
Journal of Combinatorial Optimization (2019) 38:150–164
https://doi.org/10.1007/s10878-018-00372-z

An improved approximation algorithm for the minimum
3-path partition problem

Yong Chen1 · Randy Goebel2 · Guohui Lin2 · Bing Su3 · Yao Xu2 ·
An Zhang1

Published online: 1 January 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Given a graph G = (V , E), we seek for a collection of vertex disjoint paths each
of order at most 3 that together cover all the vertices of V . The problem is called
3-path partition, and it has close relationships to the well-known path cover problem
and the set cover problem. The general k-path partition problem for a constant k ≥ 3
is NP-hard, and it admits a trivial k-approximation. When k = 3, the previous best
approximation ratio is 1.5 due to Monnot and Toulouse (Oper Res Lett 35:677–684,
2007), based on two maximummatchings. In this paper we first show how to compute
in polynomial time a 3-path partition with the least 1-paths, and then apply a greedy
approach to merge three 2-paths into two 3-paths whenever possible. Through an
amortized analysis, we prove that the proposed algorithm is a 13/9-approximation.
We also show that the performance ratio 13/9 is tight for our algorithm.

Keywords k-Path partition · Path cover · k-Set cover · Approximation algorithm ·
Amortized analysis

B Guohui Lin
guohui@ualberta.ca

Yong Chen
chenyong@hdu.edu.cn

Randy Goebel
rgoebel@ualberta.ca

Bing Su
subing684@sohu.com

Yao Xu
xu2@ualberta.ca

An Zhang
anzhang@hdu.edu.cn

1 Department of Mathematics, Hangzhou Dianzi University, Hangzhou, Zhejiang, China

2 Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada

3 School of Economics and Management, Xi’an Technological University, Xi’an, Shaanxi, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-018-00372-z&domain=pdf
http://orcid.org/0000-0003-4283-3396

Journal of Combinatorial Optimization (2019) 38:150–164 151

1 Introduction

The order of a graph refers to the number of vertices in the graph. Given a simple
graph G = (V , E) (we only discuss simple graphs in this paper), we seek to find a
minimum collection of vertex-disjoint paths of order at most k such that every vertex
is on some path in the collection. The problem is called k-path partition (Yan et al.
1997; Monnot and Toulouse 2007), motivated by the data integrity of communication
in wireless sensor networks and several other applications.

The k- path partition problem was first considered and shown to be NP-hard by
Yan et al. (1997), for k ≥ 3. (The 2- path partition problem is exactly theMaximum
Matching problem, which is solvable in O(m

√
n log(n2/m)/ log n)-time (Goldberg

and Karzanov 2004), where n = |V | and m = |E |.) We point out the key phrase
“at most k” in the definition of the k- path partition problem, that ensures the
existence of a feasible solution for any given graph. On approximability, to the best of
our knowledge, there is no existing approximation algorithmwith proven performance
for the general k- path partition problem, except the trivial k-approximation using
all 1-paths and the 1.5-approximation for 3- path partition proposed by Monnot
and Toulouse (2007), based on two maximum matchings.

In this paper, we pursue better approximation algorithms for the 3- path partition
problem.

We first review some problemswith the closest relationships to k- path partition,
in particular the well-known Set Cover problem and the Path Cover problem.

Given a collection of subsets C = {S1, S2, . . . , Sm} of a finite ground set U =
{x1, x2, . . . , xn}, an element xi ∈ S j is said to be covered by the subset S j , and a set
cover is a collection of subsets which together cover all the elements of the ground set
U . In the Set Cover problem, the objective is to find aminimum cardinality set cover.
Set Cover has numerous applications in various research areas, and it is one of the
first proven NP-hard problems (Garey and Johnson 1979). Set Cover is also one of
the most studied optimization problems for their approximability (Johnson 1974) and
inapproximability (Raz and Safra 1997; Feige 1998; Vazirani 2001). The variant, in
which the sizes of all given subsets in C are bounded from above by a constant k ≥ 3,
is referred to as k- Set Cover. It is APX-complete and can be approximated within
4/3 for k = 3 (Duh and Fürer 1997) and within (Hk − 196/390) for k ≥ 4 (Levin
2006), where Hk = ∑k

i=1 1/i is the k-th harmonic number.
We note that an approximation algorithm designed for k- Set Cover does not

directly apply for k- path partition, by taking the vertex set V as the ground set
and each path of order no more than k as a given subset. This is because in a feasible
set cover, an element of the ground set U could be covered by multiple subsets,
or equivalently the subsets of the set cover are allowed to overlap with each other;
however, in k- path partition, every vertex is on exactly one path in a feasible
solution, or equivalently the paths should be mutually disjoint.

One can actually enforce the mutually disjointness property in the Set Cover
problem, by expanding the collection C to include all the proper subsets of each given
subset Si . Since in the instance graph of k- path partition not every subset of vertices
on a path is traceable (i.e., has a hamiltonian path in the graph), such an expanding

123

152 Journal of Combinatorial Optimization (2019) 38:150–164

technique does not apply. In summary, k- path partition and k- Set Cover share
some similarities, but none contains the other as a special case.

Given a simple graph G = (V , E), if dropping the constraint on the order to
find a minimum collection of vertex-disjoint paths to cover all the vertices, then we
have the general path partition problem. path partition is also called the Path
Cover (Franzblau and Raychaudhuri 2002) problem in the literature, which clearly
contains the Hamiltonian Path problem (Garey and Johnson 1979) as a special
case, and thus it is NP-hard, and it is outside APX unless P = NP. On the other hand,
if one asks for a path partition in which every path has an order exactly k, then we
have the so-called Pk-partitioning problem, which is also NP-complete for any fixed
constant k ≥ 3 (Garey and Johnson 1979; Lozin andRautenbach 2003), even on planar
bipartite graphs of maximum degree three (Monnot and Toulouse 2007), or on grid
graphs with maximum degree three (van Bevern et al. 2014), or on chordal graphs (van
Bevern et al. 2014).

Yan et al. proved that the k- path partition problem is NP-hard (Yan et al. 1997),
for k ≥ 3. On approximability, one easily sees a k-approximation by using all 1-
paths and this is in fact the best approximation so far for k- path partition. For
3- path partition, Monnot and Toulouse (2007) proposed a 1.5-approximation.
Their algorithm first computes a maximummatching M∗ inG, then computes another
maximum matching between the edges of M∗ and the isolated vertices (that is, the
vertices not incident with any edge of M∗), and outputs the achieved 3-path partition
deduced from these two matchings and the remaining isolated vertices. Monnot and
Toulouse (2007) showed that this is anO(nm)-time 1.5-approximation,where n = |V |
and m = |E |.

Our goal is to design an improved approximation algorithm with provable perfor-
mance for 3- path partition, and we achieve an O(n3)-time 13/9-approximation.
Towards this goal, we first present an O(nm)-time algorithm to compute a 3-path
partition with the least 1-paths inside, and then propose to merge three 2-paths into
two 3-paths, whenever possible.

The rest of the paper is organized as follows. In the next section we present the
algorithm to compute a 3-path partition with the least 1-paths. From the produced
3-path partition, we present the procedure to merge three 2-paths into two 3-paths, the
entire approximation algorithm, and its performance analysis through an amortization
scheme, in Sect. 3. We conclude the paper with some remarks in Sect. 4.

2 Computing a 3-path partition with the least 1-paths

In a 3-path partition, a 1-path contains only one vertex and in the sequel it is often
referred to as a singleton of the 3-path partition.

In this section, we present an algorithm called Algorithm A for computing a
3-path partition with the least 1-paths, and show that Algorithm A runs in O(nm)

time, where n = |V | and m = |E |. We explain in the following the three steps in
Algorithm A, the first two of which constitute exactly the 1.5-approximation by
Monnot and Toulouse (2007). A high-level description of Algorithm A is depicted
in Fig. 2.

123

Journal of Combinatorial Optimization (2019) 38:150–164 153

2.1 Step 1: computing amaximummatching

Recall that a maximum matching of the graph G = (V , E) can be computed in
O(m

√
n log(n2/m)/ log n)-time (Goldberg and Karzanov 2004). In the first step, we

apply an O(m
√
n log(n2/m)/ log n)-time algorithm to find a maximum matching in

G, denoted as M∗; let V0 denote the subset of vertices each is not incident with any
edge of M∗. If V0 = ∅, then we have achieved a 3-path partition without (and thus
the least) 1-paths, in which a 2-path one-to-one corresponds to an edge of M∗. In the
sequel we assume V0 is non-empty. The following two lemmas are trivial due to the
edge maximality of M∗.

Lemma 2.1 In the graph G = (V , E), all the vertices of V0 are pairwise non-adjacent
to each other; for any edge (u, v) ∈ M∗, if u is adjacent to a vertex x ∈ V0 and v is
adjacent to a vertex y ∈ V0, then x = y.

Lemma 2.2 In any 3-path partition for the graph G = (V , E), the total number of
2-paths and 3-paths is at most |M∗|.
Proof Clearly, if there were more than |M∗| vertex disjoint 2-paths and 3-paths in the
graph G, then selecting one edge per such path gives rise to a matching of size greater
than |M∗|, contradicting the maximality of M∗. ��

2.2 Step 2: computing a secondmaximummatching

In the second step, we construct a bipartite graph G ′ = (M∗, V0, E ′) as follows:

(1) each edge e = (u, v) ∈ M∗ is “shrunk” into a vertex denoted as e and the part
containing all these vertices is denoted as M∗;

(2) each vertex of V0 remains as a vertex and the part containing these vertices is still
denoted as V0;

(3) the vertices of M∗ (V0, respectively) are non-adjacent to each other in G ′;
(4) a vertex e = (u, v) ∈ M∗ and a vertex v0 ∈ V0 are adjacent in G ′ if and only if

either (u, v0) ∈ E or (v, v0) ∈ E or both, and the set of edges in G ′ is denoted as
E ′.

The graph G ′ can be constructed in O(n + m)-time. Since |M∗| + |V0| ≤ n, we then
apply an O(m

√
n log(n2/m)/ log n)-time algorithm to find a maximum matching in

G ′, denoted as M1. For each edge ((u, v), v0) ∈ M1, we select the edge (u, v0) if
(u, v0) ∈ E or otherwise the edge (v, v0) into the edge set M2, which is a matching in
the input graph G = (V , E). The following lemma is trivial due to the construction
of M1 and M2.

Lemma 2.3 In the graph G = (V , E), the subgraphQ = (V ,M∗∪M2) is a collection
of vertex disjoint 1-paths, 2-paths, and 3-paths; moreover, the total number of 2-paths
and 3-paths is |M∗|.

Let E∗ = M∗ ∪ M2 andQ = (V , E∗), which is the starting 3-path partition. Note
that the above two steps constitute the 1.5-approximation by Monnot and Toulouse

123

154 Journal of Combinatorial Optimization (2019) 38:150–164

(2007), for which the ratio 1.5 is claimed tight. In other words, our Algorithm A
builds on the 1.5-approximation and uses its output 3-path partition Q as the starting
point. In the next subsection, we present the third step ofAlgorithm A to iteratively
update both the edge set E∗ and the 3-path partition Q, to maintain the total number
of 2-paths and 3-paths in Q and to minimize the number of 1-paths. Therefore, the
3-path partition produced by Algorithm A is at least as good as the solution by the
1.5-approximation.

2.3 Step 3: reducing 1-paths to theminimum

Let Q1 (Q2, Q3, respectively) denote the collection of 1-paths (2-paths, 3-paths,
respectively) inQ. The third step is iterative, and in every iteration we try to eliminate
one singleton while maintaining the total number of 2-paths and 3-paths to be |M∗|.
That is, we have

Invariant The total number of 2-paths and 3-paths in the 3-path partition Q is |M∗|.
(1)

Clearly, if Q1 = ∅, then we are done with the third step. We thus assume Q1 is
non-empty. For ease of presentation, a vertex that is an ending vertex of a 2-path or
a 3-path in the current 3-path partition Q is called an endpoint; a vertex that is the
middle vertex of a 3-path in Q is called a midpoint.

Consider a singleton v0 (i.e., 1-path) inQ1. Due to Lemma 2.2, we conclude that v0
cannot be adjacent to any endpoint of a 3-path, or any other singleton in the graph G.
Therefore, if v0 is adjacent to a vertexw1 in G, thenw1 has to be either an endpoint of
some 2-path (which is actually impossible due to the second maximum matching M1
computed in the second step; nevertheless, it doesn’t matter as shown in the following)
or the midpoint of some 3-path.

Case 1 In the case where w1 is an endpoint of some 2-path, denoted as P1 ∈ Q2,
we add the edge (v0, w1) to E∗ to merge the singleton v0 and the 2-path P1 into a
3-path. This process eliminates the singleton v0 and maintains the total number of
2-paths and 3-paths to be |M∗|, and we say that the edge v0 − w1 saves the singleton
v0. We subsequently update the edge set E∗ and the 3-path partition Q, and end the
iteration.

Case 2 In the case where w1 is the midpoint of some 3-path u1 −w1 − v1, denoted
as P1 ∈ Q3. We claim that if the vertex u1 is adjacent to a vertex u2 in the graph G,
then u2 is not a singleton or an endpoint of a 3-path.

We prove this claim by contradiction. First, u2 cannot be a singleton due to
Lemma 2.2. Next, assume u2 is an endpoint of a 3-path u2 − w2 − v2. If w2 �= w1,
then we may remove the edges (w1, u1) and (w2, u2) while add the edge (u1, u2) to
E∗, resulting in (|M∗| + 1) 2-paths and 3-paths in total and thus again contradicting
Lemma 2.2. Ifw2 = w1, that is, u1 = v2 and u2 = v1, then we may remove the edges
(w1, u1) and (w1, v1) while add the edges (v0, w1) and (u1, v1) to E∗, resulting in
(|M∗| + 1) 2-paths and 3-paths in total and thus again contradicting Lemma 2.2. This
proves the claim.

123

Journal of Combinatorial Optimization (2019) 38:150–164 155

Fig. 1 An alternating path
v0 − w1 − u1 − w2 − u2 −
· · · − wi − ui − ui+1 that saves
the singleton v0, where the first i
paths are 3-paths and the last one
is a 2-path. In the figure, solid
edges are in the edge set E∗ and
dashed edges are outside of E∗ v0

u1

ui+1

u2 u3 ui

vi+1

P1 P2 P3 Pi...

...

...

w1 w2 w3 wi...

v1 v2 v3 vi...

Pi+1

It follows from the above claim that either u2 is an endpoint of a 2-path or u2 is the
midpoint of another 3-path. (That is, u2 now takes up the role of w1.)

Subcase 2.1 In the case where u2 is an endpoint of some 2-path u2 − v2, denoted
as P2 ∈ Q2, we remove the edge (w1, u1) while add the edges (v0, w1) and (u1, u2)
to E∗, resulting in two new 3-paths v0 − w1 − v1 and u1 − u2 − v2 while destroying
the two paths P1 and P2. This process eliminates the singleton v0 and maintains the
total number of 2-paths and 3-paths to be |M∗|, and we say that the alternating path 1

v0 − w1 − u1 − u2 saves 2 the singleton v0. We subsequently update the edge set E∗
and the 3-path partition Q, and end the iteration.

Subcase 2.2 In the general setting, in the graph G, v0 is adjacent to the midpoint
w1 of a 3-path P1, and for j = 1, 2, . . . , i −1, one endpoint u j of Pj is adjacent to the
midpoint w j+1 of another 3-path Pj+1, and lastly one endpoint ui of Pi is adjacent
to an endpoint ui+1 of a 2-path Pi+1 (see Fig. 1 for an illustration). Then we may
delete the edges {(w j , u j) | j = 1, 2, . . . , i} from E∗ while add the edges (v0, w1),
{(u j , w j+1) | j = 1, 2, . . . , i − 1}, and (ui , ui+1) to E∗ to obtain (i + 1) 3-paths
from the collection of one singleton, i 3-paths, and one 2-path. This process eliminates
the singleton v0 and maintains in total |M∗| 2-paths and 3-paths, and we say that the
alternating path v0 −w1 − u1 −w2 − u2 − . . .−wi − ui − ui+1 saves the singleton
v0. We remark that a length-(2i + 1) alternating path connects a singleton to a 2-path,
through a series of i 3-paths, where i ≥ 0 (see Fig. 1). We subsequently update the
edge set E∗ and the 3-path partition Q, and end the iteration.

Lemma 2.4 In the graph G = (V , E), given a 3-path partition Q containing |M∗|
2-paths and 3-paths, finding a simple alternating path to save a singleton v0 ∈ Q, if
exists, can be done in O(n + m) time, where n = |V | and m = |E |.
Proof Let E∗ denote the edge set of the 3-path partition Q. Firstly, if an alternating
path is not simple, then a cycle that forms a subpath is also alternating and has an
even length, and thus the cycle can be removed resulting in a shorter alternating path.
Repeating this process if necessary, at the end we achieve a simple alternating path.
Therefore, we can limit the search for a simple alternating path.

The edges on all possible alternating paths that save v0 can be of the following four
kinds:

1 An alternating path starts with a singleton and its edges are alternately outside and inside E∗.
2 Such a path is called an augmenting path, that is, an alternating path that ends on an endpoint of a 2-path
inQ.

123

156 Journal of Combinatorial Optimization (2019) 38:150–164

Algorithm A on G = (V,E):

Step 1. 1.1. compute a maximum matching M∗ in G;
1.2. determine the vertex subset V0 of singletons in G[M∗]= (V,M∗);

Step 2. 2.1. construct the bipartite graph G′ = (M∗, V0, E
′);

2.2. compute a maximum matching M1 in G′;
2.3. determine the edge set M2 associated with M1;
2.4. initialize E∗ = M∗ ∪ M2 and the associated 3-path partition Q;

Step 3. 3.1. repeatedly find an alternating path to save a singleton in Q,
till no alternating path is found;

3.2. return the resulting 3-path partition Q.

Fig. 2 A high-level description of Algorithm A for computing a 3-path partition Q in the graph G =
(V , E), where Q contains in total |M∗| 2-paths and 3-paths and it contains the least singletons among all
3-path partitions

(1) all those edges incident at v0, each oriented out of v0;
(2) all those edges of the 3-paths, each oriented from the midpoint to the endpoint;
(3) all those edges each connecting an endpoint of a 3-path to the midpoint of another

3-path, oriented from the endpoint to the midpoint;
(4) all those edges each connecting an endpoint of a 3-path to an endpoint of a 2-path,

oriented out of the endpoint of the 3-path.

We thus construct a digraph on the vertex set V to contain all the above four kinds of
oriented edges. It follows that by a BFS (breadth-first search) traversal starting from
v0 in the constructed digraph, if an endpoint of a 2-path can be reached thenwe achieve
a simple alternating path saving v0; otherwise, we conclude that no alternating path
saving the singleton v0 exists. Both construction of the digraph and the BFS traversal
take O(n + m) time. This proves the lemma. ��

Using Lemma 2.4, the third step of the algorithm is to iteratively find a simple
alternating path to save a singleton of the current 3-path partition; it terminates when
no alternating path is found.We still useQ to denote the 3-path partition at termination.
A high-level description of our Algorithm A is provided in Fig. 2.

2.4 Themain theorem

We prove in the next theorem that the 3-path partitionQ produced by Algorithm A
contains the least singletons among all 3-path partitions.

Theorem 1 Algorithm A is an O(nm)-time algorithm for computing a 3-path par-
tition in the graph G = (V , E) with the least 1-paths.

Proof Recall that at the end of the second step, the achieved starting 3-path partition
contains in total |M∗| 2-paths and 3-paths. In the third step, in each iteration where an
alternating path is found to save a singleton of the current 3-path partition, we swap

123

Journal of Combinatorial Optimization (2019) 38:150–164 157

the edges on the alternating path inside the edge set with the edges outside of the edge
set tomove from the current 3-path partition to another 3-path partition which contains
still in total |M∗| 2-paths and 3-paths (that is, an invariant) but one less singleton.

We prove the theorem by the minimal counterexample method. Assume that on
the graph G = (V , E) the 3-path partition Q produced by Algorithm A does not
contain the least possible 1-paths, but on any subgraph ofG induced by a proper subset
of vertices Algorithm A is able to compute a 3-path partition with the least 1-paths.

Let Q1 (Q2, Q3, respectively) denote the collection of 1-paths (2-paths, 3-paths,
respectively) in the 3-path partition Q produced by Algorithm A for G = (V , E)
(the associated edge set is E∗). LetQ∗ be any 3-path partition in the graphG = (V , E)
with the least 1-paths, and letQ∗

1 denote the collectionof 1-paths inQ∗.Our assumption
is

|Q1| > |Q∗
1| ≥ 0. (2)

Since G = (V , E) is the minimal (in terms of the number of vertices) graph for
which Eq. (2) holds,Q1 andQ∗

1 should not have any common element. Suppose to the
contrary that a singleton v0 ∈ Q1 ∩Q∗

1. Then with respect toQ\{v0}, there is no alter-
nating path to save any other singleton ofQ in the induced subgraph G[V \{v0}]. That
is,Q\{v0} would be the 3-path partition produced by Algorithm A for G[V \{v0}],
while Q∗\{v0} is a 3-path partition in G[V \{v0}], contradicting the minimality of
G = (V , E). So we have

Q1 ∩ Q∗
1 = ∅, (3)

i.e., a singleton v0 ∈ Q1 is not a singleton inQ∗
1, and consequently v0 is on some path

of Q∗
2 ∪ Q∗

3.
Suppose the edge (v0, w1) is on some path ofQ∗

2 ∪ Q∗
3. Let us examine where the

vertex w1 could be in the computed 3-path partitionQ. Recall thatQ contains in total
|M∗| 2-paths and 3-paths. Due to Lemma 2.2,w1 cannot be a singleton or an endpoint
of a 3-path. From the non-existence of an alternating path at the end of the third step
of Algorithm A, w1 cannot be an endpoint a 2-path either. Therefore, w1 has to be
the midpoint of some 3-path u1 −w1 −v1, denoted as P1 ∈ Q. (We refer the reader to
Fig. 1 for an illustration, taking that the solid edges are in Q while the dashed edges
are in Q∗.)

Now we examine where the endpoints u1 and v1 of the path P1 could be in Q∗.
Apparently not both of them are adjacent to w1 in Q∗, or otherwise the degree of w1
inQ∗ would be at least three. Assume without loss of generality u1 is not adjacent to
w1 in Q∗. If u1 is a singleton in Q∗, then we may add the edge (u1, w1) to Q∗ and
remove the edge (v0, w1) fromQ∗ to obtain another 3-path partitionQ∗′ in which u1
is no longer a singleton but v0 becomes a singleton. That is, Q∗′ is also an optimal
solution and shares a singleton v0 with Q, contradicting Eq. (3). This proves that u1
is not a singleton in Q∗ and consequently, exactly the same as v0, it is on some path
of Q∗

2 ∪ Q∗
3. (Again, we refer the reader to Fig. 1 for an illustration.)

Suppose the edge (u1, w2) is on some path of Q∗
2 ∪ Q∗

3. We next examine where
the vertex w2 could be in the computed 3-path partition Q. Due to Lemma 2.2, w2
cannot be a singleton or an endpoint of a new 3-path (other than P1). From the non-
existence of an alternating path at the end of the third step,w2 cannot be an endpoint a
2-path either. Therefore,w2 either collides into v1 or it has to be the midpoint of some

123

158 Journal of Combinatorial Optimization (2019) 38:150–164

new 3-path (other than P1). If w2 = v1, then we may remove the edges (u1, w1) and
(w1, v1) from E∗ and add the edges (v0, w1) and (u1, v1) to E∗ to obtain another 3-
path partition that contains (|M∗|+ 1) 2-paths and 3-paths, contradicting Lemma 2.2.
It follows that w2 has to be the midpoint of some new 3-path u2 − w2 − v2, denoted
as P2 ∈ Q. (Again, we refer the reader to Fig. 1 for an illustration.)

Now we recursively examine where the endpoints u2 and v2 of the path P2 could
be in Q∗. Apparently not both of them are adjacent to w2 in Q∗, or otherwise the
degree ofw2 inQ∗ would be at least three. Assume without loss of generality u2 is not
adjacent to w2 inQ∗. If u2 is a singleton inQ∗, then we may use the alternating path
v0 − w1 − u1 − w2 − u2 to obtain another optimal 3-path partition Q∗′ that violates
Eq. (3). This proves that u2 is not a singleton inQ∗ and consequently, exactly the same
as v0 and u1, it is on some path of Q∗

2 ∪ Q∗
3.

Suppose the edge (u2, w3) is on some path of Q∗
2 ∪ Q∗

3. We may repeat the above
argument forw2 to prove thatw3 has to be the midpoint of some new 3-path u3−w3−
v3, denoted as P3 ∈ Q, resulting in the same configuration as shown in Fig. 1. From
the path P3, repeating the same argument we will discover a new distinct path P4 ∈ Q.
Repeatedly, we will discover an infinitely many distinct 3-paths inQ, contradicting to
the fact that G = (V , E) is finite. Such a contradiction proves that the 3-path partition
Q produced by Algorithm A has the same number of, and thus the least, singletons
as Q∗.

For the running time, since in each iteration of the third step we may “glue” all
singletons as one for finding an alternating path. If no alternating path is found, then
the algorithm terminates; otherwise one can easily check which singletons are the
root of the alternating path and pick to save one of them, and the iteration ends. It
follows that there could be O(n) iterations and each iteration needs O(n + m) time,
and thus the total running time for the third step is O(n2 + nm). Since the first two
steps take O(m

√
n log(n2/m)/ log n) time, the overall running time of Algorithm

A is in O(nm). This finishes the proof of the theorem. ��

3 AnO(n3)-time 13/9-approximation algorithm

Our approximation algorithm for the 3- path partition problem consists of two
phases. The first phase is Algorithm A, presented in the last section, that computes
a 3-path partitionQwith the least 1-paths for the input graphG = (V , E).Algorithm
A runs in O(nm) time, where n = |V | and m = |E |.

In the second phase, the algorithm greedily merges three 2-paths in Q into two 3-
paths, whenever possible (see the only configuration for such three 2-paths illustrated
in Fig. 3). That is, the algorithm checks for a collection of three 2-paths, say for
example u1 − v1, u2 − v2, and u3 − v3. If there are two edges of E that connect them
into a path, for example the edges (u1, v2) and (u2, v3), then this resulting 6-path is
broken down into two 3-paths by removing the middle edge. In the above example, the
middle edge is (u2, v2) and the two resulting 3-paths are v1−u1−v2 and u2−v3−u3
(see Fig. 3).

Denote our entire approximation algorithm as Approx, of which a high-level
description is depicted in Fig. 4. Since there are O(n) 2-paths and each collection

123

Journal of Combinatorial Optimization (2019) 38:150–164 159

Fig. 3 The only configuration
for three 2-paths that can be
merged into two 3-paths, where
solid edges are in Q and dashed
edges are in the graph G outside
ofQ

u1 u2 u3

P1 P2 P3

v1 v2 v3

Approx on G = (V,E):

Phase 1. Run Algorithm A on G = (V,E) to obtain a 3-path partition Q;

Step4 (Phase 2).
4.1. for each collection of three 2-paths of Q2,

if possible convert them into two 3-paths and remove them from Q2;
4.2. return the resulting 3-path partition Q.

Fig. 4 A high-level description of Approx for computing a 3-path partition

of three 2-paths is examined at most once, the second phase takes O(n3) time and thus
the total running time ofApprox is in O(n3), which is slightly worse than the running
time O(nm) of the previous 1.5-approximation by Monnot and Toulouse (2007). In
the next theorem, we prove that Approx is a 13/9-approximation algorithm for the
3- path partition problem.

Theorem 2 The algorithm Approx is an O(n3)-time 13/9-approximation for the 3-
path partition problem.

Proof Given a graph G = (V , E) with order n, we have shown that the total running
time of Approx is in O(n3).

Let Q1 (Q2, Q3, respectively) denote the collection of 1-paths (2-paths, 3-paths,
respectively) in the 3-path partitionQ computed by the algorithm Approx. LetQ∗ be
an optimal 3-path partition, i.e., with the minimum total number of paths, and let Q∗

1
(Q∗

2,Q∗
3, respectively) denote the collection of 1-paths (2-paths, 3-paths, respectively)

inQ∗. SinceQ contains the least 1-paths (the second phase ofApprox does not touch
those 1-paths in Q1) among all 3-path partitions, we have

|Q1| ≤ |Q∗
1|. (4)

Clearly, since both Q and Q∗ are 3-path partitions, we have

|Q1| + 2|Q2| + 3|Q3| = n = |Q∗
1| + 2|Q∗

2| + 3|Q∗
3|. (5)

We next estimate an upper bound on the cardinality of Q2 through an amortized
analysis. To this purpose, each 2-path ofQ2 (or equivalently, each edge on the 2-path
of Q2) has 1 token to be distributed to the paths of Q∗. We denote the set of the

123

160 Journal of Combinatorial Optimization (2019) 38:150–164

Fig. 5 A singleton u ∈ Q∗
1 is an

endpoint of the 2-path
u − v ∈ Q2; u receives the
whole 1 token from the 2-path
u − v. In the figure, solid edges
are in E(Q2) and dashed edges
are in E(Q∗), and the dotted
arrow points where the token is
distributed

u

v

1

edges on the paths of Q2 as E(Q2), and denote the set of the edges on the paths of
Q∗

2 ∪ Q∗
3 as E(Q∗). In the following we limit our discussion on the edge multi-set

E(Q2) ∪ E(Q∗). This way, only the midpoint of a 3-path of Q∗
3 may have degree 3,

that is, incident with three edges of E(Q2)∪ E(Q∗), while all the other vertices have
degree at most 2 since each is incident with at most one edge of E(Q2) and at most
one edge of E(Q∗).

For each path u − v ∈ Q2, at most one of its two endpoints u and v can be a
singleton in Q∗, due to the minimality of Q∗. If u ∈ Q∗

1, then the whole 1 token of
the path u − v is distributed to u (see for an illustration in Fig. 5). On the other hand,
any singleton of Q∗

1 that is not an endpoint of a 2-path of Q2 receives no token. We
conclude the following claim.

Claim 1 Every path of Q∗
1 receives at most 1 token.

We assume next that both u and v are incident with an edge of E(Q∗) (i.e., none
of them is a singleton in Q∗

1).
If one of them, say v, is on a 2-path v − w ∈ Q∗

2, then the whole 1 token of the
path u − v is distributed to the 2-path v − w ∈ Q∗

2 (see for an illustration in Fig. 6).
We note that w could collide into u, that is, the 2-path u − v ∈ Q2 ∩ Q∗

2. But if w
does not collide into u (that is, w �= u) and u is another 2-path u − x ∈ Q∗

2, then the
2-path u − x receives no token from the path u − v. The choice of which one of the
two vertices u and v comes first does not matter. Therefore, the 2-path v − w ∈ Q∗

2
could receive another 1 token through w, from the 2-path of Q2 incident at w. We
conclude the following claim.

Claim 2 Every path of Q∗
2 receives at most 2 tokens.

In the other case, both vertices u and v are on some 3-paths ofQ∗
3, and we assume

without loss of generality that u is on the 3-path u1 − u2 − u3, denoted as Pu , and v

is on the 3-path v1 − v2 − v3, denoted as Pv , respectively. We remark that u can be
either of u1, u2, u3 and v can be either of v1, v2, v3, and Pu and Pv could even collide
into each other.

If Pu and Pv collide into each other, then the whole 1 token of the path u − v is
distributed to the 3-path Pu ∈ Q∗

3.

123

Journal of Combinatorial Optimization (2019) 38:150–164 161

u

v w

1

Fig. 6 A 2-path v −w ∈ Q∗
2 is adjacent to the 2-path u − v ∈ Q2; v −w receives the whole 1 token from

the 2-path u − v. In the figure, solid edges are in E(Q2) and dashed edges are in E(Q∗), and the dotted
arrow points where the token is distributed. The vertex u is incident to one or two edges of E(Q∗)

u1(u)

v1 v2(v)

1/3

v3

u2 u3

2/3

Fig. 7 A 3-path v1 − v2 − v3 ∈ Q∗
3, denoted as Pv , is adjacent to the 2-path u − v ∈ Q2. The figure

illustrates the scenario where v2 = v, and both v1 and v3 are on some 2-path(s) of Q2 too. Pv receives a
fraction of 1/3 token from the 2-path u − v; the other 2/3 tokens from the 2-path u − v are distributed to
the 3-path Pu ∈ Q∗

3. In the figure, solid edges are in E(Q2) and dashed edges are in E(Q∗), and the dotted
arrow points where the token is distributed. At most one of the vertices u2 and u3 can be on a 2-path ofQ2

If Pu and Pv are distinct, then the six vertices u1, u2, u3 and v1, v2, v3 are distinct
to each other. We claim that at least one of these six vertices is not on any 2-path of
Q2. To prove this claim, we assume to the contrary that all these six vertices are on
some 2-paths ofQ2. Let x denote a vertex on Pu which is adjacent to u, that is, (u, x)
is an edge of Pu ; similarly, let y denote a vertex on Pv which is adjacent to v, that
is, (v, y) is an edge of Pv . Assume that x is on a 2-path x − z ∈ Q2 and y is on a
2-path y − w ∈ Q2, where z and w may or may not be on Pu or Pv . If z �= y, then
z �= w since any two 2-paths in Q2 do not have a common vertex. This gives rise to
a configuration as shown in Fig. 3, where P1 = x − z, P2 = u − v, P3 = y − w,
a contradiction to the termination condition for the algorithm Approx, see Step 4 in
Fig. 4. If z = y (implying x = w), then let p denote the last vertex on Pu other than
u and x and assume that p is on a 2-path p − q ∈ Q2; this leads to a configuration as
shown in Fig. 3, where P1 = p − q, P2 = u − v, P3 = x − y, again a contradiction
to the termination condition for the algorithm Approx, see Step 4 in Fig. 4.

Using the above claim, if each of the three vertices u1, u2, u3 on Pu is on a 2-path
ofQ2, then 1/3 token of the path u − v is distributed to the 3-path Pu ∈ Q∗

3 while the
other 2/3 tokens are distributed to the 3-path Pv ∈ Q∗

3; otherwise, 2/3 tokens of the
path u−v are distributed to the 3-path Pu ∈ Q∗

3 while the other 1/3 token is distributed
to the 3-path Pv ∈ Q∗

3 (see for an illustration in Fig. 7). From the perspective of the
3-paths of Q∗

3, each of them can receive at most 4/3 tokens, which is the maximum
value in {1 + 1/3, 1/3 + 1/3 + 1/3, 2/3 + 2/3} representing all the maximal token
combinations. We conclude the following claim.

123

162 Journal of Combinatorial Optimization (2019) 38:150–164

For each 2-path u-v ∈ Q2 with 1 token,

Case 1. if u (or v) ∈ Q∗
1, then the 1 token is given to u (v, respectively);

Case 2.
2.1. if v is on a 2-path v-w ∈ Q∗

2, then the 1 token is given to v-w;
2.2. else if u is on a 2-path u-w ∈ Q∗

2, then the 1 token is given to u-w;

Case 3. suppose u is ona 3-path Pu ∈ Q∗
3 and v is ona 3-path Pv ∈ Q∗

3:
3.1. if Pu = Pv, then the 1 token is given to Pu;
3.2. else if all three vertices of Pu are on some 2-paths of Q2,

then (1/3, 2/3) token is given to (Pu, Pv), respectively;
3.3. else (2/3, 1/3) token is given to (Pu, Pv), respectively.

Fig. 8 The token distribution scheme from the paths ofQ2 to the paths ofQ∗

Claim 3 Every path of Q∗
3 receives at most 4/3 tokens.

The complete token distribution scheme from the paths of Q2 to the paths of Q∗
is summarized in Fig. 8. At the end of the token distribution process, the 1 token of
each 2-path ofQ2 is distributed out to the paths ofQ∗. Every 1-path ofQ∗

1 receives at
most 1 token (Claim 1), every 2-path of Q∗

2 receives at most 2 tokens (Claim 2), and
every 3-path of Q∗

3 receives at most 4/3 tokens (Claim 3). It follows that

|Q2| ≤ |Q∗
1| + 2|Q∗

2| + 4

3
|Q∗

3|. (6)

Combining Eqs. (4, 5, 6), we have

3|Q1| + 3|Q2| + 3|Q3| ≤ 4|Q∗
1| + 4|Q∗

2| + 13

3
|Q∗

3|, (7)

which results in |Q| ≤ 13
9 |Q∗|.

Figure 9 illustrates an instance with 27 vertices, which shows that the performance
ratio 13/9 of Approx is tight. On this instance, the solution Q produced by the algo-
rithmApprox contains 12 2-paths and 1 3-path (solid edges as shown) and an optimal
3-path partitionQ∗ contains 9 3-paths (dashed edges as shown). Using the token dis-
tribution scheme, each of the 9 3-paths of Q∗ receives 4/3 tokens. The theorem is
proved. ��

4 Concluding remarks

In this paper we studied the 3- path partition problem and designed a 13/9-
approximation algorithm called Approx. Approx contains two phases, first to
compute a 3-path partition with the least 1-paths and then to greedily merge a col-
lection of three 2-paths into two 3-paths, whenever possible. We showed that the first

123

Journal of Combinatorial Optimization (2019) 38:150–164 163

v1 v2/u1 v3

v4 v5/u4 v6

v7 v8/u7 v9

v12 v11/u10 v10

v15 v14/u13 v13

v18 v17/u16 v16

u12

u15

u18

u3

u6

u9

Fig. 9 A tight instance of 27 vertices, in which the 3-path partition Q produced by the algorithm Approx
contains 12 2-paths and 1 3-path (solid edges) and an optimal 3-path partitionQ∗ contains 9 3-paths (dashed
edges). The edges (u3i+1, v3i+1), i = 0, 1, . . . , 5, are in E(Q2)∩ E(Q∗), shown in both solid and dashed
(they are drawn as parallel edges), as u3i+1 collides into v3i+2, i = 0, 1, . . . , 5

phase can be done in O(nm) time, where n is the number of vertices andm is the num-
ber of edges in the input graph, and the overall running time of Approx is in O(n3).
The performance analysis for Approx is done by an amortization scheme, using the
structure properties of the 3-path partition obtained at the end of second phase. From
the tight instance shown in Fig. 9, one sees that in the “bad” scenario there are too
many 2-paths in the computed partition compared to the optimal partition, yet they
cannot be merged by Approx. Designing a better merging scheme than the current
simple scheme in the second phase of Approx can be a key to the next improvement.
Ultimately, a 4/3-approximation, matching the best approximation ratio for the 3- Set
Cover problem, is an exciting goal.

Acknowledgements The authors would like to thank the anonymous reviewers for their many suggestions
and comments that help improve the paper presentation. YC and AZ were supported by the NSFC Grants
11771114 and 11571252; YC was also supported by the China Scholarship Council Grant 201508330054.
RG, GL and YX were supported by the NSERC Canada.

References

Duh R, Fürer M (1997) Approximation of k-set cover by semi-local optimization. In: Proceedings of the
twenty-ninth annual ACM symposium on theory of computing, STOC’97, pp 256–264

Feige U (1998) A threshold of for approximating set cover. J ACM 45:634–652
Franzblau DS, Raychaudhuri A (2002) Optimal hamiltonian completions and path covers for trees, and a

reduction to maximum flow. ANZIAM J 44:193–204
Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W.

H. Freeman and Company, San Francisco
Goldberg AV, Karzanov AV (2004) Maximum skew-symmetric flows and matchings. Math Program

100:537–568
Johnson DS (1974) Approximation algorithms for combinatorial problems. J Comput Syst Sci 9:256–278
Levin A (2006) Approximating the unweighted k-set cover problem: greedy meets local search. In: Pro-

ceedings of the 4th international workshop on approximation and online algorithms (WAOA 2006),
LNCS 4368, pp 290–301

Lozin VV, Rautenbach D (2003) Some results on graphs without long induced paths. Inf Process Lett
88:167–171

Monnot J, Toulouse S (2007) The path partition problem and related problems in bipartite graphs. Oper Res
Lett 35:677–684

Raz R, Safra S (1997) A sub-constant error-probability low-degree test, and sub-constant error-probability
PCP characterization of NP. In: Proceedings of the 29th annual ACM symposium on theory of com-
puting (STOC’97), pp 475–484

123

164 Journal of Combinatorial Optimization (2019) 38:150–164

van Bevern R, Bredereck R, Bulteau L, Chen J, Froese V, Niedermeier R, Woeginger GJ (2014) Star
partitions of perfect graphs. In: Proceedings of the of 41st international colloquium on automata,
languages and programming (ICALP 2014), LNCS 8572, pp 174–185

Vazirani V (2001) Approximation algorithms. Springer, Berlin
Yan J-H, Chang GJ, Hedetniemi SM, Hedetniemi ST (1997) k-path partitions in trees. Discrete Appl Math

78:227–233

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	An improved approximation algorithm for the minimum 3-path partition problem
	Abstract
	1 Introduction
	2 Computing a 3-path partition with the least 1-paths
	2.1 Step 1: computing a maximum matching
	2.2 Step 2: computing a second maximum matching
	2.3 Step 3: reducing 1-paths to the minimum
	2.4 The main theorem

	3 An O(n3)-time 13/9-approximation algorithm
	4 Concluding remarks
	Acknowledgements
	References

