ML problem to
Sub- MP by cruelly contracting all the elements pre-labeled with the same label into
a single element, which suggests incorrectly that all these pre-labeled elements were
identical.

The following approximation algorithm RR first solves the convex program (CP–
Sub-ML), followed by a randomized rounding scheme, which was applied to solve
the Sub- MP problem in [8], to obtain a feasible solution to the Sub- ML problem.

Algorithm 1 RR

Step 1 Solve (CP-Sub-ML) to obtain an optimal fractional solution {yij S | v j ∈ V , i ∈ L}.
Step 2 Pick a parameter θ ∈ ( 12 , 1] uniformly at random.
Step 3 Assign all elements of Si (θ) the label i , for each i ∈ L .
Step 4 Pick a label i ′ from L uniformly at random, assign all elements of R(θ) the label i ′.
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Ene et al. [8] showed that RR is a (2 − 2/k)-approximation for Sub- MP. The
algorithm uses a uniformly random variable θ in the interval ( 12 , 1] and defines the
following k + 3 sets:

Si (θ) = {v j | yij > θ}, for each i ∈ L,

S(θ) =
k⋃

i=1

Si (θ),

R(θ) = V − S(θ),

Q(θ) = R(1 − θ). (2.5)

Then, it follows from the definition of Lovász extension in Eq. (2.1) that

f̂ (�yi ) =
n−1∑

j=1

(yiπ j
− yiπ j+1

) f (Si (y
i
π j+1

)) =
∫ 1

0
f (Si (θ))dθ,

and thus, the optimal solution to (CP-Sub-ML) has a value

OPT(CP − Sub − ML) =
k∑

i=1

f̂ (�yi ) =
k∑

i=1

∫ 1

0
f (Si (θ))dθ. (2.6)

By proving the following three lemmas, Ene et al. [8] obtained an approximation ratio
of (2 − 2/k) for the algorithm for Sub- MP.

Lemma 2.1 (Lemma 2.2 in [8]) The expected value of the solution returned by the
Algorithm RR is

E[SOL(Sub-MP, θ)] =
(
2 − 2

k

) k∑

i=1

∫ 1

1
2

f (Si (θ))dθ + 2

k

k∑

i=1

∫ 1
2

0
f (Si (θ) ∪ Q(θ))dθ.

Lemma 2.2 (Lemma 2.5 in [8])

k∑

i=1

∫ 1
2

0
f (Si (θ))dθ �

∫ 1
2

0
f (Q(θ))dθ.

Lemma 2.3 (Lemma 2.6 in [8])

k∑

i=1

∫ 1
2

0
f (Si (θ))dθ �

k∑

i=1

∫ 1
2

0
f (Si (θ) ∪ Q(θ))dθ − (k − 2)

∫ 1
2

0
f (Q(θ))dθ.

We observe that the performance analysis for the algorithm RR on the Sub- MP

problem presented in [8] does not require |θ | for every label i . Therefore, the same
analysis can also lead to the following theorem.
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Theorem 2.4 Algorithm RR is a (2 − 2/k)-approximation for the Sub- ML problem.

Replacing the submodular function f (·) by a supermodular function g(·) and invert-
ing the minimization to the maximization and letting ĝ : [0, 1]V → R+ be the Lovász
extension of g(·), a relaxation based on the Lovász extension for the Sup- ML problem
can be written as follows:

maximize
k∑

i=1

ĝ(�yi ), (CP-Sup-ML)

s.t.
k∑

i=1

yij = 1, ∀v j ∈ V , (2.7)

yij = 1, ∀v j ∈ Ti , i ∈ L, (2.8)

yij � 0, ∀v j ∈ V , i ∈ L. (2.9)

(CP-Sup-ML) is a concave program and can similarly be solved in polynomial time.
Using an analogous argument as the proof of Theorem 2.4, we can obtain the fol-
lowing corollary on the Sup- ML problem (Eq. (2.6) and Lemma 2.1 still hold for a
supermodular set function, and in Lemma 2.3, the only difference is that the “�” sign
of the inequality would be “�” for a supermodular set function).

Corollary 2.5 Algorithm RR is a 2/k-approximation for SUP-ML.

3 TheMinimumUnhappy Vertices (MUHV) Problem

Recall that the MUHV problem can be cast as finding a partition S =
{S1, S2, · · · , Sk} of the vertex set V such that f (S) = ∑k

i=1 f (Si ) is minimized,
where the set function f (·) is defined in Eq. (1.1) and Si is the subset of vertices
colored i , for each i .

First, we prove the following two lemmas.

Lemma 3.1 Given a graph G = (V , E), the boundary ∂ : 2V �→ R has the following
properties for any two subsets X ,Y ⊆ V :

(i) ∂(∅) = ∅;
(ii) ∂(X ∩ Y ) ⊆ ∂(X) ∪ ∂(Y );
(iii) ∂(X ∪ Y ) ⊆ ∂(X) ∪ ∂(Y );
(iv) ∂(X ∩ Y ) ∩ ∂(X ∪ Y ) ⊆ ∂(X) ∩ ∂(Y ).

Proof Recall that for any X ⊆ V , ∂(X) is the subset of vertices of X each has at least
one neighbor outside of X . It follows that ∂(∅) = ∅.

Next, for any v ∈ ∂(X ∩ Y ), v ∈ X ∩ Y and v has a neighbor u /∈ X ∩ Y . That is, u
is either outside of X or outside of Y . If u is outside of X , then v ∈ ∂(X); otherwise,
v ∈ ∂(Y ). Therefore, ∂(X ∩ Y ) ⊆ ∂(X) ∪ ∂(Y ).
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438 Y. Xu et al.

For any v ∈ ∂(X ∪ Y ), v ∈ X ∪ Y and v has a neighbor u /∈ X ∪ Y . If v ∈ X , then
v ∈ ∂(X); otherwise, v ∈ ∂(Y ). Therefore, ∂(X ∪ Y ) ⊆ ∂(X) ∪ ∂(Y ).

Lastly, from the last paragraph, if v ∈ ∂(X ∩ Y ) ∩ ∂(X ∪ Y ), then v ∈ X ∩ Y
and v has a neighbor u /∈ X ∪ Y . These imply that v ∈ ∂(X) and v ∈ ∂(Y ), i.e.,
v ∈ ∂(X) ∩ ∂(Y ). Therefore, ∂(X ∩ Y ) ∩ ∂(X ∪ Y ) ⊆ ∂(X) ∩ ∂(Y ).

Lemma 3.2 Given a graph G = (V , E), the set function f (X) := w(∂(X)) defined
in Eq. (1.1) satisfies f (X) + f (Y ) � f (X ∩ Y ) + f (X ∪ Y ), for any two subsets
X ,Y ⊆ V .

Proof According to Lemma 3.1, the boundary ∂ : 2V �→ R satisfies

(ii) ∂(X ∩ Y ) ⊆ ∂(X) ∪ ∂(Y );
(iii) ∂(X ∪ Y ) ⊆ ∂(X) ∪ ∂(Y ).

Therefore, ∂(X∩Y )∪∂(X∪Y ) ⊆ ∂(X)∪∂(Y ) also holds. Furthermore, the boundary
∂ : 2V �→ R also satisfies

(iv) ∂(X ∩ Y ) ∩ ∂(X ∪ Y ) ⊆ ∂(X) ∩ ∂(Y ).

We thus conclude that

w(∂(X ∩ Y ) ∪ ∂(X ∪ Y )) + w(∂(X ∩ Y ) ∩ ∂(X ∪ Y ))

� w(∂(X) ∪ ∂(Y )) + w(∂(X) ∩ ∂(Y )),

which is exactly

f (X) + f (Y ) � f (X ∩ Y ) + f (X ∪ Y ).

Lemma 3.2 implies the submodularity of the function f (·) defined in Eq. (1.1);
thus, we have:

Lemma 3.3 The set function f (·) defined in Eq. (1.1) is submodular.

Therefore, the MUHV problem is a special case of the Sub- ML problem, and the
following theorem immediately follows according to Theorem 2.4.

Theorem 3.4 There exists a (2 − 2/k)-approximation algorithm for the MUHV
problem.

On the other hand, we can prove that the generalMUHV problem and the restricted-
MUHV problem are approximation-equivalent by showing the following Lemma 3.5.
Then, Theorem 3.4 also follows the fact that the restricted-MUHV problem can be cast
as a special case of the Sub- MP problem,which admits a (2−2/k)-approximation [8].

Lemma 3.5 If the restricted-MUHV problem admits a ρ-approximation algorithm,
then the general MUHV problem also admits a ρ-approximation algorithm.

Proof We prove this lemma by constructing a polynomial-time reduction from the
general MUHV problem to the restricted-MUHV problem.

Given an instance I = (G = (V , E), w(·),C = {1, 2, · · · , k}, c) of the general
MUHV problem, we construct an instance of I ′ = (G ′ = (V ′, E ′), w′(·),C =
{1, 2, · · · , k}, c′) of restricted-MUHV as follows:
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– For each color i ∈ C , we create a vertex ti and connect ti to all the vertices v ∈ V
with c(v) = i ;

– Let V ′ = V∪T , where T = {t1, t2, · · · , tk}, and E ′ = E∪⋃k
i=1{(ti , v)|c(v) = i};

– For each v ∈ V , letw′(v) = w(v); for each ti ∈ T , letw(ti ) = W = ρ ·w(V )+1;
– Let C = {1, 2, · · · , k} still be the color set, and the partial coloring function c′
only pre-colors the vertices in T with c′(ti ) = i , for i ∈ C .

Let OPT(I) be the total weight of the optimal set of unhappy vertices in G; let
OPT(I ′) be the total weight of the optimal set of unhappy vertices in G ′.

For any coloring function c∗ that completes the given partial coloring function c for
G, we can apply the same function c∗ to color all the uncolored vertices in G ′. Then
for each ti ∈ T , c∗(v) = i for any v ∈ N (ti ), ti must be happy. Thus, for any vertex
in G, its happiness must be identical to the corresponding vertex in G ′, and they share
the same weight. Therefore, under this coloring scheme, the set of unhappy vertices
in G ′ has the same weight as the set of unhappy vertices in G. This also indicates that
OPT(I ′) � OPT(I) � w(V ).

If the restricted-MUHV admits a ρ-approximation algorithm, then we can always
find in polynomial time a coloring function c′∗ that colors all the uncolored vertices in
G ′, which makes R ⊆ V ′ the set of unhappy vertices inG ′ andw(R) � ρ ·OPT(I ′) �
ρ · w(V ). Under this coloring scheme, we must have ti /∈ R for every ti ∈ T , that is
to say vertices in T must be all happy. Assume for the sake of contradiction that ti is
unhappy for some ti ∈ T , then we have w(R) � W = ρ · w(V ) + 1 > ρ · w(V ), a
contradiction. Then, by applying the same function c′∗ to color all the corresponding
uncolored vertices inG, every vertex inG has the same happiness as the corresponding
vertex in G ′, and they share the same weight. Therefore, under this coloring scheme,
the corresponding set R in G is also the set of unhappy vertices in G.

In summary, the general MUHV problem is polynomial-time reducible to the
restricted-MUHV problem, and if there exists a ρ-approximation for the restricted-
MUHV problem, then the general MUHV problem also admits a ρ-approximation
algorithm.

Next, we prove that the restricted-MUHV problem and the Hyp- MC problem
are approximation-equivalent; thus, MUHV and Hyp- MC are also approximation-
equivalent.

Given a hypergraph H = (VH , EH ) with a nonnegative weight w(e) for each
hyperedge e ∈ EH and a set of k terminals T = {t1, t2, · · · , tk} ⊆ V , the Hyp- MC

problem asks to remove a minimum-weight set of hyperedges so that every pair of
terminals is disconnected.

Lemma 3.6 There is an approximation preserving reduction from the restricted-
MUHV problem to the HYP-MC problem.

Proof Given an instance I = (G = (V , E), w(·),C = {1, 2, · · · , k}, c) of the
restricted-MUHV problem,we construct an instanceI ′ = (H = (V , EH ), w′(·), T =
{t1, t2, · · · , tk}) of the Hyp- MC problem as follows:

– Let the vertex set be V ; for each i ∈ C , let vi , which is pre-colored i , be a terminal
ti ; let T = {t1, t2, · · · , tk} be the terminal set;
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– For each v ∈ V , we create a hyperedge ev = N [v] and add it to the hyperedge set
EH , where N [v] = {v} ∪ N (v) is the set of all the neighbors of v in G along with
v itself;

– For each hyperedge ev ∈ EH , let w′(ev) = w(v).

Each vertex in G corresponds one-to-one to a hyperedge in H and shares the same
weight.

Consider a simple path P connecting two terminals ti and t j in the constructed
hypergraph H . Every two consecutive vertices on P must belong to a common hyper-
edge; thus, the path P corresponds one-to-one to a simple path connecting the two
vertices ti and t j in G, which we also denote as P without any ambiguity. For any
coloring function c∗ that completes the given partial coloring function c forG, we have
c∗(ti ) = i for each i = {1, 2, · · · , k}. It follows that any simple path P connecting
ti and t j must contain at least one vertex v ∈ V such that its preceding vertex or its
succeeding vertex is colored differently from v itself. The vertex v is thus unhappy
under the coloring scheme c∗. Then, in the hypergraph H , removing the corresponding
hyperedge ev breaks the path P , thus disconnecting ti and t j via the path P . Therefore,
removing all the hyperedges, the corresponding vertices of which in the graph G are
unhappy disconnects of all pairs of terminals in H , and the total weight of the removed
hyperedges is equivalent to the total weight of the unhappy vertices in G.

Conversely, consider a subset E∗
H of hyperedges in the hypergraph H = (VH , EH ),

the removal ofwhich disconnects ofwhich all pairs of terminals. Let V i and Ei
H denote

the subsets of vertices and hyperedges in the connected component of the remainder
hypergraph (V , EH − E∗

H ) that contains the terminal ti , for each i = 1, 2, · · · , k. We
complete the partial coloring function c by coloring all vertices of the corresponding
vertex set V i inG with the color i , for i = 1, 2, · · · , k, and coloring all other remaining
vertices of V with the color 1. Clearly, all the vertices corresponding to the hyperedges
of EH − E∗

H are happy. Thus, the total weight of unhappy vertices under this coloring
scheme is no more than w(E∗

H ) := ∑
e∈E∗

H
w(e).

In summary, the restricted-MUHV problem is polynomial-time reducible to the
Hyp- MC problem, and our reduction preserves the value of any feasible solution and
consequently preserves the approximation ratio.

We note that due to the (2−2/k)-approximation for theHyp- MC problem [10,11],
Theorem 3.4 can also be proved according to Lemma 3.6.

Lemma 3.7 There is an approximation preserving reduction from theHYP-MCproblem
to the restricted-MUHV problem.

Proof Given an instance I = (H = (VH , EH ), w(·), T = {t1, t2, · · · , tk}) of
the Hyp- MC problem, we construct an instance I ′ = (G = (V , E), w′(·),C =
{1, 2, · · · , k}, c) of the restricted-MUHV problem as follows:

– For each hyperedge e ∈ EH , we create a vertex ve;
– Let the vertex set be V = VH ∪ VE , where VE = {ve | e ∈ EH } and call

T = {t1, t2, · · · , tk} ⊆ V the terminal set;
– For each vertex v ∈ VH , letw′(v) = 0; for each vertex ve ∈ VE , letw′(ve) = w(e);
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– For each vertex ve ∈ VE , it is adjacent to every vertex of e; let the edge set be
E = {{ve, v} | e ∈ EH , v ∈ e};

– Let the color set be C = {1, 2, · · · , k}, and let the partial coloring function c :
V �→ C pre-color the terminal ti with i , for each i ∈ C .

We note that the graph G is actually bipartite, and the two parts of vertices are VH

and VE .
Consider a simple path P connecting two terminals ti and t j in the hypergraph H .

Every two consecutive vertices on P must belong to a common hyperedge; thus, the
path P corresponds one-to-one to a simple path connecting the two vertices ti and t j
in G, which we also denote as P without any ambiguity. For any coloring function c∗
that completes the given partial coloring function c for G, we have c∗(ti ) = i for each
i = {1, 2, · · · , k}. It follows that any simple path P connecting ti and t j must contain
at least one vertex ve ∈ VE such that its preceding vertex and its succeeding vertex,
both in VH , are colored differently. The vertex ve is thus unhappy under the coloring
scheme c∗. Then, in the hypergraph H , removing the corresponding hyperedge e
breaks the path P , thus disconnecting ti and t j via the path P . Therefore, removing
all the hyperedges, the corresponding vertices of which in the graph G are unhappy
disconnects all pairs of terminals, and the total weight of the removed hyperedges is
equivalent to the total weight of the unhappy vertices in G.

Conversely, consider a subset E∗
H of hyperedges in the hypergraph H = (VH , EH ),

the removal of which disconnects all pairs of terminals. Let V i
H and Ei

H denote the
subsets of vertices and hyperedges in the connected component of the remainder
hypergraph (VH , EH − E∗

H ) that contains the terminal ti , for each i = 1, 2, · · · , k.
Denote the vertex subsets in the constructed graph G = (V , E) corresponding to V i

H
and Ei

H as V i
H and V i

E , respectively, for i = 1, 2, · · · , k. We complete the partial
coloring function c by coloring all vertices of V i

H ∪ V i
E with the color i , for i =

1, 2, · · · , k, and coloring all the other remaining vertices of V with the color 1. Clearly,
all the vertices of {ve | e ∈ EH − E∗

H } are happy. Because every vertex of VH has
weight 0 (such that we may ignore its happiness), we conclude that the total weight of
unhappy vertices under this coloring scheme is nomore thanw(E∗

H ) := ∑
e∈E∗

H
w(e).

In summary, the Hyp- MC problem is polynomial-time reducible to the restricted-
MUHV problem, and our reduction preserves the value of any feasible solution and
consequently preserves the approximation ratio.

Ene et al. [8] proved that achieving a (2 − 2/k − ε)-approximation for Hyp- MC

is NP-hard, for any ε > 0, assuming the Unique Games Conjecture. According to
Lemma 3.7, we have Theorem 3.8; due to MUHV being a special case of Sub- ML,
Corollary 3.9 immediately follows.

Theorem 3.8 No (2 − 2/k − ε)-approximation algorithm for the restricted-MUHV
or the general MUHV problem exists, for any ε > 0, assuming the Unique Games
Conjecture.

Corollary 3.9 No (2 − 2/k − ε)-approximation algorithm for the SUP-ML problem
exists, for any ε > 0, assuming the Unique Games Conjecture.
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4 TheMaximumHappy Vertices (MHV) Problem

4.1 A 2/k-Approximation forMHV

Recall that theMHVproblemcanbe cast as finding a partitionS = {S1, S2, · · · , Sk}
of the vertex set V such that g(S) = ∑k

i=1 g(Si ) is maximized, where the set function
g(·) is defined in Eq. (1.2) and Si is the subset of vertices colored i , for each i . The
following lemma can be proved analogously to Lemma 3.3.

Lemma 4.1 The set function g(·) defined in Eq. (1.2) is supermodular.

Therefore, the MHV problem is a special case of the Sup- ML problem, and the
following theorem immediately follows according to Corollary 2.5:

Theorem 4.2 Algorithm RR is a 2/k-approximation for the MHV problem, which is a
special case of the SUP-ML problem.

The following LP relaxation for the MHV problem (LP-MHV) on a given graph
G = (V , E)was formulated in [4], where V = {v1, v2, · · · , vn},w j = w(v j ) denotes
the weight of the vertex v j ,C is the color set, c(v j ) = i if the vertex v j is pre-colored i ,
a binary variable yij := yi (v j ) denotes whether the vertex v j is colored i , zij indicates
whether the vertex v j is happy by color i , z j indicates whether the vertex v j is happy,
and N [v j ] is the closed neighborhood of the vertex v j .

maximize
n∑

j=1

w j z j , (LP-MHV)

s.t.
k∑

i=1

yij = 1, ∀v j ∈ V , (4.1)

yij = 1, ∀v j ∈ V , ∀i ∈ C s.t. c(v j ) = i, (4.2)

zij = min
vh∈N [v j ]

{yih}, ∀v j ∈ V , ∀i ∈ C, (4.3)

z j =
k∑

i=1

zij , ∀v j ∈ V , (4.4)

z j , zij , yij � 0, ∀v j ∈ V , ∀i ∈ C . (4.5)

For each color i , since there is at least one vertex pre-colored i and at least one
vertex pre-colored another color (due to k � 2), we let �yi = (yi1, y

i
2, · · · , yin) and

π be the permutation for �yi such that 1 = yiπ1
� yiπ2

� · · · � yiπn
= 0. In the

concave relaxation (CP-Sup-ML) based on the Lovász extension for Sup- ML, when
we set the supermodular set function g as in Eq. (1.2), the objective function of
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(CP-Sup-ML) becomes

k∑

i=1

ĝ(�yi ) =
k∑

i=1

n−1∑

j=1

(
yiπ j

− yiπ j+1

)
g({vπ1, vπ2 , · · · , vπ j })

=
k∑

i=1

n−1∑

j=1

(
yiπ j

− yiπ j+1

) ∑

vh∈i({vπ1 ,vπ2 ,··· ,vπ j })
wh . (4.6)

For each vertex vp ∈ V , let vq denote its neighbor that appears the last in
the permutation (vπ1 , vπ2 , · · · , vπn ). Assume p = π j1 and q = π j2 . Clearly,
vp ∈ i({vπ1 , vπ2 , · · · , vπ j }) if and only if p, q ∈ {π1, π2, · · · , π j }, that is to say, we
must have j1, j2 � j . It follows that for the vertex vp ∈ V , the coefficient of wp in
Eq. (4.6) is

k∑

i=1

n∑

j=max{ j1, j2}

(
yiπ j

− yiπ j+1

)
=

k∑

i=1

zip = z p,

where the last two equalities hold due to Constraints (4.3, 4.4) of (LP-MHV). This
shows that by setting the supermodular set function g as defined in Eq. (1.2), (CP–
Sup-ML) is the same as (LP-MHV). Therefore, we have the following theorem.

Theorem 4.3 The LP relaxation for the MHV problem (LP-MHV ) is the same as the
relaxation based on the Lovász extension for the SUP-ML problem CP-Sub-ML, when
the MHV problem is cast into the SUP-ML problem.

Theorem 4.4 The integrality gap of (LP-MHV) has an upper bound of 2/k.

Proof We prove this theorem by constructing an instance I = (G = (V , E), w(·),
C = {1, 2, · · · , k}, c) of the MHV problem.

– Let T = {t1, t2, · · · , tk} be a set of k pre-colored vertices, called terminals; all
terminals have the same weight wt � 0, and the terminal ti is pre-colored i , i.e.,
c(ti ) = i .

– Associated with each pair of distinct terminals ti and t j , i < j , there is a vertex
b{i j}. Let Vb = {b{i j} | i < j}, then |Vb| = (k

2

)
; all vertices of Vb have the same

weight wb � 0, and none of them is pre-colored.
– The vertex set V = T ∪ Vb; the edge set E = {{ti , b{i j}}, {t j , b{i j}} | i < j}.
Clearly, |V | = k + (k

2

)
and |E | = 2

(k
2

)
.

Let c∗ denote a coloring function that completes the given partial coloring function
c, that is to say, c∗ assigns a color for each vertex, and it assigns the color i to the
terminal ti , for each i ∈ C . Then,
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– All vertices ofVbmust beunhappy, since the vertexb{i j} is adjacent to two terminals
ti and t j colored with distinct colors;

– The terminal ti is adjacent to k − 1 vertices {b{i j} | j �= i}, while the vertex b{i j}
is adjacent to the terminals ti and t j ; it follows that if ti is happy, then all vertices
of {b{i j} | j �= i} are colored i , and subsequently, none of the other terminals can
be happy; in other words, at most one of the k terminals can be happy, regardless
of what the coloring function c∗ is.

LetOPT(MHV) denote the value of an optimal solution to the constructed instance
I; we obtain

OPT(MHV) � wt . (4.7)

Consider the following fractional feasible solution to the instance I in the LP
relaxation (LP-MHV),

– For each terminal ti ∈ T , yi (ti ) = 1 and y j (ti ) = 0 for all j �= i ;
– For each vertex b{i j} ∈ Vb, yi (b{i j}) = y j (b{i j}) = 1/2 and y�(b{i j}) = 0 for all

� �= i, j ;
– For each terminal ti ∈ T , we set zi (ti ) = yi (b{i j}) = 1/2, z j (ti ) = 0 for all j �= i ,
and z(ti ) = ∑k

�=1 z
�(ti ) = 1/2;

– For each vertex b{i j} ∈ Vb, we set z�(b{i j}) = 0 for all � ∈ C , and z(b{i j}) = 0.

Let OPT(LP − MHV) denote the optimum of the instance I in the LP relaxation
(LP-MHV). It is greater than or equal to the value of the above fractional feasible
solution, that is,

OPT(LP − MHV) � 1

2
kwt . (4.8)

Combining Eqs. (4.7) and (4.8), it gives an upper bound on the integrality gap of
the LP relaxation (LP-MHV):

OPT(MHV)

OPT(LP − MHV)
� 1

1
2k

= 2

k
.

Theorems 4.2 and 4.4 together imply that the 2/k-approximation Algorithm RR
for the MHV problem is the best possible based on the LP relaxation (LP-MHV).
Furthermore, the following corollary immediately follows.

Corollary 4.5 The 2/k-approximation algorithm RR for the SUP-ML problem is the best
possible based on the concave relaxation on the Lovász extension (CP-Sup-ML).
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4.2 A Hardness Result for MHV

In this section, we show a hardness result on approximating the MHV problem
by a reduction from the MIS problem, in which we are given an undirected graph
G = (V , E) with a nonnegative weight w(v) for each vertex v ∈ V . The goal is to
find amaximum-weight independent set I ⊆ V , i.e., a subset of pairwise non-adjacent
vertices. We also note that if there is a connected component in G that is exactly a
clique, then themaximum-weight vertex in the clique is the optimal solution to theMIS

problem on this connected component, i.e., MIS is linear-time solvable on a clique.
Thus, we assume without loss of generality that the input graph of the MIS problem
does not contain a connected component being a clique.

We observe that any graph G with maximum degree of Δ � 3 can also be viewed
as a Δ-partite graph if G contains no clique of size Δ + 1, by solving the classic
Coloring problem, which is to color all the vertices in the given graph such that no
two adjacent vertices have the same color. In other words, the Coloring problem
asks to partition the vertex set into subsets of independent sets, and the number of the
subsets of independent sets is then equivalent to the number of colors required to color
all the vertices. From Brooks’ theorem [26], along with a simplified proof presented
by Lovász [27], one can solve the Coloring problem on G by using at most Δ colors
in polynomial time.

Given an instance I = (G = (V , E), w(·)) of MIS, where G is a k-partite graph,
with k � 3 and V1, V2, · · · , Vk being the k parts of the vertex set V , we construct an
instance I ′ = (G ′ = (V ′, E ′), w′(·),C = {1, 2, · · · , k}, c) of MHV as follows:

– For each edge e = (u, v) ∈ E , we break it into two edges (u, xe) and (v, xe) by
creating an additional vertex xe;

– Let V ′ = V ∪ X , where X = {xe|e ∈ E}, and E ′ = {(u, xe), (v, xe)|e = (u, v) ∈
E};

– For each vertex v ∈ V , let w′(v) = w(v); for each vertex xe ∈ X , let w′(xe) = 0;
– Let the color set be C = {1, 2, · · · , k} and let the partial coloring function c :

V ′ �→ C pre-color each vertex vi ∈ Vi with i , for i = 1, 2, · · · , k.

We note that in the graph G ′, only the vertices in X are uncolored; all the neighbors
of any vertex in V are in X ; each vertex xe ∈ X has exactly two neighbors u and v,
which correspond to the two endpoints of e = (u, v) ∈ E , and c(u) �= c(v) since G
is k-partite; thus, xe must be unhappy.

Consider an independent set I ⊆ V ofG. For any two vertices u, v ∈ I in the graph
G ′, they do not share any neighbor, i.e., N (u) ∩ N (v) = ∅. Assume for the sake of
contradiction that there exists some x ∈ N (u)∩N (v), then x ∈ X and N (x) = {u, v},
indicating that (u, v) ∈ E in graph G, which contradicts to I being an independent
set of G. Then in graph G ′, for any v ∈ I , we color every vertex in N (v) with c(v);
for any xe of the remaining uncolored vertices in X , with N (xe) = {vi , v j }, where
c(vi ) = i and c(v j ) = j , we color xe with any color in C − {i, j}. This is a feasible
coloring scheme for G ′, which makes all the vertices in I happy and all the vertices
in V ′ − I unhappy in G ′. Since in the constructed instance, the weights of all vertices
in V are unchanged, the total weight of I is also unchanged.
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Conversely, consider a feasible coloring scheme forG ′, whichmakes all the vertices
in S ⊆ V ′ happy and the remaining vertices unhappy. Then, S ⊆ V and for any two
vertices u, v ∈ S, either u, v ∈ Vi for some i ∈ C or u ∈ Vi and v ∈ Vj for
two distinct i, j ∈ C . In both cases, we can conclude (u, v) /∈ E in G. The first
case is straightforward; for the second case, assume for the sake of contradiction that
(u, v) ∈ E in G, then u and v cannot be both happy in G ′ since c(u) �= c(v) and they
share a common neighbor. Therefore, S is also an independent set in G. Still, since
in the constructed instance, the weights of all vertices in V are unchanged, the total
weight of S is also unchanged.

Therefore, any feasible solution to the given instance I ofMIS corresponds one to
one to a feasible solution to the constructed instance I ′ ofMHV, and the two solutions
have exactly the same value.

In summary, theMIS problem is polynomial-time reducible to theMHV problem,
and our reduction preserves the value of any feasible solution and consequently pre-
serves the approximation ratio. Austrin [28] proved that MIS is Unique Games-hard
to approximate within a factor of Ω(log2 Δ/Δ), where Δ is the maximum vertex
degree of the input graph; thus, we have Theorem 4.6. Since MHV is a special case
of Sup- ML, Corollary 4.7 immediately follows.

Theorem 4.6 TheMHVproblem isUniqueGames-hard to approximatewithin a factor
of Ω(log2 k/k).

Corollary 4.7 The SUP-ML problem is Unique Games-hard to approximate within a
factor of Ω(log2 k/k).

5 Conclusions

We studied the MHV problem and its complement, the MUHV problem. We first
showed that by rewriting the objective functions as set functions, theMHV andMUHV

problems are actually a special case of the supermodular and submodular multi-
labeling (Sup- ML and Sub- ML) problems, respectively. We next showed that the
convex relaxation on the Lovász extension, presented by Chekuri and Ene for the sub-
modular multi-partitioning (Sub- MP) problem [7], can be extended for the Sub- ML

problem, thus proving that the Sub- ML (Sup- ML, respectively) can be approximated
within a factor of 2 − 2/k (2/k, respectively). These general results imply that the
MHV and the MUHV problems can also be approximated within 2/k and 2 − 2/k,
respectively, using the same approximation algorithms.

For MUHV, we showed that it is approximation-equivalent to the Hyp- MC prob-
lem; thus, it is Unique Games-hard to achieve a (2 − 2/k − ε)-approximation for
MUHV, for any ε > 0. This hardness result also gives another evidence that it is
Unique Games-hard to achieve a (2 − 2/k − ε)-approximation for the general Sub-
ML problem, for any ε > 0.

For MHV, the 2/k-approximation improves the previous best approximation ratio
max{1/k, 1/(Δ + 1/g(Δ)

)} [1,5] to max{2/k, 1/(Δ + 1/g(Δ)
)}, where Δ is the

maximum vertex degree of the input graph and g(Δ) = (
√

Δ + √
Δ + 1)2Δ > 4Δ2.

We also showed that the LP relaxation for MHV presented by Zhang et al. [4] is the
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same as the concave relaxation on the Lovász extension for the Sup- ML problem; we
then proved an upper bound of 2/k on the integrality gap of this LP relaxation. These
suggest that the 2/k-approximation algorithm is the best possible based on this LP
relaxation; thus, the 2/k-approximation algorithm is also the best possible based on
the concave relaxation on the Lovász extension for the Sup- ML problem. Further, we
proved that it is Unique Games-hard to approximate theMHV problem within a factor
of Ω(log2 k/k), by a reduction from MIS, which also presents another evidence that
the general Sup- ML problem is Unique Games-hard to approximate within a factor
of Ω(log2 k/k). A possible future work would be to see if the approximation ratio of
max{2/k, 1/(Δ + 1/g(Δ)

)} for theMHV problem can be further improved.
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