
Journal of Scheduling (2018) 21:565–578
https://doi.org/10.1007/s10951-018-0575-z

Rescheduling due to machine disruption to minimize the total
weighted completion time

Wenchang Luo1,2 · Taibo Luo2,3 · Randy Goebel2 · Guohui Lin2

Published online: 3 July 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
We investigate a single machine rescheduling problem that arises from an unexpected machine unavailability, after the given
set of jobs has already been scheduled to minimize the total weighted completion time. Such a disruption is represented as an
unavailable time interval and is revealed to the production planner before any job is processed; the production planner wishes
to reschedule the jobs to minimize the alteration to the originally planned schedule, which is measured as the maximum time
deviation between the original and the new schedules for all the jobs. The objective function in this rescheduling problem is
to minimize the sum of the total weighted completion time and the weighted maximum time deviation, under the constraint
that the maximum time deviation is bounded above by a given value. That is, the maximum time deviation is taken both as a
constraint and as part of the objective function. We present a pseudo-polynomial time exact algorithm and a fully polynomial
time approximation scheme.

Keywords Rescheduling · Machine disruption · Total weighted completion time · Approximation scheme

1 Introduction

In most modern production industries and service systems,
various kinds of disruptions will occur, such as order cancel-
lations, new order arrivals, machine breakdown, and labor or
material shortages. An ideal scheduling system is expected to

This work was partially supported by NSERC Canada, NSF China and
CSC China.

B Guohui Lin
guohui@ualberta.ca

Wenchang Luo
wenchang@ualberta.ca

Taibo Luo
taibo@ualberta.ca

Randy Goebel
rgoebel@ualberta.ca

1 Faculty of Science, Ningbo University, Ningbo 315211,
Zhejiang, China

2 Department of Computing Science, University of Alberta,
Edmonton, AB T6G 2E8, Canada

3 School of Economics and Management, Xidian University,
Xi’an 710126, China

effectively adjust an originally planned schedule to account
for such disruptions, in order to minimize the effects of the
disruption on overall performance. The extent of an alter-
ation to the originally planned schedule, to be minimized,
becomes either a second objective function (e.g., to model
measurable costs), or is formulated as a constraint to model
hard-to-estimate costs, which may be incorporated into the
original objective function.

In this paper, we investigate the single machine schedul-
ing problemwith the objective tominimize the total weighted
completion time. Rescheduling arises because of unexpected
machine unavailability, which we represent as an unavailable
time interval. This unavailability is revealed to the production
planner after the given set of jobs has already been sched-
uled but processing has not begun. The production planner
wishes to reschedule the jobs to minimize the alteration to
the originally planned schedule, measured as the maximum
time deviation between the original and the new schedules
for all jobs. The maximum time deviation is taken both as
a constraint and as part of the objective function; that is,
the maximum time deviation is bounded above by a given
threshold value, and the new objective function becomes to
minimize the sum of the total weighted completion time and
the weighted maximum time deviation.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-018-0575-z&domain=pdf
http://orcid.org/0000-0003-4283-3396

566 Journal of Scheduling (2018) 21:565–578

1.1 Problem description and definitions

We formally present our rescheduling problem in what fol-
lows, including definitions and notation to be used through-
out the paper.

We are given a set of jobsJ = {J1, J2, . . . , Jn}, where the
job J j has an integer weight w j and requires an integer non-
preemptive processing time p j on a single machine, with the
original objective to minimize the total weighted completion
time. This problem is denoted as (1 || ∑n

j=1 w jC j) under the
three-field classification scheme (Graham et al. 1979), where
C j denotes the completion time of the job J j . It is known that
the weighted shortest processing time (WSPT) rule gives an
optimal schedule for the problem (1 || ∑n

j=1 w jC j). We
thus assume that the jobs are already sorted in the WSPT
order, that is, p1

w1
≤ p2

w2
≤ . . . ≤ pn

wn
, and we denote this

order/schedule as π∗, referred to as the original schedule
(also called the pre-planned schedule, or pre-schedule, in
the literature).

Once obtaining the original schedule π∗, the produc-
tion planner has the completion time of the job J j denoted
as C j (π

∗) and thus sets the delivery time at C j (π
∗) for

the finished job J j , or otherwise within the time window
[C j (π

∗) − k,C j (π
∗) + k] for some given flexibility thresh-

old k ≥ 0. This promised delivery time is taken seriously
as a hard constraint meaning that slight adjustments to the
original schedule, due to various reasons, are allowed only if
the new completion time of the job is within the window.

The rescheduling arises due to a machine disruption: the
machine becomes unavailable in the time interval [T1, T2],
where 0 ≤ T1 < T2. We assume, without loss of generality,
that this information is known to us at time zero, so no job is
yet processed. (Otherwise, one may remove those processed
jobs from consideration, and for the partially processed job,
either run it to completion and then remove it, or stop pro-
cessing it immediately.)

Letσ be a schedule after resolving themachine disruption.
That is, no jobofJ is processed in the time interval [T1, T2] in
σ . As in the existing literature, we use the following notation:
for each job J j ,

S j (σ): the starting time of the job J j in the schedule σ ;
C j (σ): the completion time of the job J j in the schedule
σ , and thus C j (σ) = S j (σ) + p j ;
C j (π

∗): the completion time of the job J j in the original
schedule π∗;
� j (π

∗, σ) = |C j (σ) − C j (π
∗)|: the time deviation of

the job J j in the two schedules.

Let �max(π
∗, σ) � maxnj=1{� j (π

∗, σ)} denote the max-
imum time deviation for all jobs. When it is clear from the
context, we simplify the terms S j (σ),C j (σ),� j (π

∗, σ) and
�max(π

∗, σ) to S j , C j , � j and �max, respectively.

The time deviation of a job measures how much its actual
completion time is off the originally planned, and thus it can
model the penalties resulted from the delivery time change
to the satisfaction of the customers. Such varying penalties
could be difficult for the producer to quantify, and there-
fore in this paper the maximum time deviation is taken as a
hard constraint, that is, �max ≤ k for the given flexibility
threshold k. On the other hand, from the production perspec-
tive, the time deviation of a detailed job does not, but mostly
the maximum time deviation of all jobs would increase the
internal production cost associated with the rescheduling of
resources. Therefore, we add the maximum time deviation to
the objective function, balanced with a suitable factorμ ≥ 0.
That is, the goal of rescheduling is to minimize the sum of
theweightedmaximum time deviation and the total weighted
completion time, i.e.,μ�max +∑n

j=1 w jC j . Our problem is
denoted as (1, h1 | �max ≤ k | μ�max+∑n

j=1 w jC j) under
the three-field classification scheme (Graham et al. 1979),
where the first field “1, h1” denotes a single machine with a
single unavailable time period, the second field “�max ≤ k”
indicates the hard constraint on themaximum time deviation,
and the last field is the objective function.

We remark that in the literature, reviewed below, there are
works on the objective to minimize the sum of themakespan
and the weighted maximum time deviation, with a bounded
maximum time deviation the same as ours (Liu andRo 2014),
and works on the objective to minimize the sum of the total
completion time and the weighted total time deviation, but
the maximum time deviation is unbounded (Qi et al. 2006).
All these different rescheduling constraints and objectives
are driven by different real applications.

1.2 Related research

We next review major research on the variants of the
rescheduling problem, inspired by many practical applica-
tions. To name a few such applications, Bean et al. (1991)
investigated an automobile industry application, and pro-
posed a heuristic match-up scheduling approach to accom-
modate disruptions from multiple sources. Zweben et al.
(1993) studied the GERRY scheduling and rescheduling sys-
tem that supports Space Shuttle ground processing, using a
heuristic constraint-based iterative repair method. Clausen
et al. (2001) considered a shipyard application, where the
goal for rescheduling is to store large steel plates for efficient
access by two non-crossing portal cranes that move the plates
to appropriate places. Vieira et al. (2003), Aytug et al. (2005),
Herroelen and Leus (2005) and Yang et al. (2005) provided
extensive reviews of the rescheduling literature, including
taxonomies, strategies and algorithms, for both determinis-
tic and stochastic environments.

In a seminal paper on rescheduling theory for a single
machine, Hall and Potts (2004b) considered the reschedul-

123

Journal of Scheduling (2018) 21:565–578 567

ing problem required to deal with the arrival of a new set of
jobs, which disrupts the pre-planned schedule of the original
jobs. Such a problem is motivated by the unexpected arrival
of new orders in practical manufacturing systems. First, the
set of original jobs has been optimally scheduled tominimize
a cost function, typically the maximum lateness or the total
completion time; but no job has yet been executed. In this
case, promises have been made to the customers based on
the original schedule. Then an unexpected new set of jobs
arrives before the processing starts; the production planner
needs to insert the new jobs into the existing schedule seek-
ing to minimize change to the original plan. The measure
of change to the original schedule is the maximum or total
sequence deviation, or the maximum or total time deviation.
For both cases—where the measure of change is modeled
only as a constraint, or where the measure of change is mod-
eled both as a constraint and is added to the original cost
objective—the authors provide either an efficient algorithm
or an intractability proof for several problem variants.

Yuan andMu (2007) studied a rescheduling problem simi-
lar to the one in Hall and Potts (2004b), but with the objective
to minimize the makespan subject to a limit on the maximum
sequence deviation of the original jobs; they show that such
a solution is polynomial time solvable. Hall et al. (2007)
considered an extension of the rescheduling problem in Hall
and Potts (2004b), where the arrivals of multiple new sets of
jobs create repeated disruptions to minimize the maximum
lateness of the jobs, subject to a limit on the maximum time
deviation of the original jobs; they proved the NP-hardness
and presented several approximation algorithms with their
worst-case performance analysis.

Hall and Potts (2004a) also studied the case where the
disruption is a delayed subset of jobs (or called job unavail-
ability), with the objective to minimize the total weighted
completion time, under a limit on the maximum time
deviation; they presented an exact algorithm, an intractabil-
ity proof, a constant-ratio approximation algorithm, and
a fully polynomial time approximation scheme (FPTAS).
Hoogeveen et al. (2012) studied the case where the disrup-
tion is the arrival of new jobs and the machine needs a setup
time to switch between processing an original job and pro-
cessing a new job; their bi-criterion objective is to minimize
the makespan and to minimize the maximum (or total) posi-
tional deviation or the maximum (or total) time deviation,
with certain assumptions on the setup times. They presented a
number of polynomial time exact algorithms and intractabil-
ity proofs for several problemvariants. Zhao andYuan (2013)
examined the case where the disruption is the arrival of new
jobs which are associated with release dates, formulated a
bi-objective function to minimize the makespan and to min-
imize the total sequence deviation, under a limit on the total
sequence deviation; they presented a strongly polynomial
time algorithm for finding all Pareto optimal points of the

problem.Wang et al. (2017) also discussed a bi-objective sin-
gle machine scheduling problem with continuous arrival of
new jobs (which nonetheless can be rejected), and proposed
a dynamic evolutionary multi-objective optimization algo-
rithm incorporating a directed search strategy. Wang et al.
(2015) proposed a knowledge-based multi-objective evolu-
tionary algorithm for the case where the machine breakdown
is stochastic and extra resources are available to match up the
original schedule, and the objective is to minimize the sum of
the total completion time and the extra resource consumption
cost to match up the original schedule.

Qi et al. (2006) and Liu and Ro (2014) considered the
same machine disruption as ours—the machine is unavail-
able for a period of time. In Qi et al. (2006), the objective is
to minimize the weighted sum of the total completion time
and the total time deviation, without any constraint on the
time deviation; in Liu and Ro (2014), the objective is to
minimize the sum of the makespan (or the maximum job
lateness) and the weighted maximum time deviation, and
with a given upper bound on the maximum time deviation.
Qi et al. (2006) presented only a heuristic for the problem, but
a 3.5-approximation if the total time deviation in the objec-
tive is replaced by the total time earliness. Liu and Ro (2014)
presented a pseudo-polynomial time exact algorithm, a 2-
approximation algorithm, and an FPTAS. Yin et al. (2016)
studies the rescheduling problem on multiple identical par-
allel machines with multiple machine disruptions, and the
bi-criterion objective is to minimize the total completion
time and to minimize the total virtual tardiness (or the max-
imum time deviation); in addition to hardness results, they
presented a two-dimensional FPTAS when there is exactly
one machine disruption.

Among all related research in the above, the work of Qi
et al. (2006) and Liu and Ro (2014) is the most relevant
to our work in terms of the scheduling environment, and
the work of Hall and Potts (2004b, a) is the most relevant
in terms of the original objective function. After the first
version of our work (Luo et al. 2017) was under review, we
noticed a recent online published article (Liu et al. 2017),
where the problem (1, h1 | �max ≤ k | ∑n

j=1 w jC j), i.e.,
the special case of our problem with μ = 0, is studied, and
the authors presented an O(n2T1)-time exact algorithm and
also claimed an O(n3 logW/ε)-time (1+ ε)-approximation
algorithm1 withW being the total weighted completion time
of a feasible schedule, for any ε > 0.

1.3 Our contributions and organization

Our problem (1, h1 | �max ≤ k | μ�max + ∑n
j=1 w jC j)

includes three interesting special cases, some of which have

1 There is an error in the (1 + ε)-approximation algorithm, for which
the claimed running time O(n3 logW/ε) is flawed (Liu and Lin 2017).

123

568 Journal of Scheduling (2018) 21:565–578

received attention in the literature: when the given bound k
is sufficiently large, the time deviation constraint becomes
void and our problem reduces to the total cost problem
(1, h1 || μ�max + ∑n

j=1 w jC j); when the time devia-
tion factor μ = 0, our problem reduces to the constrained
rescheduling problem (1, h1 | �max ≤ k | ∑n

j=1 w jC j),
without the need to minimize the time deviation (Liu et al.
2017); andfinally,when thegivenbound k is sufficiently large
and the time deviation factor μ = 0, our problem reduces to
the classic scheduling problemwith a machine unavailability
period (1, h1 || ∑n

j=1 w jC j) (Lee 1996), which is NP-hard.
The rest of the paper is organized as follows: In Sect. 2,

we derive structural properties that are associated with the
optimal solutions to our rescheduling problem (1, h1 |
�max ≤ k | μ�max + ∑n

j=1 w jC j). In Sect. 3, we present

an O(n3T1)-time exact algorithm DP- 1, which is pseudo-
polynomial. In Sect. 4, we first develop an O(n2T1)-time
exact algorithmDP- 2 solving the special case where μ = 0,
this is, the problem (1, h1 | �max ≤ k | ∑n

j=1 w jC j);2

this leads to an O(n2T1k)-time exact algorithm for the gen-
eral problem (1, h1 | �max ≤ k | μ�max + ∑n

j=1 w jC j),
which is also pseudo-polynomial but slower than DP- 1 as
often n < k. Based on the algorithm DP- 2, we first present
an O(n5 log T1 log P logW/ε3)-time (1+ε)-approximation
algorithm for (1, h1 | �max ≤ k | ∑n

j=1 w jC j), for any ε >

0; by calling this (1+ε)-approximation algorithmO(log k/ε)
times, we present an O(n5 log T1 log P logW log k/ε4)-time
(1 + ε)-approximation algorithm for (1, h1 | �max ≤ k |
μ�max + ∑n

j=1 w jC j), for any ε > 0, where n is the num-
ber of jobs, the machine is unavailable [T1, T2], P is the total
job processing time, and W is the total weighted completion
time of any feasible schedule. That is, we have an FPTAS for
the problem (1, h1 | �max ≤ k | μ�max + ∑n

j=1 w jC j).
We remark that one major contribution in our FPTAS for

the problem (1, h1 | �max ≤ k | μ�max + ∑n
j=1 w jC j) is

the guaranteed O(log k/ε) calls to the (1+ε)-approximation
algorithm for (1, h1 | �max ≤ k | ∑n

j=1 w jC j). To see
this, one might propose to call the (1 + ε)-approximation
algorithm for (1, h1 | �max ≤ i | ∑n

j=1 w jC j) for each
i = 0, 1, . . . , k, followed by picking the value of i that
minimizes the quantity μi + ∑n

j=1 w jC j . Such an algo-
rithm does find a solution with the objective value within
1 + ε of the optimum; however, its total running time is
O(kn5 log T1 log P logW/ε3), which is pseudo-polynomial.

We conclude our paper in the last section, with some final
remarks.

2 We remark that our algorithm differs from the exact algorithm in Liu
et al. (2017), though both of O(n2T1) time.

2 Preliminaries

Firstly, from the NP-hardness of the classic scheduling
problem with a machine unavailability period (1, h1 ||
∑n

j=1 w jC j) (Lee 1996), we conclude that our reschedul-
ing problem (1, h1 | �max ≤ k | μ�max + ∑n

j=1 w jC j) is
also NP-hard.

Recall that we are given a set of jobsJ = {J1, J2, . . . , Jn}
in the WSPT order, where each job J j has a positive weight
w j and a positive processing time p j , a machine unavail-
ability period [T1, T2] with 0 ≤ T1 < T2, an upper bound
k on the maximum time deviation, and a balancing factor
μ ≥ 0. All these w j ’s, p j ’s, T1, T2, k are integers, and
μ is a rational number. For any feasible schedule σ to the
rescheduling problem, from �max ≤ k we conclude that
C j (π

∗) − k ≤ C j (σ) ≤ C j (π
∗) + k for every job J j . For

ease of presentation, we partition σ into two halves, similar
to the existing literature: the prefix of the schedule σ with the
jobs completed before or at time T1 is referred to as the ear-
lier schedule of σ , and the suffix of the schedule σ with the
jobs completed after time T2 is referred to as the later sched-
ule of σ . We assume, without loss of generality, that with the
same�max, all the jobs are processed as early as possible in σ

(to achieve the minimum possible total weighted completion
time). Let σ ∗ denote an optimal schedule to the rescheduling
problem.

2.1 Problem setting

Let

pmin �
n

min
j=1

p j , Pi �
i∑

j=1

p j , and P � Pn . (1)

Using the original schedule π∗ = (1, 2, . . . , n), we com-
pute

j1 � min{ j | C j (π
∗) > T1}, j2 � min{ j | S j (π

∗) ≥ T2},
(2)

i.e., J j1 is the first job in π∗ completed strictly after time
T1 and J j2 is the first job in π∗ starting processing at or
after time T2. One clearly sees that if j1 is void, i.e., no job
is completed strictly after time T1, then no rescheduling is
necessary; in the sequel, we always assume that the job J j1
exists. Nevertheless, we note that j2 could be void, which
means that all the jobs start processing strictly before time
T2 in π∗.

We may furthermore assume the following relations hold
among pmin, P, T1, T2 and k, to ensure that the rescheduling
problem is non-trivial:

123

Journal of Scheduling (2018) 21:565–578 569

pmin ≤ T1 < P, and T2 − S j1(π
∗) ≤ k. (3)

For a quick proof, firstly, if T1 < pmin, then no job can
be processed before the machine unavailability period and
thus the schedule π∗ remains optimal except that the job
processing starts at time T2 instead of time 0; secondly, if
T1 ≥ P , then no rescheduling is necessary. Lastly, from
the definition of the job J j1 in Eq. (2), we conclude that at
least one job among J1, J2, . . . , J j1 must be completed after
time T2 in any feasible rescheduling solution, with its time
deviation at least T2−S j1(π

∗). Therefore, T2−S j1(π
∗) ≤ k,

as otherwise no feasible solution exists.

2.2 Structure properties of the optimal schedules

There is a very regular property of our target optimal sched-
ules to the rescheduling problem, stated in the following
lemma, ofwhich the proof is done by a repeated job swapping
process with the details in “Appendix A”.

Lemma 2.1 There exists an optimal schedule σ ∗ for the
rescheduling problem (1, h1 | �max ≤ k | μ�max +
∑n

j=1 w jC j), in which (a) the jobs in the earlier schedule
are in the same order as they appear inπ∗; and (b) the jobs in
the later schedule are also in the same order as they appear
in π∗.

There are several more properties listed in the next
Lemma 2.2, which are important to the design and analysis
of the algorithms to be presented. Most of these properties
also hold for the optimal schedules to a similar makespan
rescheduling problem (1, h1 | �max ≤ k | μ�max + Cmax)

(Liu andRo2014).We remark that themakespan is only apart
of our objective, and the original schedule for the makespan
scheduling problem (1, h1 | �max ≤ k | μ�max+Cmax) can
be arbitrary. However, for our problem, the jobs in π∗ are in
theWSPT order. Our goal is to compute an optimal schedule
satisfying (the properties stated in) Lemmas 2.1 and 2.2, and
thus we examine only those feasible schedules σ satisfying
Lemmas 2.1 and 2.2.

Recall that we assume, for every feasible schedule σ to the
rescheduling problem with the same maximum time devia-
tion�max, all the jobs are processed as early as possible in σ

(to achieve the minimum possible total weighted completion
time). However, this does not rule out the possibility that the
machine would idle, due to the unavailable period [T1, T2]
and/or the constraint on the maximum time deviation �max.
For example, the machine has to idle for a period of time
right before time T1, if no job can be fitted into this period
for processing; also, the machine might choose to idle for a
period of time and then proceeds to process a job, in order to
obtain a smaller �max. In the sequel, our discussion is about
the latter kind of machine idling. The good news is that there
are optimal schedules in which the machine has at most one

such idle time period, as shown in the next Lemma 2.2. This
makes our search for optimal schedules much easier.

Lemma 2.2 There exists an optimal schedule σ ∗ for the
rescheduling problem (1, h1 | �max ≤ k | μ�max +∑n

j=1 w jC j), in which (a) C j (σ
∗) ≤ C j (π

∗) for each job
J j in the earlier schedule; (b) the machine idles for at most
one period of time in the earlier schedule; (c) each job in
the earlier schedule after the idle time period is processed
exactly�max time units earlier than in π∗; (d) the jobs in the
earlier schedule after the idle time period are consecutive in
π∗; (e) the job in the earlier schedule right after the idle time
period has a starting time at or after time T2 in π∗; (f) the
machine does not idle in the later schedule; and (g) the first
job in the later schedule reaches the maximum time deviation
among all the jobs in the later schedule.

Proof Item (a) is a direct consequence of Lemma 2.1, since
the jobs in the earlier schedule are in the same order as they
appear in π∗, which is the WSPT order.

Proofs of (b)–(g) are similar to those in Liu and Ro (2014),
where they are proven for an arbitrary original schedule,
while the WSPT order is only a special order. For complete-
ness, the proofs are included in Appendix B. ��

Among the jobs J1, J2, . . . , J j1 , we know that some of
them will be processed in the later schedule of the optimal
schedule σ ∗. By Lemma 2.1, we conclude that the first job in
the later schedule is from J1, J2, . . . , J j1 .Weuse Ja to denote
this job, and consequently (J1, J2, . . . , Ja−1) remains as the
prefix of the earlier schedule. The time deviation of Ja is
�a = T2 − Sa(π∗) ≤ k (which could be used to further
narrow down the candidates for Ja).

Corollary 1 In an optimal schedule σ ∗ satisfying Lemmas 2.1
and2.2, suppose the job Ja is the first job in the later schedule.
For each j = a + 1, a + 2, . . . , j2 − 1, if the job J j is in the
earlier schedule, then its time deviation � j is less than �a.

Proof From the definition of j2 in Eq. (2), we know that
S j (π

∗) < T2, and therefore its time deviation is � j < T2 −
Sa(π∗) = �a . ��

3 A dynamic programming exact algorithm

In this section, we develop an exact algorithm DP- 1 for
the rescheduling problem (1, h1 | �max ≤ k | μ�max +
∑n

j=1 w jC j), to compute an optimal schedule σ ∗ satisfy-
ing Lemmas 2.1 and 2.2. The key idea is as follows: By
Lemma 2.2(g), we first guess the job Ja that starts processing
at time T2 in σ ∗, with its time deviation�a = T2−Sa(π∗) ≤

123

570 Journal of Scheduling (2018) 21:565–578

k. From this initial partial schedule,3 our algorithmconstructs
some feasible full schedules satisfying Lemmas 2.1 and 2.2.
To guarantee that our algorithm constructs an optimal full
schedule in pseudo-polynomial time, we use a “hash” func-
tion to map a partial schedule to a triple, such that for each
triple only the partial schedule achieving the minimum total
weighted completion time of the jobs is saved for the compu-
tation, to be described in detail in the following. At the end,
the full schedule with the minimum objective function value
is returned as the solution σ ∗.

We notice from Lemmas 2.1 and 2.2(a) that the time
deviations of the jobs in the earlier schedule of σ ∗ are non-
decreasing, with the first (a − 1) ones being 0’s. From the
constraint �max ≤ k, the last job in the schedule π∗ that can
possibly be in the earlier schedule of σ ∗ is J j3 with

j3 � max{ j | C j (π
∗) − k ≤ T1}. (4)

The exact algorithm DP- 1 is a dynamic programming,
that sequentially assigns the job J j+1 to the partial schedules
on the first j jobs J1, J2, . . . , J j ; each such partial schedule is
described (hashed) as a triple (j; � j , e j), where a ≤ j ≤ j3,
no machine idling period in the earlier schedule, � j is the
total processing time of the jobs in the earlier schedule, and
e j is the index of the last job in the earlier schedule. Clearly,
with the same � j and e j , all the partial schedules mapping to
the triple (j; � j , e j) have the samemaximum time deviation
max{�e j ,�a}; among them, the minimum total weighted
completion timeof the jobs is denoted as Z(j; � j , e j), and the
partial schedule achieving this minimum is saved for (called
associated with) the triple and used for the subsequent com-
putation.

For ease of presentation, we partition the jobs into four
subsequences:

J1 = (J1, J2, . . . , Ja−1),

J2 = (Ja+1, Ja+2, . . . , J j2−1),

J3 = (J j2 , J j2+1, . . . , J j3),
J4 = (J j3+1, J j3+2, . . . , Jn).

(5)

From Lemma 2.1 and Eq. (4), we know that J1 is a prefix of
the earlier schedule and J4 is a suffix of the later schedule,
and thus DP- 1 takes care of only the jobs of J2 ∪ J3. Let
Z(J1) denote the total weighted completion time of the jobs
in J1, and Z(J4) denote the total weighted completion time
of the jobs in J4 by starting the job processing at time 0.

3 In the entire paper, we examine only feasible partial schedules for the
prefixes of theWSPT job sequence π∗ = (J1, J2, . . . , Jn); these partial
schedules can always be completed into feasible full schedules.

The (only) starting partial schedule forDP- 1 is described
as

(a; �a, ea) = (a; Pa−1, a − 1) and Z(a; Pa−1, a − 1)

= Z(J1) + wa(T2 + pa), (6)

in which the job Ja starts processing at time T2. In general,
given a triple (j; � j , e j) with a ≤ j < j3, that is associated
with a partial schedule on the first j jobs of the total weighted
completion time of the first j jobs Z(j; � j , e j),DP- 1 assigns
the next job J j+1 of J2 ∪ J3 as follows

(1) to generate at most three new partial schedules each
described as a triple (j + 1; � j+1, e j+1),

(2) to compute the total weighted completion time of the
first j + 1 jobs using Z(j; � j , e j), and

(3) if the total is strictly smaller, to update Z(j + 1; � j+1,

e j+1) and correspondingly to update the saved partial
schedule for the triple (j + 1; � j+1, e j+1);

(4) if a non-empty machine idling period is inserted before
J j+1 in the earlier schedule of the new partial schedule,
then the partial schedule is directly completed optimally
to a full schedule using Lemma 2.2(d).

Case 1 J j+1 is added in the later schedule to obtain a
partial schedule described as:

(j + 1; � j+1, e j+1) = (j + 1; � j , e j) and Z(j + 1; � j , e j)

= Z(j; � j , e j) + w j+1(T2 + Pj+1 − � j), (7)

in which the completion time of the job J j+1 is C j+1 =
T2 + Pj+1 − � j . The feasibility holds since � j+1 ≤ �a by
Lemma 2.2(g).

Case 2 If J j+1 can fit in the earlier schedule, that is � j +
p j+1 ≤ T1 and C j+1(π

∗) − (� j + p j+1) ≤ k, then we
add J j+1 in the earlier schedule without inserting a machine
idling period to obtain a feasible partial schedule described
as:

(j + 1; � j+1, e j+1) = (j + 1; � j + p j+1, j + 1) and Z(j

+ 1; � j + p j+1, j + 1) = Z(j; � j , e j)

+w j+1(� j + p j+1), (8)

in which the completion time of the job J j+1 is C j+1 =
� j + p j+1 and � j+1 = C j+1(π

∗) − (� j + p j+1) ≤ k.
Case 3 If � j + p j+1 < T1 andC j+1(π

∗)− (� j + p j+1) >

max{�e j ,�a}, then we add J j+1 in the earlier schedule and
insert a non-empty machine idling period right before it.
The following Lemma 3.1 states that the exact length of the
machine idling period can be determined in O(n − j)-time,
and during the same time, the new partial schedule is directly
optimally completed into a full schedule usingLemma2.2(d),

123

Journal of Scheduling (2018) 21:565–578 571

for which the maximum time deviation �max and the objec-
tive function value Ẑn are also computed.

Lastly, for every triple (j; � j , e j) with j = j3 and its
associated partial schedule on the first j3 jobs, the algorithm
DP- 1 completes the partial schedule by assigning all the jobs
of J4 in the later schedule, starting at time T2 + Pj − � j , to
obtain a full schedule described as the triple

(n; �n, en) = (n; � j , e j) and Z(n; � j , e j)

= Z(j; � j , e j) + Z(J4)

+
⎛

⎝
n∑

i= j+1

wi

⎞

⎠ (T2 + Pj − � j), (9)

for which the maximum time deviation is
�max = max{�e j ,�a} and the objective function value is

Ẑn � μmax{�e j ,�a} + Z(n; � j , e j). (10)

Lemma 3.1 When the job J j+1 is added in the earlier sched-
ule of the partial schedule associated with a triple (j; � j , e j)
and a non-empty machine idling period is inserted before it,
then

(a) the minimum possible length of this period is
max{1,C j+1(π

∗) − (� j + p j+1) − k};
(b) the maximum possible length of this period is

min{C j+1(π
∗) − (� j + p j+1) − max{�e j ,�a}, T1 −

(� j + p j+1)};
(c) the exact length can be determined in O(n − j)-time;
(d) during the same time an optimal constrained full sched-

ule is achieved directly, together with its the maximum
time deviation �max and the objective function value
Ẑn.

Proof 1 is a trivial lower bound given that all job process-
ing times are positive integers. Next, if C j+1(π

∗) − (� j +
p j+1) > k, thenwe cannot process J j+1 immediately at time
� j as this would result in a time deviation greater than the
given upper bound k; and the earliest possible starting time
is C j+1(π

∗) − p j+1 − k, leaving a machine idling period of
length C j+1(π

∗) − (� j + p j+1) − k. This proves item (a).
The maximum possible length for the period is no more

thanC j+1(π
∗)−(� j + p j+1)−max{�e j ,�a}, for otherwise

� j+1 would be less than max{�e j ,�a}. However, � j+1 <

�e j contradicts Lemma 2.1 and Lemma 2.2(a) that suggest
the jobs in the earlier schedule should have non-decreasing
time deviations; � j+1 < �a contradicts Lemma 2.2(c) that
�max ≥ �a . Also, since J j+1 is added to the earlier schedule,
the length of the idling period has to be at most T1 − (� j +
p j+1). This proves item (b).

Let L = max{1,C j+1(π
∗) − (� j + p j+1) − k} and U =

min{C j+1(π
∗) − (� j + p j+1) −max{�e j ,�a}, T1 − (� j +

p j+1)}. For each value i ∈ [L,U], we 1) start processing
J j+1 at time � j + i , 2) then continuously process succeeding
jobs in the earlier schedule until the one won’t fit in, and 3)
lastly process all the remaining jobs in the later schedule. This
gives a full schedule, denoted as π i , with the total weighted
completion time denoted Zi

n , and the maximum time devi-
ation �i

max = � j+1 = C j+1(π
∗) − (� j + p j+1) − i . Its

objective function value is Ẑ i
n � μ�i

max + Zi
n .

It follows that the interval [L,U] can be partitioned into
O(n − j) subintervals, such that for all values in a subin-
terval say [i1, i2], the jobs assigned to the earlier schedule
are identical; and consequently the objective function value
Ẑ i
n is a linear function in i , where i1 ≤ i ≤ i2. It follows

that among all these full schedules, the minimum objective
function value must be achieved at one of Ẑ i1

n and Ẑ i2
n . That

is, we in fact do not need to compute the full schedules π i ’s
with those i’s such that i1 < i < i2, and consequently there
are only O(n − j) full schedules to be computed.

These subintervals can be determined as follows: when
i = L , let the jobs fit into the earlier schedule after the
machine idling period be J j+1, J j+2, . . . , J j+s , then the first
subinterval is [L, L + T1 − C j+s], where C j+s is the com-
pletion time of J j+s in the full schedule π i ; the second
subinterval is [L + T1 − C j+s + 1, L + T1 − C j+s−1]; the
third subinterval is [L+T1−C j+s−1+1, L+T1−C j+s−2];
and so on, until the last interval hits the upper bound U .

The optimal length of the machine idling period is the one
i∗ that minimizes Ẑ i

n , among the O(n − j) computed full
schedules, and we obtain a corresponding constrained opti-
mal full schedule directly from thepartial schedule associated
with the triple (j; � j , e j), togetherwith its themaximum time
deviation and the objective function value. ��

Theorem 3.1 The algorithm DP- 1 solves the rescheduling
problem (1, h1 | �max ≤ k | μ�max + ∑n

j=1 w jC j), with

its running time in O(n3T1), where n is the number of jobs
and [T1, T2] is the machine unavailable time interval.

Proof In the above, we presented the dynamic programming
algorithm DP- 1 to compute a full schedule for each triple
(n; �n, en) satisfying Lemmas 2.1 and 2.2, under the con-
straint that the job Ja starts processing at time T2. The final
output schedule is the one with the minimum Ẑn , among
all the choices of Ja such that �a ≤ k. Its optimality lies
in the triple representation for the partial schedules and the
recurrences we developed in Eqs. (6–9). There are O(j1)
choices for Ja , and for each Ja we compute a partial sched-
ule for each triple (j; � j , e j), where a ≤ j ≤ j3 or j = n,
Pa−1 ≤ � j ≤ T1, and a − 1 ≤ e j ≤ j . Since one partial
schedule leads to at most three other candidate partial sched-
ules, and each takes an O(1)-time in average to compute, the
overall running time is O(n3T1). ��

123

572 Journal of Scheduling (2018) 21:565–578

After the first version of our work (Luo et al. 2017) was
under review, we noticed a recent online published arti-
cle (Liu et al. 2017), where the problem (1, h1 | �max ≤
k | ∑n

j=1 w jC j), i.e., the special case of our problem with

μ = 0, is studied, and the authors presented an O(n2T1)-time
exact algorithm. Based on their algorithm, one can derive
an O(n2T1k)-time exact algorithm for our problem, through
enumerating all possible values for�max. We note that when
n < k (also noting that n is linear, while k is exponential, in
the size of the instance), our algorithm DP- 1 is faster.

4 An FPTAS

The route to the FPTAS for the rescheduling problem (1, h1 |
�max ≤ k | μ�max + ∑n

j=1 w jC j) is as follows: we first
consider the special case where μ = 0, that is (1, h1 |
�max ≤ k | ∑n

j=1 w jC j), where the maximum time devi-
ation is only upper bounded by k but not taken as part of
the objective function, and design another exact algorithm,
denoted as DP- 2, using a different dynamic programming
recurrence than in DP- 1; then we develop from the algo-
rithm DP- 2 an FPTAS for the special case μ = 0; lastly,
we use the FPTAS for the special case polynomial times to
design an FPTAS for the general case μ ≥ 0.

4.1 Another dynamic programming exact algorithm
for� = 0

In this special case, we have stronger conclusions on the
target optimal schedule σ ∗ than those stated in Lemma 2.2,
one of which is that if there is a machine idling period in the
earlier schedule of σ ∗, then�max = k. This follows from the
fact that, if �max < k, we may start processing the jobs after
the idling period one-time unit earlier to decrease the total
weighted completion time.We conclude this in the following
lemma.

Lemma 4.1 There exists an optimal schedule σ ∗ for the
rescheduling problem (1, h1 | �max ≤ k | ∑n

j=1 w jC j),
in which if the machine idles in the earlier schedule then
�max = k.

The new exact algorithmDP- 2 heavily relies on this con-
clusion in Lemma 4.1 (and thus it does not work for the
general case).DP- 2 can readily be developed into an FPTAS
for (1, h1 | �max ≤ k | ∑n

j=1 w jC j).
The framework of the new algorithm DP- 2 is the same,

and we continue to use the notations defined in Eqs. (1, 4, 5).
But now we use a pair (j; �1j) (instead of a triple) to describe
a partial schedule on the first j jobs, where a ≤ j ≤ j3, no
machine idling period in the earlier schedule and the time
deviation of the last job in the earlier schedule is no greater

than k, and �1j is the maximum job completion time in the
earlier schedule (or equally, the total job processing time
in the earlier schedule). Associated with the pair, we let �2j
denote the maximum job completion time in the later sched-
ule, which is clearly �2j = T2+Pj −�1j . Among all the partial

schedules mapping to the pair (j; �1j), the minimum total

weighted completion time of the jobs is denoted as Z(j; �1j),
and the partial schedule achieving this minimum is saved for
(called associated with) the pair and used for the subsequent
computation.

Startingwith guessing Ja (from the pool {J1, J2, . . . , J j1})
to be the job started processing at time T2, such that �a =
T2 − Sa(π∗) ≤ k, the (only) corresponding partial schedule
is described as the pair

(a; �1a)=(a; Pa−1) and Z(a; Pa−1) = Z(J1)+wa(T2+pa).

(11)

In general, given a pair (j; �1j) with a ≤ j < j3 and its asso-
ciated partial schedule with the total weighted completion
time of the first j jobs Z(j; �1j), the algorithm DP- 2 assigns
the next job J j+1 of J2 ∪ J3 as follows

(1) to generate at most three new partial schedules each
described as a pair (j + 1; �1j+1),

(2) to compute the total weighted completion time of the
first j + 1 jobs using Z(j; �1j), and

(3) if the total is strictly smaller, to update Z(j + 1; �1j+1)

and correspondingly to update the saved partial schedule
for the pair (j + 1; �1j+1);

(4) if a non-empty machine idling period is inserted before
J j+1 in the earlier schedule of the new partial schedule,
then the partial schedule is directly completed optimally
to a full schedule using Lemma 2.2(d).

Case 1 J j+1 is added in the later schedule to obtain a
partial schedule described as:

(j + 1; �1j+1) = (j + 1; �1j) and Z(j + 1; �1j)

= Z(j; �1j) + w j+1(T2 + Pj+1 − �1j), (12)

in which the completion time of the job J j+1 is C j+1 =
T2 + Pj+1 − �1j . The feasibility holds since � j+1 ≤ �a by
Lemma 2.2(g).

Case 2 If J j+1 can fit in the earlier schedule, that is �1j +
p j+1 ≤ T1 and C j+1(π

∗) − (�1j + p j+1) ≤ k, then we
add J j+1 in the earlier schedule without inserting a machine
idling period to obtain a feasible partial schedule described
as:

123

Journal of Scheduling (2018) 21:565–578 573

(j + 1; �1j+1) = (j + 1; �1j + p j+1) and Z(j + 1; �1j + p j+1)

= Z(j; �1j) + w j+1(�
1
j + p j+1), (13)

in which the completion time of the job C j+1 = �1j + p j+1

and its time deviation is� j+1 = C j+1(π
∗)− (�1j + p j+1) ≤

k.
Case 3 If �1j + p j+1 < C j+1(π

∗) − k ≤ T1, then we add
J j+1 in the earlier schedule and insert a non-empty machine
idling period of length C j+1(π

∗) − (�1j + p j+1) − k right
before it. (That is, start processing J j+1 at time C j+1(π

∗) −
p j+1−k.) Then continuously process succeeding jobs in the
earlier schedule as long as they fit in (but up to J j3), and lastly
process all the remaining jobs in the later schedule.Assuming
the last job fits in the earlier schedule is J j ′ , this gives a full
schedule with the maximum time deviation �max = k and
the total weighted completion time

Z(j; �1j) + Z({J j+1, . . . , J j ′ })

+
⎛

⎝
j ′∑

i= j+1

wi

⎞

⎠ (C j+1(π
∗) − p j+1 − k)

+ Z({J j ′+1, . . . , Jn}) +
⎛

⎝
n∑

i= j ′+1

wi

⎞

⎠ (T2 + Pj − �1j),

where Z({J j+1, . . . , J j ′ }) (Z({J j ′+1, . . . , Jn}), respectively)
denotes the total weighted completion time of the jobs in
{J j+1, . . ., J j ′ } (in {J j ′+1, . . . , Jn}, respectively) by starting
the job processing at time 0.

Lastly, for every pair (j; �1j) with j = j3 and and its
associated partial schedule on the first j3 jobs, the algorithm
DP- 2 completes it by assigning all the jobs of J4 in the later
schedule, starting at time �2j = T2 + Pj − �1j , to obtain a full
schedule described as

(n; �1n) = (n; �1j) and Z(n; �1j) = Z(j; �1j) + Z(J4)

+
⎛

⎝
n∑

i= j+1

wi

⎞

⎠ (T2 + Pj − �1j), (14)

for which the maximum time deviation is guaranteed to be
no greater than k.

Theorem 4.1 The algorithm DP- 2 solves the rescheduling
problem (1, h1 | �max ≤ k | ∑n

j=1 w jC j) in O(n2T1)-time,
where n is the number of jobs and [T1, T2] is the machine
unavailable time interval.

Proof In the above, we see that the dynamic programming
algorithm DP- 2 computes for each pair (n; �1n) a full sched-
ule satisfying Lemmas 2.1 and 2.2 and having the minimum
total weighted completion time of all the n jobs. These full

schedules do not have a machine idling period in the ear-
lier schedule. For each pair (j; �1j), it might be completed
into a full schedule with a machine idling period inserted in
the earlier schedule such that its maximum time deviation
�max = k. The final output schedule is the one with the
minimum total weighted completion time, among all the two
kinds of full schedules with all possible choices of Ja such
that �a ≤ k. Similarly to the proof of Theorem 3.1, the opti-
mality lies in the pair representation for the partial schedules
and the recurrences we developed in Eqs. (11–14). There are
O(j1) choices for Ja , and for each Ja we compute all par-
tial schedules described as (j; �1j), where a ≤ j ≤ n and

Pa−1 ≤ �1j ≤ T1. Since one partial schedule leads to at most
three other candidate partial schedules, and each takes on
average an O(1)-time to compute, the overall running time
is O(n2T1). ��

We remark that in a recent online published article (Liu
et al. 2017), another O(n2T1)-time exact algorithm is pre-
sented for the problem (1, h1 | �max ≤ k | ∑n

j=1 w jC j).

Corollary 2 The algorithm DP- 2 can be extended to solve
the rescheduling problem (1, h1 | �max ≤ k | μ�max +∑n

j=1 w jC j) in O(n2T1k)-time, where n is the number of
jobs and [T1, T2] is the machine unavailable time interval.
Proof For each k′ = 0, 1, . . . , k, we use the algorithm DP-
2 to solve the rescheduling problem (1, h1 | �max ≤ k′ |∑n

j=1 w jC j) in O(n2T1k)-time, and let W (k′) denote the
achievedminimum total weighted completion time. Then the
optimal objective function value for the general rescheduling
problem (1, h1 | �max ≤ k | μ�max + ∑n

j=1 w jC j) is
min{μk′ + W (k′) | 0 ≤ k′ ≤ k}, which is computed in
O(n2T1k) time. ��

4.2 An FPTAS for� = 0

In this subsection, we convert the exact algorithm DP- 2 in
the last subsection into an FPTAS by the sparsing technique.
We assume the job Ja is scheduled to start processing at time
T2, and we have a positive real value ε > 0. The algorithm is
denoted as Approx(a, ε), which guarantees to return a fea-
sible schedule such that its total weighted completion time
is within (1+ ε) of the constrained optimum, under the con-
straint that the job Ja is scheduled to start processing at time
T2.

Recall that a basic unit in the exact algorithm DP- 2 in
the last subsection is a pair (j; �1j), of which the associated
partial schedule on the first j jobs has the minimum total
weighted completion time Z(j; �1j), there is no machine idle
period in the earlier schedule, and the total job processing
time in the earlier schedule is �1j . We use �2j to denote the
maximum job completion time in the later schedule, and thus
�2j = T2 + Pj − �1j , where Pj is the total job processing

123

574 Journal of Scheduling (2018) 21:565–578

time of the first j jobs (see Eq. (1)). We expand the pair
(j; �1j) to a quadruple (j; �1j , �

2
j ; Z(j; �1j)) in the following

development of the FPTAS. We remark that in the quadruple
(j; �1j , �

2
j ; Z(j; �1j)), the real variables are j and �1j , while

�2j and Z(j; �1j) are “functions” in j and �1j .

Step 1 Set

δ � (1 + ε/2n). (15)

A partial schedule is now described as the quadruple
(j; �1j , �

2
j ; Z(j; �1j)), where a ≤ j ≤ n, �1j = 0 or pmin ≤

�1j ≤ T1, �2j = T2+Pj−�1j , and Z(j; �1j) is the totalweighted
completion time of the first j jobs in the partial schedule asso-
ciated with (j; �1j). Therefore, T2 + pa ≤ �2j ≤ T2 + P and

Z(J1) + wa(T2 + pa) ≤ Z(j; �1j) ≤ W , where W denotes
the total weighted completion time of all the n jobs in any fea-
sible schedule.4 Let L1,U 1 (L2,U 2; L3,U 3, respectively)
denote the above lower and upper bounds on �1j (�

2
j ; Z(j; �1j),

respectively); let

ri �
logδ(U
i/Li)�, for i = 1, 2, 3,

and split the interval [Li ,Ui] into subintervals

I i1 = [Li , Liδ], I i2 = (Liδ, Liδ2], . . . , I iri
= (Liδri ,Ui], for i = 1, 2, 3.

We define a three-dimensional box

Bi1,i2,i3 � I 1i1 × I 2i2 × I 3i3 , for (i1, i2, i3) ∈ ({0} ∪ [r1])
× [r2] × [r3], (16)

where I 10 � [0, 0] and [r] � {1, 2, . . . , r} for any positive
integer r . Each j such that a ≤ j ≤ j3 or j = n is associated
with a box Bi1,i2,i3 , denoted as j-Bi1,i2,i3 for simplicity,where
(i1, i2, i3) ∈ ({0} ∪ [r1]) × [r2] × [r3]; all these boxes are
initialized empty.

Step 2 The starting partial schedule is described as
(a; �1a, �

2
a; Z(a; �1a)) in Eq. (11), which is then saved in the

box a-Bi1,i2,i3 where �1a ∈ I 1i1 , �
2
a ∈ I 2i2 , and Z(a; �1a) ∈ I 3i3 .

In general, for each non-empty box j-Bi1,i2,i3 with a ≤
j < j3, denote the saved quadruple as (j; �1j , �

2
j ; Z(j; �1j)),

which describes a partial schedule on the first j jobs such
that there is no machine idling period in the earlier sched-
ule, �1j is the maximum job completion time in the earlier

schedule, �2j is the maximum job completion time in the

later schedule, and Z(j; �1j) is the total weighted comple-
tion time of the jobs in the partial schedule. The algorithm

4 In fact, W can be any upper bound on the optimal total weighted
completion time of all the n jobs.

Approx(a, ε) performs the same as the exact algorithmDP-
2 to assign the next job J j+1 of J2 ∪ J3 to generate at
most three new partial schedules each described as a quadru-
ple (j + 1; �1j+1, �

2
j+1; Z(j + 1; �1j+1)). Furthermore, if a

non-empty machine idling period is inserted in the earlier
schedule of a new partial schedule, then it is directly com-
pleted optimally into a full schedule using Lemma 2.2(d).
For each resultant (j + 1; �1j+1, �

2
j+1; Z(j + 1; �1j+1)) (the

same for (n; �1n, �
2
n; Z(n; �1n))) the algorithm checks whether

or not the box (j + 1)-Bi1,i2,i3 is empty, where �1j+1 ∈ I 1i1 ,

�2j+1 ∈ I 2i2 , and Z(j + 1; �1j+1) ∈ I 3i3 ; if it is empty, then the
quadruple is saved in the box, otherwise the box is updated
to save the quadruple having a smaller �1j+1 between the old
and the new ones.

Step 3 For each box n-Bi1,i2,i3 , where (i1, i2, i3) ∈
({0} ∪ [r1]) × [r2] × [r3], if there is a saved quadruple
(n; �1n, �

2
n; Z(n; �1n)), then there is a constrained full schedule

with the total weighted completion time Z(n; �1n). Here the
constraint is that the job Ja starts processing at time T2. The
algorithm Approx(a, ε) scans through all the boxes associ-
ated with n, and all those full schedules completed directly
from a saved quadruple, and returns the quadruple having the
smallest total weighted completion time, denoted as Za

n . The
corresponding constrained full schedule can be backtracked.

Theorem 4.2 The algorithm Approx(a, ε) is an O(
n4

ε3
log T1 log P logW

)
-time (1+ ε)-approximation for the

rescheduling problem (1, h1 | �max ≤ k | ∑n
j=1 w jC j),

under the constraint that the job Ja starts processing at time
T2, where n is the number of jobs, the machine is unavailable
in [T1, T2], P is the total job processing time, and W is the
total weighted completion time of any feasible schedule.

Proof The proof of the performance ratio is done by
induction. Assume that (a; �1∗a , �2∗a ; Z(a; �1∗a)) → (a +
1; �1∗a+1, �

2∗
a+1; Z(a + 1; �1∗a+1)) → · · · → (j3; �1∗j3 ,

�2∗j3 ; Z(j3; �1∗j3)) → (n; �1∗n , �2∗n ; Z(n; �1∗n)) is the path of
quadruples computed by the exact algorithm DP- 2 in Theo-
rem 4.1 that leads to the constrained optimal solution for the
problem (1, h1 | �max ≤ k | ∑n

j=1 w jC j). The induc-
tion statement is for each j , a ≤ j ≤ j3 or j = n,
there is a quadruple (j; �1j , �

2
j ; Z(j; �1j)) saved by the algo-

rithm Approx(a, ε), such that �1j ≤ �1∗j , �2j ≤ �2∗j δ j ,

Z(j; �1j) ≤ Z(j; �1∗j)δ j .
The base case is j = a, and the statement holds since there

is only one partial schedule on the first a jobs, described as
(a; �1a, �

2
a; Z(a; �1a)) in Eq. (11). We assume the induction

statement holds for j , where a ≤ j ≤ j3, that is, there
is a quadruple (j; �1j , �

2
j ; Z(j; �1j)) saved by the algorithm

Approx(a, ε), such that

�1j ≤ �1∗j , �2j ≤ �2∗j δ j , and Z(j; �1j) ≤ Z(j; �1∗j)δ j . (17)

123

Journal of Scheduling (2018) 21:565–578 575

When j < j3, from this particular quadruple
(j; �1j , �

2
j ; Z(j; �1j)), we continue to assign the job J j+1 ∈

J2 ∪J3 as in the exact algorithm DP- 2 in Sect. 4.1. In Case
1 where J j+1 is added in the later schedule to obtain a partial
schedule described as in Eq. (12), we have

�1j+1 = �1j , �
2
j+1 = �2j + p j+1, and Z(j + 1; �1j+1)

= Z(j; �1j) + w j+1(�
2
j + p j+1)). (18)

Assume this quadruple falls in the box (j + 1)-Bi1,i2,i3 , then
the triple (j + 1; �̂1j+1, �̂

2
j+1; Ẑ(j + 1; �1j+1)) saved in this

box by the algorithm Approx(a, ε) must have

�̂1j+1 ≤ �1j+1, �̂
2
j+1 ≤ �2j+1δ, and Ẑ(j + 1; �1j+1)

≤ Z(j + 1; �1j+1)δ. (19)

If (j; �1∗j , �2∗j ; Z(j; �1∗j)) leads to (j +1; �1∗j+1, �
2∗
j+1; Z(j +

1; �1∗j+1)) also by adding J j+1 in the later schedule, then we
have

�1∗j+1 = �1∗j , �2∗j+1 = �2∗j + p j+1, and Z(j + 1; �1∗j+1)

= Z(j; �1∗j) + w j+1(�
2∗
j + p j+1)). (20)

From Eqs. (17–20) and δ > 1, we have

�̂1j+1 ≤ �1∗j+1, �̂
2
j+1 ≤ �2∗j+1δ

j+1, and Ẑ(j + 1; �1j+1)

≤ Z(j + 1; �1∗j+1)δ
j+1. (21)

Similarly, in Case 2 where J j+1 is added in the ear-
lier schedule without inserting a machine idling period to
obtain a feasible partial schedule described as in Eq. (13),
we can show that if (j; �1∗j , �2∗j ; Z(j; �1∗j)) leads to (j +
1; �1∗j+1, �

2∗
j+1; Z(j + 1; �1∗j+1)) also in this way, then there

is a saved quadruple (j + 1; �̂1j+1, �̂
2
j+1; Ẑ(j + 1; �1j+1)) by

the algorithm Approx(a, ε) such that Eq. (21) holds.
In Case 3 where �1j + p j+1 < C j+1(π

∗)−k ≤ T1, J j+1 is
added in the earlier schedule, and anon-emptymachine idling
period of lengthC j+1(π

∗)−(�1j + p j+1)−k is inserted right
before it, the algorithm continuously processes succeeding
jobs in the earlier schedule as long as they fit (but up to J j3),
and lastly process all the remaining jobs in the later sched-
ule. When j = j3, the algorithm completes the quadruple by
assigning all the jobs of J4 in the later schedule, starting at
time �2j , to obtain a full schedule described as in Eq. (14).

We can similarly show that if (j; �1∗j , �2∗j ; Z(j; �1∗j)) leads to

(n; �1∗n , �2∗n ; Z(n; �1∗n)) directly, or if (j; �1∗j , �2∗j ; Z(j; �1∗j))

leads to (j + 1; �1∗j+1, �
2∗
j+1; Z(j + 1; �1∗j+1)), and so on,

then eventually to (n; �1∗n , �2∗n ; Z(n; �1∗n)), then there is also
a saved quadruple (n; �̂1n, �̂

2
n; Ẑ(n; �1n)) by the algorithm

Approx(a, ε) such that Eq. (21) holds with n replacing j+1.
We therefore finish the proof of the induction statement.

Lastly we use the inequality (1 + ε/2n)n ≤ 1 + ε for
0 < ε < 1 to bound the ratio δn . That is, the total weighted
completion time of the output full schedule by the algorithm
Approx(a, ε) is

Za
n ≤ Z(n; �1∗n)δn ≤ (1 + ε)Z(n; �1∗n).

For the time complexity, note that for each j such that
a ≤ j ≤ j3 or j = n, there are O(r1r2r3) boxes associated
with it; for a saved quadruple (j; �1j , �

2
j ; Z(j; �1j)), it takes

O(1) time to assign the job J j+1, leading to at most three
new quadruples (j + 1; �1j+1, �

2
j+1; Z(j + 1; �1j+1)), each is

used to update the corresponding box associated with j + 1.
It follows that the total running time is O(nr1r2r3). Note that
from the definitions of ri ’s, and log δ = log(1 + ε/2n) ≥
ε/4n, O(nr1r2r3) ⊆ O(n4 log T1 log P logW/ε3). ��

Enumerating all possible O(n) choices of Ja , that is call-
ing the algorithmApprox(a, ε) O(n) times, the full schedule
with the minimum Za

n is returned as the final solution. The
overall algorithm is denoted as Approx(ε).

Corollary 3 The algorithm Approx(ε) is an O
(
n5

ε3
log T1

log P logW)-time (1 + ε)-approximation for the problem
(1, h1 | �max ≤ k | ∑n

j=1 w jC j).

4.3 An FPTAS for the general case

In this subsection, we derive an FPTAS for the general
rescheduling problem (1, h1 | �max ≤ k | μ�max +
∑n

j=1 w jC j) by invoking polynomial times the approxima-
tion algorithm Approx(a, ε) for the special case μ = 0.

Recall that the job Ja starts processing at time T2 by the
algorithm Approx(a, ε). It follows that the maximum time
deviation �max is bounded as �a ≤ �max ≤ k, and we use
(1 + ε) to split the interval [�a, k] into subintervals

I 41 = [�a,�a(1 + ε)], I 42
= (�a(1 + ε),�a(1 + ε)2], . . . , I 4r4
= (�a(1 + ε)r4 , k],

where r4 �
log1+ε(k/�a)�.
Let ki = �a(1+ ε)i , for i = 1, 2, . . . , r4, and kr4+1 = k.

Using ki as the upper bound on the maximum time deviation,
that is, ki replaces k, our algorithm calls Approx(a, ε) to
solve the problem (1, h1 | �max ≤ ki | ∑n

j=1 w jC j), by
returning a constrained full schedule of the total weighted
completion time within (1 + ε) of the minimum. We denote
this full schedule as σ(a, ki). The final output full schedule
is the one of the minimum objective function value among
{σ(a, ki) | 1 ≤ a ≤ j1, 1 ≤ i ≤ r4 + 1}, which is denoted

123

576 Journal of Scheduling (2018) 21:565–578

as σ ε with the objective function value Z ε . We denote our
algorithm as Approxμ(ε).

Theorem 4.3 The algorithm Approxμ(ε) is an O(
n5

ε4
log T1 log P logW log k

)
-time (1 + ε)-approximation

for the general rescheduling problem (1, h1 | �max ≤ k |
μ�max + ∑n

j=1 w jC j), where n is the number of jobs, the
machine is unavailable in [T1, T2], P is the total job process-
ing time, and W is the total weighted completion time of any
feasible schedule.

Proof Let σ ∗ denote an optimal schedule for the problem
with the objective function value Z∗, satisfying Lemmas 2.1
and 2.2. Suppose the job starts processing at time T2 in σ ∗ is
Ja , and the maximum time deviation in σ ∗ is �∗

max = k∗ ≤
k. We thus conclude that σ ∗ is also a constrained optimal
schedule for the problem by replacing the upper bound k
with k∗, i.e., (1, h1 | �max ≤ k∗ | μ�max + ∑n

j=1 w jC j),
under the constraint that Ja starts processing at time T2.

Consider the value ki = �a(1 + ε)i such that �a(1 +
ε)i−1 ≤ k∗ ≤ �a(1+ ε)i . Clearly, for the schedule σ(a, ki)
found by the algorithmApprox(a, ε) to the problem (1, h1 |
�max ≤ ki | ∑n

j=1 w jC j), it has the total weighted com-
pletion time Z(σ) ≤ (1 + ε)Z(σ ∗) and the maximum time
deviation �max(π

∗, σ) ≤ ki ≤ k∗(1 + ε). It follows that

Z ε ≤ μ�max(π
∗, σ) + Z(σ)

≤ μk∗(1 + ε) + (1 + ε)Z(σ ∗) = (1 + ε)Z∗.

Note that we call the algorithmApprox(a, ε) for all possible
values of a, and for each a we call the algorithm r4 + 1 =
O(1

ε
log k) times [using the inequality log(1+ε) ≥ 1

2ε]. Thus
from Theorem 4.2 the total running time of the algorithm
Approxμ(ε) is in

O

(
n5

ε4
log T1 log P logW log k

)

.

This finishes the proof of the theorem. ��

5 Concluding remarks

We investigated a rescheduling problem where a set of jobs
has already been scheduled to minimize the total weighted
completion time on a single machine, but a disruption causes
the machine to become unavailable for a given time inter-
val. The production planner needs to reschedule the jobs
without excessively altering the originally planned sched-
ule. The degree of alteration is measured as the maximum
time deviation for all the jobs between the original and the
new schedules. We studied a general model where the maxi-
mum time deviation is taken both as a constraint and as part

of the objective function.We presented a pseudo-polynomial
time exact algorithm based on dynamic programming and an
FPTAS. We remark that the FPTAS calls polynomial (that
is, O(log k/ε)) times another FPTAS for the special case
where the maximum time deviation is not taken as part of the
objective function; this special case gives us room to properly
sample the maximum time deviation (that is, polynomial vs.
exponential).

In the current rescheduling model, the machine unavail-
ability is represented as a single time interval. It would be
interesting to generalize our results to the case of multi-
ple time intervals (Yin et al. 2016), for which we are not
aware of any existing approximability results. Besides a sin-
gle machine, onemight want to investigate the other machine
environments for which the original optimal schedule can be
obtained in polynomial time, for example, the well-known
two-machine flow-shop which also has numerous applica-
tions. In the literature, multiple parallel identical machine
scheduling has been studied, for which (only) a near optimal
schedule is used as the original schedule (Qi et al. 2006; Yin
et al. 2016).

It would also be interesting to generalize our results to
the case of stochastic machine unavailability, such as the
rescheduling environment discussed in Yin et al. (2017)
where the machine becomes unavailable starting at time T1
and the unavailability lasts for a period of time with a certain
probability. The goal of rescheduling is to minimize the sum
of the expected weighted maximum time deviation and the
expected total weighted completion time.

Acknowledgements All authors were supported by NSERC Canada.
Additionally,W.L.was supportedbyK.C.WongMagnaFund inNingbo
University, the China Scholarship Council (Grant No. 201408330402),
and the Ningbo Natural Science Foundation (2016A610078); T.L. was
supported by NSF China (Grant Nos. 71701162 and 71371129); G.L.
was supported by NSF China (Grant Nos. 61471124 and 61672323).

A Proof of Lemma 2.1

Proof By contradiction, assume (Ji , J j) is the first pair of
jobs for which Ji precedes J j in π∗, i.e., pi/wi ≤ p j/w j ,
but J j immediately precedes Ji in the earlier schedule of σ ∗.
Let σ ′ denote the new schedule obtained from σ ∗ by swap-
ping J j and Ji . If C j (σ

′) ≥ C j (π
∗), then Ci (σ

′) ≥ Ci (π
∗)

too, and thus � j (σ
′, π∗) ≤ �i (σ

′, π∗) < �i (σ
∗, π∗) due

to p j > 0; if C j (σ
′) < C j (π

∗) and Ci (σ
′) ≤ Ci (π

∗), then
�i (σ

′, π∗) ≤ � j (σ
′, π∗) < � j (σ

∗, π∗) due to pi > 0;
lastly if C j (σ

′) < C j (π
∗) and Ci (σ

′) > Ci (π
∗), then

�i (σ
′, π∗) < �i (σ

∗, π∗) and � j (σ
′, π∗) < � j (σ

∗, π∗).
That is, σ ′ is also a feasible reschedule.

Furthermore, the weighted completion times contributed
by Ji and J j in σ ′ is no more than those in σ ∗, implying the
optimality of σ ′. It follows that, if necessary, after a sequence

123

Journal of Scheduling (2018) 21:565–578 577

of job swappings, we will obtain an optimal reschedule in
which the jobs in the earlier schedule are in the same order
as they appear in π∗. This proves the part (a).

For the second part (b) of the lemma, similarly by con-
tradiction we assume (Ji , J j) is the first pair of jobs for
which Ji precedes J j in π∗, i.e., pi/wi ≤ p j/w j , but J j
immediately precedes Ji in the later schedule of σ ∗. Let σ ′
denote the new schedule obtained from σ ∗ by swapping J j
and Ji . If C j (σ

′) ≥ C j (π
∗), then Ci (σ

′) ≥ Ci (π
∗) too,

and thus � j (σ
′, π∗) ≤ �i (σ

′, π∗) < �i (σ
∗, π∗) due to

p j > 0; if C j (σ
′) < C j (π

∗) and Ci (σ
′) ≤ Ci (π

∗), then
�i (σ

′, π∗) ≤ � j (σ
′, π∗) < � j (σ

∗, π∗) due to pi > 0;
lastly if C j (σ

′) < C j (π
∗) and Ci (σ

′) > Ci (π
∗), then

�i (σ
′, π∗) < �i (σ

∗, π∗) and � j (σ
′, π∗) < � j (σ

∗, π∗).
That is, σ ′ is also a feasible reschedule.

Furthermore, the weighted completion times contributed
by Ji and J j in σ ′ is no more than those in σ ∗, implying the
optimality of σ ′. If follows that, if necessary, after a sequence
of job swappings we will obtain an optimal reschedule in
which the jobs in the earlier schedule are in the same order
as they appear in π∗. ��

B Proof of Lemma 2.2

Proof Item (a) is a direct consequence of Lemma 2.1, since
the jobs in the earlier schedule are in the same order as they
appear in π∗, which is the WSPT order. That is, for the
job J j in the earlier schedule of σ ∗, if all the jobs Ji , for
i = 1, 2, . . . , j − 1, are also in the earlier schedule, then
C j (σ

∗) = C j (π
∗); otherwise, C j (σ

∗) < C j (π
∗).

For item (b), assume the machine idles before processing
the jobs J j1 and J j2 , with J j1 preceding J j2 in the earlier
schedule. We conclude from Lemma 2.1 and item (a) that
if � j2 < � j1 ≤ �max (or � j1 < � j2 ≤ �max, respec-
tively), then moving the starting time of the job J j2 (J j1 ,
respectively) one unit aheadwill maintain themaximum time
deviation and decrease the total weighted completion time,
which contradicts the optimality of σ ∗. It follows that we
must have � j1 = � j2 ; in this case, if there is any job J j with
j1 < j < j2 in the later schedule, it can be moved to the ear-
lier schedule to decrease the total weighted completion time,
which again contradicts the optimality ofσ ∗. Therefore, there
is no job J j with j1 < j < j2 in the later schedule, which
together with � j1 = � j2 imply that the machine does not
idle before processing the job J j2 .

Item (c) is clearly seen for the same reason used in the
last paragraph, that firstly their time deviations have to be
the same, and secondly if this time deviation is less than
�max, one can then move their starting time one unit ahead
to decrease the total weighted completion time while main-
taining the maximum time deviation, thus contradicting the
optimality of σ ∗.

Item (d) is implied by Item (c), given that all the job pro-
cessing times are positive.

Let the job in the earlier schedule right after the idle time
period be J j . clearly, there is a job Ja with Sa(π∗) < S j (σ

∗)
in the later schedule of σ ∗, due to the machine idling. The
time deviation for Ja is �a > T2 − Sa(π∗). If S j (π

∗) < T2,
then �max = � j < T2 − S j (σ

∗) < T2 − Sa(π∗) < �a , a
contradiction. This proves item (e) that S j (π

∗) ≥ T2.
Item (f) is clearly seen fromLemma 2.1 and the optimality

of σ ∗, that if the machine idles then it can start process-
ing the jobs after the idling period earlier to decrease the
total weighted completion time, while maintaining or even
decreasing the maximum time deviation.

From item (f) and the second part of Lemma 2.1, we see
that the deviation times of the jobs in the later schedule are
non-increasing. Therefore, item (g) is proved. ��

References

Aytug, H., Lawley, M. A., McKay, K., Mohan, S., & Uzsoy, R. (2005).
Executing production schedules in the face of uncertainties: A
review and some future directions. European Journal of Opera-
tional Research, 161, 86–110.

Bean, J. C., Birge, J. R., Mittenthal, J., & Noon, C. E. (1991). Matchup
scheduling with multiple resources, release dates and disruptions.
Operations Research, 39, 470–483.

Clausen, J., Hansen, J., Larsen, J., & Larsen, A. (2001). Disruption
management. OR/MS Today, 28, 40–43.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, R. (1979).
Optimization and approximation in deterministic sequencing and
scheduling: A survey. Annuals of Discrete Mathematics, 5, 287–
326.

Hall, N. G., Liu, Z., & Potts, C. N. (2007). Rescheduling for multiple
new orders. INFORMS Journal on Computing, 19, 633–645.

Hall, N. G., & Potts, C. N. (2004). Rescheduling for job unavailability.
Operations Research, 58, 746–755.

Hall, N. G., & Potts, C. N. (2004). Rescheduling for new orders. Oper-
ations Research, 52, 440–453.

Herroelen,W.,&Leus, R. (2005). Project scheduling under uncertainty:
Survey and research potentials. European Journal of Operational
Research, 165, 289–306.

Hoogeveen, H., Lenté, C., & T’kindt, V. (2012). Rescheduling for new
orders on a single machine with setup times. European Journal of
Operational Research, 223, 40–46.

Lee, C.-Y. (1996). Machine scheduling with an availability constraint.
Journal of Global Optimization, 9, 395–416.

Liu, Z., & Lin, G. (2017). Personal communication.
Liu, Z., Lu, L., & Qi, X. (2017). Cost allocation in rescheduling with

machine unavailable period. European Journal of Operational
Research,. https://doi.org/10.1016/j.ejor.2017.09.015.

Liu, Z., & Ro, Y. K. (2014). Rescheduling for machine disruption to
minimize makespan and maximum lateness. Journal of Schedul-
ing, 17, 339–352.

Luo, W., Luo, T., Goebel, R., Lin, G. (2017). On rescheduling due to
machine disruption while to minimize the total weighted comple-
tion time. CoRR, abs/1701.07498

Qi,X., Bard, J. F.,&Yu,G. (2006).Disruptionmanagement formachine
scheduling: The case of SPT schedules. International Journal of
Production Economics, 103, 166–184.

123

https://doi.org/10.1016/j.ejor.2017.09.015

578 Journal of Scheduling (2018) 21:565–578

Vieira,G.E.,Herrmann, J.W.,&Lin, E. (2003).Reschedulingmanufac-
turing systems: A framework of strategies, policies, and methods.
Journal of Scheduling, 6, 39–62.

Wang, D., Liu, F., & Jin, Y. (2017). A multi-objective evolutionary
algorithmguided by directed search for dynamic scheduling.Com-
puters & Operations Research, 79, 279–290.

Wang,D., Liu, F.,Wang,Y.,& Jin,Y. (2015). A knowledge-based evolu-
tionary proactive scheduling approach in the presence of machine
breakdown and deterioration effect. Knowledge Based Systems,
90, 70–80.

Yang, J., Qi, X., &Yu, G. (2005). Disruptionmanagement in production
planning. Naval Research Logistics, 52, 420–442.

Yin, Y., Cheng, T. C. E., & Wang, D.-J. (2016). Rescheduling on iden-
tical parallel machines with machine disruptions to minimize total
completion time.European Journal of Operational Research, 252,
737–749.

Yin, Y., Wang, Y., Cheng, T. C. E., Liu, W., & Li, J. (2017). Parallel-
machine scheduling of deteriorating jobs with potential machine
disruptions. Omega, 69, 17–28.

Yuan, J. J., & Mu, Y. (2007). Rescheduling with release dates to mini-
mizemakespanunder a limit on themaximumsequence disruption.
European Journal of Operational Research, 182, 936–944.

Zhao, Q., &Yuan, J. J. (2013). Pareto optimization of rescheduling with
release dates to minimize makespan and total sequence disruption.
Journal of Scheduling, 16, 253–260.

Zweben,M., Davis, E., Daun, B., &Deale,M. J. (1993). Scheduling and
rescheduling with iterative repair. IEEE Transactions on Systems,
Man and Cybernetics, 23, 1588–1596.

123

	Rescheduling due to machine disruption to minimize the total weighted completion time
	Abstract
	1 Introduction
	1.1 Problem description and definitions
	1.2 Related research
	1.3 Our contributions and organization

	2 Preliminaries
	2.1 Problem setting
	2.2 Structure properties of the optimal schedules

	3 A dynamic programming exact algorithm
	4 An FPTAS
	4.1 Another dynamic programming exact algorithm for µ= 0
	4.2 An FPTAS for µ= 0
	4.3 An FPTAS for the general case

	5 Concluding remarks
	Acknowledgements
	A Proof of Lemma 2.1
	B Proof of Lemma 2.2
	References

