
Algorithmica (2018) 80:3158–3176
https://doi.org/10.1007/s00453-017-0373-6

Algorithms for Communication Scheduling in Data
Gathering Network with Data Compression

Wenchang Luo1,2 · Yao Xu2 · Boyuan Gu2 ·
Weitian Tong3 · Randy Goebel2 · Guohui Lin2

Received: 8 April 2016 / Accepted: 7 September 2017 / Published online: 12 September 2017
© Springer Science+Business Media, LLC 2017

Abstract We consider a communication scheduling problem that arises within wire-
less sensor networks, where data is accumulated by the sensors and transferred directly
to a central base station. One may choose to compress the data collected by a sensor,
to decrease the data size for transmission, but the cost of compression must be con-
sidered. The goal is to designate a subset of sensors to compress their collected data,
and then to determine a data transmission order for all the sensors, such that the total
compression cost is minimized subject to a bounded data transmission completion
time (a.k.a. makespan). A recent result confirms the NP-hardness for this problem,
even in the special case where data compression is free. Here we first design a pseudo-
polynomial time exact algorithm, articulated within a dynamic programming scheme.
This algorithm also solves a variant with the complementary optimization goal—to

B Guohui Lin
guohui@ualberta.ca

Wenchang Luo
wenchang@ualberta.ca

Yao Xu
xu2@ualberta.ca

Boyuan Gu
bgu1@ualberta.ca

Weitian Tong
wtong@georgiasouthern.edu

Randy Goebel
rgoebel@ualberta.ca

1 Faculty of Science, Ningbo University, Ningbo 315211, Zhejiang, China

2 Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada

3 Department of Computer Sciences, Georgia Southern University, Statesboro, GA 30460, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-017-0373-6&domain=pdf
http://orcid.org/0000-0003-4283-3396

Algorithmica (2018) 80:3158–3176 3159

minimize the makespan while constraining the total compression cost within a given
budget. Our second result consists of a bi-factor (1+ε, 2)-approximation for the prob-
lem, where (1+ ε) refers to the compression cost and 2 refers to the makespan, and a
2-approximation for the variant. Lastly, we apply a sparsing technique to the dynamic
programming exact algorithm, to achieve a dual fully polynomial time approximation
scheme for the problem and a usual fully polynomial time approximation scheme for
the variant.

Keywords Wireless sensor network ·Data compression ·Scheduling ·Approximation
algorithm · FPTAS · Dual FPTAS

1 Introduction

Data gathering wireless sensor networks (WSNs) have become an important frame-
work for collecting data, and have found various applications in environment
monitoring, surveillance and other areas [1]. In the general setting, a data gather-
ing WSN consists of a set of sensors for data acquisition, and a base station. Because
the remote wireless sensors have both limited power and computing capacity, the
data collected by the sensors are to be transferred to the base station for storage and
processing. For practical context, typical ratios of computation power to data trans-
mission power are in the range of 4400 operations per byte transmission. It is well
known that the efficiency of the whole network can be improved by careful commu-
nications management, through some specific communication protocols [8,15,19,22]
and/or effective data gathering scheduling algorithms [2,3,7,17,18]. Besides these
careful management details, another popular approach for improving the network per-
formance is to compress the collected data, thus to decrease the data transmission
time between the sensors and the base station. There is rich research on compression
algorithm design and analysis for data gathering WSNs [6,14,16,21,23,24]. While
compressing the collected data decreases the transmission time, there are at least two
consequent challenges for network management. First, data compression consumes
energy; second, data compression takes time, and delays data transmission. To address
these issues, a theoretical model of data gathering networks with data compression has
been recently formulated and studied by Berlińska [4], with the goal of minimizing the
monetary (or energy) cost associated with data compression, subject to transferring
all data (including original and compressed) directly to the base station within a given
time bound.

1.1 Problem Description

We continue the study on the theoretical model pioneered in [4], from the approx-
imation algorithm perspective; we also study a variant with the complementary
optimization goal: to minimize the data transmission completion time (which is
referred to as makespan, in the sequel) subject to a budget constraint on the total
data compression cost. We next present the precise problem formulations, adopting
the notations from [4].

123

3160 Algorithmica (2018) 80:3158–3176

In our data gathering WSN, there are a set of m identical sensors P =
{P1, P2, . . . , Pm} and a single base station denoted as S. All the data collected by
the sensors, either in the original form or the compressed form, must be transferred
directly to the base station; each data transmission should be done non-preemptively
and no two sensors are allowed to transmit simultaneously. The size of data gathered
by the sensor Pi is αi , for i = 1, 2, . . . ,m; if one chooses to compress this data point
(which will be denoted as αi in the sequel), the compression algorithm decreases its
size from αi to γαi , where 0 < γ < 1. Compressing the data point αi requires a
monetary (or energy) cost of f αi , and the associated compression time is Aαi , for
some non-negative constants f and A. At time 0, the data gathered at any sensor Pi
is ready for transmission; if the data point αi is chosen for compression, the sensor Pi
can start the data transmission only after the compression is fully done, that is, at or
after time Aαi . For data transmission time, although all the sensors are identical, due to
location difference the sensor Pi needs time Ci for transferring one unit of data to the
base station; these parameters Ci ’s are determined by the sensor locations and could
be different from each other. The following theoretical model DG- Compr- OptF is
defined in [4].

Problem 1 (DG- Compr- OptF [4]). Given m identical sensors (Pi)1≤i≤m , and their
parameters (αi)1≤i≤m, γ, f, A, (Ci)1≤i≤m and a rational number T , find a subset of
data points to compress such that the data compression cost is minimized and the
makespan is within time T .

We define DG- Compr- OptT as the complementary problem to DG- Compr-
OptF, as follows:

Problem 2 (DG- Compr- OptT). Given m identical sensors (Pi)1≤i≤m , and their
parameters (αi)1≤i≤m, γ, f, A, (Ci)1≤i≤m and a rational number F , find a subset of
data points to compress such that the data compression cost is within F and the
makespan is minimized.

1.2 Preliminaries

It is not difficult to see that the central challenge in the above two problems, DG-
Compr- OptF and DG- Compr- OptT, is to identify an optimal subset of sensors for
compressing their gathered data. This is based on the following observation:

Observation 1 If a subset C ⊆ P of sensors for data compression is given, then not
only (1) the compression cost is determined, but also (2) the makespan is determined.

This observationholds because the target problem reduces to “schedulingon a single
machine with job release times to minimize the makespan” (denoted as “1|r j |Cmax”),
forwhich sorting the jobs by non-decreasing release timegives an optimal schedule [5].

In our problem setting, a data point αi has its release time 0 if non-compressed, or
otherwise Aαi . We therefore assume, without loss of generality, that the data points
are always sorted in the non-decreasing size:

α1 ≤ α2 ≤ . . . ≤ αm . (1.1)

123

Algorithmica (2018) 80:3158–3176 3161

For a feasible solution in which the subset C ⊆ P of data points are compressed, its
compression cost is

f
∑

i∈C
αi . (1.2)

Consider the optimal schedule obtained by sorting the data points by non-decreasing
release time. If in this schedule the data transmission is continuous (i.e., the base
station does not idle), then the makespan, denoted as Cmax, is

Cmax =
∑

i /∈C
Ciαi +

∑

i∈C
Ciγαi ; (1.3)

otherwise the base station is idle while waiting for some data point of C to finish
compression, then

Cmax = Aαi ′ +
∑

i∈C,i≥i ′
Ciγαi , (1.4)

for some i ′ ∈ C (in fact, here the data point αi ′ is the last one for which the base station
has to wait for its compression to complete).

From Eqs. (1.2, 1.3, 1.4), and the fact that all the parameters (including the time
bound T and the cost bound F) are rational numbers, we may assume without loss
of generality that f is either 0 or 1 (representing whether compression is free or not,
respectively), A is a non-negative integer, Ci for every i is a non-negative integer, and
further that γαi and αi for every i are non-negative integers, and lastly both T and F
are non-negative integers too.

Berlińska [4] proved that both the problemDG- Compr- OptF and the variantDG-
Compr- OptT are NP-hard even in the special case where f = 0 and all αi = α and in
the special casewhere A = 0 and allCi = C . Both reductions are from thewell-known
Partitioning problem [9]. The author also presented an exact algorithm to enumerate
all possible subsets of data points for compression, of running time O(2mm logm). To
the best of our knowledge, no approximation algorithm has been reported for either
DG- Compr- OptF or the variant DG- Compr- OptT.

1.3 Our Contributions

Recall the integrality assumption we made on the problem parameters. From Eq. (1.1)
we know that αm is the largest-size data point and we denote α = αm ; we denote
C = max1≤i≤m Ci .Wefirst present a dynamic programming algorithm for the problem
DG- Compr- OptF and the variantDG- Compr- OptT, and show that its running time
is in O(m4C2α3). This pseudo-polynomial time exact algorithm for both problems
shows that they areweaklyNP-hard. Our second result consists of a bi-factor (1+ε, 2)-
approximation algorithm for the problem DG- Compr- OptF, where (1+ ε) refers to
the compression cost and 2 refers to the makespan, and a 2-approximation algorithm
for the variant DG- Compr- OptT. Lastly, based on the above two approximation
algorithms, we present a sparsing technique on the dynamic programming algorithm,
to derive a dual fully polynomial time approximation scheme [10] for the problem

123

3162 Algorithmica (2018) 80:3158–3176

DG- Compr- OptF, which returns a schedule of compression cost no greater than
the optimum by possibly exceeding the given time bound by a factor of ε, for any
ε > 0; and to derive a usual fully polynomial time approximation scheme for the
problem DG- Compr- OptT, that returns a schedule of makespan within (1 + ε) of
the minimum, for any ε > 0.

2 The Dynamic Programming Algorithm

The exact algorithm based on dynamic programming is designed for both the problem
DG- Compr- OptF and the variant DG- Compr- OptT, which differs only in either
the time bound T is given or the compression budget F is given. Essentially, our
algorithm uses the data point order in Eq. (1.1) to examine whether or not to compress
the data point α j , for j = 1, 2, . . . ,m. The key to avoid running into exponential
O(2m)-time is not to record whether or not each data point α j is compressed, but to
record the resulting total compression cost, total data transmission time, and total idle
time for the base station. To this purpose, we define a quadruple

(j; � j , t j , Fj)

with j = 0, 1, . . . ,m, for describing a typical state, which represents a partial schedule
on the first j data points resulting in a total of � j units of base station idle time, a total of
t j units of data transmission time between the first j sensors and the base station, and a
total compression cost of f Fj . Note that the base station never idleswhenever there is a
data point, original or compressed, ready for transmission. Therefore the makespan of
this partial schedule is � j+t j .We start with the quadruple (0; �0, t0, F0) = (0; 0, 0, 0),
representing a valid empty schedule.

We next describe how to obtain a partial schedule on the first j + 1 data points by
adding the data points α j+1 to (j; � j , t j , Fj), for j = 0, 1, . . . ,m−1, and considering
both cases ofwhether or not to compressα j+1. If the data pointα j+1 is not compressed,
then the total compression cost does not change; the data point α j+1 is ready for
transmission at time 0 and it requiresC j+1α j+1 units of time for transmission. Clearly,
if the previous total idle time � j > C j+1α j+1, then C j+1α j+1 units can be used for
transmission α j+1; otherwise, all idle time is used up for transmission α j+1. This gives
rise to a state (j + 1; � j+1, t j+1, Fj+1)

= (j + 1;max{� j − C j+1α j+1, 0}, t j + C j+1α j+1, Fj).

On the other hand, if the data point α j+1 is chosen to be compressed, then the total
compression cost increases by f α j+1; the data point α j+1 is ready for transmission at
time Aα j+1 and it requires C j+1γα j+1 units of time for transmission. Clearly, if the
previous makespan � j + t j < Aα j+1, then α j+1 starts transmission at time Aα j+1,
increasing the total idle time to � j + (Aα j+1 − � j − t j) = Aα j+1 − t j ; otherwise, the
earliest time for α j+1 to start transmission is time � j + t j , leaving the total idle time
unchanged. This gives rise to a state (j + 1; � j+1, t j+1, Fj+1)

123

Algorithmica (2018) 80:3158–3176 3163

= (j + 1;max{Aα j+1 − t j , � j }, t j + C j+1γα j+1, Fj + α j+1).

Our dynamic programming (DP) algorithm uses a 4-dimensional binary table
DP(j; � j , t j , Fj) for computation, where the entry (j; � j , t j , Fj) has a value 1 if
and only if it represents a partial schedule on the first j data points resulting in a
total of � j units of base station idle time, a total of t j units of data transmission time
between the first j sensors and the base station, and a total compression cost of f Fj .
The recurrence for DP table entry computation is as follows:

DP(j + 1; � j+1, t j+1, Fj+1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if

⎧
⎪⎪⎨

⎪⎪⎩

DP(j; � j , t j , Fj) = 1,
� j+1 = max{� j − C j+1α j+1, 0},
t j+1 = t j + C j+1α j+1,

Fj+1 = Fj

1, if

⎧
⎪⎪⎨

⎪⎪⎩

DP(j; � j , t j , Fj) = 1,
� j+1 = max{Aα j+1 − t j , � j },
t j+1 = t j + C j+1γα j+1,

Fj+1 = Fj + α j+1
0, otherwise.

(2.1)
For initialization, DP(0; 0, 0, 0) = 1 and every other (0; �0, t0, F0) entry has a value
0. Since each entry (j; � j , t j , Fj) is used for filling at most 2 other entries, the total
computation time is linear in the size of the 4-dimensional table. Clearly, the first
dimension has lengthm+1; the second and the third dimensions have length no more
thanmCα, since for each j , � j + t j is the makespan of the partial schedule which must
be less than or equal to

∑m
i=1 Ciαi ≤ mCα, corresponding to no data compression at

all. The last dimension has length at most mα. Therefore, the size of the DP table is
O(m4C2α3).

For the problem DG- Compr- OptF, where a time bound T is given, if T ≥∑m
i=1 Ciαi , then the optimal schedule is not to compress any data point and thus

to achieve the minimum compression cost 0; otherwise, the DP algorithm maintains
a table of size only O(m2αT 2) since the second and the third dimensions has length
T . If no entry of the form (m; �m, tm, Fm), such that �m + tm ≤ T , has a value 1,
then there is no feasible solution to the problem; otherwise, from all those feasible
solutions, the one having the minimum value in the Fm-field represents an optimal
schedule. Scanning for this optimal schedule (or deciding that there is no feasible
solution) can be done in O(mαT 2)-time.

Likewise, for the variant DG- Compr- OptT, where a compression budget F
is given, if F ≤ f

∑m
i=1 αi , then the DP algorithm maintains a table of size

only O(m3C2α2F) since the last dimension has length F . If no entry of the form
(m; �m, tm, Fm) has a value 1, then there is no feasible solution to the problem; oth-
erwise, from all those feasible solutions, the one having the minimum sum (�m + tm)

represents an optimal schedule. Scanning for this optimal schedule (or deciding that
there is no feasible solution) can be done in O(m2C2α2F)-time.

Theorem 1 The problem DG- Compr- OptF admits an O(m2αT 2)-time exact algo-
rithm based on dynamic programming, and the variant DG- Compr- OptT admits

123

3164 Algorithmica (2018) 80:3158–3176

an O(m3C2α2F)-time exact algorithm based on dynamic programming, where
C = max1≤i≤m Ci and α = max1≤i≤m αi . The running time for both algorithms
is pseudo-polynomial, and thus the two problems are weakly NP-hard.

3 Approximating the Problem DG- Compr- OptF

In the problem DG- Compr- OptF, we may assume, without loss of generality, that
for the sensor Pj ,

Aα j + C jγα j ≤ T, for any j, (3.1)

since otherwise the data point α j cannot be compressed in any feasible solution and
consequently can be excluded from compression.

We still assume the m sensors are indexed in the order specified by Eq. (1.1).
Clearly, if

∑m
j=1 C jα j ≤ T , then no data point has to be compressed and a trivial

optimal schedule can be achieved with zero compression cost. The non-trivial case is
that

∑m
j=1 C jα j > T , where in any feasible schedule some data points have to be

compressed. Our approximation algorithm is denoted as Approx1, and constructs a
subset C of data points to be compressed by reducing the problem into theminimization
Knapsack problem [12].

For this reduction, we define a binary variable x j for the data point α j , which has
a value 1 if and only if α j is packed into the knapsack C. For each data point α j , its
weight is C jα j while its cost is α j . The minimization Knapsack problem is to find a
subset of data points such that the total weight is greater than or equal to some given
constant bound (which is set to (

∑m
j=1 C jα j − T)/(1− γ) in our formulation) while

the total cost is minimized, as follows:

minimize
m∑

j=1

α j x j

s.t.
m∑

j=1

C jα j x j ≥
∑m

j=1 C jα j − T

1 − γ
;

x j ∈ {0, 1}, j = 1, 2, . . . ,m.

(3.2)

Given any ε > 0, the algorithm Approx1 invokes the FPTAS for the minimization
Knapsack problem [12,20] to obtain a subset C of data points to be compressed, such
that ∑

j∈C
α j ≤ (1 + ε) OPT, (3.3)

where OPT denotes the cost of the optimal knapsack to the minimization Knapsack
problem in Eq. (3.2). Afterwards, the algorithm Approx1 determines the schedule by
sorting the data points with non-decreasing release time, and the achieved makespan
is denoted as Cmax.

Theorem 2 Given any ε > 0, Approx1 is a (1 + ε, 2)-approximation algorithm
for the problem DG- Compr- OptF, with running time in O(m/ε + m logm), where
(1 + ε) refers to the compression cost and 2 refers to the makespan.

123

Algorithmica (2018) 80:3158–3176 3165

Proof We assume there are feasible solutions to the problemDG- Compr- OptF,1 and
let C∗ denote the subset of data points to be compressed in the optimal solution, where
C∗ = {α j1, α j2 , . . . , α jr } (1 ≤ j1 < j2 < . . . < jr ≤ m). We distinguish two cases,
corresponding to whether or not the base station ever idles in the optimal solution.

Case 1 The base station idles in the optimal solutionClearly, the base station only idles
when it is waiting for a data point of C∗ to finish the compression. Let � ji denote the
length of idle time associated with the data point α ji ∈ C∗ (which equals the starting
transmission time for the data point α ji , minus the transmission completion time for
the data point α ji−1), for i = 1, 2, . . . , r . The makespan of the optimal schedule is
thus

C∗
max =

∑

j /∈C∗
C jα j +

∑

j∈C∗
� j + γ

∑

j∈C∗
C jα j . (3.4)

Case 2 The base station does not idle in the optimal solution From Eq. (1.3), the
makespan of the optimal schedule is

C∗
max =

∑

j /∈C∗
C jα j + γ

∑

j∈C∗
C jα j . (3.5)

In either of Case 1 and Case 2, we must have C∗
max ≤ T and thus from Eqs. (3.4,

3.5) we have

∑

j /∈C∗
C jα j + γ

∑

j∈C∗
C jα j ≤ T .

Using 0 < γ < 1, this leads to

∑

j∈C∗
C jα j ≥

∑m
j=1 C jα j − T

1 − γ
, (3.6)

suggesting that the optimal solution is a feasible solution to the minimization Knap-
sack problem in Eq. (3.2). It follows from Eq. (3.3) that the compression cost of the
solution by Approx1 is

f
∑

j∈C
α j ≤ f (1 + ε)OPT ≤ (1 + ε) f

∑

j∈C∗
α j ,

that is, within (1 + ε) of the optimum.

1 The NP-hardness result by Berlińska [4], cited in the Preliminaries, hints that deciding whether or not
there is a feasible solution to the problem DG- Compr- OptF is NP-complete.

123

3166 Algorithmica (2018) 80:3158–3176

Regarding the makespan of the computed schedule, since it is a feasible solution
to the minimization Knapsack problem in Eq. (3.2), we have

∑

j∈C
C jα j ≥

∑m
j=1 C jα j − T

1 − γ
,

which is equivalent to ∑

j /∈C
C jα j + γ

∑

j∈C
C jα j ≤ T, (3.7)

and Eq. (3.7) suggests that if the base station does not idle in the schedule, then by
Eq. (1.3) the makespan Cmax ≤ T .

If the base station idles in the computed schedule, then by Eqs. (1.4) and (3.1, 3.7)
the makespan

Cmax = Aαi ′ +
∑

i∈C,i≥i ′
Ciγαi ≤ T + T = 2T,

that is, within twice the given time bound T .2

In summary, the algorithm Approx1 is a bi-factor (1+ ε, 2)-approximation for the
problemDG- Compr- OptF. The running time ofApprox1 is dominated by invoking
the FPTAS for the minimizationKnapsack problem, which needs O(m/ε)-time [12];
after the subset C is returned, finalizing the schedule takes an extra O(m logm)-time.
This finishes the proof. �	

4 Approximating the Problem DG- Compr- OptT

In the case of the variant DG- Compr- OptT, similarly as in the last section, we may
assume without loss of generality that for the sensor Pj ,

f α j ≤ F, for any j, (4.1)

since otherwise the data point α j cannot be compressed in any feasible solution and
consequently can be excluded from compression.

We still assume them sensors are indexed in the order specified by Eq. (1.1). Firstly,
we choose not to compress any data point to obtain a feasible schedule, denoted as π0,
of zero compression cost and of makespan C0

max = ∑m
j=1 C jα j , which is an upper

bound on the optimal makespan C∗
max:

C∗
max ≤ C0

max =
m∑

j=1

C jα j . (4.2)

2 This upper bound of 2T on the makespan holds regardless of existence of a feasible solution to the
problem DG- Compr- OptF.

123

Algorithmica (2018) 80:3158–3176 3167

Our approximation algorithm is denoted asApprox2, and constructs for each index
i a subset of data points Ci ⊆ {α1, α2, . . . , αi } to be compressed, by reducing the
problem into the maximization Knapsack problem [12].

Define a binary variable x j for the data point α j , for j = 1, 2, . . . , i −1, which has
a value 1 if and only if α j is packed into the knapsack Ci . For each data point α j , its
weight is α j while its profit is C jα j . The maximization Knapsack problem is to find
a subset of data points such that the total weight is less than or equal to some given
constant bound (which is set to F/ f − αi in our formulation) while the total profit is
maximized, as follows:

maximize
i−1∑

j=1

C jα j x j

s.t.
i−1∑

j=1

α j x j ≤ F/ f − αi ;

x j ∈ {0, 1}, j = 1, 2, . . . , i − 1.

(4.3)

Given any ε ≤ γ , Approx2 invokes the FPTAS for the maximization Knapsack
problem [11] to obtain a subset of data points C = {αi1, αi2 , . . . , αiq } (1 ≤ i1 < i2 <

. . . < iq ≤ i − 1), such that

∑

j∈C
C jα j ≥ (1 − ε) OPTi , (4.4)

whereOPTi denotes the profit of the optimal knapsack to themaximizationKnapsack
problem in Eq. (4.3). Afterwards, the algorithmApprox2 sets the subset of data points
to be compressed as Ci = C+{αi }, and then determines the schedule πi by sorting the
data points with non-decreasing release time, and the achieved makespan is denoted
as Ci

max. At the end, Approx2 outputs the one among {π0, π1, π2, . . . , πm} with the
minimum makespan as the solution to the problem DG- Compr- OptT, denoted as π

and its makespan denoted as Cmax.

Theorem 3 Approx2 is a 2-approximation algorithm for the problem DG- Compr-
OptT, with running time in O(m2/γ +m2 logm), where 0 < γ < 1 is the given data
compression ratio.

Proof Recall a major difference between the two problems DG- Compr- OptF and
DG- Compr- OptT—there are always feasible solutions to the latter. We first see that
every schedule πi , for i = 0, 1, 2, . . . ,m, is feasible for the problem DG- Compr-
OptT, because of the weight constraint in the maximization Knapsack problem. Let
C∗ denote the subset of data points to be compressed in the optimal solution, where
C∗ = {α j1, α j2 , . . . , α jr } (1 ≤ j1 < j2 < . . . < jr ≤ m). IfC∗ = ∅, then the algorithm
Approx2 obtains an optimal schedule π with its makespan Cmax = C0

max = C∗
max.

We next discuss the non-empty case of C∗, and let i = jr , that is, the data point
αi is the largest-size data point to be compressed in the optimal solution. Let C∗−i =

123

3168 Algorithmica (2018) 80:3158–3176

C∗ − {αi }. Clearly, C∗−i is a feasible solution to the maximization Knapsack problem
in Eq. (4.3), and therefore ∑

j∈C∗−i

C jα j ≤ OPTi . (4.5)

On the other hand, we have

C∗
max ≥ max

⎧
⎨

⎩Aαi + γCiαi ,
∑

j /∈C∗
C jα j + γ

∑

j∈C∗
C jα j

⎫
⎬

⎭ . (4.6)

In the following we similarly distinguish two cases, corresponding to whether or not
the base station ever idles in one of the computed solutions πi . Recall that in πi , the
subset of compressed data points is Ci = {αi1 , αi2 , . . . , αiq , αi }, where 1 ≤ i1 < i2 <

. . . < iq ≤ i − 1. Let iq+1 denote i .

Case 1 The base station idles in the computed solution πi Let ik be the largest index
of data points of Ci for which the base station idles and waits for its compression to
be done. Then by Eqs. (1.1, 1.4) and (4.6) we have

Ci
max = Aαik + γ

∑q+1
j=k Ci j αi j

≤ Aαi + γCiαi + γ
∑q

j=k Ci j αi j

≤ C∗
max + γ

∑m
j=1 C jα j

≤ C∗
max + C∗

max
= 2C∗

max.

Case 2 The base station does not idle in the computed solution πi By Eqs. (1.1, 1.3)
and (4.4, 4.5, 4.6), and using ε ≤ γ , we have

Ci
max = ∑

j /∈Ci C jα j + γ
∑

j∈C C jα j + γCiαi

= ∑m
j=1 C jα j − ∑

j∈C C jα j − Ciαi + γ
∑

j∈C C jα j + γCiαi

≤ ∑m
j=1 C jα j − (1 − ε)

∑
j∈C∗−i

C jα j − Ciαi + γ
∑

j∈C C jα j + γCiαi

= ∑m
j=1 C jα j − ∑

j∈C∗ C jα j + ε
∑

j∈C∗−i
C jα j + γ

∑
j∈C C jα j + γCiαi

= ∑
j /∈C∗ C jα j + ε

∑
j∈C∗−i

C jα j + γ
∑

j∈C C jα j + γCiαi

≤ ∑
j /∈C∗ C jα j + γ

∑
j∈C∗ C jα j + γ

∑
j∈C C jα j

≤ C∗
max + γ

∑m
j=1 C jα j

≤ C∗
max + C∗

max
= 2C∗

max.

In either of Case 1 and Case 2, we haveCi
max ≤ 2C∗

max. It follows that themakespan
of the computed solution by the algorithm Approx2 is Cmax ≤ Ci

max ≤ 2C∗
max. The

running time of one iteration ofApprox2 is dominated by invoking the FPTAS for the
maximizationKnapsack problem, which needs O(m/ε)-time [11]; after the subset C
is returned, finalizing the schedule takes an extra O(m logm)-time. Note that we may
set ε = γ , and there are in total m iterations in the algorithm. This finishes the proof.

�	

123

Algorithmica (2018) 80:3158–3176 3169

5 Approximation Schemes

In this section, we begin with the pseudo-polynomial time exact algorithm based on
dynamic programming in Sect. 2, to derive a dual fully polynomial time approximation
scheme (FPTAS) [10] for the problem DG- Compr- OptF. By “dual”, we mean that
such an FPTAS has a twist, in that given any ε > 0, it achieves a schedule of which
the compression cost is no greater than the optimum, but the makespan might exceed
the given time bound T by a factor ε. Its running time is polynomial in m and 1

ε
. The

key technique is sparsing [13], which essentially fills only a tiny fraction of the DP
table in the exact algorithm. A normal FPTAS for the variant DG- Compr- OptT can
be similarly derived, and its details are omitted here.

5.1 Algorithmic Setup

Recall that deciding whether or not there is a feasible solution to the problem DG-
Compr- OptF is NP-complete. We assume there are feasible solutions to the problem
DG- Compr- OptF, and subsequently denote the optimal schedule as π∗. We also
assume the non-trivial case where

∑m
j=1 C jα j > T , that is, in any feasible solution

some data points have to be compressed.
Notice that if the largest-size data point to be compressed is known to be αi , then

all data points α j with j > i are to be transferred to the base station before any
compressed data points. That is, any data point α� with � ≤ i , when ready, can start
transmission at or after time

∑m
j=i+1 C jα j . Since we may try out this largest-size data

point to be compressed by enumerating all possibilities, we assume in the sequel that
the data point αm is compressed in the optimal schedule π∗, and all data points can
start transmission after time 0 as long as they are ready. We drop the unit compression
cost f in the following to simplify the presentation. Then the compression cost of π∗
is in between α = αm and mα.

Recall that a quadruple

(j; � j , t j , Fj)

is defined in the dynamic programming algorithm for describing a state, which rep-
resents a partial schedule on the first j data points (see Eq. 1.1) resulting in a total of
� j units of base station idle time, a total of t j units of data transmission time between
the first j sensors and the base station, and a total compression cost of Fj . Note that
by time Aαm , all data points, original or compressed, are either transferred or ready
for transmission, we therefore have � j ≤ Aαm (≤ T). Also, from Theorem 2, the
algorithm Approx1 guarantees to output a schedule with its makespan Cmax ≤ 2T ;
we thus may limit ourselves to consider only those states with t j ≤ 2T . Therefore,
the range for each dimension of the quadruple can be bounded as follows:

0 ≤ j ≤ m,

0 ≤ � j ≤ T, (5.1)

0 ≤ t j ≤ 2T,

123

3170 Algorithmica (2018) 80:3158–3176

0 ≤ Fj ≤ mα.

5.2 The FPTAS

We are now ready to present our approximation scheme, denoted as Approx3. Given
any ε > 0, define

δ1 = ε

2m
T, δ2 = δ1, and δ3 = ε

m
α;

and set

v1 = �T/δ1�, v2 = �2T/δ2�, and v3 = �mα/δ3�.

We partition the range of the second dimension [0, T] into v1 intervals I �
1 = [0, δ1],

I �
i = ((i−1)δ1, iδ1], for 2 ≤ i ≤ v1−1, and I �

v1
= ((v1−1)δ1, T]; partition the range

of the third dimension [0, 2T] into v2 intervals I t1 = [0, δ2], I ti = ((i − 1)δ2, iδ2], for
2 ≤ i ≤ v2−1, and I tv2 = ((v2−1)δ2, 2T]; partition the range of the fourth dimension
[0,mα] into v3 intervals I F1 = [0, δ3], I Fi = ((i − 1)δ3, iδ3], for 2 ≤ i ≤ v3 − 1, and
I Fv3 = ((v3 − 1)δ3,mα].

Let [n] = {1, 2, . . . , n} for every positive integer n.
Given a triple (q1, q2, q3) ∈ [v1] × [v2] × [v3], a box B(j; q1, q2, q3) is defined

as the collection of the DP-table entries (j; � j , t j , Fj) such that � j ∈ I �
q1 , t j ∈ I tq2 ,

and Fj ∈ I Fq3 . Our approximation scheme Approx3 is also a dynamic programming,
as in Sect. 2, and uses a much smaller 4-dimensional3 binary table DP ′(j; q1, q2, q3)
for computation, where 0 ≤ j ≤ m and (q1, q2, q3) ∈ [v1] × [v2] × [v3]. The entry
DP ′(j; q1, q2, q3) has a value 1 if and only if there is a partial schedule on the first
j data points resulting in a total base station idle time in I �

q1 , a total data transmission
time in I tq2 , and a total compression cost in I Fq3 ; associated with each such entry is the
partial schedule with the least compression cost Fj (that is, all other partial schedules
evaluating this DP ′ entry to 1 are discarded—ties broken arbitrarily).

For initialization, we have DP ′(0; 1, 1, 1) = 1 and the associated partial schedule
is (0; 0, 0, 0); DP ′(0; q1, q2, q3) = 0, for all other triples (q1, q2, q3) ∈ [v1]× [v2]×
[v3].

Given an entry DP ′(j; q1, q2, q3) = 1 and its associated partial schedule
(j; � j , t j , Fj), we can derive two partial schedules (j+1; � j+1, t j+1, Fj+1) using the
recurrence in Eq. (2.1), corresponding to compressing the data pointα j+1 and not com-
pressing α j+1, respectively. Assuming � j+1 (t j+1, Fj+1, respectively) belongs to the
interval I �

p1 (I
t
p2 , I

F
p3 , respectively), such a partial schedule (j + 1; � j+1, t j+1, Fj+1)

evaluates the entry DP ′(j + 1; p1, p2, p3) to 1, if the entry was previously 0; in this
case, the partial schedule (j; � j , t j , Fj) associated with the entry DP ′(j; q1, q2, q3)

3 One could probably further reduce the size and/or the dimensionality of the table. We nonetheless use
the current table for the ease of presentation.

123

Algorithmica (2018) 80:3158–3176 3171

is referred to as the predecessor of the partial schedule (j + 1; � j+1, t j+1, Fj+1)

associated with DP ′(j + 1; p1, p2, p3).
If the entry DP ′(j+1; p1, p2, p3)was previously 1, then Fj+1 is compared against

the compression cost of the old partial schedule associated with the entry, and the one
with a smaller value is kept (the predecessor information is correspondingly updated,
if a change occurs). One key property of this tabular computation is that, for every
saved partial schedule on the first j + 1 data points, its predecessor partial schedule
on the first j data points is also saved.

At the end of filling the DP ′ table, for each triple (q1, q2, q3) ∈ [v1] ×
[v2] × [v3] such that DP ′(m; q1, q2, q3) = 1, we examine the associated schedule
(m; �m, tm, Fm): if the makespan �m + tm ≤ (1 + ε)T , then it is considered as a can-
didate schedule; from all candidate schedules, our approximation scheme Approx3
outputs the one with the minimum compression cost, denoted as (m; �ε

m, tεm, Fε
m), as

the final solution to the problem DG- Compr- OptF.

Theorem 4 Forany ε > 0, the problemDG- Compr- OptFadmits an O(m6/ε3)-time
approximation algorithm based on dynamic programming, which returns a schedule
of compression cost no more than the optimum, by possibly exceeding the given time
bound by a factor of ε.

Proof Recall that we assume the existence of the optimal schedule π∗ and the data
point αm is compressed in π∗. We drop the unit compression cost f in the following
to simplify the presentation. Using the state notation, let π∗ = (m; �∗

m, t∗m, F∗
m); then

we have 0 ≤ �∗
m + t∗m ≤ T and α ≤ F∗

m ≤ mα.
Let the following path of states computed by the exact algorithm for the problem

DG- Compr- OptF in Sect. 2 denote how the state (0; 0, 0, 0) leads to the optimal
schedule π∗ = (m; �∗

m, t∗m, F∗
m):

(0; 0, 0, 0) → (1; �∗
1, t

∗
1 , F∗

1)

→ (2; �∗
2, t

∗
2 , F∗

2)

→ . . .

→ (m − 1; �∗
m−1, t

∗
m−1, F

∗
m−1) → (m; �∗

m, t∗m, F∗
m).

(5.2)

We prove the following claim by induction:

Claim 1 For each j ∈ [m], there is a partial schedule (j; � j , t j , Fj) saved by the
approximation algorithm Approx3, such that |� j − �∗

j | ≤ jδ1, |t j − t∗j | ≤ jδ2, and
Fj ≤ F∗

j .

Base Case (j = 1) During the computation of the algorithm Approx3, two partial
schedules are generated and they are (1; 0,C1α1, 0) and (1; Aα1, γC1α1, f α1) (cor-
responding to whether or not the data point α1 is compressed or not, respectively).
If they don’t belong to the same box B(1; ·, ·, ·), then both of them are saved by
Approx3; otherwise only (1; 0,C1α1, 0) is saved due to its smaller compression cost.
Since (1; �∗

1, t
∗
1 , F∗

1) must be either of them, in the former case the claim holds, as
there is a saved partial schedule identical to (1; �∗

1, t
∗
1 , F∗

1); in the latter case, the claim
holds because the saved partial schedule (1; 0,C1α1, 0) and (1; �∗

1, t
∗
1 , F∗

1) belong to
the same box B(1; ·, ·, ·).

123

3172 Algorithmica (2018) 80:3158–3176

Inductive StepWe assume that for each i ∈ [j], there is a partial schedule (i; �i , ti , Fi)
saved by the approximation algorithm Approx3, such that

|�i − �∗
i | ≤ iδ1, |ti − t∗i | ≤ iδ2, and Fi ≤ F∗

i .

We distinguish two cases corresponding to whether or not the data point α j+1 is
compressed in the optimal schedule π∗, that is, how the state (j; �∗

j , t
∗
j , F

∗
j) leads to

(j + 1; �∗
j+1, t

∗
j+1, F

∗
j+1).

Case 1 The data point α j+1 is not compressed in the optimal schedule π∗ In this case,
from Eq. (2.1), we have

�∗
j+1 = max{�∗

j − C j+1α j+1, 0}, t∗j+1 = t∗j + C j+1α j+1, and F∗
j+1 = F∗

j .

We examine the partial schedule (j + 1; �′
j+1, t

′
j+1, F

′
j+1) generated from

(j; � j , t j , Fj) by not compressing the data point α j+1, which by Eq. (2.1) satisfies

�′
j+1 = max{� j − C j+1α j+1, 0}, t ′j+1 = t j + C j+1α j+1, and F ′

j+1 = Fj .

It follows that

|�′
j+1 − �∗

j+1| = |max{� j − C j+1α j+1, 0} − max{�∗
j − C j+1α j+1, 0}|

≤ max{|� j − �∗
j |,max{� j − �∗

j , 0},max{�∗
j − � j , 0}}

= |� j − �∗
j |

≤ jδ1;
|t ′j+1 − t∗j+1| = |t j − t∗j | ≤ jδ2, and F ′

j+1 = Fj ≤ F∗
j = F∗

j+1.

Case 2 the data point α j+1 is compressed in the optimal schedule π∗ In this case,
from Eq. (2.1), we have

�∗
j+1 = max{Aα j+1 − t∗j , �∗

j }, t∗j+1 = t∗j + C j+1γα j+1, and F∗
j+1 = F∗

j + α j+1.

We examine the partial schedule (j + 1; �′
j+1, t

′
j+1, F

′
j+1) generated from

(j; � j , t j , Fj) by compressing the data point α j+1, which by Eq. (2.1) satisfies

�′
j+1 = max{Aα j+1 − t j , � j }, t ′j+1 = t j + C j+1γα j+1, and F ′

j+1 = Fj + α j+1.

It follows that

|�′
j+1 − �∗

j+1| = |max{Aα j+1 − t∗j , �∗
j } − max{Aα j+1 − t j , � j }|

≤ max{|t j − t∗j |, |min{t∗j − t j , �
∗
j − � j }|, |max{t j − t∗j , �∗

j − � j }|}
≤ max{|t j − t∗j |, |� j − �∗

j |}
≤ jδ1 (due to δ1 = δ2);

|t ′j+1 − t∗j+1| = |t j − t∗j | ≤ jδ2, and F ′
j+1 = Fj + α j+1 ≤ F∗

j + α j+1 = F∗
j+1.

123

Algorithmica (2018) 80:3158–3176 3173

Note that in either of the above two cases, the examined partial schedule (j +
1; �′

j+1, t
′
j+1, F

′
j+1) might not be saved by the algorithm Approx3, due to its com-

pression cost F ′
j+1 not being the least among the partial schedules residing in the same

box B(j+1; ·, ·, ·). Let the partial schedule associatedwith the samebox B(j+1; ·, ·, ·)
be (j + 1; � j+1, t j+1, Fj+1), which is saved by Approx3. We have

|� j+1 − �′
j+1| ≤ δ1, |t j+1 − t ′j+1| ≤ δ2, and Fj+1 ≤ F ′

j+1.

Therefore, we conclude that for the saved partial schedule (j + 1; � j+1, t j+1, Fj+1),

|� j+1 − �∗
j+1| ≤ (j + 1)δ1, |t j+1 − t∗j+1| ≤ (j + 1)δ2, and Fj+1 ≤ F∗

j+1.

This finishes the proof of the claim.
From the above Claim 1, the algorithmApprox3 saves a schedule (m; �m, tm, Fm),

for which

|�m − �∗
m | ≤ mδ1, |tm − t∗m | ≤ mδ2, and Fm ≤ F∗

m .

Consequently,

(�m + tm) ≤ (�∗
m + t∗m) + mδ1 + mδ2 ≤ T + εT = (1 + ε)T,

and

Fm ≤ F∗
m = OPT,

where OPT = F∗
m is the minimum compression cost.

Recall that the algorithm Approx3 examines all saved complete schedules
(m; �′

m, t ′m, F ′
m) and they are considered candidates if and only if the makespan

�′
m + t ′m ≤ (1 + ε)T . From Claim 1, we conclude that the candidate list is non-
empty, and from this listApprox3 outputs the one (m; �ε

m, tεm, Fε
m)with the minimum

compression cost, which is certainly no more than OPT. This finishes the proof of the
performance ratio of the algorithm Approx3.

For the running time, note that the size of the DP ′ table is O(m × v1 × v2 × v3) =
O(m × m

ε
× m

ε
× m2

ε
) = O(m

5

ε3
). Each table entry is associated with at most one

partial schedule, which leads to at most two partial schedules on an additional data
point. That is, the total tabular computation time, as well as saving the associated

partial schedules, is in O(m
5

ε3
). Afterwards, a non-dominant amount of time is spent

for finding the solution. Note that the above presentation of the algorithm Approx3
assumes the data point αm is compressed in the optimal schedule π∗. To remove this
assumption, we may execute the algorithm m times, each time assuming the largest-
size data point being compressed in the optimal schedule is α j . This results in a total

running time of Approx3 in O(m
6

ε3
). �	

We state the following similar result on the variantDG- Compr- OptT, with only a
sketch of proof for the (better) running time as it is similar to the proof of Theorem 4.

123

3174 Algorithmica (2018) 80:3158–3176

Theorem 5 For any ε > 0, the problem DG- Compr- OptT admits an O(m4/ε3)-
time (1 + ε)-approximation algorithm based on dynamic programming.

Proof Again we drop the unit compression cost f in the following to simplify the
presentation.

For the problem DG- Compr- OptT, we can develop the same approximation
scheme asApprox3 based on dynamic programming and the sparsing technique. The
only difference is the size of the DP ′ table, which becomes O(m × v1 × v2 × v3) =
O(m × m

ε
× m

ε
× m

ε
) = O(m

4

ε3
) by defining

δ1 = δ2 = ε

2m
T and δ3 = ε

m
F

and setting

v1 = v2 = �T/δ1� and v3 = �F/δ3�,

for any given ε > 0, with T estimated using Approx2 and F given as a part
of input. Since we only execute the algorithm once, the total running time is thus
in O(m

4

ε3
). �	

6 Concluding Remarks

We investigated a communication scheduling problem in data gathering wireless sen-
sor networks with data compression. There are two objectives: to minimize the total
data compression cost, and to minimize the makespan. Two single-objective opti-
mization problems are defined with the other measure bounded by a given value,
denoted as DG- Compr- OptF and DG- Compr- OptT, respectively. Both problems
have been proven NP-hard; we presented the first pseudo-polynomial time exact algo-
rithm based on dynamic programming, thus showing that they are (only) weakly
NP-hard. Using this dynamic programming algorithm, we derived a dual fully poly-
nomial time approximation scheme [10] for the problem DG- Compr- OptF, that
returns a schedule of compression cost no greater than the optimum by possibly
exceeding the given time bound by a factor of ε, for any ε > 0; a usual fully poly-
nomial time approximation scheme for the problem DG- Compr- OptT can also be
derived, that returns a schedule of makespan within (1 + ε) of the minimum, for any
ε > 0.

It is worth mentioning that deciding whether an instance of the problem DG-
Compr- OptF has a feasible solution is already NP-complete; therefore our dual
FPTAS is probably the best possible.

In the dynamic program algorithms, we intentionally separate the data transmission
completion time into two parts, namely the total base station idle time � and the total
data transmission time t . Such a separation not only simplifies the derivation of the
recurrence inEq. (2.1), but also ensuresClaim1 in the proof of Theorem4; as otherwise

123

Algorithmica (2018) 80:3158–3176 3175

the differences between the corresponding quantities might grow exponentially in j
(currently they grow only linearly in j).

Acknowledgements W.L. was supported by China Scholarship Council (Grant No. 201408330402),
the K. C. Wong Magna Fund in the Ningbo University, and the Ningbo Natural Science Foundation
(2016A610078). W.L., Y.X., B.G., R.G. and G.L. were supported by NSERC. W.T. was supported by
the FY16 Startup Funding from the Georgia Southern University.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Com-
put. Netw. 38, 393–422 (2002)

2. Alfieri, A., Bianco, A., Brandimarte, P., Chiasserini, C.F.: Maximizing system lifetime in wireless
sensor networks. Eur. J. Oper. Res. 181, 390–402 (2007)

3. Berlińska, J.: Communication scheduling in data gathering networkswith limitedmemory. Appl.Math.
Comput. 235, 530–537 (2014)

4. Berlińska, J.: Scheduling for data gathering networks with data compression. Eur. J. Oper. Res. 246,
744–749 (2015)

5. Błażewicz, J., Ecker, K.H., Pesch, E., Schmidt, G.,Weglarz, J.: Handbook on Scheduling: FromTheory
to Applications. Springer, Berlin (2007)

6. Cheng, J., Ye, Q., Jiang, H., Wang, D., Wang, C.: Stcdg: an efficient data gathering algorithm based on
matrix completion for wireless sensor networks. IEEE Trans. Wirel. Commun. 12, 850–861 (2013)

7. Choi, K., Robertazzi, T.G.: Divisible load scheduling in wireless sensor networks with information
utility. In: Proceedings of the 2008 IEEE International Performance, Computing and Communications
Conference, pp. 9–17 (2008)

8. Ergen, S.C., Varaiya, P.: TDMA scheduling algorithms for wireless sensor networks. Wirel. Netw. 16,
985–997 (2010)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness.
W. H. Freeman and Company, San Francisco (1979)

10. Hochbaum,D., Shmoys, D.: Using dual approximation algorithms for scheduling problems: theoretical
and practical results. J. ACM 34, 144–162 (1987)

11. Kellerer, H., Pferschy, U.: Improved dynamic programming in connection with an FPTAS for the
knapsack problem. J. Comb. Optim. 8, 5–11 (2004)

12. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)
13. Kellerer, H., Strusevich, V.: Fast approximation schemes for Boolean programming and scheduling

problems related to positive convex half-product. Eur. J. Oper. Res. 228, 24–32 (2013)
14. Kimura, N., Latifi, S.: A survey on data compression in wireless sensor networks. In: Proceedings

of the 2005 International Conference on Information Technology: Coding and Computing, pp. 8–13
(2005)

15. Kumar, S., Chauhan, S.: A survey on scheduling algorithms for wireless sensor networks. Int. J.
Comput. Appl. 20, 7–13 (2011)

16. Luo, C., Wu, F., Sun, J., Chen, C.W.: Compressive data gathering for large-scale wireless sensor
networks. In: Proceedings of the 15th Annual International Conference on Mobile Computing and
Networking, pp. 145–156 (2009)

17. Moges, M., Robertazzi, T.G.: Wireless sensor networks: scheduling for measurement and data report-
ing. IEEE Trans. Aerosp. Electron. Syst. 42, 327–340 (2006)

18. Rossi, A., Singh, A., Sevaux, M.: Lifetime maximization in wireless directional sensor network. Eur.
J. Oper. Res. 231, 229–241 (2013)

19. Shi, L., Fapojuwo, A.O.: TDMA scheduling with optimized energy efficiency and minimum delay in
clustered wireless sensor networks. IEEE Trans. Mob. Comput. 9, 927–940 (2010)

20. Tauhidul, I.M.: Approximation Algorithms for Minimum Knapsack Problem. Master’s thesis, Univer-
sity of Lethbridge (2009)

21. Wang, J., Tang, S., Yin, B., Li, X.Y.: Data gathering in wireless sensor networks through intelligent
compressive sensing. In: INFOCOM 2012, pp. 603–611 (2012)

123

3176 Algorithmica (2018) 80:3158–3176

22. Wu, Y., Li, X.Y., Liu, Y., Lou, W.: Energy-efficient wake-up scheduling for data collection and aggre-
gation. IEEE Trans. Parallel Distrib. Syst. 21, 275–287 (2010)

23. Xiang, L., Luo, J., Rosenberg, C.: Compressed data aggregation: energy-efficient and high-fidelity data
collection. IEEE/ACM Trans. Netw. 21, 1722–1735 (2013)

24. Xu, L., Wang, Y., Wang, Y.: Major coefficients recovery: a compressed data gathering scheme for
wireless sensor network. In: Global Telecommunications Conference (GLOBECOM 2011), pp. 1–5
(2011)

123

	Algorithms for Communication Scheduling in Data Gathering Network with Data Compression
	Abstract
	1 Introduction
	1.1 Problem Description
	1.2 Preliminaries
	1.3 Our Contributions

	2 The Dynamic Programming Algorithm
	3 Approximating the Problem DG-Compr-OptF
	4 Approximating the Problem DG-Compr-OptT
	5 Approximation Schemes
	5.1 Algorithmic Setup
	5.2 The FPTAS

	6 Concluding Remarks
	Acknowledgements
	References

